1
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Postprandial Hyperlipidemia: Its Pathophysiology, Diagnosis, Atherogenesis, and Treatments. Int J Mol Sci 2023; 24:13942. [PMID: 37762244 PMCID: PMC10530470 DOI: 10.3390/ijms241813942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Postprandial hyperlipidemia showing postprandial increases in serum triglyceride (TG) is associated with the development of atherosclerotic cardiovascular disease (ASCVD). To diagnose postprandial hyperlipidemia, the oral fat loading test (OFLT) should be performed; however, this test is very time-consuming and is difficult to perform. Elevated serum TG levels reflect an increase in TG-rich lipoproteins (TRLs), such as chylomicrons (CM), very low-density lipoproteins (VLDL), and their remnants (CM remnants [CMRs] and VLDL remnants [VLDLRs]). Understanding of elevation in CMR and/or VLDLR can lead us to understand the existence of postprandial hyperlipidemia. The measurement of apo B48, which is a constituent of CM and CMR; non-fasting TG, which includes TG content in all lipoproteins including CM and CMR; non-high-density lipoprotein cholesterol (non-HDL-C), which includes TRLs and low-density lipoprotein; and remnant cholesterol are useful to reveal the existence of postprandial hyperlipidemia. Postprandial hyperlipidemia is observed in patients with familial type III hyperlipoproteinemia, familial combined hyperlipidemia, chronic kidney disease, metabolic syndrome and type 2 diabetes. Postprandial hyperlipidemia is closely related to postprandial hyperglycemia, and insulin resistance may be an inducing and enhancing factor for both postprandial hyperlipidemia and postprandial hyperglycemia. Remnant lipoproteins and metabolic disorders associated with postprandial hyperlipidemia have various atherogenic properties such as induction of inflammation and endothelial dysfunction. A healthy diet, calorie restriction, weight loss, and exercise positively impact postprandial hyperlipidemia. Anti-hyperlipidemic drugs such pemafibrate, fenofibrate, bezafibrate, ezetimibe, and eicosapentaenoic acid have been shown to improve postprandial hyperlipidemia. Anti-diabetic drugs including metformin, alpha-glucosidase inhibitors, pioglitazone, dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide 1 analogues have been shown to ameliorate postprandial hyperlipidemia. Although sodium glucose cotransporter-2 inhibitors have not been proven to reduce postprandial hyperlipidemia, they reduced fasting apo B48 and remnant lipoprotein cholesterol. In conclusion, it is important to appropriately understand the existence of postprandial hyperlipidemia and to connect it to optimal treatments. However, there are some problems with the diagnosis for postprandial hyperlipidemia. Postprandial hyperlipidemia cannot be specifically defined by measures such as TG levels 2 h after a meal. To study interventions for postprandial hyperlipidemia with the outcome of preventing the onset of ASCVD, it is necessary to define postprandial hyperlipidemia using reference values such as IGT.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | | | | | | |
Collapse
|
2
|
Packard CJ. Remnants, LDL, and the Quantification of Lipoprotein-Associated Risk in Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2022; 24:133-142. [PMID: 35175548 PMCID: PMC8983627 DOI: 10.1007/s11883-022-00994-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Implementation of intensive LDL cholesterol (LDL-C) lowering strategies and recognition of the role of triglyceride-rich lipoproteins (TRL) in atherosclerosis has prompted re-evaluation of the suitability of current lipid profile measurements for future clinical practice. RECENT FINDINGS At low concentrations of LDL-C (< 1.8 mmol/l/70 mg/dl), the Friedewald equation yields estimates with substantial negative bias. New equations provide a more accurate means of calculating LDL-C. Recent reports indicate that the increase in risk per unit increment in TRL/remnant cholesterol may be greater than that of LDL-C. Hence, specific measurement of TRL/remnant cholesterol may be of importance in determining risk. Non-HDL cholesterol and plasma apolipoprotein B have been shown in discordancy analyses to identify individuals at high risk even when LDL-C is low. There is a need to adopt updated methods for determining LDL-C and to develop better biomarkers that more accurately reflect the abundance of TRL remnant particles.
Collapse
Affiliation(s)
- Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
3
|
Yang JW, Ji HF. Phytosterols as bioactive food components against nonalcoholic fatty liver disease. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34871105 DOI: 10.1080/10408398.2021.2006137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phytosterols are bioactive food components widely present in cell membranes of plants, especially in nuts and oilseeds. In recent years, many studies have shown that phytosterols possess therapeutic potentials for nonalcoholic fatty liver disease (NAFLD). This review summarizes the effects of phytosterols from in vitro and in vivo studies to lower the levels of total cholesterol (TC) and triglycerides (TG), and the evidence supporting the potential of phytosterols against NAFLD. The potential mechanisms by which phytosterols improve NAFLD may include (i) competition with cholesterol; (ii) regulation of key factors involved in cholesterol and TG metabolism; and (iii) inhibition of liver inflammation and (iv) regulation of liver fatty acid composition. In summary, phytosterols are potential natural ingredients with good safety profile against NAFLD, which deserve more future studies.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| |
Collapse
|
4
|
Ginsberg HN, Packard CJ, Chapman MJ, Borén J, Aguilar-Salinas CA, Averna M, Ference BA, Gaudet D, Hegele RA, Kersten S, Lewis GF, Lichtenstein AH, Moulin P, Nordestgaard BG, Remaley AT, Staels B, Stroes ESG, Taskinen MR, Tokgözoğlu LS, Tybjaerg-Hansen A, Stock JK, Catapano AL. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42:4791-4806. [PMID: 34472586 PMCID: PMC8670783 DOI: 10.1093/eurheartj/ehab551] [Citation(s) in RCA: 356] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH-10-305, New York, NY 10032, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - M John Chapman
- Sorbonne University Endocrinology-Metabolism Division, Pitié-Salpetriere University Hospital, and National Institute for Health and Medical Research (INSERM), 47 Hôpital boulevard, Paris 75013, France
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Blå Stråket 5, Gothenburg 413 45, Sweden
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto, Monterrey, Nuevo León 3000, Mexico
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Marina Square, 61, Palermo 90133, Italy
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE, Clinical and Translational Research Center, and Lipid Clinic, Chicoutimi Hospital, 305 Rue St Vallier, Chicoutimi, Québec G7H 5H6, Canada
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Eaton Building, Room 12E248, 200 Elizabeth St, Toronto, Ontario M5G 2C4, Canada
| | - Alice H Lichtenstein
- Cardiovascular Nutrition, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St Ste 9, Boston, MA 02111, USA
| | - Philippe Moulin
- Department of Endocrinology, GHE, Hospices Civils de Lyon, CarMeN Laboratory, Inserm UMR 1060, CENS-ELI B, Univ-Lyon1, Lyon 69003, France
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev 2730, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Dr Ste 10-7C114, Bethesda, MD 20892, USA
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, 1541 Kings Hwy, Amsterdam 71103, The Netherlands
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, 06100 Sıhhiye, Ankara, Turkey
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Blegdamsvej 9, Rigshospitalet, Copenhagen 2100, Denmark.,Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark.,Copenhagen City Heart Study, Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg 57 2000, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, Copenhagen 3B 2200, Denmark
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, Gothenburg SE-412 51, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano and IRCCS MultiMedica, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
5
|
Turkes GF, Uysal S, Demir T, Demiral Y, Pamuk BO, Yılmaz H, Demir L, Doruk M, Bozkaya G. Associations Between Bioavailable Vitamin D and Remnant Cholesterol in Patients With Type 2 Diabetes Mellitus. Cureus 2021; 13:e13248. [PMID: 33728195 PMCID: PMC7948319 DOI: 10.7759/cureus.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction In circulation, 99% vitamin D is transported by binding to vitamin D binding protein (VDBP) and albumin. Vitamin D at free form and vitamin D binding to albumin are defined as bioavailable vitamin D. Vitamin D deficiency is associated with atherogenic lipid profile and insulin resistance. Remnant cholesterol is defined as the cholesterol component of triglyceride-rich lipoproteins and contributes to the atherosclerotic burden. The aim of this study was to investigate the association between bioavailable vitamin D and remnant cholesterol in patients with type 2 diabetes mellitus (T2DM). Methods A total of 198 T2DM patients and 208 non-diabetic subjects underwent biochemical measurements of lipid profiles, 25(OH)D, VDBP, CRP and albumin levels. Their demographic characteristics (age, sex) were questioned. Subjects with thyroid, kidney and liver dysfunction and using lipid-lowering therapy were not included in the study. The diagnosis of T2DM was made according to the American Diabetes Association ADA 2016 criteria. Classification of vitamin D levels was done according to the Endocrine Society. Bioavailable vitamin D concentrations were calculated. Results High-density lipoprotein cholesterol (HDL), 25(OH)D, free vitamin D and bioavailable vitamin D levels were significantly lower in diabetic patients than in non-diabetic patients while triglyceride, remnant cholesterol and CRP levels were found to be significantly higher. VDBP was positively correlated with CRP and remnant cholesterol in diabetic patients, but not in non-diabetic patients. Cut-off values were determined from non-diabetics as 3.56 ng/mL for bioavailable vitamin D and 26.56 mg/dL for remnant cholesterol. Logistic regression analysis in the control group showed that the odds ratio for increasing remnant cholesterol above the cut-off value was determined as 2.01 for low bioavailable vitamin D and 1.1 for elevated CRP. However, in T2DM there was no significant relationship. In all subjects, low bioavailable vitamin D increased the remnant cholesterol above the cut-off by 2.18-fold independent of the presence of T2DM. However, there was no significant risk to increase remnant cholesterol, considering a total 25(OH) D deficiency in all groups. Conclusions Low bioavailable vitamin D was found to be a risk factor for elevated remnant cholesterol. This relationship was not detected in patients with T2DM. We believe that the inflammation observed in Diabetes Mellitus may increase the concentrations of VDBP and a decrease in bioavailable vitamin D levels. Therefore, measuring VDBP and calculating the bioavailable vitamin D may provide additional information about the actual vitamin D status.
Collapse
Affiliation(s)
- Gulsum Feyza Turkes
- Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, TUR.,Biochemistry, Kecioren Training and Research Hospital, Ankara, TUR
| | - Sezer Uysal
- Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, TUR
| | - Tevfik Demir
- Endocrinology and Metabolism, Faculty of Medicine, Dokuz Eylul University, Izmir, TUR
| | - Yucel Demiral
- Public Health, Faculty of Medicine, Dokuz Eylul University, Izmir, TUR
| | - Baris Onder Pamuk
- Endocrinology and Metabolism, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, TUR
| | - Husnu Yılmaz
- Endocrinology and Metabolism, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, TUR
| | - Leyla Demir
- Biochemistry, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, TUR
| | - Mehmet Doruk
- Endocrinology and Metabolism, Izmir Bozyaka Training and Research Hospital, Izmir, TUR
| | - Giray Bozkaya
- Biochemistry, Izmir Bozyaka Training and Research Hospital, Izmir, TUR
| |
Collapse
|
6
|
Farukhi ZM, Demler OV, Caulfield MP, Kulkarni K, Wohlgemuth J, Cobble M, Luttmann-Gibson H, Li C, Nelson JR, Cook NR, Buring JE, Krauss RM, Manson JE, Mora S. Comparison of nonfasting and fasting lipoprotein subfractions and size in 15,397 apparently healthy individuals: An analysis from the VITamin D and OmegA-3 TriaL. J Clin Lipidol 2020; 14:241-251. [PMID: 32205068 PMCID: PMC7166180 DOI: 10.1016/j.jacl.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Elevated postprandial triglycerides reflect a proatherogenic milieu, but underlying mechanisms are unclear. OBJECTIVE We examined differences between fasting and nonfasting profiles of directly measured lipoprotein size and subfractions to assess if postprandial triglycerides reflected increases in very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and remnants, or small dense lipid depleted LDL (sdLDL) particles. METHODS We conducted a cross-sectional analysis of 15,397 participants (10,135 fasting; 5262 nonfasting [<8 hours since last meal]) from the VITamin D and OmegA-3 TriaL. Baseline cholesterol subfractions were measured by the vertical auto profile method and particle subfractions by ion mobility. We performed multivariable linear regression adjusting for cardiovascular and lipoprotein-modifying risk factors. RESULTS Mean age (SD) was 68.0 years (±7.0), with 50.9% women. Adjusted mean triglyceride concentrations were higher nonfasting by 17.8 ± 1.3%, with higher nonfasting levels of directly measured VLDL cholesterol (by 3.5 ± 0.6%) and total VLDL particles (by 2.0 ± 0.7%), specifically large VLDL (by 12.3 ± 1.3%) and medium VLDL particles (by 5.3 ± 0.8%), all P < .001. By contrast, lower concentrations of low density lipoprotein (LDL) and IDL cholesterol and particles were noted for nonfasting participants. sdLDL cholesterol levels and particle concentrations showed no statistically significant difference by fasting status (-1.3 ± 2.1% and 0.07 ± 0.6%, respectively, P > .05). CONCLUSIONS Directly measured particle and cholesterol concentrations of VLDL, not sdLDL, were higher nonfasting and may partly contribute to the proatherogenicity of postprandial hypertriglyceridemia. These differences, although statistically significant, were small and may not fully explain the increased risk of postprandial hypertriglyceridemia.
Collapse
Affiliation(s)
- Zareen M Farukhi
- Center for Lipid Metabolomics, Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Olga V Demler
- Center for Lipid Metabolomics, Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | - Heike Luttmann-Gibson
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chunying Li
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John R Nelson
- California Cardiovascular Institute, Fresno, CA, USA
| | - Nancy R Cook
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Effects of Moderate Chronic Food Restriction on the Development of Postprandial Dyslipidemia with Ageing. Nutrients 2019; 11:nu11081865. [PMID: 31405194 PMCID: PMC6723802 DOI: 10.3390/nu11081865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/02/2023] Open
Abstract
Ageing is a major risk factor for the development of metabolic disorders linked to dyslipidemia, usually accompanied by increased adiposity. The goal of this work was to investigate whether avoiding an excessive increase in adiposity with ageing, via moderate chronic food restriction (FR), ameliorates postprandial dyslipidemia in a rat model of metabolic syndrome associated with ageing. Accordingly, we performed an oral lipid loading test (OLLT) in mature middle-aged (7 months) and middle-old-aged (24 months) Wistar rats fed ad libitum (AL) or under moderate FR for 3 months. Briefly, overnight fasted rats were orally administered a bolus of extra-virgin olive oil (1 mL/Kg of body weight) and blood samples were taken from the tail vein before fat load (t = 0) and 30, 60, 90, 120, 180, and 240 min after fat administration. Changes in serum lipids, glucose, insulin, and glucagon levels were measured at different time-points. Expression of liver and adipose tissue metabolic genes were also determined before (t = 0) and after the fat load (t = 240 min). Postprandial dyslipidemia progressively increased with ageing and this could be associated with hepatic ChREBP activity. Interestingly, moderate chronic FR reduced adiposity and avoided excessive postprandial hypertriglyceridemia in 7- and 24-month-old Wistar rats, strengthening the association between postprandial triglyceride levels and adiposity. The 24-month-old rats needed more insulin to maintain postprandial normoglycemia; nevertheless, hyperglycemia occurred at 240 min after fat administration. FR did not alter the fasted serum glucose levels but it markedly decreased glucagon excursion during the OLLT and the postprandial rise of glycemia in the 24-month-old rats, and FGF21 in the 7-month-old Wistar rats. Hence, our results pointed to an important role of FR in postprandial energy metabolism and insulin resistance in ageing. Lastly, our data support the idea that the vWAT might function as an ectopic site for fat deposition in 7-month-old and in 24-month-old Wistar rats that could increase their browning capacity in response to an acute fat load.
Collapse
|
8
|
Kurihara O, Okajima F, Takano M, Kato K, Munakata R, Murakami D, Miyauchi Y, Emoto N, Sugihara H, Seino Y, Shimizu W. Postprandial Hyperchylomicronemia and Thin-Cap Fibroatheroma in Nonculprit Lesions. Arterioscler Thromb Vasc Biol 2019; 38:1940-1947. [PMID: 29930008 DOI: 10.1161/atvbaha.118.311245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Although postprandial hypertriglyceridemia can be a risk factor for coronary artery disease, the extent of its significance remains unknown. This study aimed to investigate the correlation between the postprandial lipid profiles rigorously estimated with the meal tolerance test and the presence of lipid-rich plaque, such as thin-cap fibroatheroma (TCFA), in the nonculprit lesion. Approach and Results- A total of 30 patients with stable coronary artery disease who underwent a multivessel examination using optical coherence tomography during catheter intervention for the culprit lesion were enrolled. Patients were divided into 2 groups: patients with TCFA (fibrous cap thickness ≤65 µm) in the nonculprit lesion and those without TCFA. Serum remnant-like particle-cholesterol and ApoB-48 (apolipoprotein B-48) levels were measured during the meal tolerance test. The value of remnant-like particle-cholesterol was significantly greater in the TCFA group than in the non-TCFA group ( P=0.045). Although the baseline ApoB-48 level was similar, the increase in the ApoB-48 level was significantly higher in the TCFA group than in the non-TCFA group ( P=0.028). In addition, the baseline apolipoprotein C-III levels was significantly greater in the TCFA group ( P=0.003). These indexes were independent predictors of the presence of TCFA (ΔApoB-48: odds ratio, 1.608; 95% confidence interval, 1.040-2.486; P=0.032; apolipoprotein C-III: odds ratio, 2.581; 95% confidence interval, 1.177-5.661; P=0.018). Conclusions- Postprandial hyperchylomicronemia correlates with the presence of TCFA in the nonculprit lesion and may be a residual risk factor for coronary artery disease.
Collapse
Affiliation(s)
- Osamu Kurihara
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | | | - Masamichi Takano
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Katsuhito Kato
- Department of Hygiene and Public Health, Graduate School of Medicine (K.K.)
| | - Ryo Munakata
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Daisuke Murakami
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Yasushi Miyauchi
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Naoya Emoto
- Nippon Medical School Chiba Hokusoh Hospital, Japan; and Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine (F.O., N.E., H.S.)
| | - Hitoshi Sugihara
- Nippon Medical School Chiba Hokusoh Hospital, Japan; and Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine (F.O., N.E., H.S.)
| | - Yoshihiko Seino
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Wataru Shimizu
- Division of Cardiology (W.S.), Nippon Medical School, Tokyo, Japan
| |
Collapse
|
9
|
Nakajima K, Tokita Y, Tanaka A, Takahashi S. The VLDL receptor plays a key role in the metabolism of postprandial remnant lipoproteins. Clin Chim Acta 2019; 495:382-393. [PMID: 31078566 DOI: 10.1016/j.cca.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
A new concept to account for the process of postprandial remnant lipoprotein metabolism is proposed based on the characteristics of lipoprotein particles and their receptors. The characteristics of remnant lipoprotein (RLP) were investigated using an immuno-separation method. The majority of the postprandial lipoproteins increased after fat intake was shown to be VLDL remnants, not chylomicron (CM) remnants, based on the significantly high ratio of apoB100/apoB48 in the RLP and the high degree of similarity in the particle size of the apoB48 and apoB100 carrying lipoproteins, which fluctuate in parallel during a 6 h period after fat intake. The VLDL receptor was discovered as a receptor for TG-rich lipoprotein metabolism and is located in peripheral tissues such as skeletal muscle, adipose tissue, etc., but not in the liver. Postprandial VLDL particles are strongly bound and internalized into cells expressing the VLDL receptor. Ligands that bind to VLDL receptor, such as LPL and Lp(a), present in RLP. The presence of various specific ligands in VLDL remnants may enhance the capacity for binding to the VLDL receptor, which play the role primarily for energy delivery to the peripheral tissues, but is also a causal factor in atherogenic diseases when excessively and/or continuously remained in plasma.
Collapse
Affiliation(s)
- Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan.
| | - Yoshiharu Tokita
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Sadao Takahashi
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Division of Diabetes, Ageo Central General Hospital, Saitama, Japan
| |
Collapse
|
10
|
Changes in non-fasting concentrations of blood lipids after a daily Chinese breakfast in overweight subjects without fasting hypertriglyceridemia. Clin Chim Acta 2019; 490:147-153. [PMID: 30615853 DOI: 10.1016/j.cca.2019.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Overweight is always accompanied by hypertriglyceridemia (HTG), but the change in non-fasting triglyceride (TG) concentration in overweight subjects without postprandial hypertriglyceridemia was unknown. METHODS Concentrations of serum lipids were measured at 2 and 4 h in matched overweight (OW group, n = 54) and control subjects (CON group, n = 55) after a daily meal. Concentrations of remnant cholesterol and non-HDL cholesterol were calculated according to the formulas. The diagnostic criteria for non-fasting HTG were based on 2 different consensus statement. ROC curve was used to determine the pointcut of postprandial HTG. RESULTS OW group had higher fasting concentrations of RC and non-HDL-C than CON group. Non-fasting concentrations of triglyceride and RC significantly increased in 2 groups while were higher in OW group (p < .05). The proportion of non-fasting HTG increased after a daily meal in OW group was significantly higher than the percentage of fasting HTG (p < .05). There was a significant correlation between the postprandial concentrations of TG and RC. CONCLUSIONS Overweight subjects were more likely to develop non-fasting hypertriglyceridemia and higher concentrations of RC and non-HDL-C. Additionally, 2.0 mmol/l at 4 h after breakfast could be a pointcut value to detect changes in lipid profile of Chinese overweight people.
Collapse
|
11
|
Hypothesis II: The majority of VLDL-apoB48 remnants in postprandial plasma are derived from the liver, not from the intestine. Clin Chim Acta 2018; 490:12-16. [PMID: 30553860 DOI: 10.1016/j.cca.2018.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
Abstract
We have long thought that remnant lipoproteins (RLP) in the postprandial plasma contain CM remnants (exogenous remnants; RLP-apoB48) and VLDL remnants (endogenous remnants; RLP-apoB100) of different origin, i.e. produced in the intestine and liver, respectively. However, the majority of CM remnants incorporated into liver from the circulation are degraded in liver and may be reused for the remodeling of VLDL. Namely, the most of the apoB48 in CM remnants are smoothly incorporated into the liver after fat intake along with lipids and other apolipoproteins via the LDL receptor and LDL-receptor-related protein (LRP). Subsequently, apoB48 may be reconstituted in VLDL as VLDL apoB48 through an essential physiological pathway similar or the same to that of VLDL apoB100 formation in the liver and secreted into the circulation as VLDL apoB48 to form their remnants. Because those particles are newly reconstituted in liver as a portion of VLDL, we propose that both RLP-apoB100 and RLP-apoB48 are endogenous VLDL remnants produced in liver after fat intake. Also we predict the presence of a new pathway for the formation of VLDL apoB48 along with VLDL apoB100 in liver in humans similar in mice and rats.
Collapse
|
12
|
Nakajima K, Tokita Y, Tanaka A. Hypothesis: Postprandial remnant lipoproteins are the causal factors that induce the insulin resistance associated with obesity. Clin Chim Acta 2018; 485:126-132. [PMID: 29958888 DOI: 10.1016/j.cca.2018.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 11/17/2022]
Abstract
We have long thought that remnant lipoproteins (RLP) in plasma are significantly increased as the result of disturbed lipoprotein metabolism followed by obesity and insulin resistance. Therefore, it was believed that insulin resistance causes and enhances RLP formation. In contrast, this hypothesis states that RLP induces insulin resistance as the result of obesity associated with the excessive fat intake. The majority of plasma TG increased after fat intake is TG in RLP (RLP-TG) and the majority of postprandial RLP is VLDL remnants, not CM remnants. RLP is newly formed lipoproteins primarily for energy supply against starvation, like blood sugar after carbohydrate intake. Since RLP bearing apoE, LPL and Lp(a) function as ligands for the VLDL receptor, RLP interacts with the VLDL receptor in visceral fat adipocytes and stored as TG similar to excessive blood sugar. However, the excessive VLDL remnants induces obesity and its associated insulin resistance, which plays a major role as the initiator of metabolic domino effects, similar to blood sugar primarily serving as an energy supply to protect against starvation.
Collapse
Affiliation(s)
- Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan.
| | - Yoshiharu Tokita
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| |
Collapse
|
13
|
Nakajima K, Tanaka A. Postprandial remnant lipoproteins as targets for the prevention of atherosclerosis. Curr Opin Endocrinol Diabetes Obes 2018; 25:108-117. [PMID: 29493553 DOI: 10.1097/med.0000000000000393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Oxidized low-density lipoprotein (Ox-LDL) and chylomicron remnants were previously proposed as the most atherogenic lipoproteins for the causal lipoproteins of atherosclerosis. However, there are still controversies on these hypothesizes. Therefore, we have proposed a new hypothesis based on our recent findings of remnant lipoproteins (RLPs) in postprandial plasma. RECENT FINDINGS Plasma RLP-C and RLP-TG increased significantly after fat load. More than 80% of the increased triglycerides after fat load consisted of the triglycerides in RLP, which contained greater amount of apoB100 than apoB48 particles as mostly very low density lipoproteins (VLDL) remnants. The majority of lipoprotein lipase (LPL) in plasma was found in RLP as RLP-LPL complex, which is released into circulation after hydrolysis. LPL activity and concentration in plasma did not increase after food intake associated with the insufficient hydrolysis of chylomicrons and VLDL and resulted in the significant increase of RLP-TG. Plasma LPL was inversely correlated with RLP particle size and number. SUMMARY VLDL remnants have been shown as the major atherogenic lipoproteins in postprandial plasma associated with LPL activity as the targets for prevention of atherosclerosis. We also proposed a new definition of RLPs, 'LPL bound TG-rich lipoproteins' based on the findings of RLP-LPL complex.
Collapse
Affiliation(s)
- Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo
| |
Collapse
|
14
|
Nakajima K, Tanaka A. Atherogenic postprandial remnant lipoproteins; VLDL remnants as a causal factor in atherosclerosis. Clin Chim Acta 2018; 478:200-215. [PMID: 29307667 DOI: 10.1016/j.cca.2017.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/23/2017] [Accepted: 12/24/2017] [Indexed: 01/02/2023]
Abstract
Oxidized LDL (Ox-LDL) and chylomicron (CM) remnants have been suggested to be the most atherogenic lipoproteins that initiate and exacerbate coronary atherosclerosis. In this review, we propose a hypothesis of the causal lipoproteins in atherosclerosis based on our recent findings on postprandial remnant lipoproteins (RLP). Plasma RLP-C and RLP-TG increased significantly after food intake, especially a fat load. More than 80% of the TG increase after the fat load consisted of the TG in RLP, which contained significantly greater apoB100 than apoB48 particles as VLDL remnants. The majority of the LPL in non-heparin plasma was found in RLP as an RLP-LPL complex and released into the circulation after hydrolysis. Plasma LPL did not increase after food intake, which may have caused the partial hydrolysis of CM and VLDL as well as the significant increase of RLP-TG in the postprandial plasma. LPL was inversely correlated with the RLP particle size after food intake. We showed that VLDL remnants are the major atherogenic lipoproteins in the postprandial plasma associated with insufficient LPL activity and a causal factor in the initiation and progression of atherosclerosis. We also propose "LPL bound TG-rich lipoproteins" as a new definition of remnant lipoproteins based on the findings of the RLP-LPL complex in the non-heparin plasma.
Collapse
Affiliation(s)
- Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| |
Collapse
|
15
|
Muraba Y, Koga T, Shimomura Y, Ito Y, Hirao Y, Kobayashi J, Kimura T, Nakajima K, Murakami M. The role of plasma lipoprotein lipase, hepatic lipase and GPIHBP1 in the metabolism of remnant lipoproteins and small dense LDL in patients with coronary artery disease. Clin Chim Acta 2017; 476:146-153. [PMID: 29174344 DOI: 10.1016/j.cca.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND The relationship between plasma lipoprotein lipase (LPL), hepatic triglyceride lipase (HTGL), glycosylphosphatidylinositol anchored HDL binding protein1 (GPIHBP1) concentration and the metabolism of remnant lipoproteins (RLP) and small dense LDL (sdLDL) in patients with coronary artery disease (CAD) is not fully elucidated. METHODS One hundred patients who underwent coronary angiography were enrolled. The plasma LPL, HTGL and GPIHBP1 concentrations were determined by ELISA. The time dependent changes in those lipases, lipids and lipoproteins were studied at a time-point just before, and 15min, 4h and 24h after heparin administration. RESULTS The LPL concentration exhibited a significant positive correlation with HDL-C, and inversely correlated with TG and RLP-C. The HTGL concentration was positively correlated with RLP-C and sdLDL-C. The HTGL ratio of the pre-heparin/post-heparin plasma concentration and sdLDL-C/LDL-C ratio were significantly greater in CAD patients than in non-CAD patients. GPIHBP1 was positively correlated with LPL and inversely correlated with RLP-C and sdLDL-C. CONCLUSION The HTGL concentration was positively correlated with RLP-C and sdLDL-C, while LPL and GPIHBP1 were inversely correlated with RLP-C and sdLDL-C. These results suggest that elevated HTGL is associated with increased CAD risk, while elevated LPL is associated with a reduction of CAD risk.
Collapse
Affiliation(s)
- Yuji Muraba
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Hidaka Hospital, Takasaki, Gunma, Japan.
| | | | | | | | | | - Junji Kobayashi
- Department of General Internal Medicine, Kanazawa Medical University, Kanazawa, Ishikawa, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Hidaka Hospital, Takasaki, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
16
|
Nakajima K, Tokita Y, Sakamaki K, Shimomura Y, Kobayashi J, Kamachi K, Tanaka A, Stanhope KL, Havel PJ, Wang T, Machida T, Murakami M. Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase. Clin Chim Acta 2017; 465:45-52. [DOI: 10.1016/j.cca.2016.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/26/2023]
|
17
|
Ishiyama N, Sakamaki K, Shimomura Y, Kotani K, Tsuzaki K, Sakane N, Miyashita K, Fukamachi I, Kobayashi J, Stanhope KL, Havel PJ, Kamachi K, Tanaka A, Tokita Y, Machida T, Murakami M, Nakajima K. Lipoprotein lipase does not increase significantly in the postprandial plasma. Clin Chim Acta 2016; 464:204-210. [PMID: 27908779 DOI: 10.1016/j.cca.2016.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Previous reports have shown that lipoprotein lipase (LPL) activity significantly increases in the postprandial plasma associated with the increase of TG-rich lipoproteins. Therefore, we have reexamined those relationships using newly developed LPL assay with the different kinds of food intake. METHODS Standard meal (n=81), 50g of fat (n=54), 75g of glucose (n=25) and cookie (25g fat and 75g carbohydrate fat) (n=28) were administered in generally healthy volunteers. Plasma LPL, HTGL and TC, TG, LDL-C, HDL-C, RLP-C and RLP-TG were determined at subsequent withdrawal after the food intake. RESULTS Plasma TG, RLP-C and RLP-TG were significantly increased at 8PM (2h after dinner of standard meal) compared with 8AM before breakfast within the same day. Also those parameters were significantly increased in 2-6h after fat load. However, the concentrations and activities of LPL and HTGL did not significantly increase in association with an increase in the TG and remnant lipoproteins. Also LPL concentration did not significantly increase after glucose and "cookie test" within 4h. CONCLUSION No significant increase of LPL activity was found at CM and VLDL overload after different kinds of food intake when reexamined by newly developed assay for LPL activity and concentration.
Collapse
Affiliation(s)
| | | | | | - Kazuhiko Kotani
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan; Division of Community and Family Medicine, Jichi Medical University, Tochigi, Japan
| | - Kokoro Tsuzaki
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | | | - Junji Kobayashi
- Kanazawa Medical University, General Internal Medicine, Kanazawa, Japan
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA, USA
| | - Keiko Kamachi
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Yoshiharu Tokita
- Department of Laboratory Sciences, Gunma University, Graduate School of Health Sciences, Maebashi, Japan
| | - Tetsuo Machida
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Katsuyuki Nakajima
- Hidaka Hospital, Takasaki, Japan; Kanazawa Medical University, General Internal Medicine, Kanazawa, Japan; Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA, USA; Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
18
|
Chandra R, Mellis B, Garza K, Hameed SA, Jurica JM, Hernandez AV, Nguyen MN, Mittal CK. Remnant lipoprotein size distribution profiling via dynamic light scattering analysis. Clin Chim Acta 2016; 462:6-14. [DOI: 10.1016/j.cca.2016.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 01/04/2023]
|
19
|
The majority of lipoprotein lipase in plasma is bound to remnant lipoproteins: A new definition of remnant lipoproteins. Clin Chim Acta 2016; 461:114-25. [DOI: 10.1016/j.cca.2016.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022]
|
20
|
Brenta G, Berg G, Miksztowicz V, Lopez G, Lucero D, Faingold C, Murakami M, Machima T, Nakajima K, Schreier L. Atherogenic Lipoproteins in Subclinical Hypothyroidism and Their Relationship with Hepatic Lipase Activity: Response to Replacement Treatment with Levothyroxine. Thyroid 2016; 26:365-72. [PMID: 26839156 DOI: 10.1089/thy.2015.0140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Qualitative lipoprotein changes, such as an increase in fasting remnants, are reported in subclinical hypothyroidism (SCH). It was hypothesized that such changes are due to reduced hepatic lipase (HL) activity in SCH: HL is an enzyme regulated by thyroid hormones, and is involved in the degradation of triglyceride (TG)-rich remnants. This study aimed to quantify remnant-like lipoproteins (RLP), small dense LDL (sdLDL), and HL activity in women with SCH, and to assess these parameters after levothyroxine replacement therapy. METHODS This was an observational cross-sectional study with a subsequent longitudinal follow-up. Findings in women with thyrotropin levels >4.5 mIU/L (SH group) were compared with age- and body mass index (BMI)-matched euthyroid women (control group). In addition, a subgroup analysis was undertaken in SCH women who chose to receive levothyroxine treatment (0.9 μg/kg/day) for 6 months. RLP was quantified by measuring cholesterol (RLP-C) and triglycerides (RLP-TG) after immunoaffinity chromatography, and sdLDL by automated standardized methods; HL activity was measured in post-heparin plasma. RESULTS The SCH group included 37 women; 29 women were included in the control group. In addition, 22 women with SCH were included in the subgroup analysis (levothyroxine treatment). Significantly higher RLP values were observed in the SCH group than in the control group: RLP-C (median [range], mg/dL): 20.3 (5.8-66.8) versus 10.2 (2.7-36.3), p = 0.005; RLP-TG (mg/dL): 26.3 (3.2-123.3) versus 12.1 (2.5-61.6), p = 0.033. HL activity (mean ± standard deviation [SD], μmol free fatty acid/mL post-heparin plasma.h)-9.83 ± 4.25 versus 9.92 ± 5.20, p = 0.707-and sdLDL levels (mg/dL)-23.1 ± 10.7 versus 22.6 ± 8.4, p = 0.83-were similar. After levothyroxine, RLP-C decreased-21.5 (5.8-66.8) versus 17.2 (4.1-45.6), p = 0.023-and HL increased-9.75 ± 4.04 versus 11.86 ± 4.58, p = 0.012-in the subgroup of SCH women. No changes in sdLDL were observed. CONCLUSIONS Women with SCH have higher RLP levels than matched controls do, but their RLP-C levels decrease significantly following levothyroxine therapy. Furthermore, HL activity also increases after levothyroxine therapy and can be interpreted as a possible explanation for the decrease in RLP-C.
Collapse
Affiliation(s)
- Gabriela Brenta
- 1 Department of Endocrinology and Metabolism, Cesar Milstein Hospital , Buenos Aires, Argentina
| | - Gabriela Berg
- 2 Department of Clinical Biochemistry, Laboratory of Lipids and Atherosclerosis, Faculty of Pharmacy and Biochemistry, INFIBIOC-University of Buenos Aires , Argentina
| | - Veronica Miksztowicz
- 2 Department of Clinical Biochemistry, Laboratory of Lipids and Atherosclerosis, Faculty of Pharmacy and Biochemistry, INFIBIOC-University of Buenos Aires , Argentina
| | - Graciela Lopez
- 2 Department of Clinical Biochemistry, Laboratory of Lipids and Atherosclerosis, Faculty of Pharmacy and Biochemistry, INFIBIOC-University of Buenos Aires , Argentina
| | - Diego Lucero
- 2 Department of Clinical Biochemistry, Laboratory of Lipids and Atherosclerosis, Faculty of Pharmacy and Biochemistry, INFIBIOC-University of Buenos Aires , Argentina
| | - Cristina Faingold
- 1 Department of Endocrinology and Metabolism, Cesar Milstein Hospital , Buenos Aires, Argentina
| | - Masami Murakami
- 3 Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine , Gunma, Japan
| | - Tetsudo Machima
- 3 Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine , Gunma, Japan
| | | | - Laura Schreier
- 2 Department of Clinical Biochemistry, Laboratory of Lipids and Atherosclerosis, Faculty of Pharmacy and Biochemistry, INFIBIOC-University of Buenos Aires , Argentina
| |
Collapse
|
21
|
Comparison of the effect of post-heparin and pre-heparin lipoprotein lipase and hepatic triglyceride lipase on remnant lipoprotein metabolism. Clin Chim Acta 2015; 440:193-200. [DOI: 10.1016/j.cca.2014.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 11/21/2022]
|
22
|
Miyoshi T, Noda Y, Ohno Y, Sugiyama H, Oe H, Nakamura K, Kohno K, Ito H. Omega-3 fatty acids improve postprandial lipemia and associated endothelial dysfunction in healthy individuals - a randomized cross-over trial. Biomed Pharmacother 2014; 68:1071-7. [PMID: 25458786 DOI: 10.1016/j.biopha.2014.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/16/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Postprandial elevation of triglycerides impairs endothelial function and contributes to the development of atherosclerosis. We investigated the effects of omega-3 fatty acids on postprandial endothelial function and lipid profiles. METHODS Healthy volunteers [10] were given supplementation at 4g/day omega-3 fatty acids (or were not treated) for 4 weeks in a randomised crossover study. Postprandial levels of various lipids were monitored and endothelial function assessed by brachial artery flow-mediated dilation during fasting and after a standard cookie test. RESULTS Omega-3 fatty acids reduced postprandial endothelial dysfunction compared with the control diet (flow-mediated dilation at 4h=-0.5±1.2 vs. -2.0±1.6%, P=0.03). Postprandial levels of triglycerides, apolipoprotein B-48, and remnant lipoprotein-cholesterol increased in untreated subjects, peaked at 2-4h, and returned to baseline at 8h, whereas low-density lipoprotein-cholesterol levels did not change. Supplementation with omega-3 fatty acids significantly suppressed postprandial elevation of triglycerides (incremental area under the curve=220±209 vs. 374±216mg/h/dL, P=0.04) and remnant lipoprotein-cholesterol (incremental area under the curve=21.7±13.8 vs. 13.3±12.9mg/h/dL, P=0.04). Supplementation with omega-3 fatty acids significantly suppressed the increase in triglyceride content in chylomicrons as well as in very-low-density lipoproteins from baseline to 4h after the cookie test. CONCLUSION Omega-3 fatty acids significantly decreased postprandial triglyceride elevation and postprandial endothelial dysfunction, suggesting that omega-3 fatty acids may have vascular protective effects in postprandial state.
Collapse
Affiliation(s)
- Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Yoko Noda
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuko Ohno
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Sugiyama
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Oe
- Center of Ultrasonic Diagnostics, Okayama University Hospital, Okayama, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kunihisa Kohno
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
23
|
Schonewille M, Brufau G, Shiri-Sverdlov R, Groen AK, Plat J. Serum TG-lowering properties of plant sterols and stanols are associated with decreased hepatic VLDL secretion. J Lipid Res 2014; 55:2554-61. [PMID: 25348863 DOI: 10.1194/jlr.m052407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant sterols and stanols are structurally similar to cholesterol and when added to the diet they are able to reduce serum total- and LDL-cholesterol concentrations. They also lower serum triglyceride concentrations in humans, particularly under conditions of hypertriglyceridemia. The aim of this study was to unravel the mechanism by which plant sterols and stanols reduce serum triglyceride concentrations in high-fat diet (HFD) fed mice. Male C57BL/6J mice were fed HFD for 4 weeks. Subsequently, they received HFD, HFD supplemented with 3.1% plant sterol ester (PSE) or HFD supplemented with 3.1% plant stanol ester (PSA) for another three weeks. Both PSE and PSA feeding resulted in decreased plasma triglyceride concentrations compared with HFD, while plasma cholesterol levels were unchanged. Interestingly, hepatic cholesterol levels were decreased in the PSE/PSA groups compared with HFD and no differences were found in hepatic triglyceride levels between groups. To investigate the mechanism underlying the hypotriglyceridemic effects from PSE/PSA feeding, we measured chylomicron and VLDL secretion. PSE and PSA feeding resulted in reduced VLDL secretion, while no differences were found between groups in chylomicron secretion. In conclusion, our data indicate that plasma triglyceride-lowering resulting from PSE and PSA feeding is associated with decreased hepatic VLDL secretion.
Collapse
Affiliation(s)
- Marleen Schonewille
- Departments of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gemma Brufau
- Departments of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Albert K Groen
- Departments of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Laboratory Medicine, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
24
|
Borén J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta 2014; 431:131-42. [DOI: 10.1016/j.cca.2014.01.015] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 12/12/2022]
|
25
|
|
26
|
Pang J, Chan DC, Barrett PHR, Watts GF. Postprandial dyslipidaemia and diabetes: mechanistic and therapeutic aspects. Curr Opin Lipidol 2012; 23:303-9. [PMID: 22595742 DOI: 10.1097/mol.0b013e328354c790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW There has been a resurgence of interest in the role of triglyceride-rich lipoproteins in the development of atherosclerosis and cardiovascular disease, and this is particularly relevant to diabetes mellitus and the postprandial state. RECENT FINDINGS Recent evidence suggests that insulin resistance in diabetes induces postprandial dyslipidemia by increasing the enterocytic production of chylomicrons and their remnant particles, but an impaired clearance capacity is also involved. Postprandial dyslipidaemia in diabetes induces oxidative stress, inflammation and endothelial dysfunction and this may be compounded by dysglycaemia. New guidelines for managing hypertriglyceridaemia in diabetes have been published, first-line therapies being improved glycaemic control, treatment of other secondary causes of dyslipidaemia and statin therapy, followed by judicious use of fibrates, n-3 fatty acids or niacin. A new role for incretin-based therapies in regulating dyslipidaemia has been identified. SUMMARY Postprandial dyslipidaemia is a pivotal mechanism whereby diabetes can induce and accelerate atherosclerosis. Regulating the plasma concentrations of triglyceride-rich lipoproteins may decrease the cardiovascular complications of diabetes. The mechanisms of action of incretin-based treatments on dyslipidaemia and endothelial dysfunction need further investigation. The efficacy of new therapies targeted at postprandial dysmetabolism in diabetes need to be confirmed, against best current levels of care, in clinical endpoint trials.
Collapse
Affiliation(s)
- Jing Pang
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | | | | |
Collapse
|