1
|
Loonen AJM. The putative role of the habenula in animal migration. Physiol Behav 2024; 286:114668. [PMID: 39151652 DOI: 10.1016/j.physbeh.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND When an addicted animal seeks a specific substance, it is based on the perception of internal and external cues that strongly motivate to pursue the acquisition of that compound. In essence, a similar process acts out when an animal leaves its present area to begin its circannual migration. This review article examines the existence of scientific evidence for possible relatedness of migration and addiction by influencing Dorsal Diencephalic Conduction System (DDCS) including the habenula. METHODS For this review especially the databases of Pubmed and Embase were frequently and non-systematically searched. RESULTS The mechanisms of bird migration have been thoroughly investigated. Especially the mechanism of the circannual biorhythm and its associated endocrine regulation has been well elucidated. A typical behavior called "Zugunruhe" marks the moment of leaving in migratory birds. The role of magnetoreception in navigation has also been clarified in recent years. However, how bird migration is regulated at the neuronal level in the forebrain is not well understood. Among mammals, marine mammals are most similar to birds. They use terrestrial magnetic field when navigating and often bridge long distances between breeding and foraging areas. Population migration is further often seen among the large hoofed mammals in different parts of the world. Importantly, learning processes and social interactions with conspecifics play a major role in these ungulates. Considering the evolutionary development of the forebrain in vertebrates, it can be postulated that the DDCS plays a central role in regulating the readiness and intensity of essential (emotional) behaviors. There is manifold evidence that this DDCS plays an important role in relapse to abuse after prolonged periods of abstinence from addictive behavior. It is also possible that the DDCS plays a role in navigation. CONCLUSIONS The role of the DDCS in the neurobiological regulation of bird migration has hardly been investigated. The involvement of this system in relapse to addiction in mammals might suggest to change this. It is recommended that particularly during "Zugunruhe" the role of neuronal regulation via the DDCS will be further investigated.
Collapse
Affiliation(s)
- Anton J M Loonen
- Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Thorstensen MJ, Vandervelde CA, Bugg WS, Michaleski S, Vo L, Mackey TE, Lawrence MJ, Jeffries KM. Non-Lethal Sampling Supports Integrative Movement Research in Freshwater Fish. Front Genet 2022; 13:795355. [PMID: 35547248 PMCID: PMC9081360 DOI: 10.3389/fgene.2022.795355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Freshwater ecosystems and fishes are enormous resources for human uses and biodiversity worldwide. However, anthropogenic climate change and factors such as dams and environmental contaminants threaten these freshwater systems. One way that researchers can address conservation issues in freshwater fishes is via integrative non-lethal movement research. We review different methods for studying movement, such as with acoustic telemetry. Methods for connecting movement and physiology are then reviewed, by using non-lethal tissue biopsies to assay environmental contaminants, isotope composition, protein metabolism, and gene expression. Methods for connecting movement and genetics are reviewed as well, such as by using population genetics or quantitative genetics and genome-wide association studies. We present further considerations for collecting molecular data, the ethical foundations of non-lethal sampling, integrative approaches to research, and management decisions. Ultimately, we argue that non-lethal sampling is effective for conducting integrative, movement-oriented research in freshwater fishes. This research has the potential for addressing critical issues in freshwater systems in the future.
Collapse
Affiliation(s)
- Matt J. Thorstensen
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Fraser KPP, Peck LS, Clark MS, Clarke A, Hill SL. Life in the freezer: protein metabolism in Antarctic fish. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211272. [PMID: 35291327 PMCID: PMC8905173 DOI: 10.1098/rsos.211272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/04/2022] [Indexed: 05/12/2023]
Abstract
Whole-animal, in vivo protein metabolism rates have been reported in temperate and tropical, but not Antarctic fish. Growth in Antarctic species is generally slower than lower latitude species. Protein metabolism data for Antarctic invertebrates show low rates of protein synthesis and unusually high rates of protein degradation. Additionally, in Antarctic fish, increasing evidence suggests a lower frequency of successful folding of nascent proteins and reduced protein stability. This study reports the first whole-animal protein metabolism data for an Antarctic fish. Groups of Antarctic, Harpagifer antarcticus, and temperate, Lipophrys pholis, fish were acclimatized to a range of overlapping water temperatures and food consumption, whole-animal growth and protein metabolism measured. The rates of protein synthesis and growth in Antarctic, but not temperate fish, were relatively insensitive to temperature and were significantly lower in H. antarcticus at 3°C than in L. pholis. Protein degradation was independent of temperature in H. antarcticus and not significantly different to L. pholis at 3°C, while protein synthesis retention efficiency was significantly higher in L. pholis than H. antarcticus at 3°C. These results suggest Antarctic fish degrade a significantly larger proportion of synthesized protein than temperate fish, with fundamental energetic implications for growth at low temperatures.
Collapse
Affiliation(s)
- Keiron P. P. Fraser
- Marine Station, University of Plymouth, Artillery Place, Coxside, Plymouth PL4 OLU, UK
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Andrew Clarke
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Simeon L. Hill
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| |
Collapse
|
4
|
Tenebrio molitor larvae meal inclusion affects hepatic proteome and apoptosis and/or autophagy of three farmed fish species. Sci Rep 2022; 12:121. [PMID: 34996900 PMCID: PMC8742038 DOI: 10.1038/s41598-021-03306-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Herein, the effect of dietary inclusion of insect (Tenebrio molitor) meal on hepatic pathways of apoptosis and autophagy in three farmed fish species, gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss), fed diets at 25%, 50% and 60% insect meal inclusion levels respectively, was investigated. Hepatic proteome was examined by liver protein profiles from the three fish species, obtained by two-dimensional gel electrophoresis. Although cellular stress was evident in the three teleost species following insect meal, inclusion by T. molitor, D. labrax and O. mykiss suppressed apoptosis through induction of hepatic autophagy, while in S. aurata both cellular procedures were activated. Protein abundance showed that a total of 30, 81 and 74 spots were altered significantly in seabream, European seabass and rainbow trout, respectively. Insect meal inclusion resulted in individual protein abundance changes, with less number of proteins altered in gilthead seabream compared to European seabass and rainbow trout. This is the first study demonstrating that insect meal in fish diets is causing changes in liver protein abundances. However, a species-specific response both in the above mentioned bioindicators, indicates the need to strategically manage fish meal replacement in fish diets per species.
Collapse
|
5
|
Ayala MD, Gómez V, Cabas I, García Hernández MP, Chaves-Pozo E, Arizcun M, Garcia de la Serrana D, Gil F, García-Ayala A. The Effect of 17α-Ethynilestradiol and GPER1 Activation on Body and Muscle Growth, Muscle Composition and Growth-Related Gene Expression of Gilthead Seabream, Sparus aurata L. Int J Mol Sci 2021; 22:13118. [PMID: 34884924 PMCID: PMC8657972 DOI: 10.3390/ijms222313118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Endocrine-disrupting chemicals include natural and synthetic estrogens, such as 17α-ethynilestradiol (EE2), which can affect reproduction, growth and immunity. Estrogen signalling is mediated by nuclear or membrane estrogen receptors, such as the new G-protein-coupled estrogen receptor 1 (GPER1). The present work studies the effect of EE2 and G1 (an agonist of GPER1) on body and muscle parameters and growth-related genes of 54 two-year-old seabreams. The fish were fed a diet containing EE2 (EE2 group) and G1 (G1 group) for 45 days and then a diet without EE2 or G1 for 122 days. An untreated control group was also studied. At 45 days, the shortest body length was observed in the G1 group, while 79 and 122 days after the cessation of treatments, the shortest body growth was observed in the EE2 group. Hypertrophy of white fibers was higher in the EE2 and G1 groups than it was in the control group, whereas the opposite was the case with respect to hyperplasia. Textural hardness showed a negative correlation with the size of white fibers. At the end of the experiment, all fish analyzed in the EE2 group showed a predominance of the gonadal ovarian area. In addition, the highest expression of the mafbx gene (upregulated in catabolic signals) and mstn2 (myogenesis negative regulator) was found in EE2-exposed fish.
Collapse
Affiliation(s)
- Maria D. Ayala
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Victoria Gómez
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| | - Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| | - María P. García Hernández
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Puerto de Mazarrón, 30860 Murcia, Spain; (E.C.-P.); (M.A.)
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Puerto de Mazarrón, 30860 Murcia, Spain; (E.C.-P.); (M.A.)
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Francisco Gil
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Alfonsa García-Ayala
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| |
Collapse
|
6
|
Araújo BC, Symonds JE, Walker SP, Miller MR. Effects of fasting and temperature on the biological parameters, proximal composition, and fatty acid profile of Chinook salmon (Oncorhynchus tshawytscha) at different life stages. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111113. [PMID: 34752894 DOI: 10.1016/j.cbpa.2021.111113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023]
Abstract
We investigated the effects of temperature and fasting on chinook salmon (Oncorhynchus tshawytscha) at different life stages. In the first stage, fish were reared at 13 °C (198.5 ± 34.6 g) or 17 °C (218.3 ± 47.6 g) and fasted for 27 and 26 days, respectively. In the second stage, fish reared at 13 °C (481.8 ± 54.3 g) and 17 °C (597.3 ± 64.3 g) were fasted for 42 and 41 days respectively. At the third stage, fish were reared only at 17 °C (1065.7 ± 190.9 g) and fasted for 42 days. At the end of each fasting period performance, fillet and whole-body proximal composition, and whole-body fatty acid profile were compared among fish before and after fasting. Additionally, fillet fatty acid daily loss was compared in fasted fish from different treatments. The results showed that body weight was not significantly impacted by fasting. However, at 17 °C fasting at all three stages had a negative impact on fillet weight and total fatty acid daily loss. With few exceptions, saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids from n-6 series (n-6 PUFA) were preserved in fillet of fish at 17 °C, while higher daily losses of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and consequently polyunsaturated from n-3 series (n-3 PUFA) were observed in these same fish and in smaller fish at 13 °C. The results presented in this study provide important information regarding the influence of fasting and temperature on chinook salmon performance and metabolism, providing basis for future nutritional and compositional studies for this important commercial species.
Collapse
|
7
|
Zhang Y, Jiang S, Qiao H, Xiong Y, Fu H, Zhang W, Gong Y, Jin S, Wu Y. Transcriptome analysis of five ovarian stages reveals gonad maturation in female Macrobrachium nipponense. BMC Genomics 2021; 22:510. [PMID: 34229608 PMCID: PMC8262026 DOI: 10.1186/s12864-021-07737-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Macrobrachium nipponense is an economically important species of freshwater shrimp in China. Unlike other marine shrimps, the ovaries in adult female M. nipponense can mature rapidly and periodically during the reproductive period, but the resulting high stocking densities and environmental deterioration can negatively impact the harvest yield and economic benefits. To better understand ovary development in female M. nipponense, we performed systematic transcriptome sequencing of five different stages of ovarian maturation. Results We obtained 255,966 Gb of high quality transcriptome data from 15 samples. Of the 105,082 unigenes that were selected, 30,878 were successfully annotated. From these unigenes, we identified 17 differentially expressed genes and identified three distinct gene expression patterns related to different biological processes. We found that cathepins, legumains, and cystatin were enriched in the lysosome pathway, and they are related to vitellogenin hydrolysis. Additionally, we found that myosin heavy chain 67 participated in oocyte excretion. Conclusions We provide the first detailed transcriptome data relating to the ovarian maturation cycle in M. nipponense. Our results provide important reference information about the genomics, molecular biology, physiology, and population genetics of M. nipponense and other crustaceans. It is conducive to further solve the problem of M. nipponense rapid ovarian maturation from the aspects of energy supply and cell division. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07737-5.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| |
Collapse
|
8
|
Nemova NN, Kantserova NP, Lysenko LA. The Traits of Protein Metabolism in
the Skeletal Muscle of Teleost Fish. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Jeffries KM, Teffer A, Michaleski S, Bernier NJ, Heath DD, Miller KM. The use of non-lethal sampling for transcriptomics to assess the physiological status of wild fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110629. [PMID: 34058376 DOI: 10.1016/j.cbpb.2021.110629] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Fishes respond to different abiotic and biotic stressors through changes in gene expression as a part of an integrated physiological response. Transcriptomics approaches have been used to quantify gene expression patterns as a reductionist approach to understand responses to environmental stressors in animal physiology and have become more commonly used to study wild fishes. We argue that non-lethal sampling for transcriptomics should become the norm for assessing the physiological status of wild fishes, especially when there are conservation implications. Processes at the level of the transcriptome provide a "snapshot" of the cellular conditions at a given time; however, by using a non-lethal sampling protocol, researchers can connect the transcriptome profile with fitness-relevant ecological endpoints such as reproduction, movement patterns and survival. Furthermore, telemetry is a widely used approach in fisheries to understand movement patterns in the wild, and when combined with transcriptional profiling, provides arguably the most powerful use of non-lethal sampling for transcriptomics in wild fishes. In this review, we discuss the different tissues that can be successfully incorporated into non-lethal sampling strategies, which is particularly useful in the context of the emerging field of conservation transcriptomics. We briefly describe different methods for transcriptional profiling in fishes from high-throughput qPCR to whole transcriptome approaches. Further, we discuss strategies and the limitations of using transcriptomics for non-lethally studying fishes. Lastly, as 'omics' technology continues to advance, transcriptomics paired with different omics approaches to study wild fishes will provide insight into the factors that regulate phenotypic variation and the physiological responses to changing environmental conditions in the future.
Collapse
Affiliation(s)
- Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada.
| | - Amy Teffer
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - Sonya Michaleski
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel D Heath
- Department of Integrative Biology, Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
10
|
Peterson SH, Ackerman JT, Hartman CA, Casazza ML, Feldheim CL, Herzog MP. Mercury exposure in mammalian mesopredators inhabiting a brackish marsh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115808. [PMID: 33497946 DOI: 10.1016/j.envpol.2020.115808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/18/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Bioaccumulation of environmental contaminants in mammalian predators can serve as an indicator of ecosystem health. We examined mercury concentrations of raccoons (Procyon lotor; n = 37 individuals) and striped skunks (Mephitis mephitis; n = 87 individuals) in Suisun Marsh, California, a large brackish marsh that is characterized by contiguous tracts of tidal marsh and seasonally impounded wetlands. Mean (standard error; range) total mercury concentrations in adult hair grown from 2015 to 2018 were 28.50 μg/g dw (3.05 μg/g dw; range: 4.46-81.01 μg/g dw) in raccoons and 4.85 μg/g dw (0.54 μg/g dw; range: 1.53-27.02 μg/g dw) in striped skunks. We reviewed mammalian hair mercury concentrations in the literature and raccoon mercury concentrations in Suisun Marsh were among the highest observed for wild mammals. Although striped skunk hair mercury concentrations were 83% lower than raccoons, they were higher than proposed background levels for mercury in mesopredator hair (1-5 μg/g). Hair mercury concentrations in skunks and raccoons were not related to animal size, but mercury concentrations were higher in skunks in poorer body condition. Large inter-annual differences in hair mercury concentrations suggest that methylmercury exposure to mammalian predators varied among years. Mercury concentrations of raccoon hair grown in 2017 were 2.7 times greater than hair grown in 2015, 1.7 times greater than hair grown in 2016, and 1.6 times greater than hair grown in 2018. Annual mean raccoon and skunk hair mercury concentrations increased with wetland habitat area. Furthermore, during 2017, raccoon hair mercury concentrations increased with the proportion of raccoon home ranges that was wetted habitat, as quantified using global positioning system (GPS) collars. The elevated mercury concentrations we observed in raccoons and skunks suggest that other wildlife at similar or higher trophic positions may also be exposed to elevated methylmercury bioaccumulation in brackish marshes.
Collapse
Affiliation(s)
- Sarah H Peterson
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA
| | - C Alex Hartman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA
| | - Michael L Casazza
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA
| | - Cliff L Feldheim
- California Department of Water Resources, 3500 Industrial Blvd #131, West Sacramento, CA 95691, USA
| | - Mark P Herzog
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive Suite D, Dixon, CA, 95620, USA
| |
Collapse
|
11
|
Establishment of time-resolved fluoroimmunoassays for detection of growth hormone and insulin-like growth factor I in rainbow trout plasma. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110751. [PMID: 32629088 DOI: 10.1016/j.cbpa.2020.110751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/21/2022]
Abstract
The GH/IGF-I axis influences many aspects of salmonid life history and is involved in a variety of physiological processes that are related to somatic growth (e.g., reproduction, smoltification, and the response to fasting and stress). As such, fisheries studies utilize GH/IGF-I axis components as indicators of growth and metabolic status. This study established time-resolved fluoroimmunoassays (TR-FIAs) for rainbow trout plasma GH and IGF-I using commercially available reagents. For the GH TR-FIA, the ED80 and ED20 were 0.6 and 28.1 ng/mL, the minimum detection limit was 0.2 ng/mL, and the intra- and inter-assay coefficients of variation (%CV) were 4.1% and 13.4%, respectively. Ethanol remaining from acid-ethanol cryoprecipitation (AEC) of plasma samples to remove IGF binding proteins reduced binding and increased variability in the IGF-I TR-FIA. Drying down and reconstituting extracted samples restored binding and reduced variability. The extraction efficiency of IGF-I standards through AEC, drying down, and reconstitution did not vary over the working range of the assay. For the IGF-I TR-FIA, the ED80 and ED20 were 0.2 and 6.5 ng/mL, the minimum detection limit was 0.03 ng/mL, and the intra- and inter-assay %CV were 3.0% and 6.5%, respectively. Biological validation was provided by GH injection and fasting studies in rainbow trout. Intraperitoneal injection with bovine GH increased plasma IGF-I levels. Four weeks of fasting decreased body weight, increased plasma GH levels, and decreased plasma IGF-I levels. The GH and IGF-I TR-FIAs established herein provide a cost-comparable, non-radioisotopic method for quantifying salmonid plasma GH and IGF-I using commercially available reagents.
Collapse
|
12
|
Paton KR, Cake MH, Potter IC. Lipid and protein catabolism contribute to aerobic metabolic responses to exhaustive exercise during the protracted spawning run of the lamprey Geotria australis. J Comp Physiol B 2019; 190:35-47. [PMID: 31858228 DOI: 10.1007/s00360-019-01251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/15/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
Abstract
This paper has integrated new and past data to elucidate how lipid, protein and glycogen metabolism contribute to generating the ATP required by the southern hemisphere lamprey Geotria australis during its ~ 13-15 months, non-trophic upstream spawning migration. Energy is required for maintenance, swimming, the development of gonads and secondary sexual characters and spawning and post-spawning activities. Plasma and muscle metabolites were measured in animals subjected to an exercise-recovery regime at the commencement and completion of the spawning run. The present study demonstrated the following. At all stages of the migration, plasma glucose and glycerol concentrations increased during exercise and then declined, whereas plasma FFAs exhibited the reverse trend. During exercise and recovery, alanine declined and ammonia increased in the plasma of early migrants, while the opposite occurred in mature males. Following exercise, muscle alanine rose and then declined in early migrants, but declined and then rose in mature males. The composite data emphasise that, while the same catabolic processes are employed by both sexes early in the migration, when animals are immature, they differ markedly between the sexes as they mature and then spawn, reflecting their different demands. Energy is supplied predominantly via anaerobic metabolism in early migrants, but by anaerobic and aerobic metabolism in prespawning females and by aerobic metabolism in mature males and spent females. Although proteolysis is limited early in the migration, it is employed extensively during maturation and particularly by females, which undergo a substantial reduction in length in the lead-up to spawning.
Collapse
Affiliation(s)
- Karen R Paton
- Centre for Sustainable Aquatic Resources, Murdoch University, Murdoch, WA, 6150, Australia
| | - Max H Cake
- Centre for Sustainable Aquatic Resources, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Ian C Potter
- Centre for Sustainable Aquatic Resources, Murdoch University, Murdoch, WA, 6150, Australia
| |
Collapse
|
13
|
Gronczewska J, Niedźwiecka N, Grzyb K, Skorkowski EF. Bioenergetics of fish spermatozoa with focus on some herring (Clupea harengus) enzymes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1615-1625. [PMID: 31111318 PMCID: PMC6815267 DOI: 10.1007/s10695-019-00650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/25/2019] [Indexed: 06/02/2023]
Abstract
Herring (Clupea harengus) shows the unique behavior of reproductive biology in which spermatozoa remains in the surrounding media for extended periods. It is an excellent model for studying the malic enzyme (ME) and creatine kinase (CK) biochemical properties because of their high activity and variability of molecular isoforms. The specific activity of NAD-preferring ME in herring spermatozoa is the highest among other fish spermatozoa and is localized in its large mitochondrion. Two different CK isoforms, dimer and octamer, were detected in herring spermatozoa. It has already been shown that CK isoforms play an important role in energy homeostasis by catalyzing a reversible transfer of the phosphate of ATP to creatine to yield ADP and creatine phosphate (CP) (creatine/CP circuit). Two lactate dehydrogenase (LDH) isoenzymes were also shown in herring spermatozoa, LDH-B4 and LDH-A2B2. In this mini-review, the role of ME and energy transport system with easily diffusible creatine and CP in herring spermatozoa is discussed.
Collapse
Affiliation(s)
- J. Gronczewska
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - N. Niedźwiecka
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - K. Grzyb
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - E. F. Skorkowski
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
14
|
Peterson SH, Ackerman JT, Crocker DE, Costa DP. Foraging and fasting can influence contaminant concentrations in animals: an example with mercury contamination in a free-ranging marine mammal. Proc Biol Sci 2019; 285:rspb.2017.2782. [PMID: 29436501 DOI: 10.1098/rspb.2017.2782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 11/12/2022] Open
Abstract
Large fluctuations in animal body mass in relation to life-history events can influence contaminant concentrations and toxicological risk. We quantified mercury concentrations in adult northern elephant seals (Mirounga angustirostris) before and after lengthy at sea foraging trips (n = 89) or fasting periods on land (n = 27), and showed that mercury concentrations in blood and muscle changed in response to these events. The highest blood mercury concentrations were observed after the breeding fast, whereas the highest muscle mercury concentrations were observed when seals returned to land to moult. Mean female blood mercury concentrations decreased by 30% across each of the two annual foraging trips, demonstrating a foraging-associated dilution of mercury concentrations as seals gained mass. Blood mercury concentrations increased by 103% and 24% across the breeding and moulting fasts, respectively, demonstrating a fasting-associated concentration of mercury as seals lost mass. In contrast to blood, mercury concentrations in female's muscle increased by 19% during the post-breeding foraging trip and did not change during the post-moulting foraging trip. While fasting, female muscle mercury concentrations increased 26% during breeding, but decreased 14% during moulting. Consequently, regardless of exposure, an animal's contaminant concentration can be markedly influenced by their annual life-history events.
Collapse
Affiliation(s)
- Sarah H Peterson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA .,Institute of Marine Science, University of California, Santa Cruz, Santa Cruz, CA, USA.,US Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Joshua T Ackerman
- US Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
15
|
50 years of comparative biochemistry: The legacy of Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:1-11. [PMID: 29501788 DOI: 10.1016/j.cbpb.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/29/2022]
Abstract
Peter Hochachka was an early pioneer in the field of comparative biochemistry. He passed away in 2002 after 4 decades of research in the discipline. To celebrate his contributions and to coincide with what would have been his 80th birthday, a group of his former students organized a symposium that ran as a satellite to the 2017 Canadian Society of Zoologists annual meeting in Winnipeg, Manitoba (Canada). This Special Issue of CBP brings together manuscripts from symposium attendees and other authors who recognize the role Peter played in the evolution of the discipline. In this article, the symposium organizers and guest editors look back on his career, celebrating his many contributions to research, acknowledging his role in training of generations of graduate students and post-doctoral fellows in comparative biochemistry and physiology.
Collapse
|
16
|
Nuez-Ortín WG, Carter CG, Nichols PD, Cooke IR, Wilson R. Liver proteome response of pre-harvest Atlantic salmon following exposure to elevated temperature. BMC Genomics 2018; 19:133. [PMID: 29433420 PMCID: PMC5809918 DOI: 10.1186/s12864-018-4517-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Background Atlantic salmon production in Tasmania (Southern Australia) occurs near the upper limits of the species thermal tolerance. Summer water temperatures can average over 19 °C over several weeks and have negative effects on performance and health. Liver tissue exerts important metabolic functions in thermal adaptation. With the aim of identifying mechanisms underlying liver plasticity in response to chronic elevated temperature in Atlantic salmon, label-free shotgun proteomics was used to explore quantitative protein changes after 43 days of exposure to elevated temperature. Results A total of 276 proteins were differentially (adjusted p-value < 0.05) expressed between the control (15 °C) and elevated (21 °C) temperature treatments. As identified by Ingenuity Pathway Analysis (IPA), transcription and translation mechanisms, protein degradation via the proteasome, and cytoskeletal components were down-regulated at elevated temperature. In contrast, an up-regulated response was identified for NRF2-mediated oxidative stress, endoplasmic reticulum stress, and amino acid degradation. The proteome response was paralleled by reduced fish condition factor and hepato-somatic index at elevated temperature. Conclusions The present study provides new evidence of the interplay among different cellular machineries in a scenario of heat-induced energy deficit and oxidative stress, and refines present understanding of how Atlantic salmon cope with chronic exposure to temperature near the upper limits of thermal tolerance. Electronic supplementary material The online version of this article (10.1186/s12864-018-4517-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Waldo G Nuez-Ortín
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia.
| | - Chris G Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Peter D Nichols
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia.,CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
| | - Ira R Cooke
- Comparative Genomics Centre, James Cook University, Townsville, QLD, 4811, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Bag 74, Hobart, TAS 7001, Australia
| |
Collapse
|
17
|
Khan JR, Lazado CC, Methling C, Skov PV. Short-term feed and light deprivation reduces voluntary activity but improves swimming performance in rainbow trout Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:329-341. [PMID: 29101685 DOI: 10.1007/s10695-017-0438-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Rainbow trout Oncorhynchus mykiss (~ 180 g, 16 °C and < 5 kg m-3) that were feed deprived and kept in total darkness showed a significant increase in critical swimming speed (U crit) between 1 and 12 days of deprivation (from 3.35 to 4.46 body length (BL) s-1) with no increase in maximum metabolic rate (MMR). They also showed a significant decrease in the estimated metabolic rate at 0 BL s-1 over 12 days which leads to a higher factorial aerobic metabolic scope at day 12 (9.38) compared to day 1 (6.54). Routine metabolic rates were also measured in ~ 90 g rainbow trout that were swimming freely in large circular respirometers at 16 °C. These showed decreasing consumption oxygen rates and reductions in the amount of oxygen consumed above standard metabolic rate (a proxy for spontaneous activity) over 12 days, though this happened significantly faster when they were kept in total darkness when compared to a 12:12-h light-dark (LD) photoperiod. Weight loss during this period was also significantly reduced in total darkness (3.33% compared to 4.98% total body weight over 12 days). Immunological assays did not reveal any consistent up- or downregulation of antipathogenic and antioxidant enzymes in the serum or skin mucus of rainbow trout between 1 and 12 days of feed and light deprivation. Overall, short periods of deprivation do not appear to significantly affect the performance of rainbow trout which appear to employ a behavioural energy-sparing strategy, albeit more so in darkness than under a 12:12-h LD regime.
Collapse
Affiliation(s)
- J R Khan
- DTU Aqua, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, P.O. Box 101, 9850, Hirtshals, Denmark.
| | - C C Lazado
- DTU Aqua, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, P.O. Box 101, 9850, Hirtshals, Denmark
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - C Methling
- DTU Aqua, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, P.O. Box 101, 9850, Hirtshals, Denmark
| | - P V Skov
- DTU Aqua, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, P.O. Box 101, 9850, Hirtshals, Denmark
| |
Collapse
|
18
|
Bolliet V, Labonne J, Olazcuaga L, Panserat S, Seiliez I. Modeling of autophagy-related gene expression dynamics during long term fasting in European eel (Anguilla anguilla). Sci Rep 2017; 7:17896. [PMID: 29263413 PMCID: PMC5738402 DOI: 10.1038/s41598-017-18164-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023] Open
Abstract
Autophagy is an evolutionary conserved cellular self-degradation process considered as a major energy mobilizing system in eukaryotes. It has long been considered as a post-translationally regulated event, and the importance of transcriptional regulation of autophagy-related genes (atg) for somatic maintenance and homeostasis during long period of stress emerged only recently. In this regard, large changes in atg transcription have been documented in several species under diverse types of prolonged catabolic situations. However, the available data primarily concern atg mRNA levels at specific times and fail to capture the dynamic relationship between transcript production over time and integrated phenotypes. Here, we present the development of a statistical model describing the dynamics of expression of several atg and lysosomal genes in European glass eel (Anguilla anguilla) during long-term fasting at two temperatures (9 °C and 12 °C) and make use of this model to infer the effect of transcripts dynamics on an integrated phenotype – here weight loss. Our analysis shows long-term non-random fluctuating atg expression dynamics and reveals for the first time a significant contribution of atg transcripts production over time to weight loss. The proposed approach thus offers a new perspective on the long-term transcriptional control of autophagy and its physiological role.
Collapse
Affiliation(s)
- Valérie Bolliet
- INRA, UMR 1224 ECOBIOP, F-64310 St Pée sur, Nivelle, France.,Univ Pau & Pays Adour, UMR 1224 ECOBIOP, UFR Sciences et Techniques Côte Basque, Anglet, France
| | - Jacques Labonne
- INRA, UMR 1224 ECOBIOP, F-64310 St Pée sur, Nivelle, France.,Univ Pau & Pays Adour, UMR 1224 ECOBIOP, UFR Sciences et Techniques Côte Basque, Anglet, France
| | - Laure Olazcuaga
- INRA, UMR 1224 ECOBIOP, F-64310 St Pée sur, Nivelle, France.,Univ Pau & Pays Adour, UMR 1224 ECOBIOP, UFR Sciences et Techniques Côte Basque, Anglet, France
| | - Stéphane Panserat
- INRA, UMR 1419 Nutrition Metabolisme Aquaculture, F-64310 Saint Pée sur, Nivelle, France.,Univ Pau & Pays Adour, UMR 1419 Nutrition Metabolisme Aquaculture, F-40000, Mont de Marsan, France
| | - Iban Seiliez
- INRA, UMR 1419 Nutrition Metabolisme Aquaculture, F-64310 Saint Pée sur, Nivelle, France. .,Univ Pau & Pays Adour, UMR 1419 Nutrition Metabolisme Aquaculture, F-40000, Mont de Marsan, France.
| |
Collapse
|
19
|
Brauer CJ, Unmack PJ, Beheregaray LB. Comparative ecological transcriptomics and the contribution of gene expression to the evolutionary potential of a threatened fish. Mol Ecol 2017; 26:6841-6856. [DOI: 10.1111/mec.14432] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Chris J. Brauer
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide SA Australia
| | - Peter J. Unmack
- Institute for Applied Ecology University of Canberra Canberra ACT Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide SA Australia
| |
Collapse
|
20
|
Skrzynska AK, Martos-Sitcha JA, Martínez-Rodríguez G, Mancera JM. Unraveling vasotocinergic, isotocinergic and stress pathways after food deprivation and high stocking density in the gilthead sea bream. Comp Biochem Physiol A Mol Integr Physiol 2017; 215:35-44. [PMID: 29079226 DOI: 10.1016/j.cbpa.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
The influence of chronic stress, induced by food deprivation (FD) and/or high stocking density (HSD), was assessed on stress, vasotocinergic and isotocinergic pathways of the gilthead sea bream (Sparus aurata). Fish were randomly assigned to one of the following treatments: (1) fed at low stocking density (LSD-F; 5kg·m-3); (2) fed at high stocking density (HSD-F, 40kg·m-3); (3) food-deprived at LSD (LSD-FD); and (4) food-deprived at HSD (HSD-FD). After 21days, samples from plasma, liver, hypothalamus, pituitary and head-kidney were collected. Both stressors (FD and HSD) induced a chronic stress situation, as indicated by the elevated cortisol levels, the enhancement in corticotrophin releasing hormone (crh) expression and the down-regulation in corticotrophin releasing hormone binding protein (crhbp) expression. Changes in plasma and liver metabolites confirmed a metabolic adjustment to cope with energy demand imposed by stressors. Changes in avt and it gene expression, as well as in their specific receptors (avtrv1a, avtrv2 and itr) at central (hypothalamus and pituitary) and peripheral (liver and head-kidney) levels, showed that vasotocinergic and isotocinergic pathways are involved in physiological changes induced by FD or HSD, suggesting that different stressors are handled through different stress pathways in S. aurata.
Collapse
Affiliation(s)
- Arleta Krystyna Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, 11519 Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11519 Puerto Real, Cádiz, Spain; Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595 Castellón, Spain.
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11519 Puerto Real, Cádiz, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, 11519 Puerto Real, Cádiz, Spain
| |
Collapse
|
21
|
Martin SAM, Król E. Nutrigenomics and immune function in fish: new insights from omics technologies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:86-98. [PMID: 28254621 PMCID: PMC5495911 DOI: 10.1016/j.dci.2017.02.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 05/29/2023]
Abstract
The interplay between nutrition and immune system is well recognised, however the true integration of research between nutrition, animal energy status and immune function is still far from clear. In fish nutrition, especially for species maintained in aquaculture, formulated feeds are significantly different from the natural diet with recent changes in nutrient sources, especially with protein and oil sources now being predominated by terrestrial derived ingredients. Additionally, many feeds are now incorporated to health management and termed functional feeds, which are believed to improve fish health, reduce disease outbreaks and/or improve post-infection recovery. Using new omics technologies, including transcriptomics (microarray and RNA-seq) and proteomics, the impacts of nutrition on the immune system is becoming clearer. By using molecular pathway enrichment analysis, modules of genes can indicate how both local (intestinal) and systemic immune function are being altered. Although great progress has been made to define the changes in host immune function, understanding the interplay between fish nutrition, intestinal microbiome and immune system is only just beginning to emerge.
Collapse
Affiliation(s)
- Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
22
|
Lysenko LA, Kantserova NP, Kaivarainen EI, Krupnova MY, Nemova NN. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon ( Salmo salar L.). Comp Biochem Physiol B Biochem Mol Biol 2017; 211:22-28. [DOI: 10.1016/j.cbpb.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
|
23
|
Kantserova NP, Lysenko LA, Veselov AE, Nemova NN. Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1187-1194. [PMID: 28343271 DOI: 10.1007/s10695-017-0364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Although protein degradation limits the rate of muscle growth in fish, the role of proteolytic systems responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The study herein aims to evaluate the role of calpains (calcium-activated proteases) and proteasomes (ATP-dependent proteases) in mediating muscle protein turnover at different life stages in wild salmonids. Protease activities were estimated in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) parr and smolts from the Indera River (Kola Peninsula, Russia). Calpain and proteasome activities in Atlantic salmon skeletal muscles were lower in smolts as compared with parr. Reduced muscle protein degradation accompanying Atlantic salmon parr-smolt transformation appeared to provide intense muscle growth essential for a minimum threshold size achievement that is required for smoltification. Calpain and proteasome activities in brown trout parr and smolts at age 3+ did not significantly differ. However, calpain activity was higher in smolts brown trout 4+ as compared with parr, while proteasome activity was lower. Results suggest that brown trout smoltification does not correspond with intense muscle growth and is more facultative and plastic in comparison with Atlantic salmon smoltification. Obtained data on muscle protein degradation capacity as well as length-weight parameters of fish reflect differences between salmon and trout in growth and smoltification strategies.
Collapse
Affiliation(s)
- Nadezda P Kantserova
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910.
| | - Liudmila A Lysenko
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910
| | - Alexey E Veselov
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910
| | - Nina N Nemova
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910
| |
Collapse
|
24
|
Nemova NN, Kyaivyaryainen EI, Krupnova MY. Dynamics of activity of intracellular cysteine-dependent proteases and some peptidases in embryogenesis of Atlantic salmon Salmo salar L. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417040075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Fang DA, Zhou YF, Zhang MY, Xu DP, Liu K, Duan JR. Developmental Expression of HSP60 and HSP10 in the Coilia nasus Testis during Upstream Spawning Migration. Genes (Basel) 2017; 8:genes8070189. [PMID: 28754007 PMCID: PMC5541322 DOI: 10.3390/genes8070189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/03/2023] Open
Abstract
Heat shock protein 60 (HSP60) and heat shock protein 10 (HSP10) are important chaperones, which have been proven to have essential roles in mediating the correct folding of nuclear encoded proteins imported to mitochondria. Mitochondria are known as the power house of the cell, with which it produces energy and respires aerobically. In this regard, the obtained HSP60 and HSP10 have typical characteristics of the HSP60/10 family signature. Their mRNA transcripts detected were highest during the developmental phase (in April), while the lowest levels were found in the resting phase (after spawning in late July). Additionally, the strongest immunolabeling positive signals were found in the primary spermatocyte, with lower positive staining in secondary sperm cells, and a weak or absent level in the mature sperm. At the electron microscopic level, immunogold particles were localized in the mitochondrial matrix. Data indicated that HSP10 and HSP60 were inducible and functional in the Coilia nasus testis development and migration process, suggesting their essential roles in this process. The results also indicated that HSP60 may be one indicator of properly working mitochondrial import and refolding in the fish testis. This study also provides an expanded perspective on the role of heat shock protein families in spawning migration biology.
Collapse
Affiliation(s)
- Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214000, Jiangsu, China.
| | - Yan-Feng Zhou
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
| | - Min-Ying Zhang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
| | - Dong-Po Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214000, Jiangsu, China.
| | - Kai Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
| | - Jin-Rong Duan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
| |
Collapse
|
26
|
Niedźwiecka N, Gronczewska J, Skorkowski EF. NAD-preferring malic enzyme: localization, regulation and its potential role in herring (Clupea harengus) sperm cells. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:351-360. [PMID: 27630022 DOI: 10.1007/s10695-016-0291-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Herring spermatozoa exhibit a high activity of NAD-preferring malic enzyme (NAD-ME). This enzyme is involved in the generation of NADH or NADPH in the decarboxylation of malate to form pyruvate and requires some divalent cations to express its activity. In order to confirm that NAD-ME isolated from herring sperm cells is localized in mitochondria, we performed immunofluorescent analysis and assayed spectrophotometrically the malic enzyme reaction. Production of polyclonal rabbit antibodies against NAD-ME from herring spermatozoa enabled identification of mitochondrial localization of this enzyme inside herring spermatozoa. The kinetic studies revealed that NAD-ME was competitively inhibited by ATP up to tenfold. Addition of fumarate reversed ATP-dependent inhibition of NAD-ME to 55 % of its maximum activity. The pH-dependent regulation of malic enzyme activity was also examined. Malic enzyme showed maximum activity at pH near 7.0 in all studied conditions. Finally, the role of malic enzyme activity regulation in mitochondria of herring sperm cells was discussed.
Collapse
Affiliation(s)
- Natalia Niedźwiecka
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308, Gdańsk, Poland.
| | - Jadwiga Gronczewska
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308, Gdańsk, Poland
| | - Edward F Skorkowski
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308, Gdańsk, Poland
| |
Collapse
|
27
|
Schenk S, Krauditsch C, Frühauf P, Gerner C, Raible F. Discovery of methylfarnesoate as the annelid brain hormone reveals an ancient role of sesquiterpenoids in reproduction. eLife 2016; 5. [PMID: 27894418 PMCID: PMC5127642 DOI: 10.7554/elife.17126] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
Animals require molecular signals to determine when to divert resources from somatic functions to reproduction. This decision is vital in animals that reproduce in an all-or-nothing mode, such as bristle worms: females committed to reproduction spend roughly half their body mass for yolk and egg production; following mass spawning, the parents die. An enigmatic brain hormone activity suppresses reproduction. We now identify this hormone as the sesquiterpenoid methylfarnesoate. Methylfarnesoate suppresses transcript levels of the yolk precursor Vitellogenin both in cell culture and in vivo, directly inhibiting a central energy–costly step of reproductive maturation. We reveal that contrary to common assumptions, sesquiterpenoids are ancient animal hormones present in marine and terrestrial lophotrochozoans. In turn, insecticides targeting this pathway suppress vitellogenesis in cultured worm cells. These findings challenge current views of animal hormone evolution, and indicate that non-target species and marine ecosystems are susceptible to commonly used insect larvicides. DOI:http://dx.doi.org/10.7554/eLife.17126.001 All organisms need energy to survive and grow. However, sources of energy are limited and so organisms need to decide how to spend the resources they have available. For instance, animals must choose whether they should continue to grow or if they should invest energy into reproduction instead. This decision becomes even more important for animals that reproduce in an “all-or-nothing” manner and invest all their available energy into reproduction and die soon after. Bristle worms live in coastal areas around world. In mass spawning events, thousands of individuals raise from the sea floor to the surface, to release sperm and eggs. While the fertilized eggs start to develop in the water, the parents invariably die. The female worms spend roughly half their body mass in producing eggs and supplying them with yolk as a source of energy. It has been known for decades that the brains of bristle worms produce a master hormone that promotes growth and suppresses reproduction. Yet the identity of this hormone that controls the life-or-death decision was not clear. Schenk et al. took advantage of new molecular tools to solve this puzzle. The experiments show that this hormone directly regulates how much yolk the female animals produce. This allowed Schenk et al. to design a new molecular assay that helped to identify the hormone itself. Unexpectedly, the hormone – called methylfarnesoate – belongs to a family of small molecules called sesquiterpenoids, which researchers previously thought were only found in insects and related groups. Hence, many insecticides have been developed to target sesquiterpenoid signaling and they are used in massive amounts to fight pests like the tiger mosquito (which transmits the Zika virus). Schenk et al. also found that these insecticides also cause severe problems in bristle-worms. These findings challenge current views of how animal hormones have evolved and indicate that common insecticides may be harming bristle worms and other animals in marine environments. The next steps are to find out whether methylfarnesoate is found in other closely related animals, such as snails and mussels, and whether the insecticides are harmful to these animals too. Another future challenge will be to investigate how this hormone actually promotes animal growth. DOI:http://dx.doi.org/10.7554/eLife.17126.002
Collapse
Affiliation(s)
- Sven Schenk
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.,Research Platform Marine Rhythms of Life, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Christian Krauditsch
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Frühauf
- Research Platform Marine Rhythms of Life, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.,Institute for Analytical Chemistry, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Christopher Gerner
- Research Platform Marine Rhythms of Life, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.,Institute for Analytical Chemistry, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Florian Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.,Research Platform Marine Rhythms of Life, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
28
|
Rufino-Palomares EE, Reyes-Zurita FJ, García-Salguero L, Peragón J, de la Higuera M, Lupiáñez JA. NADPH production, a growth marker, is stimulated by maslinic acid in gilthead sea bream by increased NADP-IDH and ME expression. Comp Biochem Physiol C Toxicol Pharmacol 2016; 187:32-42. [PMID: 27178358 DOI: 10.1016/j.cbpc.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/24/2016] [Accepted: 05/07/2016] [Indexed: 12/14/2022]
Abstract
NADPH plays a central role in reductive biosynthesis of membrane lipids, maintenance of cell integrity, protein synthesis and redox balance maintenance. Hence, NADPH is involved in the growth and proliferation processes. In addition, it has been shown that changes in nutritional conditions produced changes in NADPH levels and growth rate. Maslinic acid (MA), a pentacyclic triterpene of natural origin, is able to stimulate NADPH production, through regulation of the two oxidative phase dehydrogenases of the pentose phosphate pathway. Our main objective was to study the effects of MA on the kinetic behaviour and on the molecular expression of two NADPH-generating systems, NADP-dependent isocitrate dehydrogenase (NADP-IDH) and malic enzyme (ME), in the liver and white muscle of gilthead sea bream (Sparus aurata). Four groups of 12g of a mean body mass were fed for 210days in a fish farm, with diets containing 0 (control), and 0.1g of MA per kg of diet. Two groups were fed ad libitum (C-AL and MA-AL) and another's two, with restricted diet of 1% of fish weight (C-R and MA-R). Results showed that MA significantly increased the main kinetic parameter of the NADPH-forming enzymes (NADP-IDH and ME). In this sense, specific activity, maximum velocity, catalytic efficiency and activity ratio values were higher in MA conditions than control groups. Moreover, these changes were observed in both feeding regimen, AL and R. Meanwhile, the Michaelis constant changed mainly in groups fed with the MA and restricted diet, these changes are related to the best substrate affinity by enzyme. Moreover, in the Western-blot result, we found that MA increased both protein levels studied, this behaviour being consistent with the regulation of the number of enzyme molecules. All results, indicate that MA, independently of the fed regimen, could potentially be a nutritional additive for fish as it improved the metabolic state of fish, as consequence of increased activity and expression of NADP-IDH and ME enzymes.
Collapse
Affiliation(s)
- Eva E Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain.
| | - Fernando J Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Juan Peragón
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manuel de la Higuera
- Department of Animal Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - José A Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
29
|
Nemova NN, Lysenko LA, Kantserova NP. Degradation of skeletal muscle protein during growth and development of salmonid fish. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416040068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Lysenko LA, Kantserova NP, Krupnova MY, Veselov AE, Nemova NN. [Intracellular Protein Degradation in Growth of Atlantic Salmon, Salmo salar L]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:717-24. [PMID: 27125026 DOI: 10.1134/s1068162015060096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A brief review on the common characteristics and specific features of proteolytic machinery in fish skeletal muscles (based on Atlantic salmon, Salmo salar L., Salmonidae) has been given. Among a variety of proteases in the muscle tissue, those determining protein degradation level in developing and intensively growing muscles in salmon young and by this way regulating protein retention intensity and growth at all namely lysosomal cathepsins B and D and calcium-dependent proteases (calpains) were comprehensively studied. Revealed age-related differences in intracellular protease activity in salmon skeletal muscles indicate the role of proteolysis regulation in growth in general and a specific role of the individual proteolytic enzymes in particular. The data on negative correlation of cathepsin D and calpain activity levels in muscles and the rate of weight increase in juvenile salmon were obtained. A revealed positive correlation of cathepsin B activity and morphometric parameters in fish young presumably indicates its primary contribution to non-myofibrillar protein turnover.
Collapse
|
31
|
Cassidy AA, Saulnier RJ, Lamarre SG. Adjustments of Protein Metabolism in Fasting Arctic Charr, Salvelinus alpinus. PLoS One 2016; 11:e0153364. [PMID: 27096948 PMCID: PMC4838323 DOI: 10.1371/journal.pone.0153364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Protein metabolism, including the interrelated processes of synthesis and degradation, mediates the growth of an animal. In ectothermic animals, protein metabolism is responsive to changes in both biotic and abiotic conditions. This study aimed to characterise responses of protein metabolism to food deprivation that occur in the coldwater salmonid, Arctic charr, Salvelinus alpinus. We compared two groups of Arctic charr: one fed continuously and the other deprived of food for 36 days. We measured the fractional rate of protein synthesis (KS) in individuals from the fed and fasted groups using a flooding dose technique modified for the use of deuterium-labelled phenylalanine. The enzyme activities of the three major protein degradation pathways (ubiquitin proteasome, lysosomal cathepsins and the calpain systems) were measured in the same fish. This study is the first to measure both KS and the enzymatic activity of protein degradation in the same fish, allowing us to examine the apparent contribution of different protein degradation pathways to protein turnover in various tissues (red and white muscle, liver, heart and gills). KS was lower in the white muscle and in liver of the fasted fish compared to the fed fish. There were no observable effects of food deprivation on the protease activities in any of the tissues with the exception of liver, where the ubiquitin proteasome pathway seemed to be activated during fasting conditions. Lysosomal proteolysis appears to be the primary degradation pathway for muscle protein, while the ubiquitin proteasome pathway seems to predominate in the liver. We speculate that Arctic charr regulate protein metabolism during food deprivation to conserve proteins.
Collapse
Affiliation(s)
| | | | - Simon G. Lamarre
- Département de biologie, Université de Moncton, Moncton, NB, Canada
- * E-mail:
| |
Collapse
|
32
|
Liver Transcriptome Analysis of the Large Yellow Croaker (Larimichthys crocea) during Fasting by Using RNA-Seq. PLoS One 2016; 11:e0150240. [PMID: 26967898 PMCID: PMC4788198 DOI: 10.1371/journal.pone.0150240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022] Open
Abstract
The large yellow croaker (Larimichthys crocea) is an economically important fish species in Chinese mariculture industry. To understand the molecular basis underlying the response to fasting, Illumina HiSeqTM 2000 was used to analyze the liver transcriptome of fasting large yellow croakers. A total of 54,933,550 clean reads were obtained and assembled into 110,364 contigs. Annotation to the NCBI database identified a total of 38,728 unigenes, of which 19,654 were classified into Gene Ontology and 22,683 were found in Kyoto Encyclopedia of Genes and Genomes (KEGG). Comparative analysis of the expression profiles between fasting fish and normal-feeding fish identified a total of 7,623 differentially expressed genes (P < 0.05), including 2,500 upregulated genes and 5,123 downregulated genes. Dramatic differences were observed in the genes involved in metabolic pathways such as fat digestion and absorption, citrate cycle, and glycolysis/gluconeogenesis, and the similar results were also found in the transcriptome of skeletal muscle. Further qPCR analysis confirmed that the genes encoding the factors involved in those pathways significantly changed in terms of expression levels. The results of the present study provide insights into the molecular mechanisms underlying the metabolic response of the large yellow croaker to fasting as well as identified areas that require further investigation.
Collapse
|
33
|
Fang DA, Duan JR, Zhou YF, Zhang MY, Xu DP, Liu K, Xu P. Molecular Characteristic, Protein Distribution and Potential Regulation of HSP90AA1 in the Anadromous Fish Coilia nasus. Genes (Basel) 2016; 7:genes7020008. [PMID: 26828521 PMCID: PMC4773752 DOI: 10.3390/genes7020008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins play essential roles in basic cellular events. Spawning migration is a complex process, with significant structural and biochemical changes taking place in the adult gonad. To date, the molecular mechanisms underlying migration reproductive biology remain undetermined. In this regard, a full length HSP90AA1 comprising 2608 nucleotides from the anadromous fish Coilia nasus was characterized, encoding 742 amino acid (aa) residues with potential phosphorylation sites. HSP90AA1 mRNA transcripts were detected in all organs, especially in the gonad. Furthermore, the greatest transcript levels were found during the developmental phase, while the lowest levels were found during the resting phase. In addition, the strongest immunolabeling positive signal was found in the primary spermatocyte and oocyte, with lower positive staining in secondary germ cells, and a weak or absent level in the mature sperm and oocyte. Interestingly, HSP90AA1 was mainly located in the cytoplasm of germ cells. These results are important for understanding the molecular mechanism of anadromous migration reproductive biology. In combination with data from other fish species, the result of this present study may facilitate further investigations on the spawning migration mechanism.
Collapse
Affiliation(s)
- Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214128, China.
| | - Jin-Rong Duan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Yan-Feng Zhou
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Min-Ying Zhang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Dong-Po Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214128, China.
| | - Kai Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Pao Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| |
Collapse
|
34
|
Chiarelli R, Martino C, Agnello M, Bosco L, Roccheri MC. Autophagy as a defense strategy against stress: focus on Paracentrotus lividus sea urchin embryos exposed to cadmium. Cell Stress Chaperones 2016; 21:19-27. [PMID: 26362931 PMCID: PMC4679740 DOI: 10.1007/s12192-015-0639-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/10/2015] [Accepted: 09/02/2015] [Indexed: 01/09/2023] Open
Abstract
Autophagy is used by organisms as a defense strategy to face environmental stress. This mechanism has been described as one of the most important intracellular pathways responsible for the degradation and recycling of proteins and organelles. It can act as a cell survival mechanism if the cellular damage is not too extensive or as a cell death mechanism if the damage/stress is irreversible; in the latter case, it can operate as an independent pathway or together with the apoptotic one. In this review, we discuss the autophagic process activated in several aquatic organisms exposed to different types of environmental stressors, focusing on the sea urchin embryo, a suitable system recently included into the guidelines for the use and interpretation of assays to monitor autophagy. After cadmium (Cd) exposure, a heavy metal recognized as an environmental toxicant, the sea urchin embryo is able to adopt different defense mechanisms, in a hierarchical way. Among these, autophagy is one of the main responses activated to preserve the developmental program. Finally, we discuss the interplay between autophagy and apoptosis in the sea urchin embryo, a temporal and functional choice that depends on the intensity of stress conditions.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Dip.to di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Ed. 16, Palermo, 90128, Italy
| | - Chiara Martino
- Dip.to di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Ed. 16, Palermo, 90128, Italy
| | - Maria Agnello
- Dip.to di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Ed. 16, Palermo, 90128, Italy
| | - Liana Bosco
- Dip.to di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Ed. 16, Palermo, 90128, Italy
| | - Maria Carmela Roccheri
- Dip.to di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Ed. 16, Palermo, 90128, Italy.
| |
Collapse
|
35
|
Cleveland BM, Weber GM. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2015; 216:103-15. [PMID: 25482545 DOI: 10.1016/j.ygcen.2014.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022]
Abstract
Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA
| |
Collapse
|
36
|
Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Unraveling the molecular signatures of oxidative phosphorylation to cope with the nutritionally changing metabolic capabilities of liver and muscle tissues in farmed fish. PLoS One 2015; 10:e0122889. [PMID: 25875231 PMCID: PMC4398389 DOI: 10.1371/journal.pone.0122889] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial oxidative phosphorylation provides over 90% of the energy produced by aerobic organisms, therefore the regulation of mitochondrial activity is a major issue for coping with the changing environment and energy needs. In fish, there is a large body of evidence of adaptive changes in enzymatic activities of the OXPHOS pathway, but less is known at the transcriptional level and the first aim of the present study was to define the molecular identity of the actively transcribed subunits of the mitochondrial respiratory chain of a livestock animal, using gilthead sea bream as a model of farmed fish with a high added value for European aquaculture. Extensive BLAST searches in our transcriptomic database (www.nutrigroup-iats.org/seabreamdb) yielded 97 new sequences with a high coverage of catalytic, regulatory and assembly factors of Complex I to V. This was the basis for the development of a PCR array for the simultaneous profiling of 88 selected genes. This new genomic resource allowed the differential gene expression of liver and muscle tissues in a model of 10 fasting days. A consistent down-regulated response involving 72 genes was made by the liver, whereas an up-regulated response with 29 and 10 differentially expressed genes was found in white skeletal muscle and heart, respectively. This differential regulation was mostly mediated by nuclear-encoded genes (skeletal muscle) or both mitochondrial- and nuclear-encoded genes (liver, heart), which is indicative of a complex and differential regulation of mitochondrial and nuclear genomes, according to the changes in the lipogenic activity of liver and the oxidative capacity of glycolytic and highly oxidative muscle tissues. These insights contribute to the identification of the most responsive elements of OXPHOS in each tissue, which is of relevance for the appropriate gene targeting of nutritional and/or environmental metabolic disturbances in livestock animals.
Collapse
Affiliation(s)
- Azucena Bermejo-Nogales
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC-IATS), Ribera de Cabanes, Castellón, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC-IATS), Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC-IATS), Ribera de Cabanes, Castellón, Spain
- * E-mail:
| |
Collapse
|
37
|
Salmerón C, Navarro I, Johnston IA, Gutiérrez J, Capilla E. Characterisation and expression analysis of cathepsins and ubiquitin-proteasome genes in gilthead sea bream (Sparus aurata) skeletal muscle. BMC Res Notes 2015; 8:149. [PMID: 25880457 PMCID: PMC4431372 DOI: 10.1186/s13104-015-1121-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/02/2015] [Indexed: 12/02/2022] Open
Abstract
Background The proteolytic enzymes involved in normal protein turnover in fish muscle are also responsible for post-mortem softening of the flesh and are therefore potential determinants of product quality. The main enzyme systems involved are calpains, cathepsins, and the ubiquitin-proteasome (UbP). In this study on Sparus aurata (Sa), the coding sequences of cathepsins (SaCTSB and SaCTSDb) and UbP family members (SaN3 and SaUb) were cloned from fast skeletal muscle, and their expression patterns were examined during ontogeny and in a fasting/re-feeding experiment. Results The amino acid sequences identified shared 66-100% overall identity with their orthologues in other vertebrates, with well conserved characteristic functional domains and catalytic residues. SaCTSDb showed phylogenetic, sequence and tissue distribution differences with respect to its paralogue SaCTSDa, previously identified in the ovary. Expression of gilthead sea bream cathepsins (B, L, Da, Db) and UbP members (N3, Ub, MuRF1 and MAFbx) in fast skeletal muscle was determined at three different life-history stages and in response to fasting and re-feeding in juveniles. Most of the proteolytic genes analysed were significantly up-regulated during fasting, and down-regulated with re-feeding and, between the fingerling (15 g) and juvenile/adult stages (~50/500 g), consistent with a decrease in muscle proteolysis in both later contexts. In contrast, SaCTSDa and SaMuRF1 expression was relatively stable with ontogeny and SaUb had higher expression in fingerlings and adults than juveniles. Conclusions The data obtained in the present study suggest that cathepsins and UbP genes in gilthead sea bream are co-ordinately regulated during ontogeny to control muscle growth, and indicate that feeding regimes can modulate their expression, providing a potential dietary method of influencing post-mortem fillet tenderisation, and hence, product quality. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1121-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Salmerón
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| | - Isabel Navarro
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews Fife, KY16 8LB, Scotland, UK.
| | - Joaquim Gutiérrez
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| | - Encarnación Capilla
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| |
Collapse
|
38
|
Cipriano RC, Smith ML, Vermeersch KA, Dove ADM, Styczynski MP. Differential metabolite levels in response to spawning-induced inappetence in Atlantic salmon Salmo salar. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:52-9. [PMID: 25668602 DOI: 10.1016/j.cbd.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/23/2022]
Abstract
Atlantic salmon Salmo salar undergo months-long inappetence during spawning, but it is not known whether this inappetence is a pathological state or one for which the fish are adapted. Recent work has shown that inappetent whale sharks can exhibit circulating metabolite profiles similar to ketosis known to occur in humans during starvation. In this work, metabolite profiling was used to explore differences in analyte profiles between a cohort of inappetent spawning run Atlantic salmon and captively reared animals that were fed up to and through the time of sampling. The two classes of animals were easily distinguished by their metabolite profiles. The sea-run fish had elevated ɷ-9 fatty acids relative to the domestic feeding animals, while other fatty acid concentrations were reduced. Sugar alcohols were generally elevated in inappetent animals, suggesting potentially novel metabolic responses or pathways in fish that feature these compounds. Compounds expected to indicate a pathological catabolic state were not more abundant in the sea-run fish, suggesting that the animals, while inappetent, were not stressed in an unnatural way. These findings demonstrate the power of discovery-based metabolomics for exploring biochemistry in poorly understood animal models.
Collapse
Affiliation(s)
- Rocco C Cipriano
- USGS/National Fish Health Research Laboratory, 11649 Leetown Rd, Kearneysville, WV 25430, USA
| | - McKenzie L Smith
- School of Chemical & Biomolecular Engineering and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Kathleen A Vermeersch
- School of Chemical & Biomolecular Engineering and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Alistair D M Dove
- Georgia Aquarium Research Center, 225 Baker Street, Atlanta, GA 30313, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA 30332, USA.
| |
Collapse
|
39
|
Seiliez I, Gabillard JC, Riflade M, Sadoul B, Dias K, Avérous J, Tesseraud S, Skiba S, Panserat S. Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy 2014; 8:364-75. [DOI: 10.4161/auto.18863] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
40
|
Benskin JP, Ikonomou MG, Liu J, Veldhoen N, Dubetz C, Helbing CC, Cosgrove JR. Distinctive metabolite profiles in in-migrating Sockeye salmon suggest sex-linked endocrine perturbation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11670-11678. [PMID: 25198612 DOI: 10.1021/es503266x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The health of Skeena River Sockeye salmon (Onchorhychus nerka) has been of increasing concern due to declining stock returns over the past decade. In the present work, in-migrating Sockeye from the 2008 run were evaluated using a mass spectrometry-based, targeted metabolomics platform. Our objectives were to (a) investigate natural changes in a subset of the hepatic metabolome arising from migration-associated changes in osmoregulation, locomotion, and gametogenesis, and (b) compare the resultant profiles with animals displaying altered hepatic vitellogenin A (vtg) expression at the spawning grounds, which was previously hypothesized as a marker of xenobiotic exposure. Of 203 metabolites monitored, 95 were consistently observed in Sockeye salmon livers and over half of these changed significantly during in-migration. Among the most dramatic changes in both sexes were a decrease in concentrations of taurine (a major organic osmolyte), carnitine (involved in fatty acid transport), and two major polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In females, an increase in amino acids was attributed to protein catabolism associated with vitellogenesis. Animals with atypical vtg mRNA expression demonstrated unusual hepatic amino acid, fatty acid, taurine, and carnitine profiles. The cause of these molecular perturbations remains unclear, but may include xenobiotic exposure, natural senescence, and/or interindividual variability. These data provide a benchmark for further investigation into the long-term health of migrating Skeena Sockeye.
Collapse
Affiliation(s)
- Jonathan P Benskin
- AXYS Analytical Services Ltd. 2045 Mills Road West, Sidney, British Columbia V8L 5X2, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Seiliez I, Dias K, Cleveland BM. Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1330-7. [PMID: 25274907 DOI: 10.1152/ajpregu.00370.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is recognized as the major contributor to total proteolysis in mammalian skeletal muscle, responsible for 50% or more of total protein degradation in skeletal muscle, whereas the autophagic-lysosome system (ALS) plays a more minor role. While the relative contribution of these systems to muscle loss is well documented in mammals, little is known in fish species. The current study uses myotubes derived from rainbow trout myogenic precursor cells as an in vitro model of white muscle tissue. Cells were incubated in complete or serum-deprived media or media supplemented with insulin-like growth factor-1 (IGF-1) and exposed to selective proteolytic inhibitors to determine the relative contribution of the ALS and UPS to total protein degradation in myotubes in different culture conditions. Results indicate that the ALS is responsible for 30-34% and 50% of total protein degradation in myotubes in complete and serum-deprived media, respectively. The UPS appears to contribute much less to total protein degradation at almost 4% in cells in complete media to nearly 17% in serum-deprived cells. IGF-1 decreases activity of both systems, as it inhibited the upregulation of both proteolytic systems induced by serum deprivation. The combined inhibition of both the ALS and UPS reduced degradation by a maximum of 55% in serum-deprived cells, suggesting an important contribution of other proteolytic systems to total protein degradation. Collectively, these data identify the ALS as a potential target for strategies aimed at improving muscle protein retention and fillet yield through reductions in protein degradation.
Collapse
Affiliation(s)
- Iban Seiliez
- Institut National de la Recherche Agronomique, Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France; and
| | - Karine Dias
- Institut National de la Recherche Agronomique, Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France; and
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/United States Department of Agriculture, Kearneysville, West Virginia
| |
Collapse
|
42
|
Landeira-Dabarca A, Álvarez M, Molist P. Food deprivation causes rapid changes in the abundance and glucidic composition of the cutaneous mucous cells of Atlantic salmon Salmo salar L. JOURNAL OF FISH DISEASES 2014; 37:899-909. [PMID: 24117614 DOI: 10.1111/jfd.12184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 06/02/2023]
Abstract
Cutaneous mucus is the first physical and chemical barrier of fish. This slime layer is secreted by mucous cells located in the epidermis and is mainly composed of glycoproteins that have their origin in the diet. Therefore, food deprivation can potentially change the abundance and glucidic nature of skin mucous cells, thus changing the mucus properties. To test this hypothesis, we conducted an experiment with Atlantic salmon, Salmo salar L. Changes in the number and glucidic nature of epidermal mucus cells were analysed using standard techniques. The outcome of this study shows that food deprivation caused a rapid decrease in the density of epidermal mucous cells in Atlantic salmon. Lectin histochemistry revealed a change in the presence and stainability of some sugar residues in the mucous cells of unfed fish compared with fed fish. Given that the primary reason for mucus secretion in fish is for protection against infections, we speculate that the changes in the mucus properties caused by nutritional stress may affect their disease resistance. This fact is particularly important for fish that spend a period of time deprived of food, either as a part of their natural life cycle, or as part of farming practices.
Collapse
|
43
|
Choi KM, Shim SH, An CM, Nam BH, Kim YO, Kim JW, Park CI. Cloning, characterisation, and expression analysis of the cathepsin D gene from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2014; 40:253-258. [PMID: 25038285 DOI: 10.1016/j.fsi.2014.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Cathepsins are lysosomal cysteine proteases belonging to the papain family, members of which play important roles in normal metabolism for the maintenance of cellular homeostasis. Rock bream (Oplegnathus fasciatus) cathepsin D (RbCTSD) cDNAs were identified by expressed sequence tag analysis of a lipopolysaccharide-stimulated rock bream liver cDNA library. The full-length RbCTSD cDNA (1644 bp) contained an open reading frame of 1191 bp encoding 396 amino acids. Alignment analysis revealed that the active sites and N-glycosylation sites of the deduced protein were well conserved. Phylogenetic analysis revealed that RbCTSD is most closely related to the Mi-iuy croaker (Miichthys miiuy) cathepsin D. RbCTSD was ubiquitously expressed in all the examined tissues, predominantly in muscle and kidneys. RbCTSD mRNA expression was also examined in several tissues under conditions of bacterial and viral challenge. All examined tissues of fish infected with Edwardsiella tarda (E. tarda), Streptococcus iniae (S. iniae), and red sea bream iridovirus (RSIV) showed significant increases in RbCTSD expression compared with the control. In the kidney and spleen, RbCTSD mRNA expression was markedly upregulated following infection with all tested pathogens. These findings indicate that RbCTSD plays an important role in the innate immune response of rock bream. Furthermore, these results provide important information for the identification of other cathepsin D genes in various fish species.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Sang Hee Shim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Cheul-Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Ju-Won Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Chan-il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea.
| |
Collapse
|
44
|
Robischon M. Hugh's book and Krogh's animals: biodiversity and textbook examples in teaching. ADVANCES IN PHYSIOLOGY EDUCATION 2014; 38:195-8. [PMID: 25179607 PMCID: PMC4154260 DOI: 10.1152/advan.00042.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/15/2014] [Indexed: 05/30/2023]
Abstract
The medieval simile of the world as a book seems to anticipate modern notions of biodiversity as a key to insights and learning. This thought is translated into the practice of research in the August Krogh principle, which provides argumentative support for researchers who dare to venture beyond the range of commonly used models by choosing a new experimental organism for a particular scientific question. Established model organisms often hold high exploratory power to the researcher yet little explanatory power to the student, in particular when represented in a secondary source. This essay puts forward the suggestion that Krogh's principle applies to the use of organisms as instructional models and textbook examples too and encourages educators to continuously venture beyond established illustrative teaching examples in a continuous exploration of the "book of the world" and the "treasure house of nature."
Collapse
Affiliation(s)
- Marcel Robischon
- Fakultät für Lebenswissenschaften, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
45
|
Venugopal A, Siva Kumar N. Biochemical characterization of cathepsin D from the mussel Lamellidens corrianus. Comp Biochem Physiol B Biochem Mol Biol 2014; 169:25-30. [DOI: 10.1016/j.cbpb.2013.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 11/17/2022]
|
46
|
Meier K, Hansen MM, Normandeau E, Mensberg KLD, Frydenberg J, Larsen PF, Bekkevold D, Bernatchez L. Local adaptation at the transcriptome level in brown trout: evidence from early life history temperature genomic reaction norms. PLoS One 2014; 9:e85171. [PMID: 24454810 PMCID: PMC3891768 DOI: 10.1371/journal.pone.0085171] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/23/2013] [Indexed: 01/19/2023] Open
Abstract
Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change.
Collapse
Affiliation(s)
- Kristian Meier
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Canada
| | - Karen-Lise D. Mensberg
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jane Frydenberg
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | | | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Canada
| |
Collapse
|
47
|
Pooley NJ, Tacchi L, Secombes CJ, Martin SAM. Inflammatory responses in primary muscle cell cultures in Atlantic salmon (Salmo salar). BMC Genomics 2013; 14:747. [PMID: 24180744 PMCID: PMC3819742 DOI: 10.1186/1471-2164-14-747] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/26/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The relationship between fish health and muscle growth is critical for continued expansion of the aquaculture industry. The effect of immune stimulation on the expression of genes related to the energy balance of fish is poorly understood. In mammals immune stimulation results in major transcriptional changes in muscle, potentially to allow a reallocation of amino acids for use in the immune response and energy homeostasis. The aim of this study was to investigate the effects of immune stimulation on fish muscle gene expression. RESULTS Atlantic salmon (Salmo salar) primary muscle cell cultures were stimulated with recombinant (r)IL-1β, a major proinflammatory cytokine, for 24 h in order to simulate an acute immune response. The transcriptomic response was determined by RNA hybridization to a 4 × 44 K Agilent Atlantic salmon microarray platform. The rIL-1β stimulation induced the expression of genes related to both the innate and adaptive immune systems. In addition there were highly significant changes in the expression of genes related to regulation of the cell cycle, growth/structural proteins, proteolysis and lipid metabolism. Of interest were a number of IGF binding proteins that were differentially expressed, which may demonstrate cross talk between the growth and immune systems. CONCLUSION We show rIL-1β modulates the expression of not only immune related genes, but also that of genes involved in processes related to growth and metabolism. Co-stimulation of muscle cells with both rIGF-I and rIL-1β demonstrates cross talk between these pathways providing potential avenues for further research. This study highlights the potential negative effects of inflammation on muscle protein deposition and growth in fish and extends our understanding of energy allocation in ectothermic animals.
Collapse
Affiliation(s)
- Nicholas J Pooley
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Luca Tacchi
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Current address: Centre for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Christopher J Secombes
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Samuel AM Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
48
|
Morash AJ, Yu W, Le Moine CMR, Hills JA, Farrell AP, Patterson DA, McClelland GB. Genomic and Metabolic Preparation of Muscle in Sockeye Salmon Oncorhynchus nerka for Spawning Migration. Physiol Biochem Zool 2013; 86:750-60. [DOI: 10.1086/673376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Macrobrachium rosenbergii cathepsin L: molecular characterization and gene expression in response to viral and bacterial infections. Microbiol Res 2013; 168:569-79. [PMID: 23669240 DOI: 10.1016/j.micres.2013.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 11/20/2022]
Abstract
Cathepsin L (MrCathL) was identified from a constructed cDNA library of freshwater prawn Macrobrachium rosenbergii. MrCathL full-length cDNA is 1161 base pairs (bp) with an ORF of 1026bp which encodes a polypeptide of 342 amino acid (aa) long. The eukaryotic cysteine proteases, histidine and asparagine active site residues were identified in the aa sequence of MrCathL at 143-154, 286-296 and 304-323, respectively. The pair wise clustalW analysis of MrCathL showed the highest similarity (97%) with the homologous cathepsin L from Macrobrachium nipponense and the lowest similarity (70%) from human. Phylogenetic analysis revealed two distinct clusters of the invertebrates and vertebrates cathepsin L in the phylogenetic tree. MrCathL and cathepsin L from M. nipponense were clustered together, formed a sister group to cathepsin L of Penaeus monodon, and finally clustered to Lepeophtheirus salmonis. High level of (P<0.05) MrCathL gene expression was noticed in haemocyte and lowest in eyestalk. Furthermore, the MrCathL gene expression in M. rosenbergii was up-regulated in haemocyte by virus [M. rosenbergii nodovirus (MrNV) and white spot syndrome baculovirus (WSBV)] and bacteria (Vibrio harveyi and Aeromonas hydrophila). The recombinant MrCathL exhibited a wide range of activity in various pH between 3 and 10 and highest at pH 7.5. Cysteine proteinase (stefin A, stefin B and antipain) showed significant influence (100%) on recombinant MrCathL enzyme activity. The relative activity and residual activity of recombinant MrCathL against various metal ions or salts and detergent tested at different concentrations. These results indicated that the metal ions, salts and detergent had an influence on the proteinase activity of recombinant MrCathL. Conclusively, the results of this study imply that MrCathL has high pH stability and is fascinating object for further research on the function of cathepsin L in prawn innate immune system.
Collapse
|
50
|
How to die chemically? Whole body apoptosis. Arch Pharm Res 2013; 36:919-21. [PMID: 23591778 DOI: 10.1007/s12272-013-0122-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/04/2013] [Indexed: 01/04/2023]
Abstract
What would you do if your body decided to die when you were not ready? It appears that some biological program can shut down all bodily functions, in much the same way as apoptosis does so at the cellular level. Pacific salmon and annual cicada die after reproduction. How do they die chemically? Their programmed death after reproduction should have chemical signals. Similarly, pro-inflammatory cytokines, particularly tumor necrosis factor-α and interleukin-1β, could induce death in mammals. Acute massive production of them in sepsis and chronic tiny production in aging could lead to death. Thus, the mechanism of the whole body suicide program could be determined and some people could be rescued from this type of death by elucidating the death program. I propose that the concept of whole body apoptosis, defined as programmed whole body death, be adopted by scientific community.
Collapse
|