1
|
Fazil AZ, Gomes PIA, Sandamal RMK. Applicability of machine learning techniques to analyze Microplastic transportation in open channels with different hydro-environmental factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124389. [PMID: 38906408 DOI: 10.1016/j.envpol.2024.124389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
This research utilized machine learning to analyze experiments conducted in an open channel laboratory setting to predict microplastic transport with varying discharge, velocity, water depth, vegetation pattern, and microplastic density. Four machine learning (ML) models, incorporating Random Forest (RF), Decision Tree (DT), Extreme Gradient Boost (XGB) and K-Nearest Neighbor (KNN) algorithms, were developed and compared with the Linear Regression (LR) statistical model, using 75% of the data for training and 25% for validation. The predictions of ML algorithms were more accurate than the LR, while XGB and RF provided the best predictions. To explain the ML results, Explainable artificial intelligence (XAI) was employed by using Shapley Additive Explanations (SHAP) to predict the global behavior of variables. RF was the most reliable model, with a coefficient of correlation of 0.97 and a mean absolute percentage error of 1.8% after hyperparameter tuning. Results indicated that discharge, velocity, water depth, and vegetation all influenced microplastic transport. Discharge and vegetation enhanced and reduced microplastic transport, respectively, and showed a response to different vegetation patterns. A strong linear positive correlation (R2 = 0.8) was noted between microplastic density and retention. In the absence of dedicated microplastic transport analytical models and infeasibility of using classical sediment transport models in predicting microplastic transport, ML proved to be helpful. Moreover, the use of XAI will reduce the black-box nature of ML models with effective interpretation enhancing the trust of domain experts in ML predictions. The developed model offers a promising tool for real-world open channel predictions, informing effective management strategies to mitigate microplastic pollution.
Collapse
Affiliation(s)
- A Zakib Fazil
- Department of Civil Engineering, Sri Lanka Institute of Information Technology, Sri Lanka
| | - Pattiyage I A Gomes
- Department of Civil Engineering, Sri Lanka Institute of Information Technology, Sri Lanka.
| | - R M Kelum Sandamal
- Department of Civil Engineering, Sri Lanka Institute of Information Technology, Sri Lanka; Department of Process, Energy and Transport Engineering, Munster Technological University, Ireland
| |
Collapse
|
2
|
Vineetha VP, Suresh K, Pillai D. Impact of sub-chronic polystyrene nanoplastics exposure on hematology, histology, and endoplasmic reticulum stress-related protein expression in Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110982. [PMID: 38688406 DOI: 10.1016/j.cbpb.2024.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Nanoplastics (NPs) are one of the most hazardous marine litters, having the potential to cause far-reaching impacts on the environment and humankind. The effect of NPs on fish health has been studied, but their impact on the subcellular organelles remains unexplored. The present investigation studied the possible implications of polystyrene-nanoplastics (PS-NPs) on the hematology, tissue organization, and endoplasmic reticulum (ER) stress-related proteins in Nile tilapia (Oreochromis niloticus). Fish were exposed to ∼100 nm PS-NPs at environmentally relevant (0.1 mg/L), and sublethal (1, 10 mg/L) concentrations for 14 days through water exposure. The growth performance and hematological parameters such as erythrocytes, hemoglobin, hematocrit, and leucocytes decreased, while thrombocytes increased with PS-NPs dose-dependently. The gills, liver, kidney, and heart tissues displayed increasing degrees of pathology with increased concentrations of PS-NPs. The gills showed severe epithelial hyperplasia and lamellar fusion. The liver had an abstruse cellular framework, membrane breakage, and vacuolation. While glomerular and tubular atrophy was the most prominent pathology in the kidney tissue, the heart displayed extensive myofibrillar loss and disorderly arranged cardiac cells. The ER-stress-related genes such as bip, atf6, ire1, xbp1, pkr, and apoptotic genes such as casp3a, and bax were over-expressed, while, the anti-apoptotic bcl2 was under-expressed with increasing concentrations of PS-NPs. Immunohistochemistry and blotting results of GRP78, CHOP, EIF2S, and ATF6 in gills, liver, kidney, and heart tissues affirmed the translation to ER stress proteins. The results revealed the sub-lethal adverse effects and the activation of the ER-stress pathway in fish with sub-chronic exposure to PS-NPs.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India.
| | - Kummari Suresh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India.
| |
Collapse
|
3
|
Saygin H, Tilkili B, Kayisoglu P, Baysal A. Oxidative stress, biofilm-formation and activity responses of P. aeruginosa to microplastic-treated sediments: Effect of temperature and sediment type. ENVIRONMENTAL RESEARCH 2024; 248:118349. [PMID: 38309565 DOI: 10.1016/j.envres.2024.118349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Climate change and plastic pollution are the big environmental problems that the environment and humanity have faced in the past and will face in many decades to come. Sediments are affected by many pollutants and conditions, and the behaviors of microorganisms in environment may be influenced due to changes in sediments. Therefore, the current study aimed to explore the differential effects of various microplastics and temperature on different sediments through the metabolic and oxidative responses of gram-negative Pseudomonas aeruginosa. The sediments collected from various fields including beaches, deep-sea discharge, and marine industrial areas. Each sediment was extracted and then treated with various microplastics under different temperature (-18, +4, +20 and 35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed sediment samples were incubated with Pseudomonas aeruginosa to test bacterial activity, biofilm, and oxidative characteristics. The results showed that both the activity and the biofilm formation of Pseudomonas aeruginosa increased with the temperature of microplastic treatment in the experimental setups at the rates between an average of 2-39 % and 5-27 %, respectively. The highest levels of bacterial activity and biofilm formation were mainly observed in the beach area (average rate +25 %) and marine industrial (average rate +19 %) sediments with microplastic contamination, respectively. Moreover, oxidative characteristics significantly linked the bacterial activities and biofilm formation. The oxidative indicators of Pseudomonas aeruginosa showed that catalase and glutathione reductase were more influenced by microplastic contamination of various sediments than superoxide dismutase activities. For instance, catalase and glutathione reductase activities were changed between -37 and +169 % and +137 to +144 %, respectively; however, the superoxide dismutase increased at a rate between +1 and + 21 %. This study confirmed that global warming as a consequence of climate change might influence the effect of microplastic on sediments regarding bacterial biochemical responses and oxidation characteristics.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Pinar Kayisoglu
- Deptment of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Deptment of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
4
|
Errázuriz León R, Araya Salcedo VA, Novoa San Miguel FJ, Llanquinao Tardio CRA, Tobar Briceño AA, Cherubini Fouilloux SF, de Matos Barbosa M, Saldías Barros CA, Waldman WR, Espinosa-Bustos C, Hornos Carneiro MF. Photoaged polystyrene nanoplastics exposure results in reproductive toxicity due to oxidative damage in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123816. [PMID: 38508369 DOI: 10.1016/j.envpol.2024.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The increase of plastic production together with the incipient reuse/recycling system has resulted in massive discards into the environment. This has facilitated the formation of micro- and nanoplastics (MNPs) which poses major risk for environmental health. Although some studies have investigated the effects of pristine MNPs on reproductive health, the effects of weathered MNPs have been poorly investigated. Here we show in Caenorhabditis elegans that exposure to photoaged polystyrene nanoplastics (PSNP-UV) results in worse reproductive performance than pristine PSNP (i.e., embryonic/larval lethality plus a decrease in the brood size, accompanied by a high number of unfertilized eggs), besides it affects size and locomotion behavior. Those effects were potentially generated by reactive products formed during UV-irradiation, since we found higher levels of reactive oxygen species and increased expression of GST-4 in worms exposed to PSNP-UV. Those results are supported by physical-chemical characterization analyses which indicate significant formation of oxidative degradation products from PSNP under UV-C irradiation. Our study also demonstrates that PSNP accumulate predominantly in the gastrointestinal tract of C. elegans (with no accumulation in the gonads), being completely eliminated at 96 h post-exposure. We complemented the toxicological analysis of PSNP/PSNP-UV by showing that the activation of the stress response via DAF-16 is dependent of the nanoplastics accumulation. Our data suggest that exposure to the wild PSNP, i.e., polystyrene nanoplastics more similar to those actually found in the environment, results in more important reprotoxic effects. This is associated with the presence of degradation products formed during UV-C irradiation and their interaction with biological targets.
Collapse
Affiliation(s)
- Rocío Errázuriz León
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | | | | | | | | | | | - Marcela de Matos Barbosa
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto/SP, 14040-901, Brazil
| | | | | | - Christian Espinosa-Bustos
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | | |
Collapse
|
5
|
Sangwan S, Bhattacharyya R, Banerjee D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int 2024; 44:1093-1105. [PMID: 38407523 DOI: 10.1111/liv.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.
Collapse
Affiliation(s)
- Sonal Sangwan
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Wang Y, Xu K, Gao X, Wei Z, Han Q, Wang S, Du W, Chen M. Polystyrene nanoplastics with different functional groups and charges have different impacts on type 2 diabetes. Part Fibre Toxicol 2024; 21:21. [PMID: 38658944 PMCID: PMC11044502 DOI: 10.1186/s12989-024-00582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Increasing attention is being paid to the environmental and health impacts of nanoplastics (NPs) pollution. Exposure to nanoplastics (NPs) with different charges and functional groups may have different adverse effects after ingestion by organisms, yet the potential ramifications on mammalian blood glucose levels, and the risk of diabetes remain unexplored. RESULTS Mice were exposed to PS-NPs/COOH/NH2 at a dose of 5 mg/kg/day for nine weeks, either alone or in a T2DM model. The findings demonstrated that exposure to PS-NPs modified by different functional groups caused a notable rise in fasting blood glucose (FBG) levels, glucose intolerance, and insulin resistance in a mouse model of T2DM. Exposure to PS-NPs-NH2 alone can also lead the above effects to a certain degree. PS-NPs exposure could induce glycogen accumulation and hepatocellular edema, as well as injury to the pancreas. Comparing the effect of different functional groups or charges on T2DM, the PS-NPs-NH2 group exhibited the most significant FBG elevation, glycogen accumulation, and insulin resistance. The phosphorylation of AKT and FoxO1 was found to be inhibited by PS-NPs exposure. Treatment with SC79, the selective AKT activator was shown to effectively rescue this process and attenuate T2DM like lesions. CONCLUSIONS Exposure to PS-NPs with different functional groups (charges) induced T2DM-like lesions. Amino-modified PS-NPs cause more serious T2DM-like lesions than pristine PS-NPs or carboxyl functionalized PS-NPs. The underlying mechanisms involved the inhibition of P-AKT/P-FoxO1. This study highlights the potential risk of NPs pollution on T2DM, and provides a new perspective for evaluating the impact of plastics aging.
Collapse
Affiliation(s)
- Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Saygin H, Tilkili B, Karniyarik S, Baysal A. Culture dependent analysis of bacterial activity, biofilm-formation and oxidative stress of seawater with the contamination of microplastics under climate change consideration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171103. [PMID: 38402970 DOI: 10.1016/j.scitotenv.2024.171103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Temperature changes due to climate change and microplastic contamination are worldwide concerns, creating various problems in the marine environment. Therefore, this study was carried out to discover the impact of different temperatures of seawater exposed to different types of plastic materials on culture dependent bacterial responses and oxidative characteristics. Seawater was exposed to microplastics obtained from various plastic materials at different temperature (-18, +4, +20, and +35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed seawater samples were analyzed for bacterial activity, biofilm formation and oxidative characteristics (antioxidant, catalase, glutathione, and superoxide dismutase) using Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. The results showed that the activity and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus were affected through oxidative stress by catalase, glutathione, and superoxide dismutase due to the microplastic deformation by temperature changes. This study confirms that temperature changes as a result of climate change might influence microplastic degradation and their contamination impact in seawater in terms of bacterial metabolic and oxidation reactions.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Sinem Karniyarik
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
8
|
Skawina A, Dąbrowska A, Bonk A, Paterczyk B, Nowakowska J. Tracking the micro- and nanoplastics in the terrestrial-freshwater food webs. Bivalves as sentinel species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170468. [PMID: 38296093 DOI: 10.1016/j.scitotenv.2024.170468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Micro- (MPs) and nanoplastics (NPs) are currently ubiquitous in the ecosystems, and freshwater biota is still insufficiently studied to understand the global fate, transport paths, and consequences of their presence. Thus, in this study, we investigated the role of bivalves and a trophic transfer of MPs and NPs in an experimental food chain. The food chain consisted of terrestrial non-selective detritivore Dendrobaena (Eisenia) sp., freshwater benthic filter feeder Unio tumidus, and freshwater benthic detritivore-collectors Asellus aquaticus or Gammarus sp. Animals were exposed to different fluorescently labeled micro- and nanoplastics (PMMA 20 μm, nanoPS 15-18 nm, and 100 nm, PS 1 μm and 20 μm, PE from cosmetics) as well as to the faeces of animals exposed to plastics to assess their influence on the environmental transportation, availability to biota, and bioaccumulation of supplied particles. Damaged and intact fluorescent particles were observed in the faeces of terrestrial detritivores and in the droppings of aquatic filter feeders, respectively. They were also present in the guts of bivalves and of crustaceans which were fed with bivalve droppings. Bivalves (Unio tumidus, and additionally Unio pictorum, and Sphaerium corneum) produced droppings containing micro- and nanoparticles filtered from suspension and deposited them onto the tank bottom, making them available for broader feeding guilds of animals (e.g. collectors, like crustaceans). Finally, the natural ageing of PS and its morphological changes, leakage of the fluorescent labelling, and agglomeration of particles were demonstrated. That supports our hypothesis of the crucial role of the characterization of physical and chemical materials in adequately understanding the mechanisms of their interaction with biota. Microscopical methods (confocal, fluorescent, scanning electron) and Raman and FT-IR spectroscopy were used to track the particles' passage in a food web and monitor structural changes of the MPs' and NPs' surface.
Collapse
Affiliation(s)
- Aleksandra Skawina
- University of Warsaw, Faculty of Biology, Institute of Evolutionary Biology, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland; University of Warsaw, Faculty of Biology, Institute of Functional Biology and Ecology, Miecznikowa 1 Str., 02-096 Warsaw, Poland.
| | - Agnieszka Dąbrowska
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, Pasteura 1 Str., 02-093 Warsaw, Poland.
| | - Agata Bonk
- University of Bremen, Faculty 2 Biology, Chemistry Leobener Str., 28359 Bremen, Germany
| | - Bohdan Paterczyk
- University of Warsaw, Faculty of Biology, Imaging Laboratory, Miecznikowa 1 Str., 02-096 Warsaw, Poland
| | - Julita Nowakowska
- University of Warsaw, Faculty of Biology, Imaging Laboratory, Miecznikowa 1 Str., 02-096 Warsaw, Poland
| |
Collapse
|
9
|
Bakan B, Kalčec N, Liu S, Ilić K, Qi Y, Capjak I, Božičević L, Peranić N, Vrček IV. Science-based evidence on pathways and effects of human exposure to micro- and nanoplastics. Arh Hig Rada Toksikol 2024; 75:1-14. [PMID: 38548377 PMCID: PMC10978163 DOI: 10.2478/aiht-2024-75-3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024] Open
Abstract
Human exposure to plastic particles has raised great concern among all relevant stakeholders involved in the protection of human health due to the contamination of the food chain, surface waters, and even drinking water as well as due to their persistence and bioaccumulation. Now more than ever, it is critical that we understand the biological fate of plastics and their interaction with different biological systems. Because of the ubiquity of plastic materials in the environment and their toxic potential, it is imperative to gain reliable, regulatory-relevant, science-based data on the effects of plastic micro- and nanoparticles (PMNPs) on human health in order to implement reliable risk assessment and management strategies in the circular economy of plastics. This review presents current knowledge of human-relevant PMNP exposure doses, pathways, and toxic effects. It addresses difficulties in properly assessing plastic exposure and current knowledge gaps and proposes steps that can be taken to underpin health risk perception, assessment, and mitigation through rigorous science-based evidence. Based on the existing scientific data on PMNP adverse health effects, this review brings recommendations on the development of PMNP-specific adverse outcome pathways (AOPs) following the AOP Users' Handbook of the Organisation for Economic Cooperation and Development (OECD).
Collapse
Affiliation(s)
- Buket Bakan
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
- Atatürk University Faculty of Science, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Sijin Liu
- Chinese Academy of Sciences Research Centre for Eco-Environmental Sciences, Beijing, China
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Yu Qi
- Chinese Academy of Sciences Research Centre for Eco-Environmental Sciences, Beijing, China
| | - Ivona Capjak
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Lucija Božičević
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikolina Peranić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | |
Collapse
|
10
|
Zhai Y, Guo W, Li D, Chen B, Xu X, Cao X, Zhao L. Size-dependent influences of nanoplastics on microbial consortium differentially inhibiting 2, 4-dichlorophenol biodegradation. WATER RESEARCH 2024; 249:121004. [PMID: 38101052 DOI: 10.1016/j.watres.2023.121004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Nanoplastics (NPs), as a type of newly emerging pollutant, are ubiquitous in various environmental systems, one of which is coexistence with organic pollutants in wastewater, potentially influencing the pollutants' biodegradation. A knowledge gap exists regarding the influence of microbial consortium and NPs interactions on biodegradation efficiency. In this work, a 2,4-dichlorophenol (DCP) biodegradation experiment with presence of polystyrene nanoplastics (PS-NPs) with particle sizes of 100 nm (PS100) or 20 nm (PS20) was conducted to verify that PS-NPs had noticeable inhibitory effect on DCP biodegradation in a size-dependent manner. PS100 at 10 mg/L and 100 mg/L both prolonged the microbial stagnation compared to the control without PS-NPs; PS20 exacerbated greater, with PS20 at 100 mg/L causing a noticeable 6-day lag before the start-up of rapid DCP reduction. The ROS level increased to 1.4-fold and 1.8-fold under PS100 and PS20 exposure, respectively, while the elevated LDH under PS20 exposure indicated the mechanical damage to cell membrane by smaller NPs. PS-NPs exposure also resulted in a decrease in microbial diversity and altered the niches of microbial species, e.g., they decreased the abundance of some functional bacteria such as Brevundimonas and Comamonas, while facilitated some minor members to obtain more proliferation. A microbial network with higher complexity and less competition was induced to mediate PS-NPs stress. Functional metabolism responded differentially to PS100 and PS20 exposure. Specifically, PS100 downregulated amino acid metabolism, while PS20 stimulated certain pathways in response to more severe oxidative stress. Our findings give insights into PS-NPs environmental effects concerning microflora and biological degradation.
Collapse
Affiliation(s)
- Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
11
|
Ali N, Katsouli J, Marczylo EL, Gant TW, Wright S, Bernardino de la Serna J. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024; 99:104901. [PMID: 38061242 PMCID: PMC10749881 DOI: 10.1016/j.ebiom.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Jenny Katsouli
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Emma L Marczylo
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Timothy W Gant
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Stephanie Wright
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Baysal A, Soyocak A, Saygin H, Saridag AM. Exposure to phagolysosomal simulated fluid altered the cytotoxicity of PET micro(nano)plastics to human lung epithelial cells. Toxicol Mech Methods 2024; 34:72-97. [PMID: 37697451 DOI: 10.1080/15376516.2023.2256847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The occurrence of micro(nano)plastics into various environmental and biological settings influences their physicochemical and toxic behavior. Simulated body fluids are appropriate media for understanding the degradation, stability, and interaction with other substances of any material in the human body. When the particles enter the human body via inhalation, which is one of the avenues for micro(nano)plastics, they first come into contact with the lung lining fluid under neutral conditions and then are phagocytosed under acidic conditions to be removed. Therefore, it is important to examine the physicochemical transformation and toxicity characteristics after interaction with phagolysosomal simulant fluid (PSF). Here, we focused on exploring how the physicochemical differences (e.g. surface chemistry, elemental distribution, and surface charge) of micro(nano)plastics under pH 4.5 phagolysosome conditions impact cytotoxicity and the oxidative characteristics of lung epithelia cells. The cytotoxicity of lung epithelia cells to those treated with PSF and non-treated micro(nano)plastics was tested by various viability indicators including cell counting kit-8 (CCK-8), MTT, and LDH. Furthermore, the cytotoxicity background was examined through the oxidative processes (e.g. reactive oxygen species, antioxidant, superoxide dismutase (SOD), catalase, and reduced glutathione). The results showed that all tested surface physicochemical characteristics were significantly influenced by the phagolysosome conditions. The staged responses were observed with the treatment duration, and significant changes were calculated in carbonyl, carbon-nitrogen, and sulfonyl groups. Moreover, the negativity of the zeta potentials declined between exposure of 2-40 h and then increased at 80 h compared to control owing to the chemical functional groups and elemental distribution of the plastic particles. The tested viability indicators showed that the micro(nano)plastics treated with PSF were cytotoxic to the lung epithelia cells compared to non-treated micro(nano)plastics, and SOD was the dominant enzyme triggering cytotoxicity due to the particle degradation and instability.
Collapse
Affiliation(s)
- Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Turkey
| | - Ahu Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul Turkey
| | - Ayse Mine Saridag
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
13
|
Gong H, Li R, Li F, Xu L, Gan L, Li J, Huang H, Yan M, Wang J. Microplastic pollution in water environment of typical nature reserves and scenery districts in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166628. [PMID: 37640084 DOI: 10.1016/j.scitotenv.2023.166628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Microplastics were frequently detected in the ocean, freshwater environment and wastewater treatment plants. This study aims to fill up the knowledge gap of microplastic distribution in nature reserves and scenery districts. Microplastic samples were collected, the distribution characteristics were analyzed with a stereoscopic microscope and a Fourier transform infrared spectrometer, and the ecological risks of microplastic pollution were calculated. Microplastics were detected in all the collected water samples and the average abundances of microplastics in the surface water of eleven investigated nature reserves and scenery districts ranged from 542 to 5500 items/m3. The degrees of microplastic pollution of all the surveyed nature reserves and scenery districts were classified as hazard level I. Fiber microplastics represented the largest average proportion (67.4 %) and 91.7 % of the detected microplastics were smaller than 2 mm. Corresponding to the frequent detection of fiber microplastics, cotton was the most abundant (25.5 %) polymer type of the suspected microplastics, followed by polyamide (PA, 20.6 %), polyester (PET, 17.0 %), and cellulose (15.6 %). For the ecological risk of the microplastic polymers, six, two and three nature reserves and scenery districts were defined to be at hazard level I, II and III, respectively. In brief, microplastic pollution occurred in all the surveyed nature reserves/scenery districts and posed different degrees of ecological risks.
Collapse
Affiliation(s)
- Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Jingxian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Haisheng Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Liu J, Xu G, Zhao S, He J. Resilience and functional redundancy of methanogenic digestion microbiome safeguard recovery of methanogenesis activity under the stress induced by microplastics. MLIFE 2023; 2:378-388. [PMID: 38818270 PMCID: PMC10989149 DOI: 10.1002/mlf2.12090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/17/2023] [Accepted: 10/23/2023] [Indexed: 06/01/2024]
Abstract
Microplastics and nanoplastics are emerging pollutants that substantially influence biological element cycling in natural ecosystems. Plastics are also prevalent in sewage, and they accumulate in waste-activated sludge (WAS). However, the impacts of plastics on the methanogenic digestion of WAS and the underpinning microbiome remain underexplored, particularly during long-term operation. In this study, we found that short-term exposure to individual microplastics and nanoplastics (polyethylene, polyvinyl chloride, polystyrene, and polylactic acid) at a low concentration (10 particles/g sludge) slightly enhanced methanogenesis by 2.1%-9.0%, whereas higher levels (30-200 particles/g sludge) suppressed methanogenesis by 15.2%-30.1%. Notably, the coexistence of multiple plastics, particularly at low concentrations, showed synergistic suppression of methanogenesis. Unexpectedly, methanogenesis activity completely recovered after long-term exposure to plastics, despite obvious suppression of methanogenesis by initial plastic exposure. The inhibition of methanogenesis by plastics could be attributed to the stimulated generation of reactive oxygen species. The stress induced by plastics dramatically decreased the relative abundance of methanogens but showed marginal influence on putative hydrolytic and fermentation populations. Nonetheless, the digestion sludge microbiome exhibited resilience and functional redundancy, contributing to the recovery of methanogenesis during the long-term operation of digesters. Plastics also increased the complexity, modularity, and negative interaction ratios of digestion sludge microbiome networks, but their influence on community assembly varied. Interestingly, a unique plastisphere was observed, the networks and assembly of which were distinct from the sludge microbiome. Collectively, the comprehensive evaluation of the influence of microplastics and nanoplastics on methanogenic digestion, together with the novel ecological insights, contribute to better understanding and manipulating this engineered ecosystem in the face of increasing plastic pollution.
Collapse
Affiliation(s)
- Jinting Liu
- Department of Civil and Environmental EngineeringNational University of SingaporeSingapore
| | - Guofang Xu
- Department of Civil and Environmental EngineeringNational University of SingaporeSingapore
| | - Siyan Zhao
- Department of Civil and Environmental EngineeringNational University of SingaporeSingapore
| | - Jianzhong He
- Department of Civil and Environmental EngineeringNational University of SingaporeSingapore
| |
Collapse
|
15
|
Lee WJ, Oh S, Park JE, Hwang J, Eom H. Scalable, solvent-free transparent film-based air filter with high particulate matter 2.5 filtration efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165197. [PMID: 37391139 PMCID: PMC10300200 DOI: 10.1016/j.scitotenv.2023.165197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Over the course of the COVID-19 pandemic, people have realized the importance of wearing a mask. However, conventional nanofiber-based face masks impede communication between people because of their opacity. Moreover, it remains challenging to achieve both high filtration performance and transparency through fibrous mask filters without using harmful solvents. Herein, scalable transparent film-based filters with high transparency and collection efficiency are fabricated in a facile manner by means of corona discharging and punch stamping. Both methods improve the surface potential of the film while the punch stamping procedure generates micropores in the film, which enhances the electrostatic force between the film and particulate matter (PM), thereby improving the collection efficiency of the film. Moreover, the suggested fabrication method involves no nanofibers and harmful solvents, which mitigates the generation of microplastics and potential risks for the human body. The film-based filter provides a high PM2.5 collection efficiency of 99.9 % while maintaining a transparency of 52 % at the wavelength of 550 nm. This enables people to distinguish the facial expressions of a person wearing a mask composed of the proposed film-based filter. Moreover, the results of durability experiments indicate that the developed film-based filter is anti-fouling, liquid-resistant, microplastic-free and foldability.
Collapse
Affiliation(s)
- Woo Jin Lee
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea; Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seungtae Oh
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Jong-Eun Park
- Department of Mechanical Engineering, The State University of New York Korea, Incheon 21985, Republic of Korea
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hyeonjin Eom
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea.
| |
Collapse
|
16
|
Kabir MS, Wang H, Luster-Teasley S, Zhang L, Zhao R. Microplastics in landfill leachate: Sources, detection, occurrence, and removal. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100256. [PMID: 36941884 PMCID: PMC10024173 DOI: 10.1016/j.ese.2023.100256] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/01/2023]
Abstract
Due to the accumulation of an enormous amount of plastic waste from municipal and industrial sources in landfills, landfill leachate is becoming a significant reservoir of microplastics. The release of microplastics from landfill leachate into the environment can have undesirable effects on humans and biota. This study provides the state of the science regarding the source, detection, occurrence, and remediation of microplastics in landfill leachate based on a comprehensive review of the scientific literature, mostly in the recent decade. Solid waste and wastewater treatment residue are the primary sources of microplastics in landfill leachate. Microplastic concentration in raw and treated landfill leachate varied between 0-382 and 0-2.7 items L-1. Microplastics in raw landfill leachate are largely attributable to local plastic waste production and solid waste management practices. Polyethylene, polystyrene, and polypropylene are the most prevalent microplastic polymers in landfill leachate. Even though the colors of microplastics are primarily determined by their parent plastic waste, the predominance of light-colored microplastics in landfill leachate indicates long-term degradation. The identified morphologies of microplastics in leachate from all published sources contain fiber and fragments the most. Depending on the treatment method, leachate treatment processes can achieve microplastic removal rates between 3% and 100%. The review also provides unique perspectives on microplastics in landfill leachate in terms of remediation, final disposal, fate and transport among engineering systems, and source reduction, etc. The landfill-wastewater treatment plant loop and bioreactor landfills present unique difficulties and opportunities for managing microplastics induced by landfill leachate.
Collapse
Affiliation(s)
- Mosarrat Samiha Kabir
- Department of Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Stephanie Luster-Teasley
- Civil, Architectural and Environmental Engineering Department, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Lifeng Zhang
- Department of Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Renzun Zhao
- Civil, Architectural and Environmental Engineering Department, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
17
|
Saygin H, Soyocak A, Baysal A, Saridag AM. Characterizing the interaction between micro(nano)plastics and simulated body fluids and their impact on human lung epithelial cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:855-868. [PMID: 37550869 DOI: 10.1080/10934529.2023.2243190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Micro(nano)plastics are considered an emerging threat to human health because they can interact with biological systems. In fact, these materials have already been found in the human body, such as in the lungs. However, limited data are available on the behavior of these materials under biological conditions and their impact on human cells, specifically on alveolar epithelial cells. In this study, micro(nano)plastics were exposed to various simulated biological fluids (artificial lysosomal fluids and Gamble's solution) for 2-80 h. Pristine and treated plastic particles were characterized based on their surface chemistry, zeta potentials, and elemental composition. Various toxicological endpoints (mitochondrial membrane potential, lactate dehydrogenase, protein, and antioxidant levels) were examined using A549 lung carcinoma cells. The surface characteristics of the treated micro(nano)plastics and the toxicological endpoints of A549 cells were found to be influenced by the simulated biological media, specifically with high concentrations of the treated micro(nano)plastics and increasing exposure under biological conditions. Moreover, the toxicological endpoints were strongly linked to the chemistry of plastics and included multiple processes in response to the plastics; different biological pathways were obtained in artificial lysosomal fluid and Gamble's solution.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul, Turkey
| | - Ahu Soyocak
- Department of Medical Biology, Istanbul Aydin University, Istanbul, Turkey
| | - Asli Baysal
- Deptment of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | | |
Collapse
|
18
|
Pencik O, Durdakova M, Molnarova K, Kucsera A, Klofac D, Kolackova M, Adam V, Huska D. Microplastics and nanoplastics toxicity assays: A revision towards to environmental-relevance in water environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131476. [PMID: 37172431 DOI: 10.1016/j.jhazmat.2023.131476] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Plastic pollution poses a serious risk to the oceans, freshwater ecosystems, and land-based agricultural production. Most plastic waste enters rivers and then reaches the oceans, where its fragmentation process begins and the forming of microplastics (MPs) and nanoplastics (NPs). These particles increase their toxicity by the exposition to external factors and binding environmental pollutants, including toxins, heavy metals, persistent organic pollutants (POPs), halogenated hydrocarbons (HHCs), and other chemicals, which further and cumulatively increase the toxicity of these particles. A major disadvantage of many MNPs in vitro studies is that they do not use environmentally relevant microorganisms, which play a vital role in geobiochemical cycles. In addition, factors such as the polymer type, shapes, and sizes of the MPs and NPs, their exposure times and concentrations must be taken into account in in vitro experiments. Last but not least, it is important to ask whether to use aged particles with bound pollutants. All these factors affect the predicted effects of these particles on living systems, which may not be realistic if they are insufficiently considered. In this article, we summarize the latest findings on MNPs in the environment and propose some recommendations for future in vitro experiments on bacteria, cyanobacteria, and microalgae in water ecosystems.
Collapse
Affiliation(s)
- Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Michaela Durdakova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Katarina Molnarova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Attila Kucsera
- Department of Molecular Biology and Radiobiology, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Daniel Klofac
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic.
| |
Collapse
|
19
|
Li Y, Guo C, Zhang S, Ke C, Deng Y, Dang Z. Nanoplastics impacts on Thiobacillus denitrificans: Effects of size and dissolved organic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121592. [PMID: 37044254 DOI: 10.1016/j.envpol.2023.121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
The widespread distribution of nanoplastics and dissolved organic matter (DOM) in sewage raises concerns about the potential impact of DOM on the bioavailability of nanoplastics. In this study, the effects of different sizes (100 nm and 350 nm) of polystyrene nanoplastics (PS-NPs, 50 mg/L) and combined with 10 mg/L or 50 mg/L DOMs (fulvic acid, humic acid and sodium alginate) on the growth and denitrification ability of Thiobacillus denitrificans were investigated. Results showed that 100 nm PS-NPs (50 mg/L) cause a longer delay in the nitrate reduction (3 days) of T. denitrificans than 350 nm PS-NPs (2 days). Furthermore, the presence of DOM exacerbated the adverse effect of 100 nm PS-NPs on denitrification, resulting in a delay of 1-4 days to complete denitrification. Fulvic acid (50 mg/L) and humic acid (50 mg/L) had the most significant adverse effect on increasing 100 nm PS-NPs (50 mg/L), causing a reduction of 20 mmol/L nitrate by T. denitrificans in nearly 7 days. It is noteworthy that the presence of DOM did not modify the adverse effect of 350 nm PS-NPs on denitrification. Further analysis of toxicity mechanism of PS-NPs revealed that they could induce reactive oxygen species (ROS) and suppressed denitrification gene expression. The results suggested that DOM may assist in the cellular internalization of PS-NPs by inhibiting PS-NPs aggregation, leading to the increased ROS levels and accelerated T. denitrificans death. This study highlights the potential risk of nanoplastics to autotrophic denitrifying bacteria in the presence of DOM and provides new insights for the treatment of nitrogen-containing wastewater by T. denitrificans.
Collapse
Affiliation(s)
- Yuancheng Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, (Ministry of Education), Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, (Ministry of Education), Guangzhou, 510006, China.
| | - Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, (Ministry of Education), Guangzhou, 510006, China
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, (Ministry of Education), Guangzhou, 510006, China
| | - Yanping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, (Ministry of Education), Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, (Ministry of Education), Guangzhou, 510006, China
| |
Collapse
|
20
|
Yadav H, Khan MRH, Quadir M, Rusch KA, Mondal PP, Orr M, Xu EG, Iskander SM. Cutting Boards: An Overlooked Source of Microplastics in Human Food? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37220346 DOI: 10.1021/acs.est.3c00924] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plastic cutting boards are a potentially significant source of microplastics in human food. Thus, we investigated the impact of chopping styles and board materials on microplastics released during chopping. As chopping progressed, the effects of chopping styles on microplastic release became evident. The mass and number of microplastics released from polypropylene chopping boards were greater than polyethylene by 5-60% and 14-71%, respectively. Chopping on polyethylene boards was associated with a greater release of microplastics with a vegetable (i.e., carrots) than chopping without carrots. Microplastics showed a broad, bottom-skewed normal distribution, dominated by <100 μm spherical-shaped microplastics. Based on our assumptions, we estimated a per-person annual exposure of 7.4-50.7 g of microplastics from a polyethylene chopping board and 49.5 g of microplastics from a polypropylene chopping board. We further estimated that a person could be exposed to 14.5 to 71.9 million polyethylene microplastics annually, compared to 79.4 million polypropylene microplastics from chopping boards. The preliminary toxicity study of the polyethylene microplastics did not show adverse effects on the viability of mouse fibroblast cells for 72 h. This study identifies plastic chopping boards as a substantial source of microplastics in human food, which requires careful attention.
Collapse
Affiliation(s)
- Himani Yadav
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, United States
| | - Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kelly A Rusch
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, United States
| | | | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, United States
- Environmental and Conservation Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
21
|
Yang Y, Li R, Liu A, Xu J, Li L, Zhao R, Qu M, Di Y. How does the internal distribution of microplastics in Scylla serrata link with the antioxidant response in functional tissues? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121423. [PMID: 36906053 DOI: 10.1016/j.envpol.2023.121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Crabs can live in diverse lifestyles in both water and benthic environments, which are the basin of microplastics (MPs) inputs. Edible crabs with large consuming quantity, e.g., Scylla serrata were subjected to accumulate MPs in their tissues from surrounding environments and generate biological damages. However, no related research has been conducted. In order to accurately assess the potential risks to both crabs and humans consuming MPs contaminated crabs, S. serrata were exposed to different concentrations (2, 200 and 20,000 μg/L) of polyethylene (PE) microbeads (10-45 μm) for 3 days. The physiological conditions of crabs and a series of biological responses, including DNA damage, antioxidant enzymes activities and their corresponding gene expressions in functional tissues (gills and hepatopancreas) were investigated. PE-MPs accumulated in all tissues of crabs with concentration- and tissue-dependent manner, which was assumed to be via the internal distribution initialized by gills' respiration, filtration and transportation. Significantly increased DNA damages were observed in both gills and hepatopancreas under exposures, however, the physiological conditions of crabs showed no dramatic alterations. Under low and middle concentration exposures, gills energetically activated the first line of antioxidant defense to against oxidative stress, e.g., superoxide dismutase (SOD) and catalase (CAT), but lipid peroxidation damage still occurred under high concentration exposure. In comparison, SOD and CAT composed antioxidant defense in hepatopancreas tended to collapse under severe MPs exposure and the defense mechanism attempted to switch to the secondary antioxidant response by compensatively stimulating the activities of glutathione S-transferase (GST), glutathione peroxidase (GPx) and the content of glutathione (GSH). The diverse antioxidant strategies in gills and hepatopancreas were proposed to be closely related to the accumulation capacity of tissues. The results confirmed the relation between PE-MPs exposure and antioxidant defense in S. serrata, and will help to clarify the biological toxicity and corresponding ecological risks.
Collapse
Affiliation(s)
- Yingli Yang
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Ruofan Li
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316000, China; Hainan Institute of Zhejiang University, Sanya, 572024, China.
| |
Collapse
|
22
|
Liu J, Xu G, Zhao S, Chen C, Rogers MJ, He J. Mechanistic and microbial ecological insights into the impacts of micro- and nano- plastics on microbial reductive dehalogenation of organohalide pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130895. [PMID: 36758435 DOI: 10.1016/j.jhazmat.2023.130895] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Micro- and nano-plastics are prevalent in diverse ecosystems, but their impacts on biotransformation of organohalide pollutants and underpinning microbial communities remain poorly understood. Here we investigated the influence of micro- and nano-plastics on microbial reductive dehalogenation at strain and community levels. Generally, microplastics including polyethylene (PE), polystyrene (PS), polylactic acid (PLA), and a weathered microplastic mixture increased dehalogenation rate by 10 - 217% in both the Dehalococcoides isolate and enrichment culture, whereas the effects of polyvinyl chloride (PVC) and a defined microplastic mixture depended on their concentrations and cultures. Contrarily, nano-PS (80 nm) consistently inhibited dehalogenation due to increased production of reactive oxygen species. Nevertheless, the enrichment culture showed higher tolerance to nano-PS inhibition, implying crucial roles of non-dehalogenating populations in ameliorating nanoplastic inhibition. The variation in dehalogenation activity was linked to altered organohalide-respiring bacteria (OHRB) growth and reductive dehalogenase (RDase) gene transcription. Moreover, microplastics changed the community structure and benefited the enrichment of OHRB, favoring the proliferation of Dehalogenimonas. More broadly, the assembly of microbial communities on plastic biofilms was more deterministic than that in the planktonic cells, with more complex co-occurrence networks in the former. Collectively, these findings contribute to better understanding the fate of organohalides in changing environments with increasing plastic pollution.
Collapse
Affiliation(s)
- Jinting Liu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore.
| |
Collapse
|
23
|
Shen Y, Zhang M, Li Z, Cao S, Lou Y, Cong Y, Jin F, Wang Y. Long-Term Toxicity of 50-nm and 1-μm Surface-Charged Polystyrene Microbeads in the Brine Shrimp Artemia parthenogenetica and Role of Food Availability. TOXICS 2023; 11:356. [PMID: 37112583 PMCID: PMC10145996 DOI: 10.3390/toxics11040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Micro and nanoplastics (MNPs) as emerging contaminants have become a global environmental issue due to their small size and high bioavailability. However, very little information is available regarding their impact on zooplankton, especially when food availability is a limiting factor. Therefore, the present study aims at evaluating the long-term effects of two different sizes (50 nm and 1 μm) of amnio-modified polystyrene (PS-NH2) particles on brine shrimp, Artemia parthenogenetica, by providing different levels of food (microalgae) supply. Larvae were exposed to three environmentally relevant concentrations (5.5, 55, and 550 μg/L) of MNPs over a 14-days of exposure with two food levels, high (3 × 105~1 × 107 cells/mL), and low (1 × 105 cells/mL) food conditions. When exposed to high food levels, the survival, growth, and development of A. parthenogenetica were not negatively affected at the studied exposure concentrations. By comparison, when exposed to a low food level, a U shape trend was observed for the three measured effects (survival rate, body length, and instar). Significant interactions between food level and exposure concentration were found for all three measured effects (three-way ANOVA, p < 0.05). The activities of additives extracted from 50 nm PS-NH2 suspensions were below toxic levels, while those from 1-μm PS-NH2 showed an impact on artemia growth and development. Our results demonstrate the long-term risks posed by MNPs when zooplankton have low levels of food intake.
Collapse
Affiliation(s)
- Yu Shen
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Mingxing Zhang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuo Cao
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yadi Lou
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Fei Jin
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
24
|
Marczak D, Lejcuś K, Lejcuś I, Misiewicz J. Sustainable Innovation: Turning Waste into Soil Additives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2900. [PMID: 37049194 PMCID: PMC10095766 DOI: 10.3390/ma16072900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
In recent years, a dynamic increase in environmental pollution with textile waste has been observed. Natural textile waste has great potential for environmental applications. This work identifies potential ways of sustainably managing natural textile waste, which is problematic waste from sheep farming or the cultivation of fibrous plants. On the basis of textile waste, an innovative technology was developed to support water saving and plant vegetation- biodegradable water-absorbing geocomposites (BioWAGs). The major objective of this study was to determine BioWAG effectiveness under field conditions. The paper analyses the effect of BioWAGs on the increments in fresh and dry matter, the development of the root system, and the relative water content (RWC) of selected grass species. The conducted research confirmed the high efficiency of the developed technology. The BioWAGs increased the fresh mass of grass shoots by 230-420% and the root system by 130-200% compared with the control group. The study proved that BioWAGs are a highly effective technology that supports plant vegetation and saves water. Thanks to the reuse of waste materials, the developed technology is compatible with the assumptions of the circular economy and the goals of sustainable development.
Collapse
Affiliation(s)
- Daria Marczak
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| | - Krzysztof Lejcuś
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| | - Iwona Lejcuś
- Institute of Meteorology and Water Management-National Research Institute, 01-673 Warszawa, Poland
| | - Jakub Misiewicz
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| |
Collapse
|
25
|
Astray G, Soria-Lopez A, Barreiro E, Mejuto JC, Cid-Samamed A. Machine Learning to Predict the Adsorption Capacity of Microplastics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1061. [PMID: 36985954 PMCID: PMC10051191 DOI: 10.3390/nano13061061] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, there is an extensive production and use of plastic materials for different industrial activities. These plastics, either from their primary production sources or through their own degradation processes, can contaminate ecosystems with micro- and nanoplastics. Once in the aquatic environment, these microplastics can be the basis for the adsorption of chemical pollutants, favoring that these chemical pollutants disperse more quickly in the environment and can affect living beings. Due to the lack of information on adsorption, three machine learning models (random forest, support vector machine, and artificial neural network) were developed to predict different microplastic/water partition coefficients (log Kd) using two different approximations (based on the number of input variables). The best-selected machine learning models present, in general, correlation coefficients above 0.92 in the query phase, which indicates that these types of models could be used for the rapid estimation of the absorption of organic contaminants on microplastics.
Collapse
Affiliation(s)
- Gonzalo Astray
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, 32004 Ourense, Spain
| | - Anton Soria-Lopez
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, 32004 Ourense, Spain
| | - Enrique Barreiro
- Universidade de Vigo, Departamento de Informática, Escola Superior de Enxeñaría Informática, 32004 Ourense, Spain
| | - Juan Carlos Mejuto
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, 32004 Ourense, Spain
| | - Antonio Cid-Samamed
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, 32004 Ourense, Spain
| |
Collapse
|
26
|
Helal M, Hartmann NB, Khan FR, Xu EG. Time to integrate "One Health Approach" into nanoplastic research. ECO-ENVIRONMENT & HEALTH 2023; 2:18-20. [PMID: 38074454 PMCID: PMC10702910 DOI: 10.1016/j.eehl.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 10/16/2024]
Abstract
Image 1.
Collapse
Affiliation(s)
- Mohamed Helal
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Nanna B. Hartmann
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Farhan R. Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| |
Collapse
|
27
|
Zhou Y, Gui L, Wei W, Xu EG, Zhou W, Sokolova IM, Li M, Wang Y. Low particle concentrations of nanoplastics impair the gut health of medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106422. [PMID: 36773443 DOI: 10.1016/j.aquatox.2023.106422] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The environmental occurrence of nanoplastics (NPs) is now evident but their long-term impacts on organisms are unclear, limiting ecological and health risk assessment. We hypothesized that chronic exposure to low particle concentrations of NPs can result in gut-associated toxicity, and subsequently affect survival of fish. Japanese medaka Oryzias latipes were exposed to polystyrene NPs (diameter 100 nm; 0, 10, 104, and 106 items/L) for 3 months, and histopathology, digestive and antioxidant enzymes, immunity, intestinal permeability, gut microbiota, and mortality were assessed. NP exposures caused intestinal lesions, and increased intestinal permeability of the gut. The trypsin, lipase, and chymotrypsin activities were increased, but the amylase activity was decreased. Oxidative damage was reflected by the decreased superoxide dismutase and alkaline phosphatase and increased malondialdehyde, catalase, and lysozyme. The integrated biomarkers response index values of all NP-exposed medaka were significantly increased compared to the control group. Moreover, NP exposures resulted in a decrease of diversity and changed the intestinal microbiota composition. Our results provide new evidence that long-term NPs exposure impaired the health of fish at extremely low particle concentrations, suggesting the need for long-term toxicological studies resembling environmental particle concentrations when assessing the risk of NPs.
Collapse
Affiliation(s)
- Yinfeng Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Wenzhong Zhou
- Eco‑environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
28
|
The effect and a mechanistic evaluation of polystyrene nanoplastics on a mouse model of type 2 diabetes. Food Chem Toxicol 2023; 173:113642. [PMID: 36736609 DOI: 10.1016/j.fct.2023.113642] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Nanoplastics have become ubiquitous in the global environment and have attracted increasing attention. However, whether there is an influence between exposure to nanoplastics and diabetes is unclear. To determine the effects of exposure to Polystyrene nanoplastics (PS-NPs) and evaluate the underlying mechanisms, mice were orally exposed to PS-NPs at dosages of 1, 10, 30 mg/kg/day for 8 weeks, alone or combined with a high fat diet and streptozocin (STZ) injection. Our data showed that exposure to 30 mg/kg/day PS-NPs alone induced a significant increase in blood glucose, glucose intolerance and insulin resistance. Combined with a high fat diet and STZ injection, PS-NPs exposure markedly aggravated oxidative stress, glucose intolerance, insulin tolerance and insulin resistance, and induced lesions in the liver and pancreas. PS-NPs exposure could decrease the phosphorylation of AKT and GSK3β, and treatment with SC79, a selective AKT activator, could increase the level of AKT and GSK3β phosphorylation, effectively alleviating the increase in ROS levels in the liver or pancreas, and slightly attenuating the increase in fasting blood glucose levels and insulin resistance induced by PS-NPs exposure. This showed that exposure to PS-NPs aggravated type 2 diabetes and the underlying mechanism partly involved in the inhibition of AKT/GSK3β phosphorylation.
Collapse
|
29
|
Nunes BZ, Huang Y, Ribeiro VV, Wu S, Holbech H, Moreira LB, Xu EG, Castro IB. Microplastic contamination in seawater across global marine protected areas boundaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120692. [PMID: 36402421 DOI: 10.1016/j.envpol.2022.120692] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Despite the relatively rich literature on the omnipresence of microplastics in marine environments, the current status and ecological impacts of microplastics on global Marine Protected Areas (MPAs) are still unknown. Their ubiquitous occurrence, increasing volume, and ecotoxicological effects have made microplastic an emerging marine pollutant. Given the critical conservation roles of MPAs that aim to protect vulnerable marine species, biodiversity, and resources, it is essential to have a comprehensive overview of the occurrence, abundance, distribution, and characteristics of microplastics in MPAs including their buffer zones. Here, extensive data were collected and screened based on 1565 peer-reviewed literature from 2017 to 2020, and a GIS-based approach was applied to improve the outcomes by considering boundary limits. Microplastics in seawater samples were verified within the boundaries of 52 MPAs; after including the buffer zones, 1/3 more (68 MPAs) were identified as contaminated by microplastics. A large range of microplastic levels in MPAs was summarized based on water volume (0-809,000 items/m3) or surface water area (21.3-1,650,000,000 items/km2), which was likely due to discrepancy in sampling and analytical methods. Fragment was the most frequently observed shape and fiber was the most abundant shape. PE and PP were the most common and also most abundant polymer types. Overall, 2/3 of available data reported that seawater microplastic levels in MPAs were higher than 12,429 items/km2, indicating that global MPAs alone cannot protect against microplastic pollution. The current limitations and future directions were also discussed toward the post-2020 Global Biodiversity Framework goals.
Collapse
Affiliation(s)
| | - Yuyue Huang
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark
| | | | - Siqi Wu
- College of Environment and Ecology, Chongqing University, 400044, China
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark
| | | | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark.
| | - Italo B Castro
- Institute of Oceanography, Universidade Federal Do Rio Grande, Brazil; Institute of Marine Science, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
30
|
Perini DA, Parra-Ortiz E, Varó I, Queralt-Martín M, Malmsten M, Alcaraz A. Surface-Functionalized Polystyrene Nanoparticles Alter the Transmembrane Potential via Ion-Selective Pores Maintaining Global Bilayer Integrity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14837-14849. [PMID: 36417698 PMCID: PMC9974068 DOI: 10.1021/acs.langmuir.2c02487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although nanoplastics have well-known toxic effects toward the environment and living organisms, their molecular toxicity mechanisms, including the nature of nanoparticle-cell membrane interactions, are still under investigation. Here, we employ dynamic light scattering, quartz crystal microbalance with dissipation monitoring, and electrophysiology to investigate the interaction between polystyrene nanoparticles (PS NPs) and phospholipid membranes. Our results show that PS NPs adsorb onto lipid bilayers creating soft inhomogeneous films that include disordered defects. PS NPs form an integral part of the generated channels so that the surface functionalization and charge of the NP determine the pore conductive properties. The large difference in size between the NP diameter and the lipid bilayer thickness (∼60 vs ∼5 nm) suggests a particular and complex lipid-NP assembly that is able to maintain overall membrane integrity. In view of this, we suggest that NP-induced toxicity in cells could operate in more subtle ways than membrane disintegration, such as inducing lipid reorganization and transmembrane ionic fluxes that disrupt the membrane potential.
Collapse
Affiliation(s)
- D. Aurora Perini
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
| | - Elisa Parra-Ortiz
- Department
of Pharmacy, University of Copenhagen, DK-2100Copenhagen, Denmark
| | - Inmaculada Varó
- Institute
of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595Castellón, Spain
| | - María Queralt-Martín
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
| | - Martin Malmsten
- Department
of Pharmacy, University of Copenhagen, DK-2100Copenhagen, Denmark
- Department
of Physical Chemistry 1, University of Lund, SE-22100Lund, Sweden
| | - Antonio Alcaraz
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
- . Tel.: +34 964 72 8044
| |
Collapse
|
31
|
Jian M, Niu J, Li W, Huang Y, Yu H, Lai Z, Liu S, Xu EG. How do microplastics adsorb metals? A preliminary study under simulated wetland conditions. CHEMOSPHERE 2022; 309:136547. [PMID: 36167202 DOI: 10.1016/j.chemosphere.2022.136547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are widely detected in wetlands as emerging pollutants of global concern. Co-occurrence of MPs and trace metals in wetlands is common and the vector effects of MPs on other environmental pollutants have been increasingly reported. However, the interaction of different MPs and trace metals under environmentally realistic conditions is not well understood. Here, we investigated the adsorption capacity of MPs for metals under simulated conditions of Poyang Lake wetlands in Jiang Xi, China, a Ramsar site of international importance for conservation and sustainable use. ICP-MS was used to quantify the amount of adsorbed metals onto different types of MPs. SEM-EDS and micro-FTIR were used to examine the morphological and chemical characteristics of MPs before and after metal adsorption. The influence of internal (polymer types and particle sizes of MPs) and external factors (water pH values, organic matters, ion strength, and sediment) on metal adsorption was systematically investigated. Metal adsorption equilibrium was most achieved at 72 h. The adsorption capacity of MP types to metal ions tended to decrease as PP > PE > PS, and the amount of adsorbed metals decreased as Cu > Pb > Cd. The amount of adsorbed metals generally decreased with the increase of particle size of MPs. With the increase of water pH and K+ strength, the adsorption of metals by MPs showed an increasing and then decreasing trend; the adsorption capacity of MPs increased with the increase of fulvic acid. Under the simulated sedimentary conditions, the adsorption of different metals by MPs also tended to be Cu > Pb > Cd, which was mainly determined by metal concentrations in the sediments collected in situ. The results of this study improve our understanding of metal-MP interaction under simulated environmental conditions, shedding new light on the environmental behavior of MPs and metals in wetlands.
Collapse
Affiliation(s)
- Minfei Jian
- College of Life Science, Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Jiangxi Normal University, Nanchang, 330022, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| | - Jiarui Niu
- College of Life Science, Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Jiangxi Normal University, Nanchang, 330022, China
| | - Wenhua Li
- College of Life Science, Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuyue Huang
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Hao Yu
- Department of Materials Science, University of Oxford, OX2 6NN, UK
| | - Zheng Lai
- College of Life Science, Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Jiangxi Normal University, Nanchang, 330022, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Shuli Liu
- College of Life Science, Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Jiangxi Normal University, Nanchang, 330022, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark.
| |
Collapse
|
32
|
Wang J, Wu J, Cheng H, Wang Y, Fang Y, Wang L, Duan Z. Polystyrene microplastics inhibit the neurodevelopmental toxicity of mercury in zebrafish (Danio rerio) larvae with size-dependent effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120216. [PMID: 36152722 DOI: 10.1016/j.envpol.2022.120216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Insufficient evidence exists regarding the effects of microplastics (MPs) on the neuronal toxicity of heavy metals in the early stages of organisms. Herein, the effects of micro-polystyrene (μ-PS; 157 μm) and nano-polystyrene (n-PS; 100 nm) particles on the neurodevelopmental toxicity of mercury (Hg) in zebrafish embryos were compared. Zebrafish embryos exposed to Hg at the concentration of 0.1 mg L-1 revealed blood disorders, delayed hatching, and malformations such as pericardial oedema and tail deformity. The length of the larval head was significantly reduced (P < 0.01) and in vivo expression of atoh1a in the cerebellum of neuron-specific transgenic zebrafish Tg(atoh1a:dTomato) larvae was inhibited by 29.46% under the Hg treatment. Most of the toxic effects were inhibited by the combined exposure to μ-PS or n-PS with Hg, and n-PS decreased the neurodevelopmental toxicity of Hg more significantly than μ-PS. Metabolomic analysis revealed that in addition to inhibiting the amino acid metabolism pathway as in the μ-PS+Hg treatment, the n-PS+Hg treatment inhibited unsaturated fatty acid metabolism in zebrafish larvae, likely because of a greater reduction in Hg bioavailability, thus reducing the oxidative damage caused by Hg in the larvae. The combined effects of MPs and heavy metals differ greatly among different species and their targeted effects. We conclude that the combined toxicity mechanisms of MPs and heavy metals require further clarification.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jin Wu
- Tianjin Institute of Environment and Operational Medicine, Tianjin, the Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Haodong Cheng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yanjun Fang
- Tianjin Institute of Environment and Operational Medicine, Tianjin, the Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300071, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
33
|
Chandy M, Obal D, Wu JC. Elucidating effects of environmental exposure using human-induced pluripotent stem cell disease modeling. EMBO Mol Med 2022; 14:e13260. [PMID: 36285490 PMCID: PMC9641419 DOI: 10.15252/emmm.202013260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a powerful modeling system for medical discovery and translational research. To date, most studies have focused on the potential for iPSCs for regenerative medicine, drug discovery, and disease modeling. However, iPSCs are also a powerful modeling system to investigate the effects of environmental exposure on the cardiovascular system. With the emergence of e-cigarettes, air pollution, marijuana use, opioids, and microplastics as novel cardiovascular risk factors, iPSCs have the potential for elucidating the effects of these toxins on the body using conventional two-dimensional (2D) arrays and more advanced tissue engineering approaches with organoid and other three-dimensional (3D) models. The effects of these environmental factors may be enhanced by genetic polymorphisms that make some individuals more susceptible to the effects of toxins. iPSC disease modeling may reveal important gene-environment interactions that exacerbate cardiovascular disease and predispose some individuals to adverse outcomes. Thus, iPSCs and gene-editing techniques could play a pivotal role in elucidating the mechanisms of gene-environment interactions and understanding individual variability in susceptibility to environmental effects.
Collapse
Affiliation(s)
- Mark Chandy
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCAUSA
- Department of MedicineWestern UniversityLondonONCanada
- Department of Physiology and PharmacologyWestern UniversityLondonONCanada
| | - Detlef Obal
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCAUSA
- Department of Anesthesiology, Perioperative, and Pain MedicineStanford UniversityStanfordCAUSA
| | - Joseph C Wu
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCAUSA
- Department of Medicine, Division of Cardiovascular MedicineStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
34
|
Zhu X, Teng J, Xu EG, Zhao J, Shan E, Sun C, Wang Q. Toxicokinetics and toxicodynamics of plastic and metallic nanoparticles: A comparative study in shrimp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120069. [PMID: 36064064 DOI: 10.1016/j.envpol.2022.120069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastic is recognized as an emerging environmental pollutant due to the anticipated ubiquitous distribution, increasing concentration in the ocean, and potential adverse health effects. While our understanding of the ecological impacts of nanoplastics is still limited, we benefit from relatively rich toxicological studies on other nanoparticles such as nano metal oxides. However, the similarity and difference in the toxicokinetic and toxicodynamic aspects of plastic and metallic nanoparticles remain largely unknown. In this study, juvenile Pacific white shrimp Litopenaeus vannamei was exposed to two types of nanoparticles at environmentally relative low and high concentrations, i.e., 100 nm polystyrene nanoplastics (nano-PS) and titanium dioxide nanoparticles (nano-TiO2) via dietary exposure for 28 days. The systematic toxicological evaluation aimed to quantitatively compare the accumulation, excretion, and toxic effects of nano-PS and nano-TiO2. Our results demonstrated that both nanoparticles were ingested by L. vannamei with lower egestion of nano-TiO2 than nano-PS. Both nanoparticles inhibited the growth of shrimps, damaged tissue structures of the intestine and hepatopancreas, disrupted expression of immune-related genes, and induced intestinal microbiota dysbiosis. Nano-PS exposure caused proliferative cells in the intestinal tissue, and the disturbance to the intestinal microbes was also more serious than that of nano-TiO2. The results indicated that the effect of nano-PS on the intestinal tissue of L. vannamei was more severe than that of nano-TiO2 with the same particle size. The study provides new theoretical basis of the similarity and differences of their toxicity, and highlights the current lack of knowledge on various aspects of absorption, distribution, metabolism, and excretion (ADME) pathways of nanoplastics.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
35
|
Dang F, Wang Q, Yan X, Zhang Y, Yan J, Zhong H, Zhou D, Luo Y, Zhu YG, Xing B, Wang Y. Threats to Terrestrial Plants from Emerging Nanoplastics. ACS NANO 2022; 16:17157-17167. [PMID: 36200753 DOI: 10.1021/acsnano.2c07627] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoplastics are ubiquitous in ecosystems and impact planetary health. However, our current understanding on the impacts of nanoplastics upon terrestrial plants is fragmented. The lack of systematic approaches to evaluating these impacts limits our ability to generalize from existing studies and perpetuates regulatory barriers. Here, we undertook a meta-analysis to quantify the overall strength of nanoplastic impacts upon terrestrial plants and developed a machine learning approach to predict adverse impacts and identify contributing features. We show that adverse impacts are primarily associated with toxicity metrics, followed by plant species, nanoplastic mass concentration and size, and exposure time and medium. These results highlight that the threats of nanoplastics depend on a diversity of reactions across molecular to ecosystem scales. These reactions are rooted in both the spatial and functional complexities of nanoplastics and, as such, are specific to both the plastic characteristics and environmental conditions. These findings demonstrate the utility of interrogating the diversity of toxicity data in the literature to update both risk assessments and evidence-based policy actions.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, P.R. China
| | - Qingyu Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, P.R. China
- University of Chinese Academy of Sciences, Beijing100049, P.R. China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, P.R. China
| | - Yuanye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian361102, P.R. China
| | - Jiachen Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, P.R. China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, P.R. China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, P.R. China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, P.R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts01003, United States
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, P.R. China
- University of Chinese Academy of Sciences, Beijing100049, P.R. China
| |
Collapse
|
36
|
Arikan B, Alp FN, Ozfidan-Konakci C, Yildiztugay E, Turan M, Cavusoglu H. The impacts of nanoplastic toxicity on the accumulation, hormonal regulation and tolerance mechanisms in a potential hyperaccumulator - Lemna minor L. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129692. [PMID: 35963084 DOI: 10.1016/j.jhazmat.2022.129692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution, which is currently one of the most striking problems of our time, raises concerns about the dispersal of micro and nano-sized plastic particles in ecosystems and their toxic effects on living organisms. This study was designed to reveal the toxic effects of polystyrene nanoplastic (PS NP) exposure on the freshwater macrophyte Lemna minor. In addition, elucidating the interaction of this aquatic plant, which is used extensively in the phytoremediation of water contaminants and wastewater treatment facilities, with nanoplastics will guide the development of remediation techniques. For this purpose, we examined nanoplastic accumulation, oxidative stress markers, photosynthetic efficiency, antioxidant system activity and phytohormonal changes in L. minor leaves subjected to PS NP stress (P-1, 100 mg L-1; P-2, 200 mg L-1 PS NP). Our results showed no evidence of PS NP-induced oxidative damage in P-1 group plants, although PS NP accumulation reached 56 µg g-1 in the leaves. Also, no significant changes in chlorophyll a fluorescence parameters were observed in this group, indicating unaffected photosynthetic efficiency. PS NP exposure triggered the antioxidant system in L. minor plants and resulted in a 3- and 4.6-fold increase in superoxide dismutase (SOD) activity in the P-1 and P-2 groups. On the other hand, high-dose PS NP treatment resulted in insufficient antioxidant activity in the P-2 group and increased hydrogen peroxide (H2O2) and lipid peroxidation (TBARS contents) by 25 % and 17 % compared to the control plants. Furthermore, PS NP exposure triggered abscisic acid biosynthesis (two-fold in the P-1 and three-fold in the P-2 group), which is also involved in regulating the stress response. In conclusion, L. minor plants tolerated NP accumulation without growth suppression, oxidative stress damage and limitations in photosynthetic capacity and have the potential to be used in remediation studies of NP-contaminated waters.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Metin Turan
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, 34755, İstanbul, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
37
|
Lee SE, Yi Y, Moon S, Yoon H, Park YS. Impact of Micro- and Nanoplastics on Mitochondria. Metabolites 2022; 12:897. [PMID: 36295799 PMCID: PMC9612075 DOI: 10.3390/metabo12100897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondria are highly dynamic cellular organelles that perform crucial functions such as respiration, energy production, metabolism, and cell fate decisions. Mitochondrial damage and dysfunction critically lead to the pathogenesis of various diseases including cancer, diabetes, and neurodegenerative and cardiovascular disorders. Mitochondrial damage in response to environmental contaminant exposure and its association with the pathogenesis of diseases has also been reported. Recently, persistent pollutants, such as micro- and nanoplastics, have become growing global environmental threats with potential health risks. In this review, we discuss the impact of micro- and nanoplastics on mitochondria and review current knowledge in this field.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, #26 Kyungheedae-gil, Dongdaemun-gu, Seoul 02447, Korea
| | - Yoojung Yi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sangji Moon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyunkyung Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, #26 Kyungheedae-gil, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
38
|
Liu L, Liu B, Zhang B, Ye Y, Jiang W. Polystyrene micro(nano)plastics damage the organelles of RBL-2H3 cells and promote MOAP-1 to induce apoptosis. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129550. [PMID: 35999725 DOI: 10.1016/j.jhazmat.2022.129550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The ubiquity of microplastics increases the exposure risks and health threats to humans. In this study, rat basophilic leukemia (RBL-2H3) cells were exposed to polystyrene particles (PS-particles) of 50 nm, 500 nm and 5 µm to investigate organelle damage and the mechanism of cell death. PS-particles induced oxidative stress, which in turn led to mitochondrial and lysosomal damage, arrested the cell cycle in the G0/G1 phase, and finally caused apoptosis. Anti-apoptotic genes (Bcl-2) were down regulated, and pro-apoptotic genes (Bax) and a key gene (caspase-3) in apoptosis were upregulated. The molecular mechanism of apoptosis was further explored via the combination of transcriptome sequencing, RT-qPCR verification and small interfering RNA (siRNA) technology. The modulator of apoptosis-1 (MOAP-1) was significantly upregulated, and apoptosis was abolished by knocking down MOAP-1. This finding clarifies that PS-particles promote MOAP-1 to induce apoptosis. Hence, PS-particles may promote the binding of MOAP-1 and Bax, which ultimately activates caspase-3 and causes apoptosis through the mitochondrial pathway. The 50-nm PS-particles resulted in the most serious mitochondrial damage and apoptosis. Eventually, PS-particles cause oxidative stress, damage organelles and induce apoptosis by promoting MOAP-1. Altogether, our study emphasizes the need to assess the cytotoxicity of micro(nano)plastics and helps to predict the health risks.
Collapse
Affiliation(s)
- Ling Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China; Marine College, Shandong University, Weihai 264209, China
| | - Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Bowen Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiyuan Ye
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
39
|
Liu A, Zheng M, Qiu Y, Hua Y, Li Y, Jiang Y, Ning K, Hu S, Wang L. Study of the scavenger and vector roles of microplastics for polyhalocarbazoles under simulated gastric fluid conditions. ENVIRONMENTAL RESEARCH 2022; 212:113565. [PMID: 35623441 DOI: 10.1016/j.envres.2022.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Microplastics entering the digestive system of living organisms can serve as a carrier of hydrophobic organic pollutants (HOPs), increasing their exposure levels and the health risks they pose to both humans and animals. The desorption kinetics of six polyhalocarbazoles (PHCZs) from 5 mm and 0.15 mm polypropylene (PP) and polyvinyl chloride (PVC) microplastic particles were assessed using a combined microplastics and food system, representing the gastric system of vertebrates and invertebrates. Results showed that the chemical transfer of PHCZs is biphasic and reversible, with rapid exchange occurring within 2-48 h, followed by a period of slow transfer, which continues for weeks to months. The desorption capacity of PHCZs loaded on 0.15 mm microplastic particles was greater than that of 5 mm particles. The bioavailability percentage of PHCZ congeners for PP (24.2%-65.3%) and PVC (43.5%-57.2%) in the vertebrate fluid system were all lower than those in the invertebrate system (34.2%-70.7% for PP and 56.3%-72.7% for PVC, respectively). These findings indicate that physiological conditions, such as polarity, ingestion fluid, and microplastic affect the desorption of PHCZs from microplastics. In addition, desorption from PP was inhibited by the presence of foodstuff loaded with PHCZs due to competition, while desorption from PVC was not significantly affected by the presence of PHCZs contaminant food. Microplastics could provide a cleaning function in gastric fluid systems containing contaminated foodstuff, especially PP, which was capable of competitive adsorption of PHCZs from food. Few investigations have focused on the adverse effects of microplastic ingestion on human health, particularly in their role as vectors for HOPs, compared to other routes of exposure and transport. Therefore, these findings provide valuable insight into the health risks associated with dietary intake of microplastics and HOPs.
Collapse
Affiliation(s)
- Aifeng Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ying Qiu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yi Hua
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ying Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yuqing Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ke Ning
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shanmin Hu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ling Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
40
|
Mészáros E, Bodor A, Szierer Á, Kovács E, Perei K, Tölgyesi C, Bátori Z, Feigl G. Indirect effects of COVID-19 on the environment: How plastic contamination from disposable surgical masks affect early development of plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129255. [PMID: 35739774 PMCID: PMC9158377 DOI: 10.1016/j.jhazmat.2022.129255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 05/23/2023]
Abstract
Personal protective equipment, used extensively during the COVID-19 pandemic, heavily burdened the environment due to improper waste management. Owing to their fibrous structure, layered non-woven polypropylene (PP) disposable masks release secondary fragments at a much higher rate than other plastic waste types, thus, posing a barely understood new form of ecological hazard. Here we show that PP mask fragments of different sizes induce morphogenic responses in plants during their early development. Using in vitro systems and soil-filled rhizotrons, we found that several PP mask treatments modified the root growth of Brassica napus (L.) regardless of the experimental system. The environment around the root and mask fragments seemed to influence the effect of PP fabric fragment contamination on early root growth. In soil, primary root length was clearly inhibited by larger PP mask fragments at 1 % concentration, while the two smallest sizes of applied mask fragments caused distinct, concentration-dependent changes in the lateral root numbers. Our results indicate that PP can act as a stressor: contamination by PP surgical masks affects plant growth and hence, warrants attention. Further investigations regarding the effects of plastic pollution on plant-soil interactions involving various soil types are urgently needed.
Collapse
Affiliation(s)
- Enikő Mészáros
- Department of Plant Biology, University of Szeged, Hungary
| | - Attila Bodor
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Department of Biotechnology, University of Szeged, Hungary
| | - Ádám Szierer
- Department of Plant Biology, University of Szeged, Hungary
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Hungary
| | | | - Zoltán Bátori
- Department of Ecology, University of Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Hungary.
| |
Collapse
|
41
|
Gao T, Sun B, Xu Z, Chen Q, Yang M, Wan Q, Song L, Chen G, Jing C, Zeng EY, Yang G. Exposure to polystyrene microplastics reduces regeneration and growth in planarians. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128673. [PMID: 35303662 DOI: 10.1016/j.jhazmat.2022.128673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 05/10/2023]
Abstract
The potential adverse effects of microplastics (MPs) on ecosystems and human health have received much attention in recent years. However, only limited data are available on the mechanisms for the uptake, distribution, and effects of MPs in freshwater organisms, especially with respect to tissue repair, regeneration and impairment of stem cell functions. To address this knowledge gap, we conducted exposure experiments in which planarians (Dugesia japonica) were exposed to polystyrene (PS)-MPs mixed in liver homogenate and examined the tissue growth and regeneration, stem cell functions, and oxidative stress. The body and blastema areas decreased upon exposure to PS-MPs, indicating that the growth and regeneration of planarians were delayed. The proliferation and differentiation processes of stem cells were inhibited, and the proportion of mitotic stem cells decreased, which may be related to the activation of the TGFβ/SMAD4 and Notch signaling pathways. The enhancement of antioxidant enzyme activities and malondialdehyde on the first day of exposure to PS-MPs confirmed the oxidative stress response of planarians to PS-MPs. The present study demonstrated the likelihood of biotoxicity induced by PS-MPs. These results will provide clues for further investigations into the potential risks of PS-MPs to human stem cells.
Collapse
Affiliation(s)
- Tianyu Gao
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Bingbing Sun
- School of Environment, Jinan University, Guangzhou 510632, China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenbiao Xu
- College of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Qiaoyun Chen
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Meng Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qinli Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Linxia Song
- College of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Eddy Y Zeng
- School of Environment, Jinan University, Guangzhou 510632, China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
42
|
Trevisan R, Ranasinghe P, Jayasundara N, Di Giulio RT. Nanoplastics in Aquatic Environments: Impacts on Aquatic Species and Interactions with Environmental Factors and Pollutants. TOXICS 2022; 10:toxics10060326. [PMID: 35736934 PMCID: PMC9230143 DOI: 10.3390/toxics10060326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022]
Abstract
Plastic production began in the early 1900s and it has transformed our way of life. Despite the many advantages of plastics, a massive amount of plastic waste is generated each year, threatening the environment and human health. Because of their pervasiveness and potential for health consequences, small plastic residues produced by the breakdown of larger particles have recently received considerable attention. Plastic particles at the nanometer scale (nanoplastics) are more easily absorbed, ingested, or inhaled and translocated to other tissues and organs than larger particles. Nanoplastics can also be transferred through the food web and between generations, have an influence on cellular function and physiology, and increase infections and disease susceptibility. This review will focus on current research on the toxicity of nanoplastics to aquatic species, taking into account their interactive effects with complex environmental mixtures and multiple stressors. It intends to summarize the cellular and molecular effects of nanoplastics on aquatic species; discuss the carrier effect of nanoplastics in the presence of single or complex environmental pollutants, pathogens, and weathering/aging processes; and include environmental stressors, such as temperature, salinity, pH, organic matter, and food availability, as factors influencing nanoplastic toxicity. Microplastics studies were also included in the discussion when the data with NPs were limited. Finally, this review will address knowledge gaps and critical questions in plastics’ ecotoxicity to contribute to future research in the field.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88037-000, Brazil
- Correspondence:
| | - Prabha Ranasinghe
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| |
Collapse
|
43
|
Bioanalytical approaches for the detection, characterization, and risk assessment of micro/nanoplastics in agriculture and food systems. Anal Bioanal Chem 2022; 414:4591-4612. [PMID: 35459968 DOI: 10.1007/s00216-022-04069-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022]
Abstract
This review discusses the most recent literature (mostly since 2019) on the presence and impact of microplastics (MPs, particle size of 1 μm to 5 mm) and nanoplastics (NPs, particle size of 1 to 1000 nm) throughout the agricultural and food supply chain, focusing on the methods and technologies for the detection and characterization of these materials at key entry points. Methods for the detection of M/NPs include electron and atomic force microscopy, vibrational spectroscopy (FTIR and Raman), hyperspectral (bright field and dark field) and fluorescence imaging, and pyrolysis-gas chromatography coupled to mass spectrometry. Microfluidic biosensors and risk assessment assays of MP/NP for in vitro, in vivo, and in silico models have also been used. Advantages and limitations of each method or approach in specific application scenarios are discussed to highlight the scientific and technological obstacles to be overcome in future research. Although progress in recent years has increased our understanding of the mechanisms and the extent to which MP/NP affects health and the environment, many challenges remain largely due to the lack of standardized and reliable detection and characterization methods. Most of the methods available today are low-throughput, which limits their practical application to food and agricultural samples. Development of rapid and high-throughput field-deployable methods for onsite screening of MP/NPs is therefore a high priority. Based on the current literature, we conclude that detecting the presence and understanding the impact of MP/NP throughout the agricultural and food supply chain require the development of novel deployable analytical methods and sensors, the combination of high-precision lab analysis with rapid onsite screening, and a data hub(s) that hosts and curates data for future analysis.
Collapse
|
44
|
Cheng H, Duan Z, Wu Y, Wang Y, Zhang H, Shi Y, Zhang H, Wei Y, Sun H. Immunotoxicity responses to polystyrene nanoplastics and their related mechanisms in the liver of zebrafish (Danio rerio) larvae. ENVIRONMENT INTERNATIONAL 2022; 161:107128. [PMID: 35134711 DOI: 10.1016/j.envint.2022.107128] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics in aquatic environments may induce adverse immunotoxicity effects in fish. However, there is insufficient evidence on the visible immunotoxicity endpoints in the larval stages of fish. The liver plays an important role in systemic and local innate immunity in the fish. In this study, the hepatic inflammatory effects of polystyrene (PS) nanoplastic particles (NPs: 100 and 50 nm) and micron PS particles on transgenic zebrafish (Danio rerio) larvae were estimated using fluorescent-labeled neutrophils, macrophages, and liver-type inflammatory binding protein (fabp10a). Particles with smaller size induced higher aggregations of neutrophils and apoptosis of macrophages in the abdomen of the larvae, corresponding to greater hepatic inflammation in the larvae. NPs increased the expression of fabp10a in the larval livers in a dose- and size-dependent manner. PS particles of 50 nm at a concentration of 0.1 mg·L-1 increased the expression of fabp10a in the larval liver by 21.90% (P < 0.05). The plausible mechanisms of these effects depend on their distribution and the generation of reactive oxygen species in the larvae. Metabonomic analysis revealed that the metabolic pathways of catabolic processes, amino acids, and purines were highly promoted by NPs, compared to micron PS particles. NPs also activate steroid hormone biosynthesis in zebrafish larvae, which may lead to the occurrence of immune-related diseases. For the first time, the liver was identified as the target organ for the immunotoxicity effects of NPs in the larval stage of fish.
Collapse
Affiliation(s)
- Haodong Cheng
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology / School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhenghua Duan
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology / School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; MOE Key Laboratory on Pollution Processes and Environmental Criteria / College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yinghong Wu
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yudi Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology / School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haihong Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology / School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yansong Shi
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology / School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huajing Zhang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria / College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanjie Wei
- Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456, China
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria / College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
45
|
Xu L, Han L, Li J, Zhang H, Jones K, Xu EG. Missing relationship between meso- and microplastics in adjacent soils and sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127234. [PMID: 34583166 DOI: 10.1016/j.jhazmat.2021.127234] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Meso- and microplastics (MMPs) have attracted attention as globally dispersed environmental pollutants. However, little is known about the transfers of MMPs between aquatic and terrestrial systems. A large watershed-estuarine area of Bohai Sea was used as a case study, and soils and sediments were sampled adjacent to each other at a wide range of sites. MMPs were detected in all sediments (6.7-320 MMPs/kg) and soils (40-980 MMPs/kg), with the average abundance in soils double that in sediments on a dry mass basis. MMPs < 1 mm were most abundant and the dominant shape was film in both sediments and soils. Over twenty polymer types were detected and their compositions in sediments and soils were different. MMP abundance in sediments was lower in the upper catchment than the lower catchment, while the abundance of soil MMPs was the opposite. Despite the proximity of the sampling locations, no clear relationship was identified between the soil and sediment MMPs, suggesting low transfer between the two compartments and high heterogeneity of the sources. The missing associations between aquatic and terrestrial MMPs should be systematically examined in future studies, which is crucial for understanding the environmental fate and impacts of MMPs.
Collapse
Affiliation(s)
- Li Xu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Lihua Han
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Kevin Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark.
| |
Collapse
|
46
|
Li Y, Xu M, Zhang Z, Halimu G, Li Y, Li Y, Gu W, Zhang B, Wang X. In vitro study on the toxicity of nanoplastics with different charges to murine splenic lymphocytes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127508. [PMID: 34688005 DOI: 10.1016/j.jhazmat.2021.127508] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Nanoplastics can be ingested by organisms and penetrate biological barriers to affect multiple physiological functions. However, few studies have focused on the effects of nanoplastics on the mammalian immune system. We evaluated the effects and underlying mechanism of nanoplastics of varying particle sizes and surface charges on murine splenic lymphocytes. We found that nanoplastics penetrated into splenic lymphocytes and that nanoplastics of a diameter of 50 nm were absorbed more efficiently by the cells. The nanoplastics decreased cell viability, induce cell apoptosis, up-regulated apoptosis-related protein expression, elicited the production of reactive oxygen species, altered mitochondrial membrane potential, and impaired mitochondrial function. Positively charged nanoplastics exerted the strongest toxicity. Negatively charged and uncharged nanoplastics caused oxidative stress and mitochondrial structural damage in lymphocytes, while positively charged nanoplastics induced endogenous apoptosis directly. Moreover, nanoplastics inhibited the expression of activated T cell markers on the T cell surface, while inhibiting the differentiation of CD8+ T cells and the expression of helper T cell cytokines. In terms of the mechanism, a series of key signaling molecules in the pathways of T cell activation and function were markedly down-regulated after exposure to nanoplastics.
Collapse
Affiliation(s)
- Yuqi Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Pollution Ecology and Environment Engineering, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China.
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Gulinare Halimu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Yansheng Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Bowen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China
| | - Xiujuan Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Pollution Ecology and Environment Engineering, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China
| |
Collapse
|
47
|
Spanò C, Muccifora S, Ruffini Castiglione M, Bellani L, Bottega S, Giorgetti L. Polystyrene nanoplastics affect seed germination, cell biology and physiology of rice seedlings in-short term treatments: Evidence of their internalization and translocation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:158-166. [PMID: 35074726 DOI: 10.1016/j.plaphy.2022.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 05/06/2023]
Abstract
Agroecosystems represent more and more a huge long-term sink for plastic compounds which inevitably undergo fragmentation, generating micro- and nano-plastics, with potential adverse effects on soil chemistry and living organisms. The present work was focused on the short-term effects of two different concentrations of polystyrene nanoplastics (PSNPs) (0.1 or 1 g L-1 suspensions) on rice seedlings starting from seed germination, hypothesizing that possible acute effects on seedlings could depend on oxidative damage trigged by PSNPs internalization. As shown by TEM analysis, PSNPs were absorbed by roots and translocated to the shoots, affected root cell ultrastructure, the germination process, seedling growth and root mitotic activity, inducing cytogenetic aberration. Treatments were not correlated with increase in oxidative stress markers, but rather with a different pattern of their localization both in roots and in shoots, impairing H2O2 homeostasis and membrane damage, despite the adequate antioxidant response recorded. The harmful effects of PSNPs on cell biology and physiology of rice seedlings could be caused not only by a direct action by the PSNPs but also by changes in the production/diffusion of ROS at the tissue/cellular level.
Collapse
Affiliation(s)
- Carmelina Spanò
- Department of Biology, University of Pisa, Via Ghini 13, 56126, Pisa, Italy; Centre for Climate Change Impact, University of Pisa, 56124, Pisa, Italy
| | - Simonetta Muccifora
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, Via Ghini 13, 56126, Pisa, Italy; Centre for Climate Change Impact, University of Pisa, 56124, Pisa, Italy.
| | - Lorenza Bellani
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, Via Ghini 13, 56126, Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
48
|
Qin L, Duan Z, Cheng H, Wang Y, Zhang H, Zhu Z, Wang L. Size-dependent impact of polystyrene microplastics on the toxicity of cadmium through altering neutrophil expression and metabolic regulation in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118169. [PMID: 34536643 DOI: 10.1016/j.envpol.2021.118169] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Insufficient evidence exists regarding the visible physiological toxic endpoints of MPs exposures on zebrafish larvae due to their small sizes. Herein, the impacts of micro-polystyrene particles (μ-PS) and 100 nm polystyrene particles (n-PS) on the toxicity of cadmium (Cd) through altering neutrophil expressions were identified and quantified in the transgenic zebrafish (Danio rerio) larvae Tg(lyz:DsRed2), and the effects were size-dependent. When exposed together with μ-PS, the amount of neutrophils in Cd treated zebrafish larvae decreased by 25.56% through reducing Cd content in the larvae. By contrast, although n-PS exposure caused lower Cd content in the larvae, the expression of neutrophils under their combined exposure remained high. The mechanism of immune toxicity was analyzed based on the results of metabonomics. n-PS induced high oxidative stress in the larvae, which promoted taurine metabolism and unsaturated fatty biosynthesis in n-PS + Cd treatment. This observation was accordance with the significant inhibition of the activities of superoxide dismutase and catalase enzymes detected in their combined treatment. Moreover, n-PS promoted the metabolic pathways of catabolic processes, amino acid metabolism, purine metabolism, and steroid hormone biosynthesis in Cd treated zebrafish larvae. Nanoplasctis widely coexist with other pollutants in the environment at relatively low concentrations. We conclude that more bio-markers of immune impact should be explored to identify their toxicological mechanisms and mitigate the effects on the environment.
Collapse
Affiliation(s)
- Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhenghua Duan
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China.
| | - Haodong Cheng
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Haihong Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhe Zhu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300071, China
| |
Collapse
|
49
|
Li L, Gu H, Chang X, Huang W, Sokolova IM, Wei S, Sun L, Li S, Wang X, Hu M, Zeng J, Wang Y. Oxidative stress induced by nanoplastics in the liver of juvenile large yellow croaker Larimichthys crocea. MARINE POLLUTION BULLETIN 2021; 170:112661. [PMID: 34182302 DOI: 10.1016/j.marpolbul.2021.112661] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
There are many toxicological studies on microplastics, but little is known about the effect of nanoplastics (NPs). Here, we evaluated the oxidative stress responses induced by NPs (10, 104 and 106 particles/l) in juvenile Larimichthys crocea during 14-d NPs exposure followed by a 7-d recovery. After exposure, the activities of antioxidant enzymes (SOD, CAT, GPx) and MDA levels increased in the liver of fish at the highest NPs concentration. SOD and CAT activities remained elevated above the baseline after recovery under high-concentration NPs but returned to the baseline in two other NP treatments. Although lipid peroxidation in liver was reversible, juvenile fish in NPs treatments exhibited a lower survival rate than the control during both exposure and recovery. Furthermore, IBR value and PCA analysis showed the potential adverse effects of NPs. Considering that NPs can reduce the survival of fish juveniles, impacts of NPs on fishery productivity should be considered.
Collapse
Affiliation(s)
- Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, China
| | - Huaxin Gu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, China
| | - Xueqing Chang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Shuaishuai Wei
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, China
| | - Li Sun
- State Research Center of Island Exploitation and Management, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Shanglu Li
- Zhejiang Ocean Monitoring and Forecasting Center, Hangzhou 310007, China
| | - Xinghuo Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, China.
| |
Collapse
|