1
|
Marković ZM, Milivojević DD, Kovač J, Todorović Marković BM. Phloroglucinol-Based Carbon Quantum Dots/Polyurethane Composite Films: How Structure of Carbon Quantum Dots Affects Antibacterial and Antibiofouling Efficiency of Composite Films. Polymers (Basel) 2024; 16:1646. [PMID: 38931997 PMCID: PMC11207477 DOI: 10.3390/polym16121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Nowadays, bacteria resistance to many antibiotics is a huge problem, especially in clinics and other parts of the healthcare system. This critical health issue requires a dynamic approach to produce new types of antibacterial coatings to combat various pathogen microbes. In this research, we prepared a new type of carbon quantum dots based on phloroglucinol using the bottom-up method. Polyurethane composite films were produced using the swell-encapsulation-shrink method. Detailed electrostatic force and viscoelastic microscopy of carbon quantum dots revealed inhomogeneous structure characterized by electron-rich/soft and electron-poor/hard regions. The uncommon photoluminescence spectrum of carbon quantum dots core had a multipeak structure. Several tests confirmed that carbon quantum dots and composite films produced singlet oxygen. Antibacterial and antibiofouling efficiency of composite films was tested on eight bacteria strains and three bacteria biofilms.
Collapse
Affiliation(s)
- Zoran M. Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Dušan D. Milivojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Janez Kovač
- Department of Surface Engineering, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia;
| | - Biljana M. Todorović Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| |
Collapse
|
2
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
3
|
Oh E, Jung WW, Sul D. DNA damage and protective effects of placental extracts in blood lymphocytes and lymphoid organs of mice exposed to gamma irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Park C, Cha HJ, Hwangbo H, Ji SY, Kim DH, Kim MY, Bang E, Hong SH, Kim SO, Jeong SJ, Lee H, Moon SK, Shim JH, Kim GY, Cho S, Choi YH. Phloroglucinol Inhibits Oxidative-Stress-Induced Cytotoxicity in C2C12 Murine Myoblasts through Nrf-2-Mediated Activation of HO-1. Int J Mol Sci 2023; 24:4637. [PMID: 36902068 PMCID: PMC10003575 DOI: 10.3390/ijms24054637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Phloroglucinol is a class of polyphenolic compounds containing aromatic phenyl rings and is known to have various pharmacological activities. Recently, we reported that this compound isolated from Ecklonia cava, a brown alga belonging to the family Laminariaceae, has potent antioxidant activity in human dermal keratinocytes. In this study, we evaluated whether phloroglucinol could protect against hydrogen peroxide (H2O2)-induced oxidative damage in murine-derived C2C12 myoblasts. Our results revealed that phloroglucinol suppressed H2O2-induced cytotoxicity and DNA damage while blocking the production of reactive oxygen species. We also found that phloroglucinol protected cells from the induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, phloroglucinol enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) as well as the expression and activity of heme oxygenase-1 (HO-1). However, such anti-apoptotic and cytoprotective effects of phloroglucinol were greatly abolished by the HO-1 inhibitor, suggesting that phloroglucinol could increase the Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress. Taken together, our results indicate that phloroglucinol has a strong antioxidant activity as an Nrf2 activator and may have therapeutic benefits for oxidative-stress-mediated muscle disease.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Sung Ok Kim
- Department of Food and Nutrition, College of Life and Health, Kyungsung University, Busan 48434, Republic of Korea
| | - Soon-Jeong Jeong
- Department of Dental Hygiene & Institute of Basic Science for Well-Aging, Youngsan University, Yangsan 50510, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, College of Biotechnology & Natural Resource, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
5
|
Park C, Cha HJ, Kim MY, Bang E, Moon SK, Yun SJ, Kim WJ, Noh JS, Kim GY, Cho S, Lee H, Choi YH. Phloroglucinol Attenuates DNA Damage and Apoptosis Induced by Oxidative Stress in Human Retinal Pigment Epithelium ARPE-19 Cells by Blocking the Production of Mitochondrial ROS. Antioxidants (Basel) 2022; 11:antiox11122353. [PMID: 36552561 PMCID: PMC9774705 DOI: 10.3390/antiox11122353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability. However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus, the objective of this study was to evaluate whether phloroglucinol could protect against oxidative damage in cultured human retinal pigment epithelium ARPE-19 cells. For this purpose, ARPE-19 cells were stimula ted with hydrogen peroxide (H2O2) to mimic oxidative stress. Cell viability, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial function, DNA damage, and autophagy were then assessed. Our results revealed that phloroglucinol ameliorated cell viability, cytotoxicity, and DNA damage in H2O2-exposued ARPE-19 cells and blocked production of ROS. Phloroglucinol also counteracted H2O2-induced apoptosis by reducing Bax/Bcl-2 ratio, blocking activation of caspase-3, and inhibiting degradation of poly (ADP-ribose) polymerase. H2O2 caused mitochondrial impairment and increased expression levels of mitophagy markers such as PINK1and PARKIN known to be associated with mitochondrial ROS (mtROS) generation and cytosolic release of cytochrome c. However, these changes were significantly attenuated by phloroglucinol. Mito-TEMPO, a selective mitochondrial antioxidant, further enhanced the protective effect of phloroglucinol against dysfunctional mitochondria. Furthermore, H2O2 induced autophagy, but not when ARPE-19 cells were pretreated with phloroglucinol, meaning that autophagy by H2O2 contributed to the pro-survival mechanism and that phloroglucinol protected ARPE-19 cells from apoptosis by blocking autophagy. Taken together, these results suggest that phloroglucinol can inhibit oxidative stress-induced ARPE-19 cell damage and dysfunction by protecting DNA damage, autophagy, and subsequent apoptosis through mitigation of mtROS generation. Thus, phloroglucinol might have therapeutic potential to prevent oxidative stress-mediated damage in RPE cells.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| |
Collapse
|
6
|
Li F, Yue TQ, Wang JM, Zhang HB. Externally Supplied Mannitol and Trehalose Boost Phloroglucinol Biosynthesis in Escherichia coli. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Khan F, Jeong GJ, Khan MSA, Tabassum N, Kim YM. Seaweed-Derived Phlorotannins: A Review of Multiple Biological Roles and Action Mechanisms. Mar Drugs 2022; 20:384. [PMID: 35736187 PMCID: PMC9227776 DOI: 10.3390/md20060384] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022] Open
Abstract
Phlorotannins are a group of phenolic secondary metabolites isolated from a variety of brown algal species belonging to the Fucaceae, Sargassaceae, and Alariaceae families. The isolation of phlorotannins from various algal species has received a lot of interest owing to the fact that they have a range of biological features and are very biocompatible in their applications. Phlorotannins have a wide range of therapeutic biological actions, including antimicrobial, antidiabetic, antioxidant, anticancer, anti-inflammatory, anti-adipogenesis, and numerous other biomedical applications. The current review has extensively addressed the application of phlorotannins, which have been extensively investigated for the above-mentioned biological action and the underlying mechanism of action. Furthermore, the current review offers many ways to use phlorotannins to avoid certain downsides, such as low stability. This review article will assist the scientific community in investigating the greater biological significance of phlorotannins and developing innovative techniques for treating both infectious and non-infectious diseases in humans.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea;
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| |
Collapse
|
8
|
Sudharsan M, Prasad NR, Kanimozhi G, Rishiikeshwer B, Brindha G, Chakraborty A. Redox status and metabolomic profiling of thioredoxin reductase inhibitors and 4 kGy ionizing radiation-exposed Deinococcus radiodurans. Microbiol Res 2022; 261:127070. [DOI: 10.1016/j.micres.2022.127070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
|
9
|
Matulja D, Vranješević F, Kolympadi Markovic M, Pavelić SK, Marković D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022; 27:molecules27041449. [PMID: 35209235 PMCID: PMC8879422 DOI: 10.3390/molecules27041449] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Filip Vranješević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Maria Kolympadi Markovic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| |
Collapse
|
10
|
Okeke ES, Nweze EJ, Chibuogwu CC, Anaduaka EG, Chukwudozie KI, Ezeorba TPC. Aquatic Phlorotannins and Human Health: Bioavailability, Toxicity, and Future Prospects. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemists and pharmacognosists have relied on terrestrial sources for bioactive phytochemicals to manage and treat disease conditions. However, minimal interest is given to sea life, especially macroalgae and their inherent phytochemical reserves. Phlorotannins are a special class of phytochemicals mainly predominant in brown algae of marine and estuarine habitats. Phlorotannins are formed through the polymerization of phloroglucinol residues and derivatives via the polyketide (acetate–malonate) pathway. Studies over the past decades have implicated phlorotannins with several bioactivities, including anti-herbivory, antioxidants, anti-inflammatory, anti-microbial, anti-proliferative, anti-diabetic, radio-protective, adipogenic, anti-allergic, and anti-human immunodeficiency virus (anti-HIV) properties. All these activities are reflected in their applications as nutraceuticals and cosmeceutical agents. This article reviews the chemical composition of phlorotannins, their biological roles, and their applications. Moreover, very few studies on phlorotannin bioavailability, safety, and toxicity have been thoroughly reviewed. The paper concludes by suggesting exciting research questions for further studies.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of General Studies, University of Nigeria, Nsukka, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, P.R. China
- Organization of African Academic Doctor, Nairobi, Kenya
| | - Ekene John Nweze
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | | | | | | | - Timothy Prince Chidike Ezeorba
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Abraham RE, Alghazwi M, Liang Q, Zhang W. Advances on marine-derived natural radioprotection compounds: historic development and future perspective. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:474-487. [PMID: 37073261 PMCID: PMC10077276 DOI: 10.1007/s42995-021-00095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/23/2020] [Indexed: 05/03/2023]
Abstract
Natural extracts and compounds from marine resources have gained intensive scientific and industry attention for radioprotective activities in the past ten years. However, the marine-derived radioprotectants have been studied against UV-rays, gamma (γ)-rays and X-rays for more than 30 years. This review aims to identify key marine-derived extracts/compounds and their modes of action studied for radioprotective activities from 1986 to 2019. A comprehensive survey was conducted to establish the trend in terms of the publications each year and the countries of origin. A total of 40 extracts and 34 natural compounds showing radioprotective activities against UV-rays, gamma (γ)-rays and X-rays were identified from a range of marine plants and animals. These extracts and compounds are broadly categorized into polysaccharides, phlorotannins, carotenoids and mycosporine-like amino acids (MAAs). Macroalgae and microalgae were found to be the dominant sources of polysaccharides, phlorotannins and carotenoids. MAAs were mainly identified in algae, sponges, sea cucumber and corals that showed significant UV-absorbing activities. A number of radioprotective mechanisms were shown by these compounds, predominantly free radicals scavenging, inhibition of apoptosis, UV-ray absorption and DNA damage-repair signaling pathways. While these bio-discoveries warrant further investigation and development of radioprotective therapeutics, however, the lack of clinical studies is a major obstacle to be tackled in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00095-x.
Collapse
Affiliation(s)
- Reinu E. Abraham
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042 Australia
| | - Mousa Alghazwi
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042 Australia
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Qi Liang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042 Australia
- Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042 Australia
| |
Collapse
|
12
|
Yang EJ, Kim H, Kim HS, Chang MJ. Phloroglucinol attenuates oligomeric amyloid beta peptide 1-42-induced astrocytic activation by reducing oxidative stress. J Pharmacol Sci 2021; 145:308-312. [PMID: 33712281 DOI: 10.1016/j.jphs.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Astrocytes are the most abundant cell type in the central nervous system (CNS) and their major function is to maintain homeostasis of the CNS by exerting various functions. Simultaneously, reactive astrocytes are well known to be involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). Reactive astrocytes, induced by amyloid beta peptide (Aβ), the main component of the neuritic plaques found in AD, induce neuroinflammation, producing cytokines that lead to neuronal cell death in AD. Phloroglucinol,a polyphenol monomer and a component of phlorotannin, is found at sufficient levels in Ecklonia cava of the Laminariaceae family. Recently, several studies have reported that phloroglucinol has the ability to trap free radicals in lung fibroblasts or cancer cells. However, the effects of phloroglucinol in astrocytes have not yet been studied. Here, we found that phloroglucinol inhibits the generation of ROS induced by oligomeric Aβ1-42 (oAβ1-42) treatment in primary astrocytes. Futhermore, phloroglucinol was shown to ameliorate the protein expression of glial fibrillary acidic protein, a marker of reactive astrocytes, after treatment with oAβ1-42. These results indicate that phloroglucinol exerts antioxidant effects in primary cultured astrocytes and attenuates the astrocytic activation induced by oAβ1-42.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea; Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Hyunju Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea; Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea; Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea; Seoul National University College of Medicine, Bundang Hospital, Bundang-Gu, Sungnam, Republic of Korea.
| | - Moon-Jeong Chang
- Department of Foods and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
13
|
Shen P, Gu Y, Zhang C, Sun C, Qin L, Yu C, Qi H. Metabolomic Approach for Characterization of Polyphenolic Compounds in Laminaria japonica, Undaria pinnatifida, Sargassum fusiforme and Ascophyllum nodosum. Foods 2021; 10:foods10010192. [PMID: 33477846 PMCID: PMC7832864 DOI: 10.3390/foods10010192] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/25/2022] Open
Abstract
Profiling of polyphenolics in four types of brown macroalgae, namely Laminaria japonica (L. japonica), Undaria pinnatifida (U. pinnatifida), Sargassum fusiforme (S. fusiforme), and Ascophyllum nodosum (A. nodosum), and their effect on oxidation resistance were investigated for the first time. Polyphenolic extracts from marine brown macroalgae were shown to effectively remove oxidants from cells and cellular systems. A. nodosum showed the highest antioxidant activity among evaluated brown macroalgae, showing a better scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and alleviating oxidative damage caused by hydrogen peroxide to human keratinocytes (HaCaT) cells. Through Q-Exactive HF-X mass spectrometry analysis, 12 polyphenolic compounds were preliminarily identified, including phlorotannins, phenolic acids, and flavonoids. Significant differences in content and variety of polyphenolics were found in evaluated brown macroalgae, which could be related to differences in antioxidant activity in vivo and in vitro. Moreover, the antioxidant activity might be related to the total phenolic content and the types of polyphenolics, especially phlorotannins. The findings presented in this study indicate that A. nodosum could be used as an important substitute for functional ingredients in foods and pharmaceutical preparations, as well as a raw material for phlorotannins research.
Collapse
Affiliation(s)
- Ping Shen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (P.S.); (Y.G.); (L.Q.)
| | - Yue Gu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (P.S.); (Y.G.); (L.Q.)
| | - Chunxu Zhang
- School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China;
| | - Chenghang Sun
- Department of Biochemical Engineering, Chaoyang Teachers College, Chaoyang 122000, China;
| | - Lei Qin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (P.S.); (Y.G.); (L.Q.)
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (P.S.); (Y.G.); (L.Q.)
- Correspondence: ; Tel.: +86-411-86318785
| |
Collapse
|
14
|
Piao MJ, Kim KC, Kang KA, Fernando PDSM, Herath HMUL, Hyun JW. Phloroglucinol Attenuates Ultraviolet B-Induced 8-Oxoguanine Formation in Human HaCaT Keratinocytes through Akt and Erk-Mediated Nrf2/Ogg1 Signaling Pathways. Biomol Ther (Seoul) 2021; 29:90-97. [PMID: 32587122 PMCID: PMC7771840 DOI: 10.4062/biomolther.2020.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB) radiation causes DNA base modifications. One of these changes leads to the generation of 8-oxoguanine (8-oxoG) due to oxidative stress. In human skin, this modification may induce sunburn, inflammation, and aging and may ultimately result in cancer. We investigated whether phloroglucinol (1,3,5-trihydroxybenzene), by enhancing the expression and activity of 8-oxoG DNA glycosylase 1 (Ogg1), had an effect on the capacity of UVB-exposed human HaCaT keratinocytes to repair oxidative DNA damage. Here, the effects of phloroglucinol were investigated using a luciferase activity assay, reverse transcription-polymerase chain reactions, western blot analysis, and a chromatin immunoprecipitation assay. Phloroglucinol restored Ogg1 activity and decreased the formation of 8-oxoG in UVB-exposed cells. Moreover, phloroglucinol increased Ogg1 transcription and protein expression, counteracting the UVB-induced reduction in Ogg1 levels. Phloroglucinol also enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as Nrf2 binding to an antioxidant response element located in the Ogg1 gene promoter. UVB exposure inhibited the phosphorylation of protein kinase B (PKB or Akt) and extracellular signal-regulated kinase (Erk), two major enzymes involved in cell protection against oxidative stress, regulating the activity of Nrf2. Akt and Erk phosphorylation was restored by phloroglucinol in the UVB-exposed keratinocytes. These results indicated that phloroglucinol attenuated UVB-induced 8-oxoG formation in keratinocytes via an Akt/Erk-dependent, Nrf2/Ogg1-mediated signaling pathway.
Collapse
Affiliation(s)
- Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Ki Cheon Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | | | | | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| |
Collapse
|
15
|
Milanović Ž, Tošović J, Marković S, Marković Z. Comparison of the scavenging capacities of phloroglucinol and 2,4,6-trihydroxypyridine towards HO˙ radical: a computational study. RSC Adv 2020; 10:43262-43272. [PMID: 35519718 PMCID: PMC9058218 DOI: 10.1039/d0ra08377a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/21/2020] [Indexed: 01/06/2023] Open
Abstract
In this work the scavenging capacities of biologically active phloroglucinol (1,3,5-trihydroxybenzene, THB-OH) and structurally similar 2,4,6-trihydroxypyridine (THP-OH) towards HO˙ were examined. This task was realized by means of density functional theory, through investigation of all favorable antioxidative pathways in two solvents of different polarity: benzene and water. It was found that in benzene both compounds conform to the hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms. In water, the mechanisms of antioxidative action of the investigated compounds are far more complex, especially those of THB-OH. This compound and HO˙ undergo all four investigated mechanisms: HAT, RAF, sequential proton loss electron transfer (SPLET), and single electron transfer-proton transfer (SET-PT). HAT, RAF and SPLET are operative mechanisms in the case of THP-OH. Independently of solvent polarity, both investigated compounds are more reactive towards HO˙ in comparison to Trolox. Our final remark is as follows: the electron-withdrawing effect of the nitrogen is stronger than the electron-donating effect of the OH groups in the molecule of THP-OH. As a consequence, THB-OH is more powerful antioxidant than THP-OH, thus implying that the presence of nitrogen decreases the scavenging capacity of the respective compound.
Collapse
Affiliation(s)
- Žiko Milanović
- Department of Chemistry, Faculty of Science, University of Kragujevac 12 Radoja Domanovića 34000 Kragujevac Serbia
| | - Jelena Tošović
- Department of Chemistry, Faculty of Science, University of Kragujevac 12 Radoja Domanovića 34000 Kragujevac Serbia
| | - Svetlana Marković
- Department of Chemistry, Faculty of Science, University of Kragujevac 12 Radoja Domanovića 34000 Kragujevac Serbia
| | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac Jovana Civijića bb 34000 Kragujevac Serbia
| |
Collapse
|
16
|
Yang K, Kim SY, Park JH, Ahn WG, Jung SH, Oh D, Park HC, Choi C. Topical Application of Phlorotannins from Brown Seaweed Mitigates Radiation Dermatitis in a Mouse Model. Mar Drugs 2020; 18:md18080377. [PMID: 32707897 PMCID: PMC7460453 DOI: 10.3390/md18080377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Radiation dermatitis (RD) is one of the most common side effects of radiotherapy; its symptoms progress from erythema to dry and moist desquamation, leading to the deterioration of the patients’ quality of life. Active metabolites in brown seaweed, including phlorotannins (PTNs), show anti-inflammatory activities; however, their medical use is limited. Here, we investigated the effects of PTNs in a mouse model of RD in vivo. X-rays (36 Gy) were delivered in three fractions to the hind legs of BALB/c mice. Macroscopic RD scoring revealed that PTNs significantly mitigated RD compared with the vehicle control. Histopathological analyses of skin tissues revealed that PTNs decreased epidermal and dermal thickness compared with the vehicle control. Western blotting indicated that PTNs augmented nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) pathway activation but attenuated radiation-induced NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and inflammasome activation, suggesting the mitigation of acute inflammation in irradiated mouse skin. PTNs also facilitated fast recovery, as indicated by increased aquaporin 3 expression and decreased γH2AX (histone family member X) expression. Our results indicate that topical PTN application may alleviate RD symptoms by suppressing oxidative stress and inflammatory signaling and by promoting the healing process. Therefore, PTNs may show great potential as cosmeceuticals for patients with cancer suffering from radiation-induced inflammatory side effects such as RD.
Collapse
Affiliation(s)
- Kyungmi Yang
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
- School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
| | - Shin-Yeong Kim
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
| | - Ji-Hye Park
- School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
- Department of Dermatology, Samsung Medical Center, Seoul 06351, Korea
| | - Won-Gyun Ahn
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
| | - Sang Hoon Jung
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
| | - Dongruyl Oh
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
- School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
- School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
- Correspondence: (H.C.P.); (C.C.); Tel.: +82-2-3110-2605 (H.C.P.); +82-6190-5331 (C.C.)
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
- Correspondence: (H.C.P.); (C.C.); Tel.: +82-2-3110-2605 (H.C.P.); +82-6190-5331 (C.C.)
| |
Collapse
|
17
|
Almeida TP, Ramos AA, Ferreira J, Azqueta A, Rocha E. Bioactive Compounds from Seaweed with Anti-Leukemic Activity: A Mini-Review on Carotenoids and Phlorotannins. Mini Rev Med Chem 2020; 20:39-53. [PMID: 30854962 DOI: 10.2174/1389557519666190311095655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/08/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Chronic Myeloid Leukemia (CML) represents 15-20% of all new cases of leukemia and is characterized by an uncontrolled proliferation of abnormal myeloid cells. Currently, the first-line of treatment involves Tyrosine Kinase Inhibitors (TKIs), which specifically inhibits the activity of the fusion protein BCR-ABL. However, resistance, mainly due to mutations, can occur. In the attempt to find more effective and less toxic therapies, several approaches are taken into consideration such as research of new anti-leukemic drugs and "combination chemotherapy" where different drugs that act by different mechanisms are used. Here, we reviewed the molecular mechanisms of CML, the main mechanisms of drug resistance and current strategies to enhance the therapeutic effect of TKIs in CML. Despite major advances in CML treatment, new, more potent anticancer drugs and with fewer side effects are needed. Marine organisms, and particularly seaweed, have a high diversity of bioactive compounds with some of them having anticancer activity in several in vitro and in vivo models. The state-of-art suggests that their use during cancer treatment may improve the outcome. We reviewed here the yet few data supporting anti-leukemic activity of some carotenoids and phlorotannins in some leukemia models. Also, strategies to overcome drug resistance are discussed, particularly the combination of conventional drugs with natural compounds.
Collapse
Affiliation(s)
- Tânia P Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alice A Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Keramaris KE, Konstantopoulos K, Margaritis LH, Velentzas AD, Papassideri IS, Stravopodis DJ. Exploitation of Drosophila Choriogenesis Process as a Model Cellular System for Assessment of Compound Toxicity: the Phloroglucinol Paradigm. Sci Rep 2020; 10:242. [PMID: 31937877 PMCID: PMC6959335 DOI: 10.1038/s41598-019-57113-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Phloroglucinol (1,3,5 tri-hydroxy-benzene) (PGL), a natural phenolic substance, is a peroxidase inhibitor and has anti-oxidant, anti-diabetic, anti-inflammatory, anti-thrombotic, radio-protective, spasmolytic and anti-cancer activities. PGL, as a medicine, is administered to patients to control the symptoms of irritable bowel syndrome and acute renal colic, in clinical trials. PGL, as a phenolic substance, can cause cytotoxic effects. Administration of PGL up to 300 mg/kg (bw) is well tolerated by animals, while in cell lines its toxicity is developed at concentrations above the dose of 10 μg/ml. Furthermore, it seems that tumor or immortalized cells are more susceptible to the toxic power of PGL, than normal cells. However, studies of its cytotoxic potency, at the cellular level, in complex, differentiated and meta-mitotic biological systems, are still missing. In the present work, we have investigated the toxic activity of PGL in somatic epithelial cells, constituting the follicular compartment of a developing egg-chamber (or, follicle), which directs the choriogenesis (i.e. chorion assembly) process, during late oogenesis of Drosophila melanogaster. Our results reveal that treatment of in vitro growing Drosophila follicles with PGL, at a concentration of 0.2 mM (or, 25.2 μg/ml), does not lead to follicle-cell toxicity, since the protein-synthesis program and developmental pattern of choriogenesis are normally completed. Likewise, the 1 mM dose of PGL was also characterized by lack of toxicity, since the chorionic proteins were physiologically synthesized and the chorion structure appeared unaffected, except for a short developmental delay, being observed. In contrast, concentrations of 10, 20 or 40 mM of PGL unveiled a dose-dependent, increasing, toxic effect, being initiated by interruption of protein synthesis and disassembly of cell-secretory machinery, and, next, followed by fragmentation of the granular endoplasmic reticulum (ER) into vesicles, and formation of autophagic vacuoles. Follicle cells enter into an apoptotic process, with autophagosomes and large vacuoles being formed in the cytoplasm, and nucleus showing protrusions, granular nucleolus and condensed chromatin. PGL, also, proved able to induce disruption of nuclear envelope, activation of nucleus autophagy (nucleophagy) and formation of a syncytium-like pattern being produced by fusion of plasma membranes of two or more individual follicle cells. Altogether, follicle cell-dependent choriogenesis in Drosophila has been herein presented as an excellent, powerful and reliable multi-cellular, differentiated, model biological (animal) system for drug-cytotoxicity assessment, with the versatile compound PGL serving as a characteristic paradigm. In conclusion, PGL is a substance that may act beneficially for a variety of pathological conditions and can be safely used for differentiated somatic -epithelial- cells at clinically low concentrations. At relatively high doses, it could potentially induce apoptotic and autophagic cell death, thus being likely exploited as a therapeutic agent against a number of pathologies, including human malignancies.
Collapse
Affiliation(s)
- Konstantinos E Keramaris
- Department of Hematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Konstantinos Konstantopoulos
- Department of Hematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Lukas H Margaritis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
19
|
Rosa GP, Tavares WR, Sousa PMC, Pagès AK, Seca AML, Pinto DCGA. Seaweed Secondary Metabolites with Beneficial Health Effects: An Overview of Successes in In Vivo Studies and Clinical Trials. Mar Drugs 2019; 18:E8. [PMID: 31861879 PMCID: PMC7024274 DOI: 10.3390/md18010008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Macroalgae are increasingly viewed as a source of secondary metabolites with great potential for the development of new drugs. In this development, in vitro studies are only the first step in a long process, while in vivo studies and clinical trials are the most revealing stages of the true potential and limitations that a given metabolite may have as a new drug. This literature review aims to give a critical overview of the secondary metabolites that reveal the most interesting results in these two steps. Phlorotannins show great pharmaceutical potential in in vivo models and, among the several examples, the anti-dyslipidemia activity of dieckol must be highlighted because it was more effective than lovastatin in an in vivo model. The IRLIIVLMPILMA tridecapeptide that exhibits an in vivo level of activity similar to the hypotensive clinical drug captopril should still be stressed, as well as griffithsin which showed such stunning results over a variety of animal models and which will probably move onto clinical trials soon. Regarding clinical trials, studies with pure algal metabolites are scarce, limited to those carried out with kahalalide F and fucoxanthin. The majority of clinical trials currently aim to ascertain the effect of algae consumption, as extracts or fractions, on obesity and diabetes.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
| | - Wilson R. Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Aida K. Pagès
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Hsueh CC, Wu CC, Chen BY. Polyphenolic compounds as electron shuttles for sustainable energy utilization. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:271. [PMID: 31832094 PMCID: PMC6859638 DOI: 10.1186/s13068-019-1602-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/25/2019] [Indexed: 05/05/2023]
Abstract
For renewable and sustainable bioenergy utilization with cost-effectiveness, electron-shuttles (ESs) (or redox mediators (RMs)) act as electrochemical "catalysts" to enhance rates of redox reactions, catalytically accelerating electron transport efficiency for abiotic and biotic electrochemical reactions. ESs are popularly used in cellular respiratory systems, metabolisms in organisms, and widely applied to support global lives. Apparently, they are applicable to increase power-generating capabilities for energy utilization and/or fuel storage (i.e., dye-sensitized solar cell, batteries, and microbial fuel cells (MFCs)). This first-attempt review specifically deciphers the chemical structure association with characteristics of ESs, and discloses redox-mediating potentials of polyphenolics-abundant ESs via MFC modules. Moreover, to effectively convert electron-shuttling capabilities from non-sustainable antioxidant activities, environmental conditions to induce electrochemical mediation apparently play critical roles of great significance for bioenergy stimulation. For example, pH levels would significantly affect electrochemical potentials to be exhibited (e.g., alkaline pHs are electrochemically favorable for expression of such electron-shuttling characteristics). Regarding chemical structure effect, chemicals with ortho- and para-dihydroxyl substituents-bearing aromatics own convertible characteristics of non-renewable antioxidants and electrochemically catalytic ESs; however, ES capabilities of meta-dihydroxyl substituents can be evidently repressed due to lack of resonance effect in the structure for intermediate radical(s) during redox reaction. Moreover, this review provides conclusive remarks to elucidate the promising feasibility to identify whether such characteristics are non-renewable antioxidants or reversible ESs from natural polyphenols via cyclic voltammetry and MFC evaluation. Evidently, considering sustainable development, such electrochemically convertible polyphenolic species in plant extracts can be reversibly expressed for bioenergy-stimulating capabilities in MFCs under electrochemically favorable conditions.
Collapse
Affiliation(s)
- Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan, 26047 Taiwan
| | - Chia-Chyi Wu
- Department of Horticulture, National I-Lan University, I-Lan, 26047 Taiwan
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan, 26047 Taiwan
| |
Collapse
|
21
|
Park C, Cha HJ, Hong SH, Kim GY, Kim S, Kim HS, Kim BW, Jeon YJ, Choi YH. Protective Effect of Phloroglucinol on Oxidative Stress-Induced DNA Damage and Apoptosis through Activation of the Nrf2/HO-1 Signaling Pathway in HaCaT Human Keratinocytes. Mar Drugs 2019; 17:md17040225. [PMID: 31013932 PMCID: PMC6520966 DOI: 10.3390/md17040225] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
Phloroglucinol (PG) is a component of phlorotannins, which are abundant in marine brown alga species. Recent studies have shown that PG is beneficial in protecting cells from oxidative stress. In this study, we evaluated the protective efficacy of PG in HaCaT human skin keratinocytes stimulated with oxidative stress (hydrogen peroxide, H2O2). The results showed that PG significantly inhibited the H2O2-induced growth inhibition in HaCaT cells, which was associated with increased expression of heme oxygenase-1 (HO-1) by the activation of nuclear factor erythroid 2-related factor-2 (Nrf2). PG remarkably reversed H2O2-induced excessive ROS production, DNA damage, and apoptosis. Additionally, H2O2-induced mitochondrial dysfunction was related to a decrease in ATP levels, and in the presence of PG, these changes were significantly impaired. Furthermore, the increases of cytosolic release of cytochrome c and ratio of Bax to Bcl-2, and the activation of caspase-9 and caspase-3 by the H2O2 were markedly abolished under the condition of PG pretreatment. However, the inhibition of HO-1 function using zinc protoporphyrin, a HO-1 inhibitor, markedly attenuated these protective effects of PG against H2O2. Overall, our results suggest that PG is able to protect HaCaT keratinocytes against oxidative stress-induced DNA damage and apoptosis through activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Korea.
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
22
|
Abstract
Natural marine-derived compounds show excellent biological activities. Isolation, characterization and applications of marine derived compounds show a promising way to develop novel drugs to treat various diseases. Phlorotannins are one of the main compounds which are commonly isolated from the brown seaweeds. The structural unit of phlorotannins is made-up of polyphenolic units. Due to the unique structures, phlorotannins show a variety of biological activities such as antibacterial, antioxidant, anti-inflammatory, antiproliferative, antitumor, antidiabetics, radio protective, antiadipogenic, and anti-allergic effects. In the current chapter, we have discussed general information on phlorotannins, extraction procedure and their biological activities in detail. From the scientific literature, phlorotannins can be potentially useful in the development of pharmaceuticals, nutraceuticals and cosmeceuticals.
Collapse
|
23
|
Abdel-Gawad EI, Awwad SA. The devastating effect of exposure to high irradiation dose on liver and the performance of synthesized nano-Hap in relieve the associated symptoms in rats. Biochem Cell Biol 2018; 96:507-514. [DOI: 10.1139/bcb-2017-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ionizing radiation is one of the environmental factors that may contribute to liver dysfunction through a mechanism involving oxidative stress. This investigation studied the possible therapeutic effects of nano-HAp on hepatotoxicity in rats induced with gamma (γ) radiation. The study was carried out using 3 groups with 10 rats in each. Group 1 comprised the non-irradiated control rats, whereas the rats in groups 2 and 3 received a single dose of 10 Gy γ-radiation. The rats in group 3 were treated with nano-HAp [100 mg·(kg body mass)−1] once a week for 2 weeks starting the day after irradiation. The results showed that the rats exposed to γ-radiation had fragmented DNA, and significantly decreased levels of liver tissue enzymes such as paraoxonase 1, gamma glutamyl, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Pro-inflammatory factors such as interleukin (IL)-2, IL-6, tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) in tissue were significantly increased compared with the controls. Also, exposure to γ-radiation significantly decreased the activity of superoxide dismutase and glutathione oxidase and increased lipid peroxidation in liver tissue. These effects were accompanied by severe histopathological changes to the hepatocytes. Intravenous injection of nano-HAp after irradiation has significant therapeutic potential against irradiation-induced liver damage because the treatment with nano-HAp restored antioxidant activity in the liver, antagonized the significant changes in the levels of IL-2, IL-6, TNF-α, IFN-γ, and restored the tissue level of paraoxonase 1, gamma glutamyl, ALT, and AST. Administering nano-HAp seemed to relieve the pathological changes induced by γ-radiation. Based on these results, it could be concluded that nano-HAp may have a therapeutic effect against liver dysfunction induced by γ-radiation through antagonizing the generation of free radicals and enhancing the antioxidant defense mechanisms.
Collapse
Affiliation(s)
| | - Sameh A. Awwad
- Department of chemical engineering, Higher institute of Engineering and Technology, Central Zone, 4th District, New Damietta, Damietta, Egypt
| |
Collapse
|
24
|
Yang EJ, Mahmood U, Kim H, Choi M, Choi Y, Lee JP, Cho JY, Hyun JW, Kim YS, Chang MJ, Kim HS. Phloroglucinol ameliorates cognitive impairments by reducing the amyloid β peptide burden and pro-inflammatory cytokines in the hippocampus of 5XFAD mice. Free Radic Biol Med 2018; 126:221-234. [PMID: 30118828 DOI: 10.1016/j.freeradbiomed.2018.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/29/2023]
Abstract
Among the various causative factors involved in the pathogenesis of Alzheimer's disease (AD), oxidative stress has emerged as an important factor. Phloroglucinol is a polyphenol component of phlorotannin, which is found at sufficient levels in Ecklonia cava (E. cava). Phloroglucinol has been reported to exert antioxidant activities in various tissues. Previously, we reported that the stereotaxic injection of phloroglucinol regulated synaptic plasticity in an AD mouse model. In this study, we aimed to investigate the effects of oral administration of phloroglucinol in AD. The oral administration of phloroglucinol for 2 months attenuated the impairments in cognitive function observed in 6-month-old 5X familial AD (5XFAD) mice, as assessed with the T-maze and Y-maze tests. The administration of phloroglucinol for 2 months in 5XFAD mice caused a reduction in the number of amyloid plaques and in the protein level of BACE1, a major amyloid precursor protein cleavage enzyme, together with γ-secretase. Phloroglucinol also restored the reduction in dendritic spine density and the number of mature spines in the hippocampi of 5XFAD mice. In addition, phloroglucinol-administered 5XFAD mice displayed lower protein levels of GFAP and Iba-1 and mRNA levels of TNF-α and IL-6 compared with vehicle-administered 5XFAD mice. These results demonstrated that phloroglucinol alleviated the neuropathological features and behavioral phenotypes in the 5XFAD mouse model. Taken together, our results suggest that phloroglucinol has therapeutic potential for AD treatment.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Usman Mahmood
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Hyunju Kim
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Moonseok Choi
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Yunjung Choi
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Jean-Pyo Lee
- Department of Physiology, Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Joo-Youn Cho
- Department of Clinical Pharmacology & Therapeutics, College of Medicine, Seoul National University and Hospital, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Yong Sik Kim
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Moon-Jeong Chang
- Department of Foods and Nutrition, College of Natural Science, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hye-Sun Kim
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Seoul National University Bundang Hospital, Seongnam, Sungnam, Bundang-Gu 13620, Republic of Korea; Neuroscience Research Institute, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
25
|
Ferreira J, Ramos AA, Almeida T, Azqueta A, Rocha E. Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: A mini review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:84-93. [PMID: 30195884 DOI: 10.1016/j.phymed.2018.04.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Glioblastomas (GBM) are one of the most aggressive tumor of the central nervous system with an average life expectancy of only 1-2 years after diagnosis, even with the use of advanced treatments with surgery, radiation, and chemotherapy. There are several anticancer drugs with alkylating properties that have been used in the therapy of malignant gliomas. Temozolomide (TMZ) is one of them, widely used even in combination with ionizing radiation. However, the main disadvantage of using these types of drugs in the treatment of GBM is the development of cancer drug resistance. Research of bioactive compounds with anticancer activity has been heavily explored. PURPOSE This review focuses on a carotenoid and a phlorotannin present in seaweed, namely fucoxanthin and phloroglucinol, and their anticancer activity against glioblastoma. The combination of natural compounds with conventional drugs is also discussed. CONCLUSION Several natural compounds existing in seaweeds, such as fucoxanthin and phoroglucinol, have shown cytotoxic activity in models in vitro and in vivo, acting through different molecular mechanisms, such as antioxidant, antiproliferative, DNA damage/DNA repair, proapoptotic, antiangiogenic and antimetastic. Within the scope of interactions with conventional drugs, there are evidences that some seaweed compounds could be used to potentiate the action of anticancer drugs. However, their effects and mechanisms of action, alone or in combination with anticancer drugs, namely TMZ, in glioblastoma cell, still few explored and require more attention due to the unquestionable high potential of these marine compounds.
Collapse
Affiliation(s)
- Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Alice Abreu Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal.
| | - Tânia Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/ Irunlarrea, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
| |
Collapse
|
26
|
Sharma P, Singla N, Dhawan DK. Evidence of Zinc in Affording Protection Against X-Ray-Induced Brain Injury in Rats. Biol Trace Elem Res 2017; 179:247-258. [PMID: 28261760 DOI: 10.1007/s12011-017-0976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
In the present world, X-rays have been regarded as one of the most efficient tools in medicine, industry and research. On the contrary, extensive human exposure to these rays is responsible for causing detrimental effects on physiological system. The aim of the present study was to investigate the role of zinc (Zn), if any, in mitigating the adverse effects induced by fractionated X-irradiation on rat brain. Female Sprague-Dawley rats weighing 170-200 g were divided into four different groups viz.: (a) normal control, (b) X-irradiated (21Gy), (c) zinc treated (227 mg/L in drinking water) and (d) X-irradiated + zinc treated. The skulls of animals belonging to groups (b) and (d) were exposed to X-rays in 30 fractions. Each fraction delivered a radiation dose of 70 rads, and rats were exposed to two fractions every day for 15 days, consecutively. X-ray treatment resulted in significant alterations in the neurobehavior, neurotransmitter levels and neuro-histoarchitecture of rats, whereas zinc co-treatment with X-rays resulted in significant improvement in these parameters. X-ray exposure also caused a significant increase in the levels of lipid peroxidation as well as activities of catalase and superoxide dismutase, which however were decreased upon simultaneous Zn treatment. On the contrary, X-ray treatment down-regulated the glutathione system, which were found to be up-regulated by zinc co-treatment. Further, protein expressions of p53 and NF-ҚB were found to be significantly elevated after X-irradiation, which were reversed following Zn supplementation. Hence, Zn seems to be an effective agent in mitigating the detrimental effects caused by exposure to X-rays.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - D K Dhawan
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
27
|
Lopes-Costa E, Abreu M, Gargiulo D, Rocha E, Ramos AA. Anticancer effects of seaweed compounds fucoxanthin and phloroglucinol, alone and in combination with 5-fluorouracil in colon cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:776-787. [PMID: 28850007 DOI: 10.1080/15287394.2017.1357297] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Colorectal cancer therapy with 5-fluorouracil (5-Fu) frequently become ineffective due to resistance to this drug; and thus other effective compounds are essential for therapy. It is well-known marine brown seaweeds contain antioxidant compounds the carotenoid fucoxanthin (Fx) and polyphenolic compound phloroglucinol (Ph) which exerted diverse biological activities including antioxidant and anticancer. The aim of this study was to determine the anticancer activities of Fx or Ph alone as well as combination of each chemical with 5-Fu on two human colorectal cancer cell lines (HCT116 and HT29), with comparison to responses in a normal colon cell line (CCD-18Co). Effects of these compounds on cell viability, induction of DNA damage, and cell death were evaluated using MTT assay, comet assay, nuclear condensation assay, and Western blot. 5-Fu decreased cell viability in a concentration-dependent manner in HCT116 and HT29 cells but was not cytotoxic in CCD-18Co cells. 5-Fu induced DNA damage in HCT116 cells with induction of cell death, while no marked effects on DNA damage and cell death were observed in HT29 cells. Fx or Ph alone also reduced cell viability in both cancer cell lines but no apparent cytotoxic effect in CCD-18Co cells, except for Fx at 50 and 100 µM. Diminished cell viability was accompanied by induction of DNA damage (by Fx) and induction of cell death (by Ph). In combination with 5-Fu, Fx at 10 µM (in HCT116 and HT29 cells), and Ph at 300 µM (in HT29 cells) enhanced the cytotoxic effect of 5-Fu; however, no marked cytotoxicity was noted in CCD-18Co cells. Since Fx and Ph alone reduced cancer cell line viability without an effect on normal cells and when in combination enhanced the cytotoxic effect of 5-Fu only in colon cancer cells, these compounds seem promising as anticancer agents.
Collapse
Affiliation(s)
- Eduarda Lopes-Costa
- a Group of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U. Porto - University of Porto , Matosinhos , Portugal
- b Laboratory of Histology and Embryology, Department of Microscopy , ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto (U. Porto) , Porto , Portugal
| | - Mariana Abreu
- a Group of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U. Porto - University of Porto , Matosinhos , Portugal
| | - Daniela Gargiulo
- a Group of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U. Porto - University of Porto , Matosinhos , Portugal
- c Department of Biological Sciences and Health , UNIBH - University Center of Belo Horizonte, University of Minas Gerais , Belo Horizonte , MG , Brazil
| | - Eduardo Rocha
- a Group of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U. Porto - University of Porto , Matosinhos , Portugal
- b Laboratory of Histology and Embryology, Department of Microscopy , ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto (U. Porto) , Porto , Portugal
| | - Alice A Ramos
- a Group of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U. Porto - University of Porto , Matosinhos , Portugal
- b Laboratory of Histology and Embryology, Department of Microscopy , ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto (U. Porto) , Porto , Portugal
| |
Collapse
|
28
|
Ha D, Bing SJ, Ahn G, Kim J, Cho J, Kim A, Herath KHINM, Yu HS, Jo SA, Cho IH, Jee Y. Blocking glutamate carboxypeptidase II inhibits glutamate excitotoxicity and regulates immune responses in experimental autoimmune encephalomyelitis. FEBS J 2016; 283:3438-56. [DOI: 10.1111/febs.13816] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Danbee Ha
- College of Veterinary Medicine; Jeju National University; South Korea
| | - So Jin Bing
- College of Veterinary Medicine; Jeju National University; South Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences; Chonnam National University; Yeosu South Korea
| | - Jinhee Kim
- College of Veterinary Medicine; Jeju National University; South Korea
| | - Jinhee Cho
- College of Veterinary Medicine; Jeju National University; South Korea
| | - Areum Kim
- Department of Advanced Convergence Technology & Science; Jeju National University; South Korea
| | | | - Hak Sun Yu
- Department of Parasitology; School of Medicine; Pusan National University; Yangsan South Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan South Korea
- Department of Pharmacology; College of Pharmacy; Dankook University; Cheonan South Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science; Brain Korea 21 Plus Program, and Institute of Korean Medicine; College of Korean Medicine, Kyung Hee University; Seoul South Korea
| | - Youngheun Jee
- College of Veterinary Medicine; Jeju National University; South Korea
- Department of Advanced Convergence Technology & Science; Jeju National University; South Korea
- Veterinary Medical Research Institute; Jeju National University; South Korea
| |
Collapse
|
29
|
Cvetkovski A, Bertolasi V, Ferretti V. Supramolecular hydrogen-bonding patterns of co-crystals containing the active pharmaceutical ingredient (API) phloroglucinol andN-heterocycles. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2016; 72:326-34. [DOI: 10.1107/s2052520616004406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/15/2016] [Indexed: 11/10/2022]
Abstract
The active pharmaceutical ingredient phloroglucinol (PHL) has been taken as an illustrative molecule to explore the intermolecular interactions which can be established with other molecular entities to build PHL pharmaceutical co-crystals. The crystal structures of five newly synthesized co-crystals are reported, where PHL is crystallized withN-heterocycles, namely 2-hydroxy-6-methylpyridine (1), 2,4-dimethyl-6-hydroxypyrimidine (2), 4-phenylpyridine (3), 2-hydroxypyridine (4) and 2,3,5,6-tetramethylpyrazine (5). The structural characteristics of these co-crystals, as far as the hydrogen-bonding networks and the crystalline architectures are concerned, are strongly dependent on the chemical features of the coformer molecules, as well as on their size and shape. A detailed analysis of the intermolecular interactions established in all the PHL co-crystals of known structures has allowed the recognition of some regularities in the packing modes that can be useful in the design of new supramolecular adducts forming predictable structural motifs.
Collapse
|
30
|
Cia D, Cubizolle A, Crauste C, Jacquemot N, Guillou L, Vigor C, Angebault C, Hamel CP, Vercauteren J, Brabet P. Phloroglucinol protects retinal pigment epithelium and photoreceptor against all-trans-retinal-induced toxicity and inhibits A2E formation. J Cell Mol Med 2016; 20:1651-63. [PMID: 27072643 PMCID: PMC4988284 DOI: 10.1111/jcmm.12857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/22/2016] [Indexed: 12/27/2022] Open
Abstract
Among retinal macular diseases, the juvenile recessive Stargardt disease and the age‐related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all‐trans‐retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti‐COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL‐induced cell death and reduces hydrogen peroxide (H2O2)‐induced damage in RPE in a dose‐dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL‐induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases.
Collapse
Affiliation(s)
- David Cia
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107 Facultés de Médecine et de Pharmacie, Clermont-Ferrand, France
| | - Aurélie Cubizolle
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Céline Crauste
- Université Montpellier, Montpellier, France.,Institut des Biomolecules Max Mousseron (IBMM), UMR5247-CNRS-UM ENSCM Faculté de Pharmacie, Montpellier, France
| | - Nathalie Jacquemot
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107 Facultés de Médecine et de Pharmacie, Clermont-Ferrand, France
| | - Laurent Guillou
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Claire Vigor
- Université Montpellier, Montpellier, France.,Institut des Biomolecules Max Mousseron (IBMM), UMR5247-CNRS-UM ENSCM Faculté de Pharmacie, Montpellier, France
| | - Claire Angebault
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Christian P Hamel
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France.,Université Montpellier, Montpellier, France.,Centre de référence des affections sensorielles génétiques, CHRU, Montpellier, France
| | - Joseph Vercauteren
- Université Montpellier, Montpellier, France.,Institut des Biomolecules Max Mousseron (IBMM), UMR5247-CNRS-UM ENSCM Faculté de Pharmacie, Montpellier, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France.,Université Montpellier, Montpellier, France
| |
Collapse
|
31
|
Im AR, Nam KW, Hyun JW, Chae S. Phloroglucinol Reduces Photodamage in Hairless Mice via Matrix Metalloproteinase Activity Through MAPK Pathway. Photochem Photobiol 2015; 92:173-9. [PMID: 26537624 DOI: 10.1111/php.12549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022]
Abstract
We investigated the photoprotective activity of phloroglucinol on ultraviolet B (UVB)-induced deleterious effects in hairless mice in vivo. To assess the photoprotective effect of phloroglucinol, phloroglucinol-treated HR-1 hairless male mice were exposed to UVB irradiation. The inhibitory activity of phloroglucinol on wrinkle formation was determined by analysis of skin replicas, epidermal thickness based on histological examination and collagen damage. Matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase (TIMP) mRNA levels were measured by real-time PCR. UVB induced transcription of proinflammatory cytokines, including interleukin-1 beta (IL-1β, IL-6) and IL-8 (IL-8). The protective effects of phloroglucinol on UVB-induced skin photoaging were examined by measuring protein levels of MMPs and mitogen-activated protein (MAP) kinases. The results of these experiments suggest that phloroglucinol has a significant beneficial effect on the barrier function of the skin. In hairless mice, signs of photoaging and photodamage, including coarse wrinkle formation, epidermal thickness and elastic fiber degeneration, were reduced in severity by phloroglucinol application. The phloroglucinol-treated group showed remarkably decreased mRNA levels of MMP-1, MMP-9 and inflammatory cytokines in comparison with those of the UVB-induced group. Oral administration of phloroglucinol attenuated phosphorylation of MAP kinases, including extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38.
Collapse
Affiliation(s)
- A-Rang Im
- KM-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Kung-Woo Nam
- Department of Life Science and Biotechnology, Soon Chun Hyang University, Chungnam, Korea
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju, Korea
| | - Sungwook Chae
- KM-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, Daejeon, Korea
| |
Collapse
|
32
|
He YQ, Zhang WT, Shi CH, Wang FM, Tian XJ, Ma LL. Phloroglucinol protects the urinary bladder via inhibition of oxidative stress and inflammation in a rat model of cyclophosphamide-induced interstitial cystitis. Chin Med J (Engl) 2015; 128:956-62. [PMID: 25836618 PMCID: PMC4834014 DOI: 10.4103/0366-6999.154316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Phloroglucinol plays an important role in oxidative stress and inflammatory responses. The effects of phloroglucinol have been proven in various disease models. The aim of the present study was to investigate the efficacy and possible mechanisms of phloroglucinol in the treatment of interstitial cystitis (IC). Methods: Thirty-two female Sprague-Dawley (SD) rats were used in this study. IC was induced by intraperitoneal injection of cyclophosphamide (CYP). Rats were randomly allocated to one of four groups (n = 8 per group): A control group, which was injected with saline (75 mg/kg; i.p.) instead of CYP on days 1, 4, and 7; a chronic IC group, which was injected with CYP (75 mg/kg; i.p.) on days 1, 4, and 7; a high-dose (30 mg/kg) phloroglucinol-treated group; and a low-dose (15 mg/kg) phloroglucinol-treated group. On day 8, the rats in each group underwent cystometrography (CMG), and the bladders were examined for evidence of oxidative stress and inflammation. Statistical analysis was performed by analysis of variance (ANOVA) followed by least square difference multiple comparison post-hoc test. Results: Histological evaluation showed that bladder inflammation in CYP-treated rats was suppressed by phloroglucinol. CMG revealed that the CYP treatment induced overactive bladder in rats that was reversed by phloroglucinol. Up-regulated tumor necrosis factor-α and interleukin-6 expression in the CYP-treated rats were also suppressed in the phloroglucinol treated rats. CYP treatment significantly increased myeloperoxidase activity as well as the decreased activities of catalase of the bladder, which was reversed by treatment with phloroglucinol. Conclusions: The application of phloroglucinol suppressed oxidative stress, inflammation, and overactivity in the bladder. This may provide a new treatment strategy for IC.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu-Lin Ma
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
33
|
Yang EJ, Ahn S, Ryu J, Choi MS, Choi S, Chong YH, Hyun JW, Chang MJ, Kim HS. Phloroglucinol Attenuates the Cognitive Deficits of the 5XFAD Mouse Model of Alzheimer's Disease. PLoS One 2015; 10:e0135686. [PMID: 26284625 PMCID: PMC4540482 DOI: 10.1371/journal.pone.0135686] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/26/2015] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly. Neuritic plaques whose primary component is amyloid beta peptide (Aβ) and neurofibrillary tangles which are composed of hyperphosphorylated tau, are known to be the neuropathological hallmarks of AD. In addition, impaired synaptic plasticity in neuronal networks is thought to be important mechanism underlying for the cognitive deficits observed in AD. Although various causative factors, including excitotoxicity, mitochondrial dysregulation and oxidative damage caused by Aβ, are involved in early onset of AD, fundamental therapeutics that can modify the progression of this disease are not currently available. In the present study, we investigated whether phloroglucinol (1, 3, 5-trihydroxybenzene), a component of phlorotannins, which are plentiful in Ecklonia cava, a marine brown alga species, displays therapeutic activities in AD. We found that phloroglucinol attenuates the increase in reactive oxygen species (ROS) accumulation induced by oligomeric Aβ1-42 (Aβ1-42) treatment in HT-22, hippocampal cell line. In addition, phloroglucinol was shown to ameliorate the reduction in dendritic spine density induced by Aβ1-42 treatment in rat primary hippocampal neuron cultures. We also found that the administration of phloroglucinol to the hippocampal region attenuated the impairments in cognitive dysfunction observed in 22-week-old 5XFAD (Tg6799) mice, which are used as an AD animal model. These results indicate that phloroglucinol displays therapeutic potential for AD by reducing the cellular ROS levels.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Junghwa Ryu
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Moon-Seok Choi
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Shinkyu Choi
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Hae Chong
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jin-Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Moon-Jeong Chang
- Department of Foods and Nutrition, College of Natural Science, Kookmin University, Seoul, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University College of Medicine, Bundang Hospital, Bundang-Gu, Sungnam, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Kim RK, Uddin N, Hyun JW, Kim C, Suh Y, Lee SJ. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells. Toxicol Appl Pharmacol 2015; 286:143-50. [DOI: 10.1016/j.taap.2015.03.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 12/13/2022]
|
35
|
Kim RK, Suh Y, Yoo KC, Cui YH, Hwang E, Kim HJ, Kang JS, Kim MJ, Lee YY, Lee SJ. Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition. Cancer Sci 2014; 106:94-101. [PMID: 25456733 PMCID: PMC4317783 DOI: 10.1111/cas.12562] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a challenging clinical problem and the primary cause of death in breast cancer patients. However, there is no therapeutic agent against metastasis of breast cancer cells. Here we report that phloroglucinol, a natural phlorotannin component of brown algae suppresses metastatic ability of breast cancer cells. Treatment with phloroglucinol effectively inhibited mesenchymal phenotypes of basal type breast cancer cells through downregulation of SLUG without causing a cytotoxic effect. Importantly, phloroglucinol decreased SLUG through inhibition of PI3K/AKT and RAS/RAF-1/ERK signaling. In agreement with in vitro data, phloroglucinol was also effective against in vivo metastasis of breast cancer cells, drastically suppressing their metastatic ability to lungs, and extending the survival time of mice. Collectively, our findings demonstrate a novel anticancer activity of phloroglucinol against metastasis of breast cancer cells, implicating its clinical relevance.
Collapse
Affiliation(s)
- Rae-Kwon Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
So MJ, Cho EJ. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress. Prev Nutr Food Sci 2014; 19:129-35. [PMID: 25320709 PMCID: PMC4195617 DOI: 10.3746/pnf.2014.19.3.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/22/2014] [Indexed: 12/02/2022] Open
Abstract
The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS.
Collapse
Affiliation(s)
- Mi Jung So
- Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University, Busan 609-735, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
37
|
Piao MJ, Ahn MJ, Kang KA, Kim KC, Zheng J, Yao CW, Cha JW, Hyun CL, Kang HK, Lee NH, Hyun JW. Phloroglucinol inhibits ultraviolet B radiation-induced oxidative stress in the mouse skin. Int J Radiat Biol 2014; 90:928-35. [DOI: 10.3109/09553002.2014.911990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Shin T, Ahn M, Hyun JW, Kim SH, Moon C. Antioxidant marine algae phlorotannins and radioprotection: a review of experimental evidence. Acta Histochem 2014; 116:669-74. [PMID: 24751171 DOI: 10.1016/j.acthis.2014.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/16/2014] [Accepted: 03/18/2014] [Indexed: 12/29/2022]
Abstract
Radiation has been widely used for cancer therapy in human medicine. However, the side effects of radiation are problematic and can limit its application. Radiation generates reactive oxygen species, leading to cell death via multiple signaling pathways. The blocking of certain signaling cascades using antioxidants represents a compensatory therapy of radiation-induced tissue injury. Although synthetic chemicals have been investigated in recent decades, anti-oxidants from natural resources have been searched for continuously. Among them, phlorotannins from marine algae, including Ecklonia cava, have been shown to protect cells from radiation-induced injury as well as oxidative stress. In the present review, the radioprotective capacity of phlorotannins derived from marine algae and the mechanisms involved are discussed.
Collapse
Affiliation(s)
- Taekyun Shin
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 690-756, South Korea; Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, South Korea.
| | - Meejung Ahn
- College of Medicine, Jeju National University, Jeju 690-756, South Korea
| | - Jin Won Hyun
- Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, South Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 690-756, South Korea
| | - Sung Ho Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea.
| |
Collapse
|
39
|
Chiou YS, Wu JC, Huang Q, Shahidi F, Wang YJ, Ho CT, Pan MH. Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
40
|
Ryu J, Zhang R, Hong BH, Yang EJ, Kang KA, Choi M, Kim KC, Noh SJ, Kim HS, Lee NH, Hyun JW, Kim HS. Phloroglucinol attenuates motor functional deficits in an animal model of Parkinson's disease by enhancing Nrf2 activity. PLoS One 2013; 8:e71178. [PMID: 23976995 PMCID: PMC3748069 DOI: 10.1371/journal.pone.0071178] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/27/2013] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated whether phloroglucinol (1, 3, 5 - trihydroxybenzene) has therapeutic effects in cellular and animal model of Parkinson's disease (PD). PD is the second most common, chronic and progressive neurodegenerative disease, and is clinically characterized with motor dysfunctions such as bradykinesia, rigidity, postural instability, gait impairment, and resting tremor. In the brains of PD patients, dopaminergic neuronal loss is observed in the Substantia nigra. Although the exact mechanisms underlying PD are largely unknown, mitochondrial dysfunction and oxidative stress are thought to be critical factors that induce the onset of the disease. Here, phloroglucinol administration was shown to attenuate motor functional deficits evaluated with rota-rod and apomorphine-induced rotation tests in 6-hydroxydopamine (6-OHDA)-induced PD animal models. Moreover, phloroglucinol ameliorated the loss of synapses as assessed with protein levels and immunoreactivity against synaptophysin in the midbrain region of the 6-OHDA-lesioned rats. In addition, in SH-SY5Y cultures, the cytotoxicity of 6-OHDA was reduced by pre-treatment with phloroglucinol. The increase in the reactive oxygen species, lipid peroxidation, protein carbonyl formation and 8-hydroxyguanine caused by treatment with 6-OHDA was attenuated by phloroglucinol in SH-SY5Y cells. Furthermore, phloroglucinol treatment rescued the reduced levels of nuclear Nrf2, antioxidant enzymes, i.e., catalase and glutathione peroxidase, in 6-OHDA-treated cells. Taken together, phloroglucinol has a therapeutic potential for treatment of PD.
Collapse
Affiliation(s)
- Junghwa Ryu
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Rui Zhang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju, Republic of Korea
| | - Bo-Hyun Hong
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Jung Yang
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyoung Ah Kang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju, Republic of Korea
| | - Moonseok Choi
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ki Cheon Kim
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju, Republic of Korea
| | - Su-Jin Noh
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hee Soo Kim
- School of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nam-Ho Lee
- Department of Chemistry, College of Natural Sciences, Jeju National University, Jeju, Republic of Korea
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju, Republic of Korea
- * E-mail: (JWH); (HSK)
| | - Hye-Sun Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Seoul National University, Cancer Research Institute, Seoul, Republic of Korea
- * E-mail: (JWH); (HSK)
| |
Collapse
|
41
|
Kim KC, Piao MJ, Cho SJ, Lee NH, Hyun JW. Phloroglucinol protects human keratinocytes from ultraviolet B radiation by attenuating oxidative stress. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2012; 28:322-31. [DOI: 10.1111/phpp.12010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ki Cheon Kim
- School of Medicine and Applied Radiological Science Research Institute; Jeju National University; Jeju; Korea
| | - Mei Jing Piao
- School of Medicine and Applied Radiological Science Research Institute; Jeju National University; Jeju; Korea
| | - Suk Ju Cho
- School of Medicine and Applied Radiological Science Research Institute; Jeju National University; Jeju; Korea
| | - Nam Ho Lee
- Department of Chemistry, College of Natural Sciences; Jeju National University; Jeju; Korea
| | - Jin Won Hyun
- School of Medicine and Applied Radiological Science Research Institute; Jeju National University; Jeju; Korea
| |
Collapse
|
42
|
Ha D, Bing SJ, Cho J, Ahn G, Kim DS, Al-Amin M, Park SJ, Jee Y. Phloroglucinol protects small intestines of mice from ionizing radiation by regulating apoptosis-related molecules: a comparative immunohistochemical study. J Histochem Cytochem 2012; 61:63-74. [PMID: 23117934 DOI: 10.1369/0022155412468426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phloroglucinol (PG) is a phenolic compound isolated from Ecklonia cava, a brown algae abundant on Jeju island, Korea. Previous reports have suggested that PG exerts antioxidative and cytoprotective effects against oxidative stress. In this study, we confirmed that PG protected against small intestinal damage caused by ionizing radiation, and we investigated its protective mechanism in detail. Regeneration of intestinal crypts in the PG-treated irradiated group was significantly promoted compared with that in irradiated controls. The expression level of proapoptotic molecules such as p53, Bax, and Bak in the small intestine was downregulated and that of antiapoptotic molecules such as Bcl-2 and Bcl-X(S/L) was augmented in the PG-treated group. On histological observation of the small intestine, PG inhibited the immunoreactivity of p53, Bax, and Bak and increased that of Bcl-2 and Bcl-X(S/L). These results demonstrate the protective mechanisms of PG in mice against intestinal damage from ionizing radiation, providing the benefit of raising the apoptosis threshold of jejunal crypt cells.
Collapse
Affiliation(s)
- Danbee Ha
- College of Veterinary Medicine, Jeju National University, Jeju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Phloroglucinol: Antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line. Food Chem Toxicol 2012; 50:2886-93. [DOI: 10.1016/j.fct.2012.05.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 02/05/2023]
|
44
|
Antiplatelet effect of phloroglucinol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. Toxicol Appl Pharmacol 2012; 263:287-95. [PMID: 22789837 DOI: 10.1016/j.taap.2012.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 01/01/2023]
Abstract
Platelet dysfunction is a major risk factor of cardiovascular diseases such as atherosclerosis, stroke and myocardial infarction. Many antiplatelet agents are used for prevention and treatment of these diseases. In this study, phloroglucinol (2.5-25 μM) suppressed AA-induced platelet aggregation and thromboxane B(2) (TXB(2)) production, but not U46619-induced platelet aggregation. Phloroglucinol (100-250 μM) showed little cytotoxicity to platelets. Phloroglucinol inhibited the COX-1 and COX-2 activities by 45-74% and 49-72% respectively at concentrations of 10-50 μM. At concentrations of 1 and 5 μM, phloroglucinol attenuated the AA-induced ROS production in platelets by 30% and 53%, with an IC(50) of 13.8 μM. Phloroglucinol also inhibited the PMA-stimulated ROS production in PMN. Preincubation of platelets by phloroglucinol (10-25 μM) markedly attenuated the AA-induced ERK and p38 phosphorylation. Intravenous administration of phloroglucinol (2.5 and 5 μmol/mouse) suppressed the ex vivo AA-induced platelet aggregation by 57-71%. Phloroglucinol administration also elevated the mice tail bleeding time. Moreover, phloroglucinol inhibited the IL-1β-induced PGE(2) production in pulp fibroblasts. These results indicate that antiplatelet and anti-inflammatory effects of phloroglucinol are related to inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation in platelets. Phloroglucinol further suppress PMA-induced ROS production in PMN. The antiplatelet effect of phloroglucinol was confirmed by ex vivo study. Clinically, the consumption of phloroglucinol-containing food/natural products as nutritional supplement may be helpful to cardiovascular health. Phloroglucinol has potential pharmacological use.
Collapse
|
45
|
Braun DE, Tocher DA, Price SL, Griesser UJ. The complexity of hydration of phloroglucinol: a comprehensive structural and thermodynamic characterization. J Phys Chem B 2012; 116:3961-72. [PMID: 22390190 PMCID: PMC3320094 DOI: 10.1021/jp211948q] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Hydrate formation is of great importance as the inclusion of water molecules affects many solid state properties and hence determines the required chemical processing, handling, and storage. Phloroglucinol is industrially important, and the observed differences in the morphology and diffuse scattering effects with growth conditions have been scientifically controversial. We have studied the anhydrate and dihydrate of phloroglucinol and their transformations by a unique combination of complementary experimental and computational techniques, namely, moisture sorption analysis, hot-stage microscopy, differential scanning calorimetry, thermogravimetry, isothermal calorimetry, single crystal and powder X-ray diffractometry, and crystal energy landscape calculations. The enthalpically stable dihydrate phase is unstable below 16% relative humidity (25 °C) and above 50 °C (ambient humidity), and the kinetics of hydration/dehydration are relatively rapid with a small hysteresis. A consistent atomistic picture of the thermodynamics of the hydrate/anhydrate transition was derived, consistent with the disordered single X-ray crystal structure and crystal energy landscape showing closely related low energy hydrate structures. These structures provide models for proton disorder and show stacking faults as intergrowth of different layers are possible. This indicates that the consequent variability in crystal surface features and diffuse scattering with growth conditions is not a practical concern.
Collapse
Affiliation(s)
- Doris E Braun
- Department of Chemistry, University College London, London, UK.
| | | | | | | |
Collapse
|
46
|
Atamna H, Mackey J, Dhahbi JM. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction. Biofactors 2012; 38:158-66. [PMID: 22419586 PMCID: PMC4299858 DOI: 10.1002/biof.197] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/14/2011] [Indexed: 01/30/2023]
Abstract
Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders.
Collapse
Affiliation(s)
- Hani Atamna
- Department of Basic Sciences, Neuroscience, The Commonwealth Medical College, Scranton, PA 18509, USA.
| | | | | |
Collapse
|
47
|
Piao MJ, Zhang R, Lee NH, Hyun JW. Phloroglucinol Attenuates Ultraviolet B Radiation-Induced Matrix Metalloproteinase-1 Production in Human Keratinocytes via Inhibitory Actions against Mitogen-Activated Protein Kinases and Activator Protein-1. Photochem Photobiol 2012; 88:381-8. [DOI: 10.1111/j.1751-1097.2012.01074.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Yokogawa K, Matsui-Yuasa I, Tamura A, Terada M, Kojima-Yuasa A. Inhibitory effects of Ecklonia cava extract on high glucose-induced hepatic stellate cell activation. Mar Drugs 2011; 9:2793-2808. [PMID: 22363250 PMCID: PMC3280579 DOI: 10.3390/md9122793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 01/22/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs), key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE) was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS) and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β) from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis.
Collapse
Affiliation(s)
- Kumiko Yokogawa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (K.Y.); (I.M.-Y.); (A.T.)
| | - Isao Matsui-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (K.Y.); (I.M.-Y.); (A.T.)
- Faculty of Education, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Akiko Tamura
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (K.Y.); (I.M.-Y.); (A.T.)
| | - Masaki Terada
- JP Renew Distributors, LLC., 1906 Lombard Street, San Francisco, CA 94123, USA;
| | - Akiko Kojima-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (K.Y.); (I.M.-Y.); (A.T.)
| |
Collapse
|
49
|
Ahn M, Moon C, Yang W, Ko EJ, Hyun JW, Joo HG, Jee Y, Lee NH, Park JW, Ko RK, Kim GO, Shin T. Diphlorethohydroxycarmalol, isolated from the brown algae Ishige okamurae, protects against radiation-induced cell damage in mice. Food Chem Toxicol 2011; 49:864-70. [PMID: 21163321 DOI: 10.1016/j.fct.2010.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/04/2010] [Accepted: 12/08/2010] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate the radioprotective effects of diphlorethohydroxycarmalol (DPHC), isolated from the brown algae Ishige okamurae, in mice subjected to gamma irradiation. DPHC significantly decreased the level of radiation-induced intracellular reactive oxygen species in cultured Chinese hamster lung fibroblast (V79-4) cells (p < 0.05), enhanced cell viability that decreased after exposure to γ-rays, and reduced radiation-induced apoptosis in the V79-4 cells. Pretreatment with DPHC (100 mg/kg) in mice prior to irradiation significantly protected the intestinal crypt cells in the jejunum (p < 0.01) and maintained villi height (p < 0.01), compared with those of the vehicle-treated irradiated group. Mice pretreated with DPHC also exhibited dose-dependent increases in the bone marrow cell viability. The dose-reduction factor for gamma irradiation in the DPHC-pretreated mice was 2.05 at 3.5 days after irradiation. These results suggest that DHPC plays a role in protecting cells from irradiation-induced apoptosis, through the scavenging of reactive oxygen species in vitro, and that DPHC significantly protected intestinal progenitor cells and bone marrows cells that were decreased by gamma irradiation in vivo.
Collapse
Affiliation(s)
- Meejung Ahn
- Department of Anatomy, College of Medicine, Jeju National University, Jeju 690-756, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee IK, Kang KA, Zhang R, Kim BJ, Kang SS, Hyun JW. Mitochondria protection of baicalein against oxidative damage via induction of manganese superoxide dismutase. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:233-241. [PMID: 21787690 DOI: 10.1016/j.etap.2010.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/13/2010] [Accepted: 11/01/2010] [Indexed: 05/31/2023]
Abstract
This study investigated the cytoprotective effect of baicalein (5,6,7-trihydroxyflavone) against oxidative stress-induced mitochondrial dysfunction. Electron spin resonance (ESR) spectrometry revealed that baicalein showed significant scavenging effects on superoxide radicals and hydroxyl radicals. When H(2)O(2) treatment induces an increase in mitochondrial reactive oxygen species (ROS), baicalein treatment decreased high level of ROS. Baicalein significantly reduced alteration of Bcl-2 family proteins, the release of cytochrome c from mitochondria into the cytosol via inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1) and c-Jun NH(2)-terminal kinase (JNK) cascades induced by H(2)O(2) treatment. Manganese superoxide dismutase (MnSOD) is an important antioxidant enzyme in mitochondria against oxidative stress. Baicalein restored both MnSOD protein expression and activity, which were abolished by H(2)O(2) treatment. The transcription factor NF-E2-related factor 2 (Nrf2) is a critical regulator of MnSOD, achieved by binding to the antioxidant response element (ARE). Baicalein restored nuclear Nrf2 protein expression and its ARE binding activity, which were abolished by H(2)O(2) treatment. These studies demonstrate that baicalein attenuates mitochondrial oxidative stress by activating Nrf2-mediated MnSOD induction.
Collapse
Affiliation(s)
- In Kyung Lee
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | |
Collapse
|