1
|
Wang L, Lv C, Liu X. AKR1C4 regulates the sensitivity of colorectal cancer cells to chemotherapy through ferroptosis modulation. Cancer Chemother Pharmacol 2024; 94:373-385. [PMID: 38890190 DOI: 10.1007/s00280-024-04685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains a major global health concern, necessitating innovative therapeutic strategies to enhance treatment efficacy. In this study, we investigated the role of AKR1C4 in CRC and its impact on chemotherapy response. METHODS AKR1C4 stable knockout CRC cell lines were generated using CRISPR/Cas9 technology. The impact of AKR1C4 depletion on chemotherapy sensitivity was assessed using Sulforhodamine B assay. Long-term, low-dose drug induction with increasing concentrations of 5FU, irinotecan, and oxaliplatin were employed to establish acquired chemoresistant CRC cell lines. Ferroptosis induction and inhibition were examined through total iron content and lipid peroxidation measurements. RESULTS We found that AKR1C4 knockout enhances CRC cell sensitivity to chemotherapy, specifically by inducing ferroptosis. The enzymatic activity of AKR1C4 is crucial for regulating chemotherapy sensitivity in CRC cells, as evidenced by the inability of a Y55A mutant to reverse the sensitizing effect. Additionally, AKR1C4 inhibitors enhance chemotherapy sensitivity by inducing ferroptosis. Notably, AKR1C4 depletion resensitizes the acquired chemoresistant CRC cells to chemotherapy, suggesting its potential as a therapeutic target for overcoming acquired chemoresistance. Clinical analysis reveals that high AKR1C4 expression is associated with poor prognosis in CRC patients undergoing chemotherapy, highlighting its significance as a prognostic marker and a potential target for therapeutic intervention. CONCLUSION This study illuminates the multifaceted role of AKR1C4 in CRC, demonstrating its significance in regulating chemotherapy sensitivity, overcoming acquired resistance, and impacting clinical outcomes. The insights provided may pave the way for novel therapeutic strategies in CRC management.
Collapse
Affiliation(s)
- Li Wang
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Cuiling Lv
- Department of Gastroenterology, Qixia City People's Hospital, Qixia, Shandong, China
| | - Xiaoxia Liu
- Department of Gastroenterology, Qixia City People's Hospital, Qixia, Shandong, China.
| |
Collapse
|
2
|
Liu W, Li G, Huang D, Qin T. AKR1C3 promotes progression and mediates therapeutic resistance by inducing epithelial-mesenchymal transition and angiogenesis in small cell lung cancer. Transl Oncol 2024; 47:102027. [PMID: 38954974 PMCID: PMC11263718 DOI: 10.1016/j.tranon.2024.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE Small cell lung cancer (SCLC) is a high-grade neuroendocrine tumor characterized by initial sensitivity to chemotherapy, followed by the development of drug resistance. The underlying mechanisms of resistance in SCLC have not been fully elucidated. Aldo-keto reductase family 1 member C3 (AKR1C3), is known to be associated with chemoradiotherapy resistance in diverse tumors. We aim to evaluate the prognostic significance and immune characteristics of AKR1C3 and investigate its potential role in promoting drug resistance in SCLC. METHODS 81 postoperative SCLC tissues were used to analyze AKR1C3 prognostic value and immune features. The tissue microarrays were employed to validate the clinical significance of AKR1C3 in SCLC. The effects of AKR1C3 on SCLC cell proliferation, migration, apoptosis and tumor angiogenesis were detected by CCK-8, wound healing assay, transwell assay, flow cytometry and tube formation assay. RESULTS AKR1C3 demonstrated the highest expression level compared to other AKR1C family genes, and multivariate cox regression analysis identified it as an independent prognostic factor for SCLC. High AKR1C3 expression patients who underwent chemoradiotherapy experienced significantly shorter overall survival (OS). Furthermore, AKR1C3 was involved in the regulation of the tumor immune microenvironment in SCLC. Silencing of AKR1C3 led to the inhibition of cell proliferation and migration, while simultaneously promoting apoptosis and reducing epithelial-mesenchymal transition (EMT) in SCLC. CONCLUSION AKR1C3 promotes cell growth and metastasis, leading to drug resistance through inducing EMT and angiogenesis in SCLC.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Thoracic Oncology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guoli Li
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Tingting Qin
- Department of Thoracic Oncology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
3
|
Dudkina N, Park HB, Song D, Jain A, Khan SA, Flavell RA, Johnson CH, Palm NW, Crawford JM. Human AKR1C3 binds agonists of GPR84 and participates in an expanded polyamine pathway. Cell Chem Biol 2024:S2451-9456(24)00313-1. [PMID: 39163853 DOI: 10.1016/j.chembiol.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Altered human aldo-keto reductase family 1 member C3 (AKR1C3) expression has been associated with poor prognosis in diverse cancers, ferroptosis resistance, and metabolic diseases. Despite its clinical significance, the endogenous biochemical roles of AKR1C3 remain incompletely defined. Using untargeted metabolomics, we identified a major transformation mediated by AKR1C3, in which a spermine oxidation product "sperminal" is reduced to "sperminol." Sperminal causes DNA damage and activates the DNA double-strand break response, whereas sperminol induces autophagy in vitro. AKR1C3 also pulls down acyl-pyrones and pyrone-211 inhibits AKR1C3 activity. Through G protein-coupled receptor ligand screening, we determined that pyrone-211 is also a potent agonist of the semi-orphan receptor GPR84. Strikingly, mammalian fatty acid synthase produces acyl-pyrones in vitro, and this production is modulated by NADPH. Taken together, our studies support a regulatory role of AKR1C3 in an expanded polyamine pathway and a model linking fatty acid synthesis and NADPH levels to GPR84 signaling.
Collapse
Affiliation(s)
- Natavan Dudkina
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT 06516, USA
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT 06516, USA; Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Deguang Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06536, USA
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06536, USA
| | - Sajid A Khan
- Department of Surgery, Division of Surgical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06536, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06536, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06536, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06536, USA.
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
4
|
Park J, Ngo TH, Paudel SB, Kil YS, Ryoo GH, Jin CH, Choi HI, Jung CH, Na M, Nam JW, Han AR. Angular dihydropyranocoumarins from the flowers of Peucedanum japonicum and their aldo-keto reductase inhibitory activities. PHYTOCHEMISTRY 2024; 219:113974. [PMID: 38211847 DOI: 10.1016/j.phytochem.2024.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Twenty-one angular dihydropyranocoumarins and a linear furanocoumarin, including four previously undescribed compounds (1-4), were isolated from the flowers of Peucedanum japonicum (Umbelliferae). The structures of 1-4, along with their absolute stereochemistry, were determined to be (3'S,4'S)-3'-O-propanoyl-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (1), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methyl-2‴Z-butenoyl)khellactone (2), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methylbutanoyl)khellactone (3), and (3'S,4'S)-3'-O-(2″-methylpropanoyl)-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (4) using one- and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and electronic circular dichroism spectroscopy. In addition, the absolute configuration of the three angular dihydropyranocoumarins (5-7) was determined for the first time in this study. Among the previously reported compounds isolated in this study, 8 and 9 were isolated for the first time from the genus Peucedanum, whereas 10 and 11 were previously unreported and had not been isolated from P. japonicum to date. Furthermore, all isolated compounds were evaluated for their aldo-keto reductase 1C1 inhibitory activities on A549 human non-small-cell lung cancer cells. Compounds 10 and 12 exhibited substantial AKR1C1 inhibitory activities with IC50 values of 35.8 ± 0.9 and 44.2 ± 1.5 μM, respectively.
Collapse
Affiliation(s)
- Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Trung Huy Ngo
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Sunil Babu Paudel
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, 54810, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
5
|
Himura R, Kawano S, Nagata Y, Kawai M, Ota A, Kudo Y, Yoshino Y, Fujimoto N, Miyamoto H, Endo S, Ikari A. Inhibition of aldo-keto reductase 1C3 overcomes gemcitabine/cisplatin resistance in bladder cancer. Chem Biol Interact 2024; 388:110840. [PMID: 38122923 DOI: 10.1016/j.cbi.2023.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Systemic chemotherapy with gemcitabine and cisplatin (GC) has been used for the treatment of bladder cancer in which androgen receptor (AR) signaling is suggested to play a critical role. However, its efficacy is often limited, and the prognosis of patients who develop resistance is extremely poor. Aldo-keto reductase 1C3 (AKR1C3), which is responsible for the production of a potent androgen, 5α-dihydrotestosterone (DHT), by the reduction of 5α-androstane-3α,17β-dione (5α-Adione), has been attracting attention as a therapeutic target for prostate cancer that shows androgen-dependent growth. By contrast, the role of AKR1C3 in bladder cancer remains unclear. In this study, we examined the effect of an AKR1C3 inhibitor on androgen-dependent proliferation and GC sensitivity in bladder cancer cells. 5α-Adione treatment induced the expression of AR and its downstream factor ETS-domain transcription factor (ELK1) in both T24 cells and newly established GC-resistant T24GC cells, while it did not alter AKR1C3 expression. AKR1C3 inhibitor 2j significantly suppressed 5α-Adione-induced AR and ELK1 upregulation, as did an AR antagonist apalutamide. Moreover, the combination of GC and 2j in T24GC significantly induced apoptotic cell death, suggesting that 2j could enhance GC sensitivity. Immunohistochemical staining in surgical specimens further revealed that strong expression of AKR1C3 was associated with significantly higher risks of tumor progression and cancer-specific mortality in patients with muscle-invasive bladder cancer. These results suggest that AKR1C3 inhibitors as adjunctive agents enhance the efficacy of GC therapy for bladder cancer.
Collapse
Affiliation(s)
- Rin Himura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Shinya Kawano
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yujiro Nagata
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Atsumi Ota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hiroshi Miyamoto
- Departments of Pathology & Laboratory Medicine and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu Pharmaceutical University, Gifu, 501-1193, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
6
|
Wang YJ, Xie XL, Liu HQ, Tian H, Jiang XY, Zhang JN, Chen SX, Liu T, Wang SL, Zhou X, Jin XX, Liu SM, Jiang HQ. Prostaglandin F 2α synthase promotes oxaliplatin resistance in colorectal cancer through prostaglandin F 2α-dependent and F 2α-independent mechanism. World J Gastroenterol 2023; 29:5452-5470. [PMID: 37900995 PMCID: PMC10600807 DOI: 10.3748/wjg.v29.i39.5452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Oxaliplatin (Oxa) is the first-line chemotherapy drug for colorectal cancer (CRC), and Oxa resistance is crucial for treatment failure. Prostaglandin F2α synthase (PGF2α) (PGFS), an enzyme that catalyzes the production of PGF2α, is involved in the proliferation and growth of a variety of tumors. However, the role of PGFS in Oxa resistance in CRC remains unclear. AIM To explore the role and related mechanisms of PGFS in mediating Oxa resistance in CRC. METHODS The PGFS expression level was examined in 37 pairs of CRC tissues and paracancerous tissues at both the mRNA and protein levels. Overexpression or knockdown of PGFS was performed in CRC cell lines with acquired Oxa resistance (HCT116-OxR and HCT8-OxR) and their parental cell lines (HCT116 and HCT8) to assess its influence on cell proliferation, chemoresistance, apoptosis, and DNA damage. For determination of the underlying mechanisms, CRC cells were examined for platinum-DNA adducts and reactive oxygen species (ROS) levels in the presence of a PGFS inhibitor or its products. RESULTS Both the protein and mRNA levels of PGFS were increased in the 37 examined CRC tissues compared to the adjacent normal tissues. Oxa induced PGFS expression in the parental HCT116 and HCT8 cells in a dose-dependent manner. Furthermore, overexpression of PGFS in parental CRC cells significantly attenuated Oxa-induced proliferative suppression, apoptosis, and DNA damage. In contrast, knockdown of PGFS in Oxa-resistant HCT116 and HCT8 cells (HCT116-OxR and HCT8-OxR) accentuated the effect of Oxa treatment in vitro and in vivo. The addition of the PGFS inhibitor indomethacin enhanced the cytotoxicity caused by Oxa. Treatment with the PGFS-catalyzed product PGF2α reversed the effect of PGFS knockdown on Oxa sensitivity. Interestingly, PGFS inhibited the formation of platinum-DNA adducts in a PGF2α-independent manner. PGF2α exerts its protective effect against DNA damage by reducing ROS levels. CONCLUSION PGFS promotes resistance to Oxa in CRC via both PGF2α-dependent and PGF2α-independent mechanisms.
Collapse
Affiliation(s)
- Yi-Jun Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hong-Qun Liu
- Liver Unit, University of Calgary, Calgary T1W0K6, Canada
| | - Hui Tian
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Yu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Jiu-Na Zhang
- Department of Gastroenterology, The Affiliated Hospital of Hebei Engineering University, Handan 056000, Hebei Province, China
| | - Sheng-Xiong Chen
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ting Liu
- Department of Gastroenterology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Shu-Ling Wang
- Department of Gastroenterology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xue Zhou
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Xu Jin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Shi-Mao Liu
- Department of Gastroenterology, Hebei Youfu Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Hui-Qing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
7
|
Banibakhsh A, Sidhu D, Khan S, Haime H, Foster PA. Sex steroid metabolism and action in colon health and disease. J Steroid Biochem Mol Biol 2023; 233:106371. [PMID: 37516405 DOI: 10.1016/j.jsbmb.2023.106371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
The colon is the largest hormonally active tissue in the human body. It has been known for over a hundred years that various hormones and bioactive peptides play important roles in colon function. More recently there is a growing interest in the role the sex steroids, oestrogens and androgens, may play in both normal colon physiology and colon pathophysiology. In this review, we examine the potential role oestrogens and androgens play in the colon. The metabolism and subsequent action of sex steroids in colonic tissue is discussed and how these hormones impact colon motility is investigated. Furthermore, we also determine how oestrogens and androgens influence colorectal cancer incidence and development and highlight potential new therapeutic targets for this malignancy. This review also examines how sex steroids potentially impact the severity and progression of other colon disease, such as diverticulitis, irritable bowel syndrome, and polyp formation.
Collapse
Affiliation(s)
- Afnan Banibakhsh
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Daljit Sidhu
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Sunera Khan
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Hope Haime
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul A Foster
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK.
| |
Collapse
|
8
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
9
|
Matsunaga T, Horinouchi M, Saito H, Hisamatsu A, Iguchi K, Yoshino Y, Endo S, Ikari A. Availability of aldo-keto reductase 1C3 and ATP-binding cassette B1 as therapeutic targets for alleviating paclitaxel resistance in breast cancer MCF7 cells. J Biochem 2023; 173:167-175. [PMID: 36413758 DOI: 10.1093/jb/mvac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Paclitaxel (PTX) is frequently utilized for the chemotherapy of breast cancer, but its continuous treatment provokes hyposensitivity. Here, we established a PTX-resistant variant of human breast cancer MCF7 cells and found that acquiring the chemoresistance elicits a remarkable up-regulation of aldo-keto reductase (AKR) 1C3. MCF7 cell sensitivity to PTX toxicity was increased by pretreatment with AKR1C3 inhibitor and knockdown of this enzyme, and decreased by its overexpression, inferring a crucial role of AKR1C3 in the development of PTX resistance. The PTX-resistant cells were much less sensitive to 4-hydroxy-2-nonenal and acrolein, cytotoxic reactive aldehydes derived from ROS-mediated lipid peroxidation, compared with the parental cells. Additionally, the resistant cells lowered levels of 4-hydroxy-2-nonenal formed during PTX treatment, which was mitigated by pretreating with AKR1C3 inhibitor, suggesting that AKR1C3 procures the chemoresistance through facilitating the metabolism of the cytotoxic aldehyde. The gain of PTX resistance additively promoted the aberrant expression of an ATP-binding cassette (ABC) transporter ABCB1 among the ABC transporter isoforms. The combined treatment with AKR1C3 and ABCB1 inhibitors overcame the PTX resistance and cross-resistance to another taxane-based drug docetaxel. Collectively, combined treatment with AKR1C3 and ABCB1 inhibitors may exert an overcoming effect of PTX resistance in breast cancer.
Collapse
Key Words
- ATP-binding cassette B1
- Aldo-keto reductase 1C3
Abbreviations: AKR, aldo-keto reductase; BPS, 3-bromo-5-phenylsalicylic acid; BSO, buthionine sulfoximine; CDDP, cis-diamminedichloroplatinum; CDDP-R, CDDP-resistant MCF7; DPBS, Dulbecco’s phosphate-buffered saline; DTNB, 5,5′-dithiobis(2-nitrobenzoic acid); DTX, docetaxel; GCL, glutamate-cysteine ligase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced glutathione; GSHEE, glutathione ethyl ester;
GST, glutathione S-transferase; HNE, 4-hydroxy-2-nonenal; Keap1, Kelch-like ECH associated protein 1; MCA, 4-methylcoumaryl-7-amide; MG132, Z-Leu-Leu-Leu-al; Nrf2, nuclear factor erythroid 2-related factor 2; PCR, polymerase-chain reaction; PG, prostaglandin; ROS, reactive oxygen species; SFN, sulforaphane; siRNA, small-interfering RNA; TOL, tolfenamic acid; UDCA, ursodeoxycholic acid
- breast cancer
- chemoresistance
- docetaxel
- paclitaxel
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan.,Education Center of Pharmaceutical Sciences, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | - Misato Horinouchi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Haruhi Saito
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Aki Hisamatsu
- Education Center of Pharmaceutical Sciences, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
10
|
Zhou Y, Lin Y, Li W, Liu Q, Gong H, Li Y, Luo D. Expression of AKRs superfamily and prognostic in human gastric cancer. Medicine (Baltimore) 2023; 102:e33041. [PMID: 36827074 PMCID: PMC11309706 DOI: 10.1097/md.0000000000033041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
The human aldo-keto reductase (AKRs) superfamily is involved in the development of various tumors. However, the different expression patterns of AKRs and their prognostic value in gastric cancer (GC) have not been clarified. In this study, we analyzed the gene expression and gene methylation level of AKRs in GC patients and the survival data and immune infiltration based on AKRs expression, using data from different databases. We found that the expression levels of AKR1B10, AKR1C1, AKR1C2, and AKR7A3 in GC tissues were lower and the expression level of AKR6A5 was higher in GC tissues than in normal tissue. These differentially expressed genes (AKR1B10, AKR1C1, AKR1C2, AKR7A3, and AKR6A5) were significantly correlated with the infiltration level. The expression of SPI1 and AKR6A5 in GC was positively correlated. Survival analysis showed that GC levels of AKR6A5 reduced or increased mRNA levels of AKR7A3, and AKR1B10 was expected to have higher overall survival (OS), first progression (FP) survival, and postprogression survival (PPS) rates and a better prognosis. Moreover, the expression of AKR1B1 was found to be correlated with the staging of GC. The methylation of AKR6A5 (KCNAB2) at cg05307871 and cg01907457 was significantly associated with the classification of GC. Meta-analysis and ROC curve analysis show that the expression level of AKR1B1 and the methylation of cg16156182 (KCNAB1), cg11194299 (KCNAB2), cg16132520 (AKR1B1), and cg13801416 (AKR1B1) had a high hazard ratio and a good prognostic value. These data suggest that the expression and methylation of AKR1B1 and AKR6A5 are significantly related to the prognosis.
Collapse
Affiliation(s)
- Yujin Zhou
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Laboratory Medicine Center of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Yi Lin
- Laboratory Medicine Center of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Wenjing Li
- Laboratory Medicine Center of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Quan Liu
- Laboratory Medicine Center of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Hui Gong
- Laboratory Medicine Center of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Yifan Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Laboratory Medicine Center of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Dixian Luo
- Laboratory Medicine Center of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| |
Collapse
|
11
|
SUN TINGTING, SUN XUE, WANG XIN, GUO RUI, YU YUANHUA, GAO LE. Analysis of the mechanism of aldo-keto reductase dependent cis-platin resistance in HepG2 cells based on transcriptomic and NADH metabolic state. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Lin X, Xu L, Tan H, Zhang X, Shao H, Yao L, Huang X. The potential effects and mechanisms of Gegen Qinlian Decoction in oxaliplatin-resistant colorectal cancer based on network pharmacology. Heliyon 2022; 8:e11305. [DOI: 10.1016/j.heliyon.2022.e11305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
|
13
|
Park J, Paudel SB, Jin CH, Lee G, Choi HI, Ryoo GH, Kil YS, Nam JW, Jung CH, Kim BR, Na MK, Han AR. Comparative Analysis of Coumarin Profiles in Different Parts of Peucedanum japonicum and Their Aldo-Keto Reductase Inhibitory Activities. Molecules 2022; 27:7391. [PMID: 36364218 PMCID: PMC9657185 DOI: 10.3390/molecules27217391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 03/13/2024] Open
Abstract
Peucedanum japonicum (Umbelliferae) is widely distributed throughout Southeast Asian countries. The root of this plant is used in traditional medicine to treat colds and pain, whereas the young leaves are considered an edible vegetable. In this study, the differences in coumarin profiles for different parts of P. japonicum including the flowers, roots, leaves, and stems were compared using ultra-performance liquid chromatography time-of-flight mass spectrometry. Twenty-eight compounds were tentatively identified, including three compounds found in the genus Peucedanum for the first time. Principal component analysis using the data set of the measured mass values and intensities of the compounds exhibited distinct clustering of the flower, leaf, stem, and root samples. In addition, their anticancer activities were screened using an Aldo-keto reductase (AKR)1C1 assay on A549 human non-small-cell lung cancer cells and the flower extract inhibited AKR1C1 activity. Based on these results, seven compounds were selected as potential markers to distinguish between the flower part versus the root, stem, and leaf parts using an orthogonal partial least-squares discriminant analysis. This study is the first to provide information on the comparison of coumarin profiles from different parts of P. japonicum as well as their AKR1C1 inhibitory activities. Taken together, the flowers of P. japonicum offer a new use related to the efficacy of overcoming anticancer drug resistance, and may be a promising source for the isolation of active lead compounds.
Collapse
Affiliation(s)
- Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sunil Babu Paudel
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Gileung Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeollabuk-do, Jeonju-si 54810, Korea
| | - Bo-Ram Kim
- Natural Product Research Division, Honam National Institute of Biological Resources, Jeollanam-do, Mokpo-si 58762, Korea
| | - Min Kyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| |
Collapse
|
14
|
He S, Liu Y, Chu X, Li Q, Lyu W, Liu Y, Xing S, Feng F, Liu W, Guo Q, Zhao L, Sun H. Discovery of Novel Aldo-Keto Reductase 1C3 Inhibitors as Chemotherapeutic Potentiators for Cancer Drug Resistance. ACS Med Chem Lett 2022; 13:1286-1294. [PMID: 35978698 PMCID: PMC9377021 DOI: 10.1021/acsmedchemlett.2c00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
As a crucial target which is overexpressed in a variety of cancers, aldo-keto reductase 1C3 (AKR1C3) confers chemotherapeutic resistance to many clinical agents. However, a limited number of AKR1C3-selective inhibitors are applied clinically, which indicates the importance of identifying active compounds. Herein, we report the discovery, synthesis, and evaluation of novel and potent AKR1C3 inhibitors with structural diversity. Molecular dynamics simulations of these active compounds provide reasonable clarification of the interpreted biological data. Moreover, we demonstrate that AKR1C3 inhibitors have the potential to be superior therapeutic agents for re-sensitizing drug-resistant cell lines to chemotherapy, especially the pan-AKR1C inhibitor S07-2010. Our study identifies new structural classes of AKR1C3 inhibitors and enriches the structural diversity, which facilitates the future rational design of inhibitors and structural optimization. Moreover, these compounds may serve as promising therapeutic adjuvants toward new therapeutics for countering drug resistance.
Collapse
Affiliation(s)
- Siyu He
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis
and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Yang Liu
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Xianglin Chu
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Qi Li
- Department
of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, People’s Republic
of China
| | - Weiping Lyu
- Department
of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control
and Pharmacovigilance, China Pharmaceutical
University, Nanjing 211198, People’s Republic of China
| | - Yijun Liu
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Shuaishuai Xing
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Feng Feng
- Department
of Natural Medicinal Chemistry, China Pharmaceutical
University, Nanjing 211198, People’s Republic of China
- Jiangsu
Drug Development Engineering Research Center for Central Degenerative
Disease, Jiangsu Food and Pharmaceuticals
Science College, Nanjing 223005, People’s Republic
of China
| | - Wenyuan Liu
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
- Department
of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control
and Pharmacovigilance, China Pharmaceutical
University, Nanjing 211198, People’s Republic of China
| | - Qinglong Guo
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis
and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Li Zhao
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis
and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Haopeng Sun
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
15
|
Kljun J, Pavlič R, Hafner E, Lipec T, Moreno-Da Silva S, Tič P, Turel I, Büdefeld T, Stojan J, Rižner TL. Ruthenium complexes show potent inhibition of AKR1C1, AKR1C2, and AKR1C3 enzymes and anti-proliferative action against chemoresistant ovarian cancer cell line. Front Pharmacol 2022; 13:920379. [PMID: 36034868 PMCID: PMC9403717 DOI: 10.3389/fphar.2022.920379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we present the synthesis, kinetic studies of inhibitory activity toward aldo-keto reductase 1C (AKR1C) enzymes, and anticancer potential toward chemoresistant ovarian cancer of 10 organoruthenium compounds bearing diketonate (1–6) and hydroxyquinolinate (7–10) chelating ligands with the general formula [(η6-p-cymene)Ru(chel)(X)]n+ where chel represents the chelating ligand and X the chlorido or pta ligand. Our studies show that these compounds are potent inhibitors of the AKR enzymes with an uncommon inhibitory mechanism, where two inhibitor molecules bind to the enzyme in a first fast and reversible step and a second slower and irreversible step. The binding potency of each step is dependent on the chemical structure of the monodentate ligands in the metalloinhibitors with the chlorido complexes generally acting as reversible inhibitors and pta complexes as irreversible inhibitors. Our study also shows that compounds 1–9 have a moderate yet better anti-proliferative and anti-migration action on the chemoresistant ovarian cancer cell line COV362 compared to carboplatin and similar effects to cisplatin.
Collapse
Affiliation(s)
- Jakob Kljun
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Renata Pavlič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Hafner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Lipec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Moreno-Da Silva
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Primož Tič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Iztok Turel
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Iztok Turel, ; Tea Lanišnik Rižner,
| | - Tomaž Büdefeld
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Iztok Turel, ; Tea Lanišnik Rižner,
| |
Collapse
|
16
|
Endo S, Morikawa Y, Matsunaga T, Hara A, Nishinaka T. Porcine aldo-keto reductase 1C subfamily members AKR1C1 and AKR1C4: Substrate specificity, inhibitor sensitivity and activators. J Steroid Biochem Mol Biol 2022; 221:106113. [PMID: 35398259 DOI: 10.1016/j.jsbmb.2022.106113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 01/13/2023]
Abstract
Most members of the aldo-keto reductase (AKR) 1 C subfamily are hydroxysteroid dehydrogenases (HSDs). Similarly to humans, four genes for AKR1C proteins (AKR1C1-AKR1C4) have been identified in the pig, which is a suitable species for biomedical research model of human diseases and optimal organ donor for xenotransplantation. Previous study suggested that, among the porcine AKR1Cs, AKR1C1 and AKR1C4 play important roles in steroid hormone metabolism in the reproductive tissues; however, their biological functions are still unknown. Herein, we report the biochemical properties of the two recombinant enzymes. Kinetic and product analyses of steroid specificity indicated that AKR1C1 is a multi-specific reductase, which acts as 3α-HSD for 3-keto-5β-dihydro-C19/C21-steroids, 3β-HSD for 3-keto-5α-dihydro-C19-steroids including androstenone, 17β-HSD for 17-keto-C19-steroids including estrone, and 20α-HSD for progesterone, showing Km values of 0.5-11 µM. By contrast, AKR1C4 exhibited only 3α-HSD activity for 3-keto groups of 5α/β-dihydro-C19-steroids, 5β-dihydro-C21-steroids and bile acids (Km: 1.0-1.9 µM). AKR1C1 and AKR1C4 also showed broad substrate specificity for nonsteroidal carbonyl compounds including endogenous 4-oxo-2-nonenal, 4-hydroxy-nonenal, acrolein, isocaproaldehyde, farnesal, isatin and methylglyoxal, of which 4-oxo-2-nonenal was reduced with the lowest Km value of 0.9 µM. Moreover, AKR1C1 had the characteristic of reducing aliphatic ketones and all-trans-retinal. The enzymes were inhibited by flavonoids, synthetic estrogens, nonsteroidal anti-inflammatory drugs, triterpenoids and phenolphthalein, whereas only AKR1C4 was activated by bromosulfophthalein. These results suggest that AKR1C1 and AKR1C4 function as 3α/3β/17β/20α-HSD and 3α-HSD, respectively, in metabolism of steroid hormones and a sex pheromone androstenone, both of which also play roles in metabolism of nonsteroidal carbonyl compounds.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Toru Nishinaka
- Faculty of Pharmacy, Osaka-Ohtani University, Osaka 584-8540, Japan
| |
Collapse
|
17
|
Chang LL, Lu PH, Yang W, Hu Y, Zheng L, Zhao Q, Lin NM, Zhang WZ. AKR1C1 promotes non-small cell lung cancer proliferation via crosstalk between HIF-1α and metabolic reprogramming. Transl Oncol 2022; 20:101421. [PMID: 35429904 PMCID: PMC9034391 DOI: 10.1016/j.tranon.2022.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
AKR1C1 accelerates the proliferation of NSCLC cells. AKR1C1 remodels metabolism in NSCLC cells. HIF-1α may play a vital role in AKR1C1-mediated metabolic reprogramming.
Non-small cell lung cancer (NSCLC) ranks first among cancer death worldwide. Despite efficacy and safety priority, targeted therapy only benefits ∼30% patients, leading to the unchanged survival rates for whole NSCLC patients. Metabolic reprogramming occurs to offer energy and intermediates for fuelling cancer cells proliferation. Thus, mechanistic insights into metabolic reprogramming may shed light upon NSCLC proliferation and find new proper targets for NSCLC treatment. Herein, we used loss- and gain-of-function experiments to uncover that highly expressed aldo-keto reductase family1 member C1 (AKR1C1) accelerated NSCLC cells proliferation via metabolic reprogramming. Further molecular profiling analyses demonstrated that AKR1C1 augmented the expression of hypoxia-inducible factor 1-alpha (HIF-1α), which could drive tumour metabolic reprogramming. What's more, AKR1C1 significantly correlated with HIF-1α signaling, which predicted poor prognosis for NSCLC patients. Collectively, our data display that AKR1C1 reprograms tumour metabolism to promote NSCLC cells proliferation by activating HIF-1α. These newly acquired data not only establish the specific role for AKR1C1 in metabolic reprogramming, but also hint to the possibility that AKR1C1 may be a new therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Lin-Lin Chang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Pei-Hua Lu
- Department of Medical Oncology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Wei Yang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yan Hu
- Department of Pharmacy, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Lin Zheng
- Zhejiang University, Hangzhou, China
| | - Qiong Zhao
- Shulan International Medical College, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Hangzhou, China
| | - Neng-Ming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Wen-Zhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
18
|
Li Y, Tang J, Li J, Du Y, Bai F, Yang L, Li X, Jin X, Wang T. ARID3A promotes the chemosensitivity of colon cancer by inhibiting AKR1C3. Cell Biol Int 2022; 46:965-975. [PMID: 35257428 DOI: 10.1002/cbin.11789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
ARID3A is upregulated in colorectal cancer and can promote the proliferation and metastasis of cancer cells. However, patients with higher level of ARID3A have a better prognosis. This study aimed to uncover the mechanism by which ARID3A benefits the prognosis of colon cancer. Our results indicated that ARID3A upregulation enhanced the chemosensitivity of colon cancer cells to 5-Fluorouracil (5-FU), whereas ARID3A downregulation inhibited the chemosensitivity of colon cancer cells to 5-FU. Through database analysis, we found that AKR1C3, a drug resistance related gene, was the target of ARID3A. Moreover, AKR1C3 was downregulated in colon cancer tissues compared to normal tissues. Next, we assessed the interaction between AKR1C3 and ARID3A, and found that ARID3A inhibited the transcription of AKR1C3, leading to the downregulation of AKR1C3 in colon cancer cells. We also verified that AKR1C3 inhibited the chemosensitivity of colon cancer cells to 5-FU. Moreover, patients with higher ratio of ARID3A to AKR1C3 had a better prognosis. This study suggested that ARID3A promoted chemosensitivity of colon cancer cells by inhibiting AKR1C3 in colon cancer. The ratio of ARID3A to AKR1C3 is a good marker to predict the prognosis of colon cancer patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yafei Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Jing Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yaru Du
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Fuqiang Bai
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Lirui Yang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoming Jin
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
19
|
Chang LL, Li YK, Zhao CX, Zeng CM, Ge FJ, Du JM, Zhang WZ, Lu PH, He QJ, Zhu H, Yang B. AKR1C1 connects autophagy and oxidative stress by interacting with SQSTM1 in a catalytic-independent manner. Acta Pharmacol Sin 2022; 43:703-711. [PMID: 34017066 PMCID: PMC8888619 DOI: 10.1038/s41401-021-00673-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/30/2021] [Indexed: 02/04/2023] Open
Abstract
Targeting autophagy might be a promising anticancer strategy; however, the dual roles of autophagy in cancer development and malignancy remain unclear. NSCLC (non-small cell lung cancer) cells harbour high levels of SQSTM1 (sequestosome 1), the autophagy receptor that is critical for the dual roles of autophagy. Therefore, mechanistic insights into SQSTM1 modulation may point towards better approaches to treat NSCLC. Herein, we used multiple autophagy flux models and autophagy readouts to show that aldo-keto reductase family 1 member C1 (AKR1C1), which is highly expressed in NSCLC, promotes autophagy by directly binding to SQSTM1 in a catalytic-independent manner. This interaction may be strengthened by reactive oxygen species (ROS), important autophagy inducers. Further mechanistic research demonstrated that AKR1C1 interacts with SQSTM1 to augment SQSTM1 oligomerization, contributing to the SQSTM1 affinity for binding cargo. Collectively, our data reveal a catalytic-independent role of AKR1C1 for interacting with SQSTM1 and promoting autophagy. All these findings not only reveal a novel functional role of AKR1C1 in the autophagy process but also indicate that modulation of the AKR1C1-SQSTM1 interaction may be a new strategy for targeting autophagy.
Collapse
Affiliation(s)
- Lin-lin Chang
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China ,grid.414008.90000 0004 1799 4638Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450000, China
| | - Yue-kang Li
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-xi Zhao
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-ming Zeng
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu-jing Ge
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-min Du
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-zhou Zhang
- grid.414008.90000 0004 1799 4638Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450000, China
| | - Pei-hua Lu
- grid.460176.20000 0004 1775 8598Department of Medical Oncology, Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Qiao-jun He
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Badmann S, Mayr D, Schmoeckel E, Hester A, Buschmann C, Beyer S, Kolben T, Kraus F, Chelariu-Raicu A, Burges A, Mahner S, Jeschke U, Trillsch F, Czogalla B. AKR1C1/2 inhibition by MPA sensitizes platinum resistant ovarian cancer towards carboplatin. Sci Rep 2022; 12:1862. [PMID: 35115586 PMCID: PMC8814148 DOI: 10.1038/s41598-022-05785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
In recurrent epithelial ovarian cancer (EOC) most patients develop platinum-resistance. On molecular level the NRF2 pathway, a cellular defense mechanism against reactive oxygen species, is induced. In this study, we investigate AKR1C1/2, target of NRF2, in a well-established EOC collective by immunohistochemistry and in a panel of ovarian cancer cell lines including platinum-resistant clones. The therapeutic effect of carboplatin and MPA as monotherapy or in combination was assessed by functional assays, using OV90 and OV90cp cells. Molecular mechanisms of action of MPA were investigated by NRF2 silencing and AKR activity measurements. Immunohistochemical analysis revealed that AKR1C1/2 is a key player in the development of chemoresistance and an independent indicator for short PFS (23.5 vs. 49.6 months, p = 0.013). Inhibition of AKR1C1/2 by MPA led to a concentration- and time-dependent decline of OV90 viability and to an increased response to CP in vitro. By NRF2 silencing, however, the effects of MPA treatment were reduced. Concludingly, our data suggest that a combination therapy of carboplatin and MPA might be a promising therapeutic approach to increase response rates of EOC patients, which should be explored in clinical context.
Collapse
Affiliation(s)
- Susann Badmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Christina Buschmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Fabian Kraus
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.
| |
Collapse
|
21
|
Phoo NLL, Dejkriengkraikul P, Khaw-On P, Yodkeeree S. Transcriptomic Profiling Reveals AKR1C1 and AKR1C3 Mediate Cisplatin Resistance in Signet Ring Cell Gastric Carcinoma via Autophagic Cell Death. Int J Mol Sci 2021; 22:ijms222212512. [PMID: 34830394 PMCID: PMC8623627 DOI: 10.3390/ijms222212512] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Signet ring cell gastric carcinoma (SRCGC) is a lethal malignancy that has developed drug resistance to cisplatin therapies. The aim of this study was to characterize the acquisition of the cisplatin-resistance SRCGC cell line (KATO/DDP cells) and to understand the molecular mechanisms underlying cisplatin resistance. Transcriptomic and bioinformatic analyses were used to identify the candidate gene. This was confirmed by qPCR and Western blot. Aldoketoreductase1C1 and 1C3 (AKR1C1 and AKR1C3) were the most promising molecules in KATO/DDP cells. A specific inhibitor of AKR1C1 (5PBSA) and AKR1C3 (ASP9521) was used to enhance cisplatin-induced KATO/DPP cell death. Although cisplatin alone induced KATO/DDP apoptosis, a combination treatment of cisplatin and the AKR1C inhibitors had no influence on percent cell apoptosis. In conjunction with the autophagy inhibitor, 3MA, attenuated the effects of 5PBSA or ASP9521 to enhance cisplatin-induced cell death. These results indicated that AKR1C1 and 1C3 regulated cisplatin-induced KATO/DDP cell death via autophagy. Moreover, cisplatin in combination with AKR1C inhibitors and N-acetyl cysteine increased KATO/DDP cells' viability when compared with a combination treatment of cisplatin and the inhibitors. Taken together, our results suggested that AKR1C1 and 1C3 play a crucial role in cisplatin resistance of SRCGC by regulating redox-dependent autophagy.
Collapse
Affiliation(s)
- Nang Lae Lae Phoo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patompong Khaw-On
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
22
|
Overview of human 20 alpha-hydroxysteroid dehydrogenase (AKR1C1): Functions, regulation, and structural insights of inhibitors. Chem Biol Interact 2021; 351:109746. [PMID: 34780792 DOI: 10.1016/j.cbi.2021.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Human aldo-keto reductase family 1C1 (AKR1C1) is an important enzyme involved in human hormone metabolism, which is mainly responsible for the metabolism of progesterone in the human body. AKR1C1 is highly expressed and has an important relationship with the occurrence and development of various diseases, especially some cancers related to hormone metabolism. Nowadays, many inhibitors against AKR1C1 have been discovered, including some synthetic compounds and natural products, which have certain inhibitory activity against AKR1C1 at the target level. Here we briefly reviewed the physiological and pathological functions of AKR1C1 and the relationship with the disease, and then summarized the development of AKR1C1 inhibitors, elucidated the interaction between inhibitors and AKR1C1 through molecular docking results and existing co-crystal structures. Finally, we discussed the design ideals of selective AKR1C1 inhibitors from the perspective of AKR1C1 structure, discussed the prospects of AKR1C1 in the treatment of human diseases in terms of biomarkers, pre-receptor regulation and single nucleotide polymorphisms, aiming to provide new ideas for drug research targeting AKR1C1.
Collapse
|
23
|
Kobayashi M, Yonezawa A, Takasawa H, Nagao Y, Iguchi K, Endo S, Ikari A, Matsunaga T. Development of cisplatin resistance in breast cancer MCF7 cells by up-regulating aldo-keto reductase 1C3 expression, glutathione synthesis, and proteasomal proteolysis. J Biochem 2021; 171:97-108. [PMID: 34676395 DOI: 10.1093/jb/mvab117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023] Open
Abstract
Cisplatin (CDDP) is widely prescribed for the treatment of various cancers including bladder cancers, whereas its clinical use for breast cancer chemotherapy is restricted owing to easy acquisition of the chemoresistance. Here, we established a highly CDDP-resistant variant of human breast cancer MCF7 cells and found that procuring the resistance aberrantly elevates the expression of aldo-keto reductase (AKR) 1C3. Additionally, MCF7 cell sensitivity to CDDP was decreased and increased by overexpression and knockdown, respectively, of AKR1C3, clearly inferring that the enzyme plays a crucial role in acquiring the CDDP resistance. The CDDP-resistant cells suppressed the formation of cytotoxic reactive aldehydes by CDDP treatment, and the suppressive effects were almost completely abolished by pretreating with AKR1C3 inhibitor. The resistant cells also exhibited the elevated glutathione amount and 26S proteasomal proteolytic activities, and their CDDP sensitivity was significantly augmented by pretreatment with an inhibitor of glutathione synthesis or proteasomal proteolysis. Moreover, the combined treatment with inhibitors of AKR1C3, glutathione synthesis, and/or proteasomal proteolysis potently overcame the CDDP resistance and docetaxel cross-resistance. Taken together, our results suggest that the combination of inhibitors of AKR1C3, glutathione synthesis, and/or proteasomal proteolysis is effective as an adjuvant therapy to enhance CDDP sensitivity of breast cancer cells.
Collapse
Affiliation(s)
- Mio Kobayashi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Ayano Yonezawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroaki Takasawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yukino Nagao
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| |
Collapse
|
24
|
Penning TM, Jonnalagadda S, Trippier PC, Rižner TL. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol Rev 2021; 73:1150-1171. [PMID: 34312303 DOI: 10.1124/pharmrev.120.000122] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human aldo-keto reductases (AKRs) catalyze the NADPH-dependent reduction of carbonyl groups to alcohols for conjugation reactions to proceed. They are implicated in resistance to cancer chemotherapeutic agents either because they are directly involved in their metabolism or help eradicate the cellular stress created by these agents (e.g., reactive oxygen species and lipid peroxides). Furthermore, this cellular stress activates the Nuclear factor-erythroid 2 p45-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 pathway. As many human AKR genes are upregulated by the NRF2 transcription factor, this leads to a feed-forward mechanism to enhance drug resistance. Resistance to major classes of chemotherapeutic agents (anthracyclines, mitomycin, cis-platin, antitubulin agents, vinca alkaloids, and cyclophosphamide) occurs by this mechanism. Human AKRs also catalyze the synthesis of androgens and estrogens and the elimination of progestogens and are involved in hormonal-dependent malignancies. They are upregulated by antihormonal therapy providing a second mechanism for cancer drug resistance. Inhibitors of the NRF2 system or pan-AKR1C inhibitors offer promise to surmount cancer drug resistance and/or synergize the effects of existing drugs. SIGNIFICANCE STATEMENT: Aldo-keto reductases (AKRs) are overexpressed in a large number of human tumors and mediate resistance to cancer chemotherapeutics and antihormonal therapies. Existing drugs and new agents in development may surmount this resistance by acting as specific AKR isoforms or AKR pan-inhibitors to improve clinical outcome.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Sravan Jonnalagadda
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Paul C Trippier
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Tea Lanišnik Rižner
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| |
Collapse
|
25
|
Xu Y, Huang X, Luo Q, Zhang X. MicroRNAs Involved in Oxidative Stress Processes Regulating Physiological and Pathological Responses. Microrna 2021; 10:164-180. [PMID: 34279211 DOI: 10.2174/2211536610666210716153929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress influences several physiological and pathological cellular events, including cell differentiation, excessive growth, proliferation, apoptosis, and the inflammatory response. Therefore, oxidative stress is involved in the pathogenesis of various diseases, including pulmonary fibrosis, epilepsy, hypertension, atherosclerosis, Parkinson's disease, cardiovascular disease, and Alzheimer's disease. Recent studies have shown that several microRNAs (miRNAs) are involved in developing various diseases caused by oxidative stress and that miRNAs may be helpful to determine the inflammatory characteristics of immune responses during infection and disease. This review describes the known effects of miRNAs on reactive oxygen species to induce oxidative stress and the miRNA regulatory mechanisms involved in the uncoupling of Keap1-Nrf2 complexes. Finally, we summarized the functions of miRNAs in several antioxidant genes. Understanding the crosstalk between miRNAs and oxidative stress-inducing factors during physiological and pathological cellular events may have implications for designing more effective treatments for immune diseases.
Collapse
Affiliation(s)
- Yongjie Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021; 171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Fatemeh Bakhtiari Far
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
27
|
Sinreih M, Jójárt R, Kele Z, Büdefeld T, Paragi G, Mernyák E, Rižner TL. Synthesis and evaluation of AKR1C inhibitory properties of A-ring halogenated oestrone derivatives. J Enzyme Inhib Med Chem 2021; 36:1500-1508. [PMID: 34227437 PMCID: PMC8266253 DOI: 10.1080/14756366.2021.1937142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Enzymes AKR1C regulate the action of oestrogens, androgens, and progesterone at the pre-receptor level and are also associated with chemo-resistance. The activities of these oestrone halides were investigated on recombinant AKR1C enzymes. The oestrone halides with halogen atoms at both C-2 and C-4 positions (13β-, 13α-methyl-17-keto halogen derivatives) were the most potent inhibitors of AKR1C1. The lowest IC50 values were for the 13α-epimers 2_2I,4Br and 2_2I,4Cl (IC50, 0.7 μM, 0.8 μM, respectively), both of which selectively inhibited the AKR1C1 isoform. The 13α-methyl-17-keto halogen derivatives 2_2Br and 2_4Cl were the most potent inhibitors of AKR1C2 (IC50, 1.5 μM, 1.8 μM, respectively), with high selectivity for the AKR1C2 isoform. Compound 1_2Cl,4Cl showed the best AKR1C3 inhibition, and it also inhibited AKR1C1 (Ki: AKR1C1, 0.69 μM; AKR1C3, 1.43 μM). These data show that halogenated derivatives of oestrone represent a new class of potent and selective AKR1C inhibitors as lead compounds for further optimisations.
Collapse
Affiliation(s)
- Maša Sinreih
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kele
- Department of Medicinal Chemistry, University of Szeged, Szeged, Hungary
| | - Tomaž Büdefeld
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary.,Institute of Physics, University of Pécs, Pécs, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Tea Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Prasher P, Sharma M. Medicinal chemistry of anthranilic acid derivatives: A mini review. Drug Dev Res 2021; 82:945-958. [PMID: 34117784 DOI: 10.1002/ddr.21842] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023]
Abstract
Anthranilic acid and its analogues present a privileged profile as pharmacophores for the rational development of pharmaceuticals deliberated for managing the pathophysiology and pathogenesis of various diseases. The substitution on anthranilic acid scaffold provides large compound libraries, which enable a comprehensive assessment of the structure activity relationship (SAR) analysis for the identification of hits and leads in a typical drug development paradigm. Besides, their widespread applications as anti-inflammatory fenamates, the amide and anilide derivatives of anthranilic acid analogues play a central role in the management of several metabolic disorders. In addition, these derivatives of anthranilic acid exhibit interesting antimicrobial, antiviral and insecticidal properties, whereas the derivatives based on anthranilic diamide scaffold present applications as P-glycoprotein inhibitors for managing the drug resistance in cancer cells. In addition, the anthranilic acid derivatives serve as the inducers of apoptosis, inhibitors of hedgehog signaling pathway, inhibitors of mitogen activated protein kinase pathway, and the inhibitors of aldo-keto reductase enzymes. The antiviral derivatives of anthranilic acid focus on the inhibition of hepatitis C virus NS5B polymerase to manifest considerable antiviral properties. The anthranilic acid derivatives reportedly present neuroprotective applications by downregulating the key pathways responsible for the manifestation of neuropathological features and neurodegeneration. Nevertheless, the transition metal complexes of anthranilic acid derivatives offer therapeutic applications in diabetes mellitus, and obesity by regulating the activity of α-glucosidase. The present review demonstrates a critical analysis of the therapeutic profile of the key derivatives of anthranilic acid and its analogues for the rational development of pharmaceuticals and therapeutic molecules.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.,Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
| | - Mousmee Sharma
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.,Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
29
|
Protective Effect of Aldo-keto Reductase 1B1 Against Neuronal Cell Damage Elicited by 4'-Fluoro-α-pyrrolidinononanophenone. Neurotox Res 2021; 39:1360-1371. [PMID: 34043181 DOI: 10.1007/s12640-021-00380-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Chronic exposure to cathinone derivatives increases the risk of severe health hazards, whereas little is known about the detailed pathogenic mechanisms triggered by the derivatives. We have recently shown that treatment with α-pyrrolidinononanophenone (α-PNP, a highly lipophilic cathinone derivative possessing a long hydrocarbon main chain) provokes neuronal cell apoptosis and its 4'-fluorinated analog (F-α-PNP) potently augments the apoptotic effect. In this study, we found that neuronal SK-N-SH cell damage elicited by F-α-PNP treatment is augmented most potently by pre-incubation with an AKR1B1 inhibitor tolrestat, among specific inhibitors of four aldo-keto reductase (AKR) family members (1B1, 1C1, 1C2, and 1C3) expressed in the neuronal cells. In addition, forced overexpression of AKR1B1 remarkably lowered the cell sensitivity to F-α-PNP toxicity, clearly indicating that AKR1B1 protects from neurotoxicity of the derivative. Treatment of SK-N-SH cells with F-α-PNP resulted in a dose-dependent up-regulation of AKR1B1 expression and activation of its transcription factor NF-E2-related factor 2. Metabolic analyses using liquid chromatography/mass spectrometry/mass spectrometry revealed that AKR1B1 is hardly involved in the F-α-PNP metabolism. The F-α-PNP treatment resulted in production of reactive oxygen species and lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) in the cells. The enhanced HNE level was reduced by overexpression of AKR1B1, which also lessened the cell damage elicited by HNE. These results suggest that the AKR1B1-mediated neuronal cell protection is due to detoxification of HNE formed by F-α-PNP treatment, but not to metabolism of the derivative.
Collapse
|
30
|
Skin biological responses to urban pollution in an ex vivo model. Toxicol Lett 2021; 348:85-96. [PMID: 34044057 DOI: 10.1016/j.toxlet.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
The skin epidermis is continuously exposed to external aggressions, including environmental pollution. The cosmetic industry must be able to offer dedicated products to fight the effects of pollutants on the skin. We set up an experimental model that exposed skin explants maintained in culture to a pollutant mixture. This mixture P representing urban pollution was designed on the basis of the French organization 'Air Parif' database. A chamber, called Pollubox®, was built to allow a controlled nebulization of P on the cultured human skin explants. We investigated ultrastructural morphology by transmission electron microscopy of high pressure frozen skin explants. A global transcriptomic analysis indicated that the pollutant mixture was able to induce relevant xenobiotic and antioxidant responses. Modulated detoxifying genes were further investigated by laser micro-dissection coupled to qPCR, and immunochemistry. Both approaches showed that P exposure correlated with overexpression of detoxifying genes and provoked skin physiological alterations down to the stratum basale. The model developed herein might be an efficient tool to study the effects of pollutants on skin as well as a powerful testing method to evaluate the efficacy of cosmetic products against pollution.
Collapse
|
31
|
Nie J, Shan D, Li S, Zhang S, Zi X, Xing F, Shi J, Liu C, Wang T, Sun X, Zhang Q, Zhou M, Luo S, Meng H, Zhang Y, Zheng T. A Novel Ferroptosis Related Gene Signature for Prognosis Prediction in Patients With Colon Cancer. Front Oncol 2021; 11:654076. [PMID: 34046350 PMCID: PMC8144717 DOI: 10.3389/fonc.2021.654076] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Colon cancer (CC) is a serious disease burden. The prognosis of patients with CC is different, so looking for effective biomarkers to predict prognosis is vitally important. Ferroptosis is a promising therapeutic and diagnosis strategy in CC. However, the role of ferroptosis in prognosis of CC has not been studied. The aim of the study is to build a prognosis model related ferroptosis, and provide clues for further therapy of CC. METHODS The RNA-seq data were from TCGA (training group) and GEO (testing group). The R language and Perl language were used to process and analyze data. LASSO regression analysis was used to build the prognosis model. ssGSEA was used to compare the immune status between two groups. Immunohistochemistry was used to detect expression of AKR1C1 and CARS1 in colon cancer tissues and adjacent tissues. RESULTS The prognosis model consisted of five ferroptosis related genes (AKR1C1, ALOX12, FDFT1, ATP5MC3, and CARS1). The area under curve (AUC) at 1-, 2-, and 3-year were 0.668, 0.678, and 0.686, respectively. The high- and low-risk patients had significant survival probability and could be clearly distinguished by the PCA and t-SNE analysis. The multivariate cox regression analysis also showed the riskscore is an independent prognosis factor. Importantly, we found that the immune status between high- and low-risk patients were different obviously, such as CD8+T cells. And STING, a new promising immune target, was also correlated to our signature genes statistically significantly. CONCLUSION Our ferroptosis prognosis signature could predict survival of CC patients to a certain degree. And the crosstalk between ferroptosis and immune, especially STING need further studies.
Collapse
Affiliation(s)
- Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Shan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shun Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuyuan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaolin Zi
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fan Xing
- Department of Radiation Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Shi
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Wang
- The Seventh Department of the Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoyuan Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qian Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meng Zhou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shengnan Luo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology, Heilongjiang Cancer Institute, Harbin, China
| |
Collapse
|
32
|
He P, Wang C, Wang Y, Wang C, Zhou C, Cao D, Li J, Bushnell DA, Li Q, Kornberg RD, Xie W, Wang Z. A Novel AKR1C3 Specific Prodrug TH3424 With Potent Antitumor Activity in Liver Cancer. Clin Pharmacol Ther 2021; 110:229-237. [PMID: 33483974 DOI: 10.1002/cpt.2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
Overexpression of AKR1C3, an aldo-keto reductase, was recently discovered in liver cancers. In this study, an inverse correlation between AKR1C3 expression and survival of patients with liver cancer was observed. AKR1C3 inhibitors, however, failed to suppress liver cancer cell growth. The prodrug TH3424, which releases a DNA alkylating reagent upon reduction by AKR1C3, was developed to target tumors with overexpression of AKR1C3. TH3424 showed specific killing of liver cancer cells with AKR1C3 overexpression both in vitro and in vivo. In patient-derived mouse xenograft models, TH3424 at doses as low as 1.5 mg/kg eliminated liver tumors with no apparent toxicity. Therefore, TH3424 is a promising drug candidate for liver cancer and other types of cancers overexpressing AKR1C3.
Collapse
Affiliation(s)
- Ping He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Chunnian Wang
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
| | - Yanlan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong No. 2 Provincial People's Hospital, Guangzhou, China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, China
| | - David A Bushnell
- Department of Structural Biology, Stanford University, Stanford, California, USA
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Roger D Kornberg
- Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China.,Department of Structural Biology, Stanford University, Stanford, California, USA
| | - Wei Xie
- Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China.,MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
33
|
Gelardi ELM, Colombo G, Picarazzi F, Ferraris DM, Mangione A, Petrarolo G, Aronica E, Rizzi M, Mori M, La Motta C, Garavaglia S. A Selective Competitive Inhibitor of Aldehyde Dehydrogenase 1A3 Hinders Cancer Cell Growth, Invasiveness and Stemness In Vitro. Cancers (Basel) 2021; 13:cancers13020356. [PMID: 33478031 PMCID: PMC7835878 DOI: 10.3390/cancers13020356] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The aldehyde dehydrogenases enzymes (ALDHs) are promising drug targets in cancer therapy. ALDHs are members of an enzymatic superfamily composed by 19 isoforms involved in the oxidation of aldehydes, with a scavenger role. Among them, the isoform ALDH1A3 is a cancer biomarker since it is highly expressed in cancer stem cells characterized by a marked drug resistance and the capacity to promote self-renewal, clonogenic growth and tumour-initiating capacity. In this paper, we present the first highly potent and selective ALDH1A3 inhibitor able to induce cytotoxic effects and to reduce cell migration and stemness of ALDH1A3-positive cancer cells. We propose the targeting of the ALDH1A3 enzyme as a promising approach for improving the treatments outcomes of patients affected by ALDH1A3-positive cancers. Abstract Aldehyde dehydrogenase 1A3 (ALDH1A3) belongs to an enzymatic superfamily composed by 19 different isoforms, with a scavenger role, involved in the oxidation of a plethora of aldehydes to the respective carboxylic acids, through a NAD+-dependent reaction. Previous clinical studies highlighted the high expression of ALDH1A3 in cancer stem cells (CSCs) correlated to a higher risk of cancer relapses, chemoresistance and a poor clinical outcome. We report on the structural, biochemical, and cellular characterization of NR6, a new selective ALDH1A3 inhibitor derived from an already published ALDH non-selective inhibitor with cytotoxic activity on glioblastoma and colorectal cancer cells. Crystal structure, through X-Ray analysis, showed that NR6 binds a non-conserved tyrosine residue of ALDH1A3 which drives the selectivity towards this isoform, as supported by computational binding simulations. Moreover, NR6 shows anti-metastatic activity in wound healing and invasion assays and induces the downregulation of cancer stem cell markers. Overall, our work confirms the role of ALDH1A3 as an important target in glioblastoma and colorectal cells and propose NR6 as a promising molecule for future preclinical studies.
Collapse
Affiliation(s)
- Edoardo L. M. Gelardi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Francesca Picarazzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, 53100 Siena, Italy; (F.P.); (M.M.)
| | - Davide M. Ferraris
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Andrea Mangione
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.P.); (C.L.M.)
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, The Netherlands;
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 Heemstede, The Netherlands
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, 53100 Siena, Italy; (F.P.); (M.M.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.P.); (C.L.M.)
- CISUP—Centre for Instrumentation Sharing, University of Pisa, 56126 Pisa, Italy
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, A. Avogadro, 28100 Novara, Italy; (E.L.M.G.); (G.C.); (D.M.F.); (A.M.); (M.R.)
- Correspondence: ; Tel.: +39-0321375714
| |
Collapse
|
34
|
Peraldo-Neia C, Ostano P, Mello-Grand M, Guana F, Gregnanin I, Boschi D, Oliaro-Bosso S, Pippione AC, Carenzo A, De Cecco L, Cavalieri S, Micali A, Perrone F, Averono G, Bagnasacco P, Dosdegani R, Masini L, Krengli M, Aluffi-Valletti P, Valente G, Chiorino G. AKR1C3 is a biomarker and druggable target for oropharyngeal tumors. Cell Oncol (Dordr) 2020; 44:357-372. [PMID: 33211282 DOI: 10.1007/s13402-020-00571-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Oropharynx squamous cell carcinoma (OPSCC) is a subtype of head and neck squamous cell carcinoma (HNSCC) arising from the base of the tongue, lingual tonsils, tonsils, oropharynx or pharynx. The majority of HPV-positive OPSCCs has a good prognosis, but a fraction of them has a poor prognosis, similar to HPV-negative OPSCCs. An in-depth understanding of the molecular mechanisms underlying OPSCC is mandatory for the identification of novel prognostic biomarkers and/or novel therapeutic targets. METHODS 14 HPV-positive and 15 HPV-negative OPSCCs with 5-year follow-up information were subjected to gene expression profiling and, subsequently, compared to three extensive published OPSCC cohorts to define robust biomarkers for HPV-negative lesions. Validation of Aldo-keto-reductases 1C3 (AKR1C3) by qRT-PCR was carried out on an independent cohort (n = 111) of OPSCC cases. In addition, OPSCC cell lines Fadu and Cal-27 were treated with Cisplatin and/or specific AKR1C3 inhibitors to assess their (combined) therapeutic effects. RESULTS Gene set enrichment analysis (GSEA) on the four datasets revealed that the genes down-regulated in HPV-negative samples were mainly involved in immune system, whereas those up-regulated mainly in glutathione derivative biosynthetic and xenobiotic metabolic processes. A panel of 30 robust HPV-associated transcripts was identified, with AKR1C3 as top-overexpressed transcript in HPV-negative samples. AKR1C3 expression in 111 independent OPSCC cases positively correlated with a worse survival, both in the entire cohort and in HPV-positive samples. Pretreatment with a selective AKR1C3 inhibitor potentiated the effect of Cisplatin in OPSCC cells exhibiting higher basal AKR1C3 expression levels. CONCLUSIONS We identified AKR1C3 as a potential prognostic biomarker in OPSCC and as a potential drug target whose inhibition can potentiate the effect of Cisplatin.
Collapse
Affiliation(s)
- Caterina Peraldo-Neia
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Maurizia Mello-Grand
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Francesca Guana
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Ilaria Gregnanin
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Simonetta Oliaro-Bosso
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Agnese Chiara Pippione
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Andrea Carenzo
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Arianna Micali
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Federica Perrone
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Gianluca Averono
- Otorhinolaryngology Unit, Ospedale degli Infermi, via dei Ponderanesi 1, Ponderano, Biella, Italy
| | - Paolo Bagnasacco
- Otorhinolaryngology Unit, Ospedale degli Infermi, via dei Ponderanesi 1, Ponderano, Biella, Italy
| | | | - Laura Masini
- Department of Translational Medicine, UPO School of Medicine, Radiotherapy Unit, Novara, Italy
| | - Marco Krengli
- Department of Translational Medicine, UPO School of Medicine, Radiotherapy Unit, Novara, Italy
| | - Paolo Aluffi-Valletti
- Department of Health Sciences, UPO School of Medicine, Otorhinolaryngology Unit, Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, UPO School of Medicine, Radiotherapy Unit, Novara, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy.
| |
Collapse
|
35
|
Gąsiorkiewicz BM, Koczurkiewicz-Adamczyk P, Piska K, Pękala E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest New Drugs 2020; 39:538-563. [PMID: 33159673 PMCID: PMC7960624 DOI: 10.1007/s10637-020-01032-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
Although cisplatin is one of the most common antineoplastic drug, its successful utilisation in cancer treatment is limited by the drug resistance. Multiple attempts have been made to find potential cisplatin chemosensitisers which would overcome cancer cells resistance thus improving antineoplastic efficacy. Autophagy modulation has become an important area of interest regarding the aforementioned topic. Autophagy is a highly conservative cellular self-digestive process implicated in response to multiple environmental stressors. The high basal level of autophagy is a common phenomenon in cisplatin-resistant cancer cells which is thought to grant survival benefit. However current evidence supports the role of autophagy in either promoting or limiting carcinogenesis depending on the context. This encourages the search of substances modulating the process to alleviate cisplatin resistance. Such a strategy encompasses not only simple autophagy inhibition but also harnessing the process to induce autophagy-dependent cell death. In this paper, we briefly describe the mechanism of cisplatin resistance with a special emphasis on autophagy and we give an extensive literature review of potential substances with cisplatin chemosensitising properties related to autophagy modulation.
Collapse
Affiliation(s)
- Bartosz Mateusz Gąsiorkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
36
|
Sun M, Zhou Y, Zhuo X, Wang S, Jiang S, Peng Z, Kang K, Zheng X, Sun M. Design, Synthesis and Cytotoxicity Evaluation of Novel Indole Derivatives Containing Benzoic Acid Group as Potential AKR1C3 Inhibitors. Chem Biodivers 2020; 17:e2000519. [PMID: 33111427 DOI: 10.1002/cbdv.202000519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is a fatal, metastatic form of prostate cancer, characterized by reactivation of the androgen axis. Aldo-keto reductase 1C3 (AKR1C3) converts androstenedione (AD) and 5α-androstanedione to testosterone (T) and 5α-dihydrotestosterone (DHT), respectively. In CRPC, AKR1C3 is upregulated and implicated in drug resistance and has been regarded as a potential therapeutic target. Here we examined a series of indole derivatives containing benzoic acid or phenylhydroxamic acid and found that 4-({3-[(3,4,5-trimethoxyphenyl)sulfanyl]-1H-indol-1-yl}methyl)benzoic acid (3e) and N-hydroxy-4-({3-[(3,4,5-trimethoxyphenyl)sulfanyl]-1H-indol-1-yl}methyl)benzamide (3q) inhibited 22Rv1 cell proliferation with IC50 values of 6.37 μM and 2.72 μM, respectively. In enzymatic assay, compounds 3e and 3q exhibited potent inhibitory effect against AKR1C3 (IC50 =0.26 and 2.39 μM, respectively). These results indicated that compounds 3e and 3q might be useful leads for further investigation of more potential AKR1C3 inhibitors used for CRPC.
Collapse
Affiliation(s)
- Mingjiao Sun
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China.,Institute of Cancer, Hangzhou Cancer Hospital, Hangzhou, 310002, P. R. China
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xuefang Zhuo
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Sheng Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shisheng Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zhihuan Peng
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ke Kang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xuehua Zheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Mingna Sun
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
37
|
Matsunaga T, Okumura N, Saito H, Morikawa Y, Suenami K, Hisamatsu A, Endo S, Ikari A. Significance of aldo-keto reductase 1C3 and ATP-binding cassette transporter B1 in gain of irinotecan resistance in colon cancer cells. Chem Biol Interact 2020; 332:109295. [PMID: 33096057 DOI: 10.1016/j.cbi.2020.109295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Irinotecan (CPT11) is widely prescribed for treatment of various intractable cancers such as advanced and metastatic colon cancer cells, but its continuous treatment promotes the resistance development. In this study, we established CPT11-resistant variants of three human colon cancer (DLD1, RKO and LoVo) cell lines, and found that gain of the resistance elicited an up-regulation of aldo-keto reductase (AKR) 1C3 in the cells. Additionally, the sensitivity to CPT11 toxicity was decreased and increased by overexpression and knockdown, respectively, of the enzyme. Moreover, the resistant cells suppressed formation of reactive 4-hydroxy-2-nonenal by CPT11 treatment, and the suppressive effect was almost completely abolished by addition of an AKR1C3 inhibitor. These results suggest that up-regulated AKR1C3 contributes to promotion of the chemoresistance by detoxifying the reactive aldehyde. Western blot and real-time polymerase-chain reaction analyses and ATP-binding cassette (ABC) B1-functional assay revealed that, among three ABC transporters, ABCB1 was the most highly up-regulated by development of the CPT11 resistance, inferring a significant contribution of pregnane-X receptor-dependent signaling to the ABCB1 up-regulation. The combined treatment with inhibitors of AKR1C3 and ABCB1 potently sensitized the resistant cells to CPT11 and its active metabolite SN38. Taken together, our results suggest that combination of AKR1C3 and ABCB1 inhibitors is effective as adjuvant therapy to enhance CPT11 sensitivity of intractable colon cancer cells.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan.
| | - Naoko Okumura
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Haruhi Saito
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Aki Hisamatsu
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
38
|
Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anticancer Drugs 2020; 30:251-259. [PMID: 30489290 DOI: 10.1097/cad.0000000000000715] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) is a major propolis component that possesses a variety of pharmacological properties such as antioxidant and anticancer effects. Herein, we investigated the effectiveness of CAPE on cytotoxicity of clinically used anticancer drugs, doxorubicin (DXR) and cisplatin (CDDP), in parental and the drug-resistant cells of stomach (MKN45) and colon (LoVo) cancers. Concomitant treatment with CAPE potentiated apoptotic effects of DXR and CDDP against the parental cells. The treatment significantly reduced the production of reactive oxygen species elicited by DXR but did not affect the DXR-mediated accumulation of 4-hydroxy-2-nonenal, a lipid peroxidation-derived aldehyde. Intriguingly, treatment of parental MKN45 cells with CAPE alone reduced 26S proteasome-based proteolytic activities, in which a chymotrypsin-like activity was most affected. This effect of CAPE was the most prominent among those of eight flavonoids and nine cinnamic acid derivatives and was also observed in parental LoVo cells. In the DXR-resistant or CDDP-resistant cells, the chymotrypsin-like activity was highly up-regulated and significantly decreased by CAPE treatment, which sensitized the resistant cells to DXR and CDDP. Reverse transcription-PCR analysis showed that CAPE treatment led to downregulation of five proteasome subunits (PSMB1-PSMB5) and three immunoproteasome subunits (PSMB8-PSMB10) in DXR-resistant MKN45 cells. The results suggest that CAPE enhances sensitivity of these cancer cells and their chemoresistant cells to DXR and CDDP, most notably through decreasing proteasome function. Thus, CAPE may be valuable as an adjuvant for DXR or CDDP chemotherapy in gastric cancer.
Collapse
|
39
|
Behera A, Ashraf R, Srivastava AK, Kumar S. Bioinformatics analysis and verification of molecular targets in ovarian cancer stem-like cells. Heliyon 2020; 6:e04820. [PMID: 32984578 PMCID: PMC7492822 DOI: 10.1016/j.heliyon.2020.e04820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a lethal and aggressive gynecological malignancy. Despite recent advances, existing therapies are challenged by a high relapse rate, eventually resulting in disease recurrence and chemoresistance. Emerging evidence indicates that a subpopulation of cells known as cancer stem-like cells (CSLCs) exists with non-tumorigenic cancer cells (non-CSCs) within a bulk tumor and is thought to be responsible for tumor recurrence and drug-resistance. Therefore, identifying the molecular drivers for cancer stem cells (CSCs) is critical for the development of novel therapeutic strategies for the treatment of EOC. METHODS Two gene datasets were downloaded from the Gene Expression Omnibus (GEO) database based on our search criteria. Differentially expressed genes (DEGs) in both datasets were obtained by the GEO2R web tool. Based on log2 (fold change) >2, the top thirteen up-regulated genes and log2 (fold change) < -1.5 top thirteen down-regulated genes were selected, and the association between their expressions and overall survival was analyzed by OncoLnc web tool. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways analysis, and protein-protein interaction (PPI) networks were performed for all the common DEGs found in both datasets. SK-OV-3 cells were cultured in an adherent culture medium and spheroids were generated in suspension culture with CSCs specific medium. RNA from both cell population was extracted to validate the selected DEGs expression by q-PCR. Growth inhibition assay was performed in SK-OV-3 cells after carboplatin treatment. RESULTS A total of 200 DEGs, 117 up-regulated and 83 down-regulated genes were commonly identified in both datasets. Analysis of pathways and enrichment tests indicated that the extracellular matrix part, cell proliferation, tissue development, and molecular function regulation were enriched in CSCs. Biological pathways such as interferon-alpha/beta signaling, molecules associated with elastic fibers, and synthesis of bile acids and bile salts were significantly enriched in CSCs. Among the top 13 up-regulated and down-regulated genes, MMP1 and PPFIBP1 expression were associated with overall survival. Higher expression of ADM, CXCR4, LGR5, and PTGS2 in carboplatin treated SK-OV-3 cells indicate a potential role in drug resistance. CONCLUSIONS The molecular signature and signaling pathways enriched in ovarian CSCs were identified by bioinformatics analysis. This analysis could provide further research ideas to find the new mechanism and novel potential therapeutic targets for ovarian CSCs.
Collapse
Affiliation(s)
- Abhijeet Behera
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
40
|
Liu Y, He S, Chen Y, Liu Y, Feng F, Liu W, Guo Q, Zhao L, Sun H. Overview of AKR1C3: Inhibitor Achievements and Disease Insights. J Med Chem 2020; 63:11305-11329. [PMID: 32463235 DOI: 10.1021/acs.jmedchem.9b02138] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human aldo-keto reductase family 1 member C3 (AKR1C3) is known as a hormone activity regulator and prostaglandin F (PGF) synthase that regulates the occupancy of hormone receptors and cell proliferation. Because of the overexpression in metabolic diseases and various hormone-dependent and -independent carcinomas, as well as the emergence of clinical drug resistance, an increasing number of studies have investigated AKR1C3 inhibitors. Here, we briefly review the physiological and pathological function of AKR1C3 and then summarize the recent development of selective AKR1C3 inhibitors. We propose our viewpoints on the current problems associated with AKR1C3 inhibitors with the aim of providing a reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective AKR1C3 inhibitors.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Siyu He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Huaian 223005, People's Republic of China.,Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
41
|
Zhou C, Shen G, Yang F, Duan J, Wu Z, Yang M, Liu Y, Du X, Zhang X, Xiao S. Loss of AKR1C1 is a good prognostic factor in advanced NPC cases and increases chemosensitivity to cisplatin in NPC cells. J Cell Mol Med 2020; 24:6438-6447. [PMID: 32307891 PMCID: PMC7294127 DOI: 10.1111/jcmm.15291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Guowen Shen
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Fan Yang
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Jingling Duan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Wu
- Xiangya Medical College of South Central University, Changsha, China
| | - Mingqing Yang
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Yi Liu
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Xueli Du
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, Guilin, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| |
Collapse
|
42
|
Zhu H, Hu Y, Zeng C, Chang L, Ge F, Wang W, Yan F, Zhao Q, Cao J, Ying M, Gu Y, Zheng L, He Q, Yang B. The SIRT2-mediated deacetylation of AKR1C1 is required for suppressing its pro-metastasis function in Non-Small Cell Lung Cancer. Am J Cancer Res 2020; 10:2188-2200. [PMID: 32104503 PMCID: PMC7019158 DOI: 10.7150/thno.39151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Aldo-keto reductase family 1 member C1 (AKR1C1) promotes malignancy of Non-Small Cell Lung Cancer (NSCLC) by activating Signal Transducer and Activator of Transcription 3 (STAT3) pathway. However, how the pro-metastatic functions of AKR1C1 are switched on/off remains unknown. Methods: Immunoprecipitation and LC-MS/MS analyses were performed to identify the acetylation on AKR1C1 protein, and the functional analyses (in vitro and in vivo) were performed to depict the contribution of acetylation to the pro-metastatic effects of AKR1C1. Results: Here we report that acetylated AKR1C1 on two lysine residues K185 & K201 is critical to its pro-metastatic role. The acetylation modification has no impact on the canonical enzymatic activity of AKR1C1, while it is required for the interaction between AKR1C1 to STAT3, which triggers the downstream transduction events, ultimately mobilizing cells. Importantly, the deacetylase Sirtuin 2 (SIRT2) is capable of deacetylating AKR1C1, inhibiting the transactivation of STAT3 target genes, thus suppressing the migration of cells. Conclusion: Acetylation on Lysines 185 and 201 of AKR1C1 dictates its pro-metastatic potential both in vitro and in vivo, and the reverting of acetylation by Sirtuin 2 provides potential therapeutic targets for treatment against metastatic NSCLC patients with high AKR1C1 expression.
Collapse
|
43
|
Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L, Shen Q, Xu P, Zeng L, Zhou Y, Huang Y, Yang Z, Zhou J, Gao J, Zhou H, Xu S, Ji H, Shi P, Wu DD, Yang C, Chen Y. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun 2019; 10:4892. [PMID: 31653849 PMCID: PMC6814821 DOI: 10.1038/s41467-019-12801-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia occurs naturally at high-altitudes and pathologically in hypoxic solid tumors. Here, we report that genes involved in various human cancers evolved rapidly in Tibetans and six Tibetan domestic mammals compared to reciprocal lowlanders. Furthermore, m6A modified mRNA binding protein YTHDF1, one of evolutionary positively selected genes for high-altitude adaptation is amplified in various cancers, including non-small cell lung cancer (NSCLC). We show that YTHDF1 deficiency inhibits NSCLC cell proliferation and xenograft tumor formation through regulating the translational efficiency of CDK2, CDK4, and cyclin D1, and that YTHDF1 depletion restrains de novo lung adenocarcinomas (ADC) progression. However, we observe that YTHDF1 high expression correlates with better clinical outcome, with its depletion rendering cancerous cells resistant to cisplatin (DDP) treatment. Mechanistic studies identified the Keap1-Nrf2-AKR1C1 axis as the downstream mediator of YTHDF1. Together, these findings highlight the critical role of YTHDF1 in both hypoxia adaptation and pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Yulin Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Mengge Wu
- Kunming Medical University, Kunming, 650223, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xingyang Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Qiushuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Peifang Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | | | | | | | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hongbin Ji
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Peng Shi
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dong-Dong Wu
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
44
|
Matsunaga T, Kawabata S, Yanagihara Y, Kezuka C, Kato M, Morikawa Y, Endo S, Chen H, Iguchi K, Ikari A. Pathophysiological roles of autophagy and aldo-keto reductases in development of doxorubicin resistance in gastrointestinal cancer cells. Chem Biol Interact 2019; 314:108839. [PMID: 31563593 DOI: 10.1016/j.cbi.2019.108839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Here, we show that incubation of three human gastrointestinal cancer cell lines (HCT15, LoVo and MKN45) with doxorubicin (DOX) provokes autophagy through facilitating production of reactive oxygen species (ROS). HCT15 cell treatment with DOX resulted in up-regulation of Beclin1, down-regulation of Bcl2, activation of AMPK and JNK, and Akt inactivation, all of which were restored by pretreating with an antioxidant N-acetyl-l-cysteine. These data suggest that all the autophagy-related alterations evoked by DOX result from the ROS production. In the DOX-resistant cancer cells, degree of autophagy elicited by DOX was milder than the parental cells, and DOX treatment hardly activated the ROS-dependent apoptotic signals [formation of 4-hydroxy-2-nonenal (HNE), cytochrome-c release into cytosol, and activation of JNK and caspase-3], inferring an inverse correlation between cellular antioxidant capacity and autophagy induction by DOX. Monitoring of expression levels of aldo-keto reductases (AKRs) in the parental and DOX-resistant cells revealed an up-regulation of AKR1B10 and/or AKR1C3 with acquiring the DOX resistance. Knockdown and inhibition of AKR1B10 or AKR1C3 in these cells enhanced DOX-elicited autophagy. Measurement of DOX-reductase activity and HNE-sensitivity assay also suggested that both AKR1B10 (via high HNE-reductase activity) and AKR1C3 (via low HNE-reductase and DOX-reductase activities) are involved in the development of DOX resistance. Combination of inhibitors of autophagy and the two AKRs overcame DOX resistance and cross-resistance of gastrointestinal cancer cells with resistance development to DOX or cis-diamminedichloroplatinum. Therefore, concomitant treatment with the inhibitors may be effective as an adjuvant therapy for elevating DOX sensitivity of gastrointestinal cancer cells.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan.
| | - Saori Kawabata
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuji Yanagihara
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Chihiro Kezuka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Misaki Kato
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Huayue Chen
- Department of Anatomy School of Medicine, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
45
|
Czogalla B, Kahaly M, Mayr D, Schmoeckel E, Niesler B, Hester A, Zeder-Göß C, Kolben T, Burges A, Mahner S, Jeschke U, Trillsch F. Correlation of NRF2 and progesterone receptor and its effects on ovarian cancer biology. Cancer Manag Res 2019; 11:7673-7684. [PMID: 31616183 PMCID: PMC6699153 DOI: 10.2147/cmar.s210004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose This study aimed to investigate the potential prognostic impact of nuclear factor erythroid 2-related factor 2 (NRF2) and progesterone receptor A (PRA)/progesterone receptor B (PRB) in ovarian cancer patients which might be the rationale for putative new treatment strategies. Patients and methods The presence of NRF2 and PRA/PRB was investigated in 156 ovarian cancer samples using immunohistochemistry (IHC). Staining of NRF2 and PRA/PRB was rated using the semi-quantitative immunoreactive score (IR score, Remmele’s score) and correlated to clinical and pathological data. NRF2 and PRA/PRB expression were compared with respect to the overall survival (OS). Results NRF2 staining was different in both, the cytoplasm and nucleus between the histological subtypes (p=0.001 and p=0.02, respectively). There was a significant difference in the PRA expression comparing all histological subtypes (p=0.02). Histological subtypes showed no significant differences in the PRB expression. A strong correlation of cytoplasmic NRF2 and PRA expression was detected (cc=0.247, p=0.003) as well as of cytoplasmic NRF2 and PRB expression (cc=0.25, p=0.003), confirmed by immunofluorescence double staining. Cytoplasmic NRF2 expression was associated with a longer OS (median 50.6 vs 32.5 months; p=0.1) as it was seen for PRA expression (median 63.4 vs 33.1 months; p=0.08), although not statistically significant. In addition, high PRB expression (median 80.4 vs 32.5 months; p=0.04) and concurrent expression of cytoplasmic NRF2 and PRA were associated with a significantly longer OS (median 109.7 vs 30.6 months; p=0.02). The same relationship was also noted for NRF2 and PRB with improved OS for patients expressing both cytoplasmic NRF2 and PRB (median 153.5 vs 30.6 months; p=0.009). Silencing of NFE2L2 induced higher mRNA expression of PGR in the cancer cell line OVCAR3 (p>0.05) confirming genetic interactions of NRF2 and PR. Conclusion In this study, the combination of cytoplasmic NRF2 and high PRA/PRB expression was demonstrated to be associated with improved overall survival in ovarian cancer patients. Further understanding of interactions within the NRF2/AKR1C1/PR pathway could open new additional therapeutic approaches.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Maja Kahaly
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Doris Mayr
- Faculty of Medicine, Institute of Pathology, Lmu Munich, Munich, Germany
| | - Elisa Schmoeckel
- Faculty of Medicine, Institute of Pathology, Lmu Munich, Munich, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Christine Zeder-Göß
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
46
|
Zinovieva OL, Grineva EN, Krasnov GS, Karpov DS, Zheltukhin AO, Snezhkina AV, Kudryavtseva AV, Mashkova TD, Lisitsyn NA. Treatment of cancer cells with chemotherapeutic drugs results in profound changes in expression of genes encoding aldehyde-metabolizing enzymes. J Cancer 2019; 10:4256-4263. [PMID: 31413744 PMCID: PMC6691692 DOI: 10.7150/jca.32608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
Using RNA-seq, RT-qPCR, and bioinformatics we have studied the influence of a wide spectrum of chemotherapeutic drugs on transcription of AKR1B10, AKR1C1, ALDH1A1, and ALDH1A3 genes, which encode the major aldehyde-metabolizing enzymes. The strongest alterations were detected in case of AKR1B10 mRNA that was significantly upregulated in wild type p53 cancer cells, but downregulated in mutant p53 cancer cells. Subsequent experiments demonstrated the significant and consistent decrease in the AKR1B10 mRNA content in sera of colon cancer patients, as compared to sera of healthy donors (p<0.0001, SPE=92.9%, SNE=79.3%, AUC=0.889), which implies that this RNA is a valuable marker for serological diagnosis of colorectal cancer. Moreover, we have found that ALDH1A3 protein is a key inactivator of ROS-generated aldehydes, which is a perspective target for the development of new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Olga L Zinovieva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Evgeniya N Grineva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.,Institute of Biomedical Chemistry, the Russian Academy of Sciences, 119121 Moscow, Russia
| | - Dmitry S Karpov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.,Institute of Biomedical Chemistry, the Russian Academy of Sciences, 119121 Moscow, Russia
| | - Andrei O Zheltukhin
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tamara D Mashkova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikolai A Lisitsyn
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
47
|
McNamara KM, Sasano H. The role of 17βHSDs in breast tissue and breast cancers. Mol Cell Endocrinol 2019; 489:32-44. [PMID: 30408503 DOI: 10.1016/j.mce.2018.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
The family of seventeen beta hydroxysteroid dehydrogenase enzymes has a long and diverse history in breast and breast cancer research. Given the known dependence of the breast on steroid signalling and intracrine steroid metabolism these enzymes are considered to be essential local fine tuners of overall steroid balance in the tissue. This review will cover the current state of knowledge regarding the expression, clinical effect and biological regulation of enzymes in both cancerous and normal states. In addition we will also cover the current state of knowledge regarding 17βHSD actions in the often neglected adipose and stromal components of tumours.
Collapse
Affiliation(s)
- Keely May McNamara
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University, Japan.
| | - Hironobu Sasano
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University, Japan
| |
Collapse
|
48
|
Lolli ML, Carnovale IM, Pippione AC, Wahlgren WY, Bonanni D, Marini E, Zonari D, Gallicchio M, Boscaro V, Goyal P, Friemann R, Rolando B, Bagnati R, Adinolfi S, Oliaro-Bosso S, Boschi D. Bioisosteres of Indomethacin as Inhibitors of Aldo-Keto Reductase 1C3. ACS Med Chem Lett 2019; 10:437-443. [PMID: 30996776 DOI: 10.1021/acsmedchemlett.8b00484] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/28/2019] [Indexed: 11/28/2022] Open
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is an attractive target in drug design for its role in resistance to anticancer therapy. Several nonsteroidal anti-inflammatory drugs such as indomethacin are known to inhibit AKR1C3 in a nonselective manner because of COX-off target effects. Here we designed two indomethacin analogues by proposing a bioisosteric connection between the indomethacin carboxylic acid function and either hydroxyfurazan or hydroxy triazole rings. Both compounds were found to target AKR1C3 in a selective manner. In particular, hydroxyfurazan derivative is highly selective for AKR1C3 over the 1C2 isoform (up to 90-times more) and inactive on COX enzymes. High-resolution crystal structure of its complex with AKR1C3 shed light onto the binding mode of the new inhibitors. In cell-based assays (on colorectal and prostate cancer cells), the two indomethacin analogues showed higher potency than indomethacin. Therefore, these two AKR1C3 inhibitors can be used to provide further insight into the role of AKR1C3 in cancer.
Collapse
Affiliation(s)
- Marco L. Lolli
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Irene M. Carnovale
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Agnese C. Pippione
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Weixiao Y. Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Gothenburg, Sweden
| | - Davide Bonanni
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Elisabetta Marini
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Daniele Zonari
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Margherita Gallicchio
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Valentina Boscaro
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Parveen Goyal
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Gothenburg, Sweden
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Gothenburg, Sweden
| | - Barbara Rolando
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Renzo Bagnati
- Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Via La Masa 19, 20156 Milan, Italy
| | - Salvatore Adinolfi
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Simonetta Oliaro-Bosso
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Donatella Boschi
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
49
|
Verma K, Zang T, Penning TM, Trippier PC. Potent and Highly Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. J Med Chem 2019; 62:3590-3616. [PMID: 30836001 DOI: 10.1021/acs.jmedchem.9b00090] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) catalyzes the synthesis of 9α,11β-prostaglandin (PG) F2α and PGF2α prostanoids that sustain the growth of myeloid precursors in the bone marrow. The enzyme is overexpressed in acute myeloid leukemia (AML) and T-cell acute lymphoblastic leukemia (T-ALL). Moreover, AKR1C3 confers chemotherapeutic resistance to the anthracyclines: first-line agents for the treatment of leukemias. The highly homologous isoforms AKR1C1 and AKR1C2 inactivate 5α-dihydrotestosterone, and their inhibition would be undesirable. We report herein the identification of AKR1C3 inhibitors that demonstrate exquisite isoform selectivity for AKR1C3 over the other closely related isoforms to the order of >2800-fold. Biological evaluation of our isoform-selective inhibitors revealed a high degree of synergistic drug action in combination with the clinical leukemia therapeutics daunorubicin and cytarabine in in vitro cellular models of AML and primary patient-derived T-ALL cells. Our developed compounds exhibited >100-fold dose reduction index that results in complete resensitization of a daunorubicin-resistant AML cell line to the chemotherapeutic and >100-fold dose reduction of cytarabine in both AML cell lines and primary T-ALL cells.
Collapse
Affiliation(s)
- Kshitij Verma
- Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center, School of Pharmacy , Amarillo , Texas 79106 , United States
| | - Tianzhu Zang
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center, School of Pharmacy , Amarillo , Texas 79106 , United States.,Center for Chemical Biology, Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| |
Collapse
|
50
|
AKR1C3, a crucial androgenic enzyme in prostate cancer, promotes epithelial-mesenchymal transition and metastasis through activating ERK signaling. Urol Oncol 2018; 36:472.e11-472.e20. [DOI: 10.1016/j.urolonc.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
|