1
|
Hassanein EHM, Abdel-Reheim MA, Althagafy HS, Hemeda MS, Gad RA, Abdel-Sattar AR. Nifuroxazide attenuates indomethacin-induced renal injury by upregulating Nrf2/HO-1 and cytoglobin and suppressing NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3985-3994. [PMID: 37994949 DOI: 10.1007/s00210-023-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Indomethacin (INDO) is an NSAID with remarkable efficacy and widespread utilization for alleviating pain. Nevertheless, renal function impairment is an adverse reaction linked to INDO usage. Nifuroxazide (NFX), an oral nitrofuran antibiotic, is frequently employed as an intestinal anti-infective agent. Our study aimed to investigate the renoprotective effects of NFX against INDO-induced nephrotoxicity and explore the protection mechanisms. Four groups of rats were allocated to (I) the normal control, (II) the NFX-treated (50 mg/kg), (III) INDO control (20 mg/kg), and (IV) NFX + INDO. NFX attenuates renal impairment in INDO-induced renal injury, proved by decreasing serum levels of urea, creatinine, uric acid, and NGAL while the albumin was elevated. NFX mitigates renal oxidative stress by decreasing MDA levels and restoring the antioxidants' GSH and SOD levels mediated by upregulating Nrf2, HO-1, and cytoglobin pathways. NFX mitigated renal inflammation and effectively decreased MPO, IL-1β, and TNF-α levels in the rat's kidney mediated by significant downregulation of NADPH-oxidase and NF-κB expression and suppression of JAK-1 and STAT3 phosphorylation. NFX mitigates renal apoptosis by decreasing the expression of cleaved caspase-3 expression. In conclusion, NFX treatment prevents INDO nephrotoxicity by regulating Nrf2/HO-1, cytoglobin, NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62521, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Asmaa Ramadan Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| |
Collapse
|
2
|
Messire G, Serreau R, Berteina-Raboin S. Antioxidant Effects of Catechins (EGCG), Andrographolide, and Curcuminoids Compounds for Skin Protection, Cosmetics, and Dermatological Uses: An Update. Antioxidants (Basel) 2023; 12:1317. [PMID: 37507856 PMCID: PMC10376544 DOI: 10.3390/antiox12071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Here we have chosen to highlight the main natural molecules extracted from Camellia sinensis, Andrographis paniculata, and Curcuma longa that may possess antioxidant activities of interest for skin protection. The molecules involved in the antioxidant process are, respectively, catechins derivatives, in particular, EGCG, andrographolide, and its derivatives, as well as various curcuminoids. These plants are generally used as beverages for Camellia sinensis (tea tree), as dietary supplements, or as spices. The molecules they contain are known for their diverse therapeutic activities, including anti-inflammatory, antimicrobial, anti-cancer, antidiabetic, and dermatological treatment. Their common antioxidant activities and therapeutic applications are widely documented, but their use in cosmetics is more recent. We will see that the use of pharmacomodulated derivatives, the addition of co-antioxidants, and the use of various formulations enable better skin penetration and greater ingredient stability. In this review, we will endeavor to compile the cosmetic uses of these natural molecules of interest and the various structural modulations reported with the aim of improving their bioavailability as well as establishing their different mechanisms of action.
Collapse
Affiliation(s)
- Gatien Messire
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| | - Raphaël Serreau
- Unité de Recherche PSYCOMADD, APHP Université Paris Saclay, Hôpital Paul-Brousse, 12 Avenue Paul Vaillant Couturier, 94804 Villejuif, France
- Addictologie EPSM Georges DAUMEZON, GHT Loiret, 1 Route de Chanteau, 45400 Fleury les Aubrais, France
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| |
Collapse
|
3
|
Yen NTH, Oh JH, Van Anh NT, Le QV, Park SM, Park YJ, Cho YS, Moon KS, Nguyen HT, Shin JG, Long NP, Kim DH. Systems-level multi-omics characterization provides novel molecular insights into indomethacin toxicity. Chem Biol Interact 2023; 375:110430. [PMID: 36868495 DOI: 10.1016/j.cbi.2023.110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
The mechanism of indomethacin toxicity at the systemic level is largely unknown. In this study, multi-specimen molecular characterization was conducted in rats treated with three doses of indomethacin (2.5, 5, and 10 mg/kg) for 1 week. Kidney, liver, urine, and serum samples were collected and analyzed using untargeted metabolomics. The kidney and liver transcriptomics data (10 mg indomethacin/kg and control) were subjected to a comprehensive omics-based analysis. Indomethacin exposure at 2.5 and 5 mg/kg doses did not cause significant metabolome changes, whereas considerable alterations in the metabolic profile compared to the control were induced by a dose of 10 mg/kg. Decreased levels of metabolites and an increased creatine level in the urine metabolome indicated injury to the kidney. The integrated omics analysis in both liver and kidney revealed an oxidant-antioxidant imbalance due to an excess of reactive oxygen species, likely originating from dysfunctional mitochondria. Specifically, indomethacin exposure induced changes in metabolites related to the citrate cycle, cell membrane composition, and DNA synthesis in the kidney. The dysregulation of genes related to ferroptosis and suppression of amino acid and fatty acid metabolism were evidence of indomethacin-induced nephrotoxicity. In conclusion, a multi-specimen omics investigation provided important insights into the mechanism of indomethacin toxicity. The identification of targets that ameliorate indomethacin toxicity will enhance the therapeutic utility of this drug.
Collapse
Affiliation(s)
- Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Nguyen Thi Van Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 70000, Viet Nam
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Young Jin Park
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 70000, Viet Nam
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea.
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea.
| |
Collapse
|
4
|
Silva RCMC, Vasconcelos LR, Travassos LH. The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 2022; 80:609-631. [PMID: 36018440 DOI: 10.1007/s12013-022-01087-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme oxygenase (HO) enzymes are responsible for the main oxidative step in heme degradation, generating equimolar amounts of free iron, biliverdin and carbon monoxide. HO-1 is induced as a crucial stress response protein, playing protective roles in physiologic and pathological conditions, due to its antioxidant, anti-apoptotic and anti-inflammatory effects. The mechanisms behind HO-1-mediated protection are being explored by different studies, affecting cell fate through multiple ways, such as reduction in intracellular levels of heme and ROS, transcriptional regulation, and through its byproducts generation. In this review we focus on the interplay between HO-1 and immune-related signaling pathways, which culminate in the activation of transcription factors important in immune responses and inflammation. We also discuss the dual interaction of HO-1 and inflammatory mediators that govern resolution and tissue damage. We highlight the dichotomy of HO-1 in innate and adaptive immune cells development and activation in different disease contexts. Finally, we address different known anti-inflammatory pharmaceuticals that are now being described to modulate HO-1, and the possible contribution of HO-1 in their anti-inflammatory effects.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Ricardo Vasconcelos
- Cellular Signaling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Yen NTH, Park SM, Thu VTA, Phat NK, Cho YS, Yoon S, Shin JG, Kim DH, Oh JH, Long NP. Genome-wide gene expression analysis reveals molecular insights into the drug-induced toxicity of nephrotoxic agents. Life Sci 2022; 306:120801. [PMID: 35850247 DOI: 10.1016/j.lfs.2022.120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
Drug-induced nephrotoxicity is frequently reported. However, the mechanisms underlying nephrotoxic medications and their overlapping molecular events, which might have therapeutic value, are unclear. We performed a genome-wide analysis of gene expression and a gene set enrichment analysis to identify common and unique pathways associated with the toxicity of colistin, ifosfamide, indomethacin, and puromycin. Rats were randomly allocated into the treatment or control group. The treatment group received a toxic dose once daily of each investigated drug for 1 week. Differentially expressed genes were found in the drug-treated kidney and liver compared to the control, except for colistin in the liver. Upregulated pathways were mainly related to cell death, cell cycle, protein synthesis, and immune response modulation in the kidney. Cell cycle was upregulated by all drugs. Downregulated pathways were associated with carbon metabolism, amino acid metabolism, and fatty acid metabolism. Indomethacin, colistin, and puromycin shared the most altered pathways in the kidney. Ifosfamide and indomethacin affected molecular processes greatly in the liver. Our findings provide insight into the mechanisms underlying the renal and hepatic adverse effects of the four drugs. Further investigation should explore the combinatory drug therapies that attenuate the toxic effects and maximize the effectiveness of nephrotoxic drugs.
Collapse
Affiliation(s)
- Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Vo Thuy Anh Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea.
| |
Collapse
|
6
|
Rabani MR, Azarmehr N, Moslemi Z, Sadeghi H, Amini-Khoei H, Doustimotlagh AH. Protective effects of hydroalcoholic extract of Stachys pilifera on paracetamol-induced nephrotoxicity in female rats. Res Pharm Sci 2021; 16:643-650. [PMID: 34760012 PMCID: PMC8562412 DOI: 10.4103/1735-5362.327510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/12/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Background and purpose: Stachys pilifera is used in traditional medicine due to its antioxidant, anti-inflammatory, and antimicrobial effects. The goal of this study was to examine the renoprotective activity of the hydroalcoholic extract of aerial parts of S. pilifera on paracetamol (PCM)-induced nephrotoxicity. Experimental approach: The Wistar female rats were randomly divided into four groups including control, PCM, S. pilifera hydroalcoholic extract (SPE), and PCM + SPE. The animals received SPE (500 mg/kg) for one week and PCM (3 g/kg) on the 6th day orally. Kidney function tests and oxidant/antioxidant markers were determined in serum and tissue homogenate, respectively. Protein and mRNA levels of TNF-α, as well as hematoxylin and eosin staining, were assessed in the kidney tissue. Findings/Results: Treatment with SPE in the PCM group significantly decreased blood urea nitrogen and creatinine against the merely PCM rats (P < 0.05). The amount of nitric oxide metabolite and superoxide dismutase activity in the group receiving SPE showed a significant increase compared to PCM rats (P < 0.05). A significant difference in TNF-α levels between the groups was not observed. Histological changes were improved in the rats treated with SPE. Conclusion and implications: Totally, our findings showed that SPE can inhibit PCM nephrotoxicity by enhancing kidney function markers, antioxidant status, and histological changes. Though, more researches are required to estimate the possible mechanism of SPE.
Collapse
Affiliation(s)
- Mohammad Reza Rabani
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| | - Nahid Azarmehr
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| | - Zahra Moslemi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| | - Heibatollah Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| | - Hossein Amini-Khoei
- Medicinal Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, I.R. Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| |
Collapse
|
7
|
Kato Y, Tonomura Y, Hanafusa H, Nishimura K, Fukushima T, Ueno M. Adult Zebrafish Model for Screening Drug-Induced Kidney Injury. Toxicol Sci 2021; 174:241-253. [PMID: 32040193 DOI: 10.1093/toxsci/kfaa009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-induced kidney injury is a serious safety issue in drug development. In this study, we evaluated the usefulness of adult zebrafish as a small in vivo system for detecting drug-induced kidney injury. We first investigated the effects of typical nephrotoxicants, gentamicin and doxorubicin, on adult zebrafish. We found that gentamicin induced renal tubular necrosis with increased lysosome and myeloid bodies, and doxorubicin caused foot process fusion of glomerular podocytes. These findings were similar to those seen in mammals, suggesting a common pathogenesis. Second, to further evaluate the performance of the model in detecting drug-induced kidney injury, adult zebrafish were treated with 28 nephrotoxicants or 14 nonnephrotoxicants for up to 4 days, euthanized 24 h after the final treatment, and examined histopathologically. Sixteen of the 28 nephrotoxicants and none of the 14 nonnephrotoxicants caused drug-induced kidney injury in zebrafish (sensitivity, 57%; specificity, 100%; positive predictive value, 100%; negative predictive value, 54%). Finally, we explored genomic biomarker candidates using kidneys isolated from gentamicin- and cisplatin-treated zebrafish using microarray analysis and identified 3 candidate genes, egr1, atf3, and fos based on increased expression levels and biological implications. The expression of these genes was upregulated dose dependently in cisplatin-treated groups and was > 25-fold higher in gentamicin-treated than in the control group. In conclusion, these results suggest that the adult zebrafish has (1) similar nephrotoxic response to those of mammals, (2) considerable feasibility as an experimental model for toxicity studies, and (3) applicability to pathological examination and genomic biomarker evaluation in drug-induced kidney injury.
Collapse
Affiliation(s)
- Yuki Kato
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Yutaka Tonomura
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Hiroyuki Hanafusa
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Kyohei Nishimura
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Tamio Fukushima
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Motonobu Ueno
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
8
|
Summ O, Andreou AP, Akerman S, Holland PR, Hoffmann J, Goadsby PJ. Differential actions of indomethacin: clinical relevance in headache. Pain 2021; 162:591-599. [PMID: 32796319 PMCID: PMC7808353 DOI: 10.1097/j.pain.0000000000002032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
ABSTRACT Nonsteroidal anti-inflammatory drugs, cyclooxygenase inhibitors, are used routinely in the treatment of primary headache disorders. Indomethacin is unique in its use in the diagnosis and treatment of hemicrania continua and paroxysmal hemicrania. The mechanism of this specific action is not fully understood, although an interaction with nitric oxide (NO) signaling pathways has been suggested. Trigeminovascular neurons were activated by dural electrical stimulation, systemic administration of an NO donor, or local microiontophoresis of L-glutamate. Using electrophysiological techniques, we subsequently recorded the activation of trigeminovascular neurons and their responses to intravenous indomethacin, naproxen, and ibuprofen. Administration of indomethacin (5 mg·kg-1), ibuprofen (30 mg·kg-1), or naproxen (30 mg·kg-1) inhibited dural-evoked firing within the trigeminocervical complex with different temporal profiles. Similarly, both indomethacin and naproxen inhibited L-glutamate-evoked cell firing suggesting a common action. By contrast, only indomethacin was able to inhibit NO-induced firing. The differences in profile of effect of indomethacin may be fundamental to its ability to treat paroxysmal hemicrania and hemicrania continua. The data implicate NO-related signaling as a potential therapeutic approach to these disorders.
Collapse
Affiliation(s)
- Oliver Summ
- Headache Group-Department of Neurology, University of California, San Francisco, San Francisco, CA, United States. Dr. Summ is now with the Department of Neurology and Research Center of Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. Dr. Andreou is now with the Headache Research-Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Anna P. Andreou
- Headache Group-Department of Neurology, University of California, San Francisco, San Francisco, CA, United States. Dr. Summ is now with the Department of Neurology and Research Center of Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. Dr. Andreou is now with the Headache Research-Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Simon Akerman
- Headache Group-Department of Neurology, University of California, San Francisco, San Francisco, CA, United States. Dr. Summ is now with the Department of Neurology and Research Center of Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. Dr. Andreou is now with the Headache Research-Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Philip R. Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jan Hoffmann
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group-Department of Neurology, University of California, San Francisco, San Francisco, CA, United States. Dr. Summ is now with the Department of Neurology and Research Center of Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. Dr. Andreou is now with the Headache Research-Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Beck KF, Pfeilschifter J. Gasotransmitter synthesis and signalling in the renal glomerulus. Implications for glomerular diseases. Cell Signal 2020; 77:109823. [PMID: 33152441 DOI: 10.1016/j.cellsig.2020.109823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023]
Abstract
Glomerular injury is a hallmark of kidney diseases such as diabetic nephropathy, IgA nephropathy or other forms of glomerulonephritis. Glomerular endothelial cells, mesangial cells, glomerular epithelial cells (podocytes) and, in an inflammatory context, infiltrating immune cells crosstalk to mediate signalling processes in the glomerulus. Under physiological conditions, mesangial cells act by the control of extracellular matrix production and degradation, by the synthesis of growth factors and by preserving a well-defined crosstalk with glomerular podocytes and endothelial cells to regulate glomerular structure and function. It is well known that mesangial cells are able to amplify an inflammatory process by the formation of cytokines, reactive oxygen species (ROS) and nitric oxide (NO). This exaggerated reaction may result in a vicious cycle with subsequent damage of neighboured podocytes and endothelial cells, loss of the filtration barrier and, finally destruction of the whole glomerulus. Unfortunately, all efforts to develop new therapies for the treatment of glomerular diseases by controlling unbridled ROS or NO production directly had so far no success. However, on-going research on ROS and NO defined these autacoids more as important signalling molecules than as endogenously produced cytotoxic compounds. New findings on signalling activities of ROS, NO but also hydrogen sulfide (H2S) and carbon monoxide (CO) supported this paradigm shift. Because of their similar chemical properties and their similar signal transduction capacities, NO, H2S and CO are meanwhile designated as the group of gasotransmitters. In this review, we describe the current knowledge of the signalling properties of gasotransmitters with a focus on glomerular cells and their role in glomerular diseases.
Collapse
Affiliation(s)
- Karl-Friedrich Beck
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Madi NM, Ibrahim RR, Alghazaly GM, Marea KE, El-Saka MH. The prospective curative role of lipoxin A 4 in induced gastric ulcer in rats: Possible involvement of mitochondrial dynamics signaling pathway. IUBMB Life 2020; 72:1379-1392. [PMID: 32107872 DOI: 10.1002/iub.2260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
This study purposed to examine the prospective curative role of lipoxin A4 (LXA4 ) in induced gastric ulcer in rats and explore the possible involvement of mitochondrial dynamics signaling pathway. Forty-eight male Wistar rats were divided into four groups: control, indomethacin (IND), IND + omeprazole (IND + Omez), and IND+ LXA4 groups. At the end of the experiment, the gastric pH, gastric fluid volume, total gastric acidity, ulcer index, and curative index were estimated. The gene expression of mitochondrial related protein 1 and mitofusin 2 were determined. In addition, some mitochondrial parameters include mitochondrial transmembrane potential, complex-I activity and reactive oxygen species were measured. Also, some gastric biochemical parameters, histopathological, and immunohistochemical analyses of the gastric mucosa were determined. We found that IND induced gastric ulcer, as manifested by the biochemical, histopathological, and immunohistochemical analyses. Both Omez and LXA4 treatment for 15 days alleviated the IND-induced gastric ulcer as explored by ameliorating the biochemical, histopathological, and immunohistochemical findings. We concluded that LXA4 mitigated the IND-induced gastric ulcer via improving the mitochondrial dynamic imbalance and mitochondrial dysfunction, in addition to its anti-apoptotic, anti-inflammatory, and antioxidant properties.
Collapse
Affiliation(s)
- Nermin M Madi
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rowida R Ibrahim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghada M Alghazaly
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Karima E Marea
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mervat H El-Saka
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Madaio MP, Czikora I, Kvirkvelia N, McMenamin M, Yue Q, Liu T, Toque HA, Sridhar S, Covington K, Alaisami R, O'Connor PM, Caldwell RW, Chen JK, Clauss M, Brands MW, Eaton DC, Romero MJ, Lucas R. The TNF-derived TIP peptide activates the epithelial sodium channel and ameliorates experimental nephrotoxic serum nephritis. Kidney Int 2019; 95:1359-1372. [PMID: 30905471 DOI: 10.1016/j.kint.2018.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
In mice, the initial stage of nephrotoxic serum-induced nephritis (NTN) mimics antibody-mediated human glomerulonephritis. Local immune deposits generate tumor necrosis factor (TNF), which activates pro-inflammatory pathways in glomerular endothelial cells (GECs) and podocytes. Because TNF receptors mediate antibacterial defense, existing anti-TNF therapies can promote infection; however, we have previously demonstrated that different functional domains of TNF may have opposing effects. The TIP peptide mimics the lectin-like domain of TNF, and has been shown to blunt inflammation in acute lung injury without impairing TNF receptor-mediated antibacterial activity. We evaluated the impact of TIP peptide in NTN. Intraperitoneal administration of TIP peptide reduced inflammation, proteinuria, and blood urea nitrogen. The protective effect was blocked by the cyclooxygenase inhibitor indomethacin, indicating involvement of prostaglandins. Targeted glomerular delivery of TIP peptide improved pathology in moderate NTN and reduced mortality in severe NTN, indicating a local protective effect. We show that TIP peptide activates the epithelial sodium channel(ENaC), which is expressed by GEC, upon binding to the channel's α subunit. In vitro, TNF treatment of GEC activated pro-inflammatory pathways and decreased the generation of prostaglandin E2 and nitric oxide, which promote recovery from NTN. TIP peptide counteracted these effects. Despite the capacity of TIP peptide to activate ENaC, it did not increase mean arterial blood pressure in mice. In the later autologous phase of NTN, TIP peptide blunted the infiltration of Th17 cells. By countering the deleterious effects of TNF through direct actions in GEC, TIP peptide could provide a novel strategy to treat glomerular inflammation.
Collapse
Affiliation(s)
- Michael P Madaio
- Department of Medicine, Augusta University, Augusta, Georgia, USA.
| | - Istvan Czikora
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Nino Kvirkvelia
- Department of Medicine, Augusta University, Augusta, Georgia, USA
| | | | - Qiang Yue
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ting Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Haroldo A Toque
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA
| | | | - Rabei Alaisami
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Robert W Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Matthias Clauss
- Indiana Center for Vascular Biology and Medicine, RLR-VA Medical Center, Indianapolis, Indiana, USA
| | - Michael W Brands
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Douglas C Eaton
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maritza J Romero
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA; Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rudolf Lucas
- Department of Medicine, Augusta University, Augusta, Georgia, USA; Vascular Biology Center, Augusta University, Augusta, Georgia, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
12
|
Koc K, Cerig S, Ozek NS, Aysin F, Yildirim S, Cakmak O, Hosseinigouzdagani M, Geyikoglu F. The efficacy of oleuropein against non-steroidal anti-inflammatory drug induced toxicity in rat kidney. ENVIRONMENTAL TOXICOLOGY 2019; 34:67-72. [PMID: 30259636 DOI: 10.1002/tox.22658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/01/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Indomethacin is generally used in clinical therapeutics as a non-steroidal anti-inflammatory drug. However, its use has been limited due to the gastrointestinal and renal toxic effects of this drug. These toxic effects were associated with not only the inhibition of prostaglandin synthesis but also drug-elevated oxidative stress. To ameliorate these toxicities, natural antioxidants can be used as an alternative and/or combination therapies. Therefore, the current study was conducted to assess the renoprotective effects of oleuropein against indomethacin-induced renal damages. Male Sprague-Dawley rats were pretreated with oleuropein (75, 150, and 300 mg/kg), and then treated with indomethacin (25 mg/kg). To evaluate kidney function, serum blood urea nitrogen, uric acid, and creatinine were measured. In addition, prostaglandin E2 , tumor necrosis factor-alpha, endothelial nitric oxide synthase, caspase-3, oxidant/antioxidant status, and 8-Oxo-2'-deoxyguanosine levels were determined for the antioxidative and anti-inflammatory effects of oleuropein. Tissue sections were also histopathologically assessed. The biochemical and histopathological analysis proved the toxic effects of indomethacin on kidney. However, the pretreatment with oleuropein (300 mg/kg) protects kidney from indomethacin-induced damages. Our study proved that prior administration of oleuropein has renoprotective activity against indomethacin-associated toxicities.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science|, Ataturk University, Erzurum, Turkey
| | - Salim Cerig
- Department of Biotechnology, Science Faculty, Bartin University, Bartin, Turkey
| | - Nihal Simsek Ozek
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Ozge Cakmak
- Department of Biology, Faculty of Science|, Ataturk University, Erzurum, Turkey
| | | | - Fatime Geyikoglu
- Department of Biology, Faculty of Science|, Ataturk University, Erzurum, Turkey
| |
Collapse
|
13
|
Hu M, Fan M, Zhen J, Lin J, Wang Q, Lv Z, Wang R. FAK contributes to proteinuria in hypercholesterolaemic rats and modulates podocyte F-actin re-organization via activating p38 in response to ox-LDL. J Cell Mol Med 2016; 21:552-567. [PMID: 27704688 PMCID: PMC5323874 DOI: 10.1111/jcmm.13001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/29/2016] [Indexed: 11/28/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that regulates cell adhesion, proliferation and differentiation. In the present study, a rat model of high fat diet-induced hypercholesterolaemia was established to investigate the involvement of FAK in lipid disorder-related kidney diseases. We showed focal fusion of podocyte foot process that occurred at as early as 4 weeks in rats consuming high fat diet, preceding the onset of proteinuria when aberrant phosphorylation of FAK was found. These abnormalities were ameliorated by dietary intervention of TAE226, a reported inhibitor of FAK. FAK is also an adaptor protein initiating cascades of intracellular signals including c-Src, Rho GTPase and mitogen-activated protein kinase (MAPK). P38 MAPK belongs to the latter and is centrally involved in kidney diseases. Our cell culture data revealed oxidized low-density lipoprotein (ox-LDL) triggered hyper-phosphorylation of FAK and p38, ectopic expression of cellular markers (manifested as decreased WT1, podocin and NEPH1, and increased vimentin and mmp9), and re-arrangement of F-actin filaments with enhanced cell motility; these mutations were significantly rectified by FAK shRNA. Notably, pre-treatment of p38 inhibitor did not alter FAK activation, albeit its deletion of p38 hyper-activity and attenuation of cellular abnormalities, demonstrating that p38 acted as a downstream effector of FAK signalling and ox-LDL damaged podocytes in a FAK/p38-dependent manner. This was further identified by animal data that p38 activation was also abrogated by TAE226 treatment in hypercholesterolaemic rats, suggesting that FAK/p38 axis might also be involved in in vivo events. These findings provided a potential early mechanism of hypercholesterolaemia-related podocyte damage and proteinuria.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Shandong University, Jinan, China
| | - Jiangong Lin
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qun Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
14
|
Nagappan AS, Varghese J, James JV, Jacob M. Indomethacin induces endoplasmic reticulum stress, but not apoptosis, in the rat kidney. Eur J Pharmacol 2015; 761:199-205. [DOI: 10.1016/j.ejphar.2015.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
|
15
|
Bautista-Pérez R, del Valle-Mondragón L, Cano-Martínez A, Pérez-Méndez O, Escalante B, Franco M. Involvement of neutral sphingomyelinase in the angiotensin II signaling pathway. Am J Physiol Renal Physiol 2015; 308:F1178-87. [DOI: 10.1152/ajprenal.00079.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/27/2014] [Indexed: 01/05/2023] Open
Abstract
The possibility that angiotensin II (ANG II) exerts its effects through the activation of neutral sphingomyelinase (nSMase) has not been tested in kidneys. The results of the present study provide evidence for the activity and expression of nSMase in rat kidneys. In isolated perfused rat kidney, ANG II-induced renal vasoconstriction was inhibited by GW4869, an inhibitor of nSMase. We used nSMase for investigating the signal transduction downstream of ceramide. nSMase constricted the renal vasculature. An inhibitor of ceramidase (CDase), N-oleoylethanolamine (OEA), enhanced either ANG II- or nSMase-induced renal vasoconstriction. To demonstrate the interaction between the nSMase and cytosolic phospholipase A2 (cPLA2) signal transduction pathways, we evaluated the response to nSMase in the presence and absence of inhibitors of arachidonic acid (AA) metabolism: arachidonyl trifluoromethyl ketone (AACOCF3), an inhibitor of cPLA2; 5,8,11,14-eicosatetraynoic acid (ETYA), an inhibitor of all AA pathways; indomethacin, an inhibitor of cyclooxygenase (COX); furegrelate, a thromboxane A2 (TxA2)-synthase inhibitor; and SQ29548 , a TxA2-receptor antagonist. In these experiments, the nSMase-induced renal vasoconstriction decreased. ANG II or nSMase was associated with an increase in the release of thromboxane B2 (TxB2) in the renal perfusate of isolated perfused rat kidney. In addition, the coexpression of the ceramide with cPLA2, was found in the smooth muscle layer of intrarenal vessels. Our results suggest that ANG II stimulates ceramide formation via the activation of nSMase; thus ceramide may indirectly regulate vasoactive processes that modulate the activity of cPLA2 and the release of TxA2.
Collapse
Affiliation(s)
- Rocio Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología I. Ch., Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Cardiología I. Ch., Mexico City, Mexico
| | | | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología I. Ch., Mexico City, Mexico; and
| | - Oscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología I. Ch., Mexico City, Mexico
| | | | - Martha Franco
- Department of Nephrology, Instituto Nacional de Cardiología I. Ch., Mexico City, Mexico
| |
Collapse
|
16
|
Liu W, Li Y, Yue Y, Zhang K, Chen Q, Wang H, Lu Y, Huang MT, Zheng X, Du Z. Synthesis and biological evaluation of curcumin derivatives containing NSAIDs for their anti-inflammatory activity. Bioorg Med Chem Lett 2015; 25:3044-51. [PMID: 26048786 DOI: 10.1016/j.bmcl.2015.04.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/10/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Oral administration of nonsteroidal anti-inflammatory drugs (NSAIDs) was frequently associated with serious adverse effects. Inspired by curcumin-a naturally traditional Chinese medicine, a series of curcumin derivatives containing NSAIDs, used for transdermal application, were synthesized and screened for their anti-inflammatory activities in vitro and in vivo. Compared with curcumin and parent NSAID (salicylic acid and salsalate), topical application of A11 and B13 onto mouse ear edema, prior to TPA treatment markedly suppressed the expression of IL-1β, IL-6 and TNF-α, respectively. Mechanistically, A11 and B13 blocked the phosphorylation of IκBα and suppressed the activation of p65 and IκBα. It was found that A11 and B13 may be potent anti-inflammatory agents for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Wenfeng Liu
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Faculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yonlian Li
- Guangdong Industry Technical College, Guangzhou 510300, China
| | - Yuan Yue
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Faculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Faculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China; Wuyi University, Jiangmen 529020, China
| | - Qian Chen
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Faculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Huaqian Wang
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Faculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujing Lu
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Faculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mou-Tuan Huang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xi Zheng
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Faculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China; Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Zhiyun Du
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Faculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
17
|
Liu W, Yue Y, Li Y, Zheng X, Zhang K, Du Z. Inspired by magnolol: design of NSAID-based compounds with excellent anti-inflammatory effects. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00308c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A10was selected to elucidate the anti-inflammatory mechanism at the transcriptional level, suggesting its potential to serve as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Wenfeng Liu
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| | - Yuan Yue
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| | - Yonglian Li
- Guangdong Industry Technical College
- Guangzhou
- China
| | - Xi Zheng
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| | - Kun Zhang
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| | - Zhiyun Du
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|