1
|
Lee KM, Kim TH, Noh EJ, Han JW, Kim JS, Lee SK. 25-Hydroxycholesterol induces oxidative stress, leading to apoptosis and ferroptosis in extravillous trophoblasts. Chem Biol Interact 2024; 403:111214. [PMID: 39197811 DOI: 10.1016/j.cbi.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
25-hydroxycholesterol (25HC) is an oxysterol derived from cholesterol and plays a role in various cellular processes, such as lipid metabolism, inflammatory responses, and cell survival. Extravillous trophoblasts (EVTs) are a major cell type found in the placenta, which are highly energetic cells with proliferative and invasive properties. EVT dysfunction can lead to pregnancy complications, including preeclampsia and intrauterine growth restriction. This study investigated the effects and underlying mechanisms of action of 25HC on EVT proliferation. Swan 71 cells, an EVT cell line, were treated with different concentrations of 25HC. Next, cell proliferation was assessed. The mitochondrial reactive oxygen species (mtROS), mitochondrial membrane potentials (MMPs), lipid peroxidation (LPO), and glutathione (GSH) levels were measured. Apoptosis, ferroptosis, and autophagy were evaluated by western blotting and flow cytometry. The results revealed that 25HC significantly inhibited proliferation and decreased the metabolic activity of EVTs. Moreover, 25HC caused oxidative stress by altering mtROS, LPO, MMPs, and GSH levels. Additionally, 25HC induces apoptosis, ferroptosis, and autophagy through the modulation of relevant protein levels. Interestingly, pretreatment with Z-VAD-FMK, an apoptosis inhibitor, and ferrostatin-1, a ferroptosis inhibitor, partially restored the effects of 25HC on cell proliferation, oxidative stress, and cell death. In summary, our findings suggest that 25HC treatment inhibits EVT proliferation and triggers apoptosis, ferroptosis, and autophagy, which are attributable to oxidative stress.
Collapse
Affiliation(s)
- Ki Mo Lee
- Department of Obstetrics and Gynecology, Myuonggok Medical Research Center, Konyang University College of Medicine, Daejeon, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics and Gynecology, Myuonggok Medical Research Center, Konyang University College of Medicine, Daejeon, South Korea
| | - Eui-Jeong Noh
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jae Won Han
- Department of Obstetrics and Gynecology, Myuonggok Medical Research Center, Konyang University College of Medicine, Daejeon, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, South Korea.
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Myuonggok Medical Research Center, Konyang University College of Medicine, Daejeon, South Korea.
| |
Collapse
|
2
|
Šošić-Jurjević B, Borković-Mitić S, Pavlović S, Vlahović D, Miler M, Cesar T, Ajdžanović V, Milenkovic D, Stellaard F, Trifunović S, Filipović B, Lütjohann D. Lemon Flavonoid Extract Eriomin Improves Pro/Antioxidant Status and Interferes with Cholesterol Metabolism without Affecting Serum Cholesterol Levels in Aged Rats. Int J Mol Sci 2024; 25:5221. [PMID: 38791260 PMCID: PMC11121178 DOI: 10.3390/ijms25105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to assess the antioxidant capacity of lemon flavonoid extract Eriomin® (LE) and its impact on cholesterol metabolism in the context of healthy aging. We orally treated 24-month-old male Wistar rats with an LE (40 mg/kg) suspended in 0.3 mL of sunflower oil. At the same time, control groups received an equal volume of sunflower oil (CON) or remained untreated (ICON) daily for 4 weeks. We examined LE's effects on superoxide dismutase and catalase- and glutathione-related enzyme activities, the concentration of lipid peroxides and protein carbonyls, total oxidant status (TOS) and antioxidant status (TAS), and oxidative stress index (OSI) in the liver, jejunum, and ileum. We also measured total cholesterol, its biosynthetic precursors (lanosterol, lathosterol, desmosterol), its degradation products (bile acid precursors) in the serum, liver, jejunum, and ileum, and serum phytosterols (intestinal absorption markers). LE reduced TOS, TAS, and OSI (p < 0.05) compared with control values, indicating its consistent antioxidant action in all examined organs. LE lowered hepatic desmosterol (p < 0.05) while also reducing 7α- and 24-hydroxycholesterol levels in the liver and ileum (p < 0.01). Serum cholesterol, hepatic gene expression, and the immunostaining intensity of CYP7A1 were unchanged. In conclusion, LE exerted non-enzymatic antioxidant effects and reduced cholesterol degradation, reducing its biosynthesis products, thereby maintaining serum cholesterol levels.
Collapse
Affiliation(s)
- Branka Šošić-Jurjević
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (S.P.); (D.V.); (M.M.); (V.A.); (S.T.); (B.F.)
| | - Slavica Borković-Mitić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (S.P.); (D.V.); (M.M.); (V.A.); (S.T.); (B.F.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (S.P.); (D.V.); (M.M.); (V.A.); (S.T.); (B.F.)
| | - Dragana Vlahović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (S.P.); (D.V.); (M.M.); (V.A.); (S.T.); (B.F.)
| | - Marko Miler
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (S.P.); (D.V.); (M.M.); (V.A.); (S.T.); (B.F.)
| | - Thais Cesar
- Graduate Program in Food, Nutrition and Food Engineering, Sao Paulo State University (UNESP), Araraquara 14800-060, Brazil;
| | - Vladimir Ajdžanović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (S.P.); (D.V.); (M.M.); (V.A.); (S.T.); (B.F.)
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA;
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (F.S.); (D.L.)
| | - Svetlana Trifunović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (S.P.); (D.V.); (M.M.); (V.A.); (S.T.); (B.F.)
| | - Branko Filipović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (S.P.); (D.V.); (M.M.); (V.A.); (S.T.); (B.F.)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (F.S.); (D.L.)
| |
Collapse
|
3
|
Lin J, Yang X, Wang A, Yang J, Zheng Y, Dong H, Tian Y, Zhang Z, Wang M, Song R. LC-MS/MS profiling of colon oxysterols and cholesterol precursors in mouse model of ulcerative colitis. J Chromatogr A 2024; 1722:464865. [PMID: 38598891 DOI: 10.1016/j.chroma.2024.464865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Oxysterols and cholesterol precursors are being increasingly investigated in humans and laboratory animals as markers for various diseases in addition to their important functions. However, the quantitative analysis of these bioactive molecules is obstructed by high structural similarity, poor ionization efficiency and low abundance. The current assay methods are still cumbersome to be of practical use, and their applicability in different bio-samples needs to be evaluated and optimized as necessary. In the present work, chromatographic separation conditions were carefully studied to achieve baseline separation of difficult-to-isolate compound pairs. On the other hand, an efficient sample purification method was established for colon tissue samples with good recoveries of sterols, demonstrating negligible autoxidation of cholesterol into oxysterols. The developed UPLC-APCI-MS/MS method was thoroughly validated and applied to measure oxysterols and cholesterol precursors in colon tissue of dextran sulfate sodium (DSS)-induced mouse colitis models, and it is expected to be successfully applied to the quantitative determination of such components in other tissue samples.
Collapse
Affiliation(s)
- Jiachun Lin
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210009, China; Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, 24 Tongjia Lane, Nanjing 210009, China
| | - Xue Yang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210009, China; Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, 24 Tongjia Lane, Nanjing 210009, China
| | - Anhui Wang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, 24 Tongjia Lane, Nanjing 210009, China
| | - Jinni Yang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, 24 Tongjia Lane, Nanjing 210009, China
| | - Yuan Zheng
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, 24 Tongjia Lane, Nanjing 210009, China
| | - Haijuan Dong
- The Public Laboratory Platform of China Pharmaceutical University, Nanjing, 210009, China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, 24 Tongjia Lane, Nanjing 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, 24 Tongjia Lane, Nanjing 210009, China
| | - Min Wang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210009, China.
| | - Rui Song
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
4
|
Czerwonka M, Gielecińska A, Białek A, Białek M, Bobrowska-Korczak B. Cholesterol and Its Oxidation Derivatives Content in Market Dairy Products. Nutrients 2024; 16:1371. [PMID: 38732617 PMCID: PMC11085727 DOI: 10.3390/nu16091371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Cholesterol oxidation products (COPs) are contaminants of food of animal origin. Increased levels of these compounds in the human body are associated with an increased risk of many non-communicable diseases. Dairy products are mentioned among the main sources of these compounds in the diet. The objective of this study was to evaluate the contents of cholesterol and its oxidized derivatives in eleven groups of dairy products, willingly consumed in European countries. The levels of COPs were determined by applying the GC-TOF/MS method. In the tested products, cholesterol and its oxidation derivatives, such as 7-ketocholesterol, 7α-hydroxycholesterol, 7β-hydroxycholesterol, 5,6β-epoxycholesterol and 5,6α-epoxycholesterol, were determined. The studied dairy products differed in their contents and profiles of oxysterols. The highest contents of COPs were found in cheese with internal mold (13.8 ± 2.5 mg kg-1) and Cheddar (11.7 ± 3.5 mg kg-1), while the lowest levels were detected in yoghurt (0.94 ± 0.30 mg kg-1) and kefir (0.57 ± 0.11 mg kg-1). 7-ketocholesterol and 5,6β-epoxycholesterol were the dominant oxysterols. The ratio of oxidized derivatives to total cholesterol was on average 1.7%. Our results confirmed that dairy products are an important dietary source of COPs. Their levels should be monitored in dairy products to provide the best health quality.
Collapse
Affiliation(s)
- Małgorzata Czerwonka
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland;
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland (B.B.-K.)
| | - Anna Gielecińska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland (B.B.-K.)
| | - Agnieszka Białek
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland;
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland (B.B.-K.)
| |
Collapse
|
5
|
Chen J, Zhang J, Cai L, Guo L, Cai Z, Han H, Zhang W. Cholestane-3β,5α,6β-triol Induces Multiple Cell Death in A549 Cells via ER Stress and Autophagy Activation. Mar Drugs 2024; 22:174. [PMID: 38667791 PMCID: PMC11051220 DOI: 10.3390/md22040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Cholestane-3β,5α,6β-triol (CT) and its analogues are abundant in natural sources and are reported to demonstrate cytotoxicity toward different kinds of tumor cells without a deep probe into their mechanism of action. CT is also one of the major metabolic oxysterols of cholesterol in mammals and is found to accumulate in various diseases. An extensive exploration of the biological roles of CT over the past few decades has established its identity as an apoptosis inducer. In this study, the effects of CT on A549 cell death were investigated through cell viability assays. RNA-sequencing analysis and western blot of CT-treated A549 cells revealed the role of CT in inducing endoplasmic reticulum (ER) stress response and enhancing autophagy flux, suggesting a putative mechanism of CT-induced cell-death activation involving reactive oxygen species (ROS)-mediated ER stress and autophagy. It is reported for the first time that the upregulation of autophagy induced by CT can serve as a cellular cytotoxicity response in accelerating CT-induced cell death in A549 cells. This research provides evidence for the effect of CT as an oxysterol in cell response to oxidative damage and allows for a deep understanding of cholesterol in its response in an oxidative stress environment that commonly occurs in the progression of various diseases.
Collapse
Affiliation(s)
- Jiaxi Chen
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Jieping Zhang
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Lijuan Cai
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Li Guo
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Zhenyu Cai
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Hua Han
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
| | - Wen Zhang
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
- Ningbo Institute of Marine Medicine, Peking University, 56 Kang-Da Road, Ningbo 315832, China
| |
Collapse
|
6
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Decker NS, Johnson T, Le Cornet C, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Associations between lifestyle, health, and clinical characteristics and circulating oxysterols and cholesterol precursors in women diagnosed with breast cancer: a cross-sectional study. Sci Rep 2024; 14:4977. [PMID: 38424253 PMCID: PMC10904394 DOI: 10.1038/s41598-024-55316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Despite increasing evidence that cholesterol precursors and oxysterols, oxidized cholesterol metabolites, play a role in numerous pathological processes and diseases including breast cancer, little is known about correlates of these sterols in women with breast cancer. In this study, 2282 women with breast cancer and blood draw post diagnosis were included and cross-sectional associations between circulating levels of 15 sterols/oxysterols and (a) lifestyle, anthropometric, reproductive characteristics, (b) comorbidities and medication use, and (c) breast cancer tumor and treatment characteristics were calculated using generalized linear models. Obesity was strongly associated with circulating levels of 7-dehydrocholesterol (DC) (body mass index ≥ 30 vs. 18.5-24.9 kg/m2: 51.7% difference) and 7-ketocholesterol (KC) (40.0% difference). After adjustment for BMI, comorbidities such as cardiovascular disease were associated with higher levels of 7-DC (26.1% difference) and lower levels of desmosterol (- 16.4% difference). Breast cancer tumor characteristics including hormone receptor status, tumor stage, and endocrine therapy were associated with lanosterol, 24-DHLan, 7b-HC, and THC (e.g., THC; tumor stage IIIa vs. I: 36.9% difference). Weaker associations were observed for lifestyle characteristics and for any of the other oxysterols. The findings of this study suggest that cholesterol precursors are strongly associated with metabolic factors, while oxysterols are associated with breast cancer tumor characteristics, warranting further investigation into the role of cholesterol precursors and oxysterols in women with breast cancer and other populations.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charlotte Le Cornet
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Occupational and Maritime Medicine Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
8
|
Czerwonka M, Białek A, Bobrowska-Korczak B. A Novel Method for the Determination of Squalene, Cholesterol and Their Oxidation Products in Food of Animal Origin by GC-TOF/MS. Int J Mol Sci 2024; 25:2807. [PMID: 38474053 DOI: 10.3390/ijms25052807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Cholesterol present in food of animal origin is a precursor of oxysterols (COPs), whose high intake through diet can be associated with health implications. Evaluation of the content of these contaminants in food is associated with many analytical problems. This work presents a GC-TOF/MS method for the simultaneous determination of squalene, cholesterol and seven COPs (7-ketocholesterol, 7α-hydroxycholesterol, 7β-hydroxycholesterol, 25-hydroxycholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestanetriol). The sample preparation procedure includes such steps as saponification, extraction and silylation. The method is characterized by high sensitivity (limit of quantification, 0.02-0.25 ng mL-1 for instrument, 30-375 μg kg of sample), repeatability (RSD 2.3-6.2%) and a wide linearity range for each tested compound. The method has been tested on eight different animal-origin products. The COP to cholesterol content ratio in most products is about 1%, but the profile of cholesterol derivatives differs widely (α = 0.01). In all the samples, 7-ketocholesterol is the dominant oxysterol, accounting for 31-67% of the total COPs level. The levels of the other COPs range between 0% and 21%. In none of the examined products are cholestanetriol and 25-hydroxycholesterol present. The amount of squalene, which potentially may inhibit the formation of COPs in food, ranges from 2 to 57 mg kg-1.
Collapse
Affiliation(s)
- Małgorzata Czerwonka
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
| | - Agnieszka Białek
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
9
|
Kuwabara M, Sasaki J, Ouchi Y, Oikawa S, Nakagawa K, Sato M, Koba S, Kono S, Saikawa T, Arai H. Higher Cholesterol Absorption Marker at Baseline Predicts Fewer Cardiovascular Events in Elderly Patients Receiving Hypercholesterolemia Treatment: The KEEP Study. J Am Heart Assoc 2024; 13:e031865. [PMID: 38240241 PMCID: PMC11056156 DOI: 10.1161/jaha.123.031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Higher cholesterol absorption has been reported to be related to a higher incidence of cardiovascular events (CVEs). The KEEP (Kyushu Elderly Ezetimibe Phytosterol) study, a substudy of the EWTOPIA 75 (Ezetimibe Lipid-Lowering Trial on Prevention of Atherosclerotic Cardiovascular Disease in 75 or Older) study, investigated the relationships of cholesterol absorption and synthesis markers with CVEs in older old individuals with hypercholesterolemia, particularly in relation to ezetimibe treatment. METHODS AND RESULTS Eligible patients were those aged ≥75 years who had low-density lipoprotein cholesterol ≥140 mg/dL, no history of coronary artery disease, and no recent use of lipid-lowering drugs. Participants were randomly assigned into a diet-only or diet-plus-ezetimibe group. Baseline and 24-week follow-up blood samples were analyzed for cholesterol absorption (eg, campesterol) and synthesis markers (eg, lathosterol). Of 1287 patients, 1061 patients with baseline measurement were analyzed. Over a median follow-up of 4.0 years, 64 CVEs occurred. Higher campesterol levels at baseline were significantly associated with a lower risk of CVEs. After adjustment for sex, age, and treatment, the hazard ratios for the lowest to highest quartile categories of baseline campesterol were 1.00 (reference), 0.59 (95% CI, 0.30-1.17), 0.44 (95% CI, 0.21-0.94), and 0.44 (95% CI, 0.21-0.93), respectively (trend P=0.01). This association persisted after further adjustment for hypertension, diabetes, and other cardiovascular risk factors. Neither interactions with ezetimibe treatment nor mediating effects of the changes in cholesterol absorption markers were observed. CONCLUSIONS The KEEP study indicated that higher campesterol levels without lipid-lowering drugs were associated with a lower incidence of CVEs in older old individuals with hypercholesterolemia who were subsequently treated with diet or ezetimibe. REGISTRATION URL: https://www.umin.ac.jp; unique identifier: UMIN000017769.
Collapse
Affiliation(s)
| | - Jun Sasaki
- International University of Health and WelfareFukuokaJapan
| | | | | | | | | | | | | | | | - Hidenori Arai
- National Center for Geriatrics and GerontologyAichiJapan
| |
Collapse
|
10
|
Olkkonen VM, Gylling H. Oxy- and Phytosterols as Biomarkers: Current Status and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:353-375. [PMID: 38036889 DOI: 10.1007/978-3-031-43883-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols and phytosterols are sterol compounds present at markedly low levels in tissues and serum of healthy individuals. A wealth of evidence suggests that they could be employed as biomarkers for human diseases or for cholesterol absorption.An increasing number of reports suggest circulating or tissue oxysterols as putative biomarkers for cardiovascular and neurodegenerative diseases or cancers. Thus far most of the studies have been carried out on small study populations. To achieve routine biomarker use, large prospective cohort studies are absolutely required. This, again, would necessitate thorough standardization of the oxysterol analytical methodology across the different laboratories, which now employ different technologies resulting in inconsistencies in the measured oxysterol levels. Routine use of oxysterol biomarkers would also necessitate the development of a new targeted analytical methodology suitable for high-throughput platforms.The most important use of phytosterols as biomarkers involves their use as markers for cholesterol absorption. For this to be achieved, (1) their quantitative analyses should be available in routine lipid laboratories, (2) it should be generally acknowledgment that the profile of cholesterol metabolism can reveal the risk of the development of atherosclerotic cardiovascular diseases (ASCVD), and (3) screening of the profile of cholesterol metabolism should be included in the ASCVD risk surveys. This should be done e.g. in families with a history of early onset or frequent ASCVD and in young adults aged 18-20 years, to exclude the presence of high cholesterol absorption. Individuals in high cholesterol absorption families need preventive measures from young adulthood to inhibit the possible development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Helena Gylling
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Ito T, Ichikawa T, Yamada M, Hashimoto Y, Fujino N, Numakura T, Sasaki Y, Suzuki A, Takita K, Sano H, Kyogoku Y, Saito T, Koarai A, Tamada T, Sugiura H. CYP27A1-27-hydroxycholesterol axis in the respiratory system contributes to house dust mite-induced allergic airway inflammation. Allergol Int 2024; 73:151-163. [PMID: 37607853 DOI: 10.1016/j.alit.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND 27-Hydroxycholesterol (27-HC) derived from sterol 27-hydroxylase (CYP27A1) has pro-inflammatory biological activity and is associated with oxidative stress and chronic inflammation in COPD. However, the role of regulation of CYP27A1- 27-HC axis in asthma is unclear. This study aimed to elucidate the contribution of the axis to the pathophysiology of asthma. METHODS House dust mite (HDM) extract was intranasally administered to C57BL/6 mice and the expression of CYP27A1 in the airways was analyzed by immunostaining. The effect of pre-treatment with PBS or CYP27A1 inhibitors on the cell fraction in the bronchoalveolar lavage fluid (BALF) was analyzed in the murine model. In vitro, BEAS-2B cells were treated with HDM and the levels of CYP27A1 expression were examined. Furthermore, the effect of 27-HC on the expressions of E-cadherin and ZO-1 in the cells was analyzed. The amounts of RANTES and eotaxin from the 27-HC-treated cells were analyzed by ELISA. RESULTS The administration of HDM increased the expression of CYP27A1 in the airways of mice as well as the number of eosinophils in the BALF. CYP27A1 inhibitors ameliorated the HDM-induced increase in the number of eosinophils in the BALF. Treatment with HDM increased the expression of CYP27A1 in BEAS-2B cells. The administration of 27-HC to BEAS-2B cells suppressed the expression of E-cadherin and ZO-1, and augmented the production of RANTES and eotaxin. CONCLUSIONS The results of this study suggest that aeroallergen could enhance the induction of CYP27A1, leading to allergic airway inflammation and disruption of the airway epithelial tight junction through 27-HC production.
Collapse
Affiliation(s)
- Tatsunori Ito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Hashimoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusaku Sasaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Suzuki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Takita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuya Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Maldonado-Pereira L, Barnaba C, Medina-Meza IG. Oxidative Status of Ultra-Processed Foods in the Western Diet. Nutrients 2023; 15:4873. [PMID: 38068731 PMCID: PMC10708126 DOI: 10.3390/nu15234873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Ultra-processed foods (UPFs) have gained substantial attention in the scientific community due to their surging consumption and potential health repercussions. In addition to their well-established poor nutritional profile, UPFs have been implicated in containing various dietary oxidized sterols (DOxSs). These DOxSs are associated with a spectrum of chronic diseases, including cardiometabolic conditions, cancer, diabetes, Parkinson's, and Alzheimer's disease. In this study, we present a comprehensive database documenting the presence of DOxSs and other dietary metabolites in >60 UPFs commonly consumed as part of the Western diet. Significant differences were found in DOxS and phytosterol content between ready-to-eat (RTE) and fast foods (FFs). Biomarker analysis revealed that DOxS accumulation, particularly 25-OH and triol, can potentially discriminate between RTEs and FFs. This work underscores the potential utility of dietary biomarkers in early disease detection and prevention. However, an essential next step is conducting exposure assessments to better comprehend the levels of DOxS exposure and their association with chronic diseases.
Collapse
Affiliation(s)
- Lisaura Maldonado-Pereira
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA;
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Carlo Barnaba
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Ilce Gabriela Medina-Meza
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA;
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Decker NS, Johnson T, Vey JA, Le Cornet C, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Circulating oxysterols and prognosis among women with a breast cancer diagnosis: results from the MARIE patient cohort. BMC Med 2023; 21:438. [PMID: 37964298 PMCID: PMC10648629 DOI: 10.1186/s12916-023-03152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Breast cancer is the most commonly diagnosed cancer in women worldwide, and underlying mechanistic pathways associated with breast cancer-specific and non-breast cancer-related deaths are of importance. Emerging evidence suggests a role of oxysterols, derivates of cholesterol, in multiple chronic diseases including breast cancer and coronary artery diseases. However, associations between oxysterols and survival have been minimally studied in women diagnosed with breast cancer. In this large breast cancer patient cohort, we evaluated associations between a panel of circulating oxysterols and mortality and recurrence outcomes. METHODS Concentrations of 13 circulating oxysterols representing different pathways of cholesterol metabolism were quantified using liquid-chromatography mass-spectrometry. Associations between baseline levels of oxysterols and cause-specific mortality outcomes and recurrence following a breast cancer diagnosis were assessed in 2282 women from the MARIE study over a median follow-up time of 11 years. We calculated hazard ratios (HR) and 95% confidence intervals (CI) using multivariable Cox proportional hazard models and competing risks models. RESULTS We observed no associations for circulating oxysterols and breast cancer-specific outcomes. Higher levels of six oxysterols were associated with an increased risk of cardiovascular disease death, including 24S-hydroxycholesterol (alternative bile acid pathway, HRlog2 = 1.73 (1.02, 2.93)), lanosterol (cholesterol biosynthesis pathway, HRlog2 = 1.95 (1.34, 2.83)), 7-ketocholesterol (HRlog2 = 1.26 (1.03, 1.55)), 5α,6α-epoxycholesterol (HRlog2 = 1.34 (1.02-1.77)), and 5a,6β-dihydroxycholestanol (HRlog2 = 1.34 (1.03, 1.76)). After adjusting for multiple comparisons, none of the associations were statistically significant. CONCLUSION We provide first evidence on a range of circulating oxysterols and mortality following a breast cancer diagnosis, contributing to a better understanding of associations between different pathways of cholesterol metabolism and prognosis in women with a breast cancer diagnosis. The findings of this study suggest circulating oxysterols may be associated with cardiovascular mortality among women diagnosed with breast cancer. Further studies are needed to evaluate these oxysterols as potential markers of risk for cardiovascular mortality among women with a breast cancer diagnosis as well as their clinical potential.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Johannes A Vey
- Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - Charlotte Le Cornet
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nadia Obi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- University Cancer Center Hamburg, Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Ullernchausseen 64, 0379, Oslo, Norway.
| |
Collapse
|
14
|
Decker NS, Johnson T, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Endogenous estrogen receptor modulating oxysterols and breast cancer prognosis: Results from the MARIE patient cohort. Br J Cancer 2023; 129:492-502. [PMID: 37355720 PMCID: PMC10403581 DOI: 10.1038/s41416-023-02315-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND 27-hydroxycholesterol (HC) and 25-HC were identified as endogenous selective estrogen receptor modulators (SERMs) and estrogen receptor (ER) modulators, respectively. They are hypothesized to play a role in multiple physiologic processes and pathologies, including breast cancer development and progression. METHODS We evaluated circulating 27-HC and 25-HC, and outcomes following a breast cancer diagnosis in 2282 women from the MARIE study over median follow-up of 11.6 years. 27-HC and 25-HC were quantified by liquid chromatography-mass spectrometry. We calculated hazard ratios (HR) and 95% confidence intervals [CI] using multivariable Cox Proportional Hazards regression. RESULTS We observed no associations between 27-HC and breast cancer prognosis overall. Associations between 27-HC and survival differed by circulating estradiol concentrations and endocrine therapy, but not by hormone receptor status. Among women with estradiol levels below the median (0.08 nM), 27-HC was associated with higher risk of all-cause mortality (HRlog2 = 1.80 [1.20-2.71]) and breast cancer-specific mortality (HRlog2 = 1.95 [1.14-3.31]). No associations were observed in women with estradiol levels above the median. Higher 25-HC levels were associated with lower risk of recurrence (HRlog2 = 0.87 [0.77-0.98]). CONCLUSION Associations between 27-HC and breast cancer prognosis varied by circulating estradiol levels and endocrine therapy. Less consistent results were observed for 25-HC.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Ullernchausseen 64, 0379, Oslo, Norway.
| |
Collapse
|
15
|
Zhabin S, Lazarenko V, Azarova I, Klyosova E, Bykanova M, Chernousova S, Bashkatov D, Gneeva E, Polonikova A, Churnosov M, Solodilova M, Polonikov A. The Joint Link of the rs1051730 and rs1902341 Polymorphisms and Cigarette Smoking to Peripheral Artery Disease and Atherosclerotic Lesions of Different Arterial Beds. Life (Basel) 2023; 13:life13020496. [PMID: 36836853 PMCID: PMC9961460 DOI: 10.3390/life13020496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Genome-wide association studies (GWAS) have discovered numerous single nucleotide polymorphisms (SNP) contributing to peripheral artery disease (PAD), but their joint effects with risk factors like cigarette smoking (CS) on disease susceptibility have not been systematically investigated. The present study looked into whether CS mediates the effects of GWAS loci on the development of PAD and atherosclerotic lesions in different arterial beds. DNA samples from 1263 unrelated individuals of Slavic origin including 620 PAD patients and 643 healthy subjects were genotyped by the MassArray-4 system for rs1051730, rs10134584, rs1902341, rs10129758 which are known as PAD-associated GWAS loci. The rs1051730 polymorphism was strongly associated with an increased risk of PAD (p = 5.1 × 10-6), whereas rs1902341 did not show an association with disease risk. The rs1051730 polymorphism was associated with increased plasma levels of LDL cholesterol (p = 0.001), and conferred a greater risk of PAD in cigarette smokers than in nonsmokers (p < 0.01). Interestingly, the rs1902341T allele was associated with an increased risk of PAD in smokers and a decreased disease risk in nonsmokers. SNPs and CS were both linked to unilateral and/or bilateral atherosclerotic lesions of peripheral vessels, as well as the abdominal aorta, coronary, and cerebral arteries. The studied polymorphisms exert pleiotropic and cigarette smoking-mediated effects on atherosclerotic lesions of different arterial beds.
Collapse
Affiliation(s)
- Sergey Zhabin
- Department of Surgical Diseases №1, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Victor Lazarenko
- Department of Surgical Diseases of Institute of Continuing Education, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
| | - Marina Bykanova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
| | - Svetlana Chernousova
- Department of Surgical Diseases №1, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Daniil Bashkatov
- Department of Surgical Diseases №1, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Ekaterina Gneeva
- Department of Surgical Diseases №1, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Anna Polonikova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, Belgorod 308015, Russia
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
- Correspondence:
| |
Collapse
|
16
|
Maldonado-Pereira L, Barnaba C, Medina-Meza IG. Dietary exposure assessment of infant formula and baby foods' oxidized lipids in the US population. Food Chem Toxicol 2023; 172:113552. [PMID: 36502995 DOI: 10.1016/j.fct.2022.113552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Baby Foods (BFs) and Infant formulas (IFs) are the main sources of nutrition for an infant throughout the 1st year of life. Various enriched products are commercially available for parents seeking to fulfill their baby's nutritional needs. Consequently, different bioactive lipids are present in BFs and IFs, including dietary oxysterols (DOxS), whose known toxicity has been associated with mutagenicity, cancer, and other chronic diseases. In this work, we performed an exposure assessment of 25 bioactive lipids on IFs (n = 30) and BFs (n = 13) commercially available in the US. To determine dietary exposure, we used EPA's SHEDS-HT probabilistic model. Even though β-Sitosterol was the most exposed bioactive lipid with 75,410 μg/day, cholesterol was the most absorbed compound during the entire first year (19.3 mg/day). Additionally, we found 7α-hydroxycholesterol (7α-OH) as a potential DOxS biomarker of the BFs manufacturing process. This is the first time an infant's exposure assessment (including DOxS) after BFs and IFs consumption is performed, enabling much-needed information regarding these hazardous compounds and their potential effects on infants' health.
Collapse
Affiliation(s)
- Lisaura Maldonado-Pereira
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA; Department of Biosystems and Agricultural Engineering, East Lansing, MI, USA.
| | - Carlo Barnaba
- Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Ilce Gabriela Medina-Meza
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA; Department of Biosystems and Agricultural Engineering, East Lansing, MI, USA.
| |
Collapse
|
17
|
Decker NS, Johnson T, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Association of circulating free and total oxysterols in breast cancer patients. Clin Chem Lab Med 2023; 61:285-293. [PMID: 36342239 DOI: 10.1515/cclm-2022-0705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Oxysterols, a family of oxidized cholesterol derivates, are of increasing interest due to their role in cancer development and progression. Some oxysterols are estrogen receptor modulators and thus of particular interest in breast cancer research. In human studies, two forms of circulating oxysterols are commonly evaluated: "free" (unesterified) and "total" (esterified and unesterified). However, associations between free and total oxysterols are not well established. We addressed this knowledge gap in a pilot study by evaluating correlations between the free and the total form of each of the circulating oxysterols (free vs. total), and pairwise associations within the panel of total oxysterols (total vs. total) and the panel of free oxysterols (free vs. free). METHODS Concentrations of oxysterols and other non-cholesterol sterols were quantified in blood samples of 27 breast cancer patients from the MARIE breast cancer patient cohort using liquid chromatography mass spectrometry. We used Spearman rank correlations to assess associations. Overall, 12 oxysterols (including 27-hydroxycholesterol (HC), 25-HC, 24S-HC, 7a-HC, 5a6a-epoxycholesterol) and five sterols (including lanosterol and desmosterol) were analyzed. RESULTS Strong correlations (r≥0.82) were observed for seven circulating free and total oxysterols/sterols. The free and total form of 27-HC (r=0.63), 25-HC (r=0.54), and two more oxysterols were weaker correlated. Correlation patterns in the panel of total oxysterols/sterols and the panel of free oxysterols/sterols were similar. CONCLUSIONS These findings demonstrate that concentrations of most free and total oxysterols/sterols are strongly correlated. We provide further insight into the interrelationships between oxysterols in breast cancer patients.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
18
|
Gao S, Wang Y, Ma T, Zhang J. The Late Stage of Abnormal Aging: Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:157-167. [PMID: 37418213 DOI: 10.1007/978-981-99-1627-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
With the growth of the aging population, more age-related diseases endanger the health of the elderly, and therefore more research attention has been put on Alzheimer's disease and dementia. Dementia does not only posing a serious threat to basic daily living in old age but also impose a greater burden on social and medical care as well as the economy. It is urgent to explore the pathogenesis of Alzheimer's disease and develop effective medicine to prevent or mitigate its onset. Currently, many related mechanisms of the pathogenesis of Alzheimer's disease have been proposed, such as beta-amyloid (A) theory, Tau protein theory, and nerve and blood vessel theory. In addition, from the perspective of improving cognitive function and controlling mental state, dementia-related therapeutic drugs were developed, such as anti-amyloid agents, amyloid vaccine, tau vaccine, and tau-aggregation inhibitor. These theories of pathogenesis and the development of drugs provide valuable experience to lift the veil of cognitive disorders in the future.
Collapse
Affiliation(s)
- Shudan Gao
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- School of Psychology, Shandong Normal University, Jinan, China
| | - Yun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junying Zhang
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Perez-Salas U, Porcar L, Garg S, Ayee MAA, Levitan I. Effective Parameters Controlling Sterol Transfer: A Time-Resolved Small-Angle Neutron Scattering Study. J Membr Biol 2022; 255:423-435. [PMID: 35467109 DOI: 10.1007/s00232-022-00231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
Abstract
Though cholesterol is the most prevalent and essential sterol in mammalian cellular membranes, its precursors, post-synthesis cholesterol products, as well as its oxidized derivatives play many other important physiological roles. Using a non-invasive in situ technique, time-resolved small angle neutron scattering, we report on the rate of membrane desorption and corresponding activation energy for this process for a series of sterol precursors and post-synthesis cholesterol products that vary from cholesterol by the number and position of double bonds in B ring of cholesterol's steroid core. In addition, we report on sterols that have oxidation modifications in ring A and ring B of the steroid core. We find that sterols that differ in position or the number of double bonds in ring B have similar time and energy characteristics, while oxysterols have faster transfer rates and lower activation energies than cholesterol in a manner generally consistent with known sterol characteristics, like Log P, the n-octanol/water partitioning coefficient. We find, however, that membrane/water partitioning which is dependent on lipid-sterol interactions is a better predictor, shown by the correlation of the sterols' tilt modulus with both the desorption rates and activation energy.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Lionel Porcar
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Manuela A A Ayee
- Department of Engineering, Dordt University, Sioux Center, IA, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
20
|
Vremere A, Merola C, Fanti F, Sergi M, Perugini M, Compagnone D, Mikhail M, Lorenzetti S, Amorena M. Oxysterols profiles in zebrafish (Danio rerio) embryos exposed to bisphenol A. Food Chem Toxicol 2022; 165:113166. [PMID: 35609738 DOI: 10.1016/j.fct.2022.113166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Oxysterols are cholesterol oxidation products and bioactive lipids involved in developmental signaling pathways, embryonic and postembryonic tissue patterning and homeostasis. The embryonic period is a very sensitive window of exposure to bisphenol A (BPA), hence the role of BPA on the levels of oxysterols in the very early stages of zebrafish embryogenesis is a relevant novel field of investigation. OBJECTIVES To compare the role of BPA on oxysterols levels in zebrafish embryos at 8 and 24 hours post fertilization (hpf) with cytochromes P450 (CYPs)-modulating chemicals (carbamazepine, ketoconazole, and hydrogen peroxide). METHODS Upon a dose range finding, zebrafish embryos were exposed to environmentally relevant (0.04μM) and toxicological (17.5 μM) BPA concentrations. Seven oxysterols were profiled by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS Similarly to the CYPs-modulating chemicals, BPA caused: i) no significant changes at 8 hpf and ii) a dose-dependent increase of total oxysterols at 24 hpf, with 27-hydroxycholesterol as the most regulated oxysterol. DISCUSSION In the first day post-fertilization of the zebrafish embryos, the role of BPA alike a CYPs-modulating chemical was confirmed by the similar oxysterol changes observed with the already known CYPs-modulating chemicals.
Collapse
Affiliation(s)
- Anton Vremere
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy; Dpt. of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - ISS, Rome, Italy.
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Federico Fanti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Milena Mikhail
- Dpt. of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - ISS, Rome, Italy.
| | - Stefano Lorenzetti
- Dpt. of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - ISS, Rome, Italy.
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| |
Collapse
|
21
|
Cais-Sokolińska D, Walkowiak-Tomczak D, Rudzińska M. Photosensitized oxidation of cholesterol and altered oxysterol levels in sour cream: Effects of addition of cucumber pickles. J Dairy Sci 2022; 105:4760-4771. [PMID: 35450712 DOI: 10.3168/jds.2022-21856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
The aim of this research was to examine whether sour cream (18% fat) is an exogenous source of oxysterols and whether it is possible to improve its antioxidative properties and to modulate cholesterol transformation by adding cucumber. To determine whether cucumber modifies the properties of sour cream, fresh cucumber or cucumber pickle (pH 3.3; 1.5% lactic acid) was added in an amount of 20%. The sour cream samples were then stored under light (450 lx, 590 cd, 120 lm) for 3 wk. After storage, the addition of the cucumber pickle increased total mesophilic aerobic bacteria from 7.5 to 9.3 log cfu/g and increased the l-lactic acid content from 6.1 to 9.7 g/L. The total conjugated linoleic acid content in sour cream with cucumber pickle also increased to 4.5 mg/g fat after storage, whereas the cholesterol content decreased to 3.44 g/kg fat. Importantly, with the addition of cucumber pickle, the total content of cholesterol oxidization products (COP) did not change after storage (1.7 mg/kg fat). By contrast, the total COP content in the control sour cream sample increased from 1.7 to 7.3 mg/kg fat over 3 wk of storage. The dominant COP before and after storage was 7β-hydroxycholesterol. Thus, despite exposure to light, adding cucumber pickle to sour cream modulates cholesterol transformation and effectively inhibits the formation of oxysterols.
Collapse
Affiliation(s)
- D Cais-Sokolińska
- Department of Dairy and Process Engineering, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - D Walkowiak-Tomczak
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland
| | - M Rudzińska
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
22
|
Shoji S, Maekawa M, Ogura J, Sato T, Mano N. Identification cholesterol metabolites altered before the onset of nonalcoholic steatohepatitis by targeted metabolomics. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159135. [PMID: 35217199 DOI: 10.1016/j.bbalip.2022.159135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a disease with symptoms similar to those of alcoholic liver inflammation without alcohol intake. As an effective treatment strategy has not been established for this disease, a detailed understanding of the pathological progression mechanism is required. We focused on cholesterol metabolites, which are suspected to regulate NASH pathology, and investigated their relationship with the pathological progression in the early stages of NASH. First, the LC/MS/MS methods for bile acids and sterols were optimized and validated. Next, NASH model mice were established by feeding a choline-deficient, methionine-reduced high-fat diet, and the levels of hepatic cholesterol metabolites were measured. As a result, before the onset of NASH, desmosterol, 4β-hydroxycholesterol, campesterol, sitosterol, secondary bile acids such as taurodeoxycholic acid significantly decreased by up to 1/38 of NASH model group. Autoxidation-generated sterols significantly increased 2- to 5-fold, and various primary bile acids such as conjugated β-muricholic acids and cholic acids significantly increased 2- to 7-fold. In this study, the levels of cholesterol metabolites changed in the before the onset of NASH. These metabolic alterations involved in inflammation induction and detoxification for NASH may help the discovery of early diagnostic biomarkers in the future.
Collapse
Affiliation(s)
- Saori Shoji
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
23
|
Banyś K, Stawarska A, Wyrębiak R, Bielecki W, Bobrowska-Korczak B. The Effect of Genistein Supplementation on Cholesterol Oxidation Products and Fatty Acid Profiles in Serums of Rats with Breast Cancer. Foods 2022; 11:foods11040605. [PMID: 35206081 PMCID: PMC8871115 DOI: 10.3390/foods11040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to assess the effect of genistein on the level of cholesterol, oxysterols, and composition of fatty acids, as well as enzymatic activity of desaturases, in rats with breast cancer. The animals were supplemented with nano-, micro-, and macrogenistein. Rats were treated with 7,12-dimethylbenz[a]anthracene to induce mammary adenocarcinoma. In the case of animals supplemented with genistein, an increase in the intensity of the carcinogenesis process was observed. Genistein supplementation also affected the cholesterol and oxysterols levels, as well as the composition of fatty acids, in the serum of rats with neoplastic disease. Dietary supplementation with nanogenistein significantly increased the level of cholesterol (p = 0.02) and cholesterol oxidation products (p = 0.02), which may have significant impacts on cancer development and progression.
Collapse
Affiliation(s)
- Karolina Banyś
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (K.B.); (A.S.)
| | - Agnieszka Stawarska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (K.B.); (A.S.)
| | - Rafał Wyrębiak
- Department of Biomaterials Chemistry, Analytical Chemistry and Biomaterials, Faculty of Pharmacy Medica, University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Live Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland;
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (K.B.); (A.S.)
- Correspondence:
| |
Collapse
|
24
|
Berghoff SA, Spieth L, Saher G. Local cholesterol metabolism orchestrates remyelination. Trends Neurosci 2022; 45:272-283. [DOI: 10.1016/j.tins.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
25
|
Merola C, Vremere A, Fanti F, Iannetta A, Caioni G, Sergi M, Compagnone D, Lorenzetti S, Perugini M, Amorena M. Oxysterols Profile in Zebrafish Embryos Exposed to Triclocarban and Propylparaben-A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031264. [PMID: 35162288 PMCID: PMC8834710 DOI: 10.3390/ijerph19031264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/09/2023]
Abstract
Oxysterols have long been considered as simple by-products of cholesterol metabolism, but they are now fully designed as bioactive lipids that exert their multiple effects through their binding to several receptors, representing endogenous mediators potentially involved in several metabolic diseases. There is also a growing concern that metabolic disorders may be linked with exposure to endocrine-disrupting chemicals (EDCs). To date, there are no studies aimed to link EDCs exposure to oxysterols perturbation-neither in vivo nor in vitro studies. The present research aimed to evaluate the differences in oxysterols levels following exposure to two metabolism disrupting chemicals (propylparaben (PP) and triclocarban (TCC)) in the zebrafish model using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Following exposure to PP and TCC, there were no significant changes in total and individual oxysterols compared with the control group; however, some interesting differences were noticed: 24-OH was detected only in treated zebrafish embryos, as well as the concentrations of 27-OH, which followed a different distribution, with an increase in TCC treated embryos and a reduction in zebrafish embryos exposed to PP at 24 h post-fertilization (hpf). The results of the present study prompt the hypothesis that EDCs can modulate the oxysterol profile in the zebrafish model and that these variations could be potentially involved in the toxicity mechanism of these emerging contaminants.
Collapse
Affiliation(s)
- Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Anton Vremere
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—ISS, 00161 Rome, Italy;
| | - Federico Fanti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Annamaria Iannetta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—ISS, 00161 Rome, Italy;
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
- Correspondence:
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| |
Collapse
|
26
|
Maekawa M, Mano N. Searching, Structural Determination, and Diagnostic Performance Evaluation of Biomarker Molecules for Niemann-Pick Disease Type C Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2022; 11:A0111. [PMID: 36713801 PMCID: PMC9853955 DOI: 10.5702/massspectrometry.a0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder that is characterized by progressive neuronal degeneration. Patients with NPC have a wide age of onset and various clinical symptoms. Therefore, the discovery and diagnosis of NPC are very difficult. Conventional laboratory tests are complicated and time consuming. In this context, biomarker searches have recently been performed. Our research group has previously also investigated NPC biomarkers based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) and related techniques. To identify biomarker candidates, nontargeted analysis with high-resolution MS and MS/MS scanning is commonly used. Structural speculation has been performed using LC/MS/MS fragmentation and chemical derivatization, while identification is performed by matching authentic standards and sample specimens. Diagnostic performance evaluation was performed using the validated LC/MS/MS method and analysis of samples from patients and control subjects. NPC biomarkers, which have been identified and evaluated in terms of performance, are various classes of lipid molecules. Oxysterols, cholenoic acids, and conjugates are cholesterol-derived molecules detected in the blood or urine. Plasma lyso-sphingolipids are biomarkers for both NPC and other lysosomal diseases. N-palmitoyl-O-phosphocholine-serine is a novel class of lipid biomarkers for NPC. This article reviews biomarkers for NPC and the analysis methods employed to that end.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan,Correspondence to: Masamitsu Maekawa, Department of Pharmaceutical Sciences, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan, e-mail:
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
27
|
Barbieri S, Mercatante D, Balzan S, Esposto S, Cardenia V, Servili M, Novelli E, Taticchi A, Rodriguez-Estrada MT. Improved Oxidative Stability and Sensory Quality of Beef Hamburgers Enriched with a Phenolic Extract from Olive Vegetation Water. Antioxidants (Basel) 2021; 10:antiox10121969. [PMID: 34943072 PMCID: PMC8750197 DOI: 10.3390/antiox10121969] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022] Open
Abstract
This study aims at evaluating the effect of a phenol-rich extract obtained from the concentration and purification of olive mill wastewaters (added at a ratio of 87.5 and 175 mg of phenols/kg meat) on the stability and sensory quality of beef hamburgers packed under modified atmosphere and stored under alternating exposure to fluorescent light at 4 ± 2 °C for 9 days. The hamburgers were sampled at different times (0, 6, and 9 days) and grilled at 200 °C. After 9 days, more than 56% of the added phenols in the raw burgers and more than 20% the grilled ones were retained. The results show that both concentrations of phenolic extract proved to effectively reduce primary and secondary lipid oxidation, as well as cholesterol oxidation products (COPs), during the shelf-life of raw hamburgers. Peroxide value, thiobarbituric acid reactive substances, and total COPs were up to 1.4-, 4.5-, and 8.8-fold lower in phenol-enriched raw hamburgers, respectively, than in the control samples; a similar trend was noted also in phenol-enriched cooked hamburgers (1.3-, 5.7-, and 4-fold lower). The sensory analysis also confirmed the effectiveness of the addition of phenolic extract, resulting in a positive effect on the red color intensity (raw product) and thus reducing browning during storage.
Collapse
Affiliation(s)
- Sara Barbieri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy;
| | - Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy; (S.B.); (E.N.)
| | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (M.S.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy;
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (M.S.)
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy; (S.B.); (E.N.)
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (M.S.)
- Correspondence: ; Tel.: +39-075-585-7909
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum-University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
28
|
Lara-Guzmán OJ, Álvarez R, Muñoz-Durango K. Changes in the plasma lipidome of healthy subjects after coffee consumption reveal potential cardiovascular benefits: A randomized controlled trial. Free Radic Biol Med 2021; 176:345-355. [PMID: 34648905 DOI: 10.1016/j.freeradbiomed.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Lipid metabolism dysregulation is associated with cardiovascular disease (CVD) risk. Specific oxidized lipids are recognized CVD biomarkers involved in all stages of atherosclerosis, including foam cell formation. Moderate coffee intake is positively associated with cardiovascular health. A randomized, controlled (n = 25) clinical trial was conducted in healthy subjects to assess the changes in lipid species relevant to CVD (main inclusion criteria: coffee drinkers, nonsmokers, with no history and/or diagnosis of chronic disease and not consuming any medications). Volunteers consumed a coffee beverage (400 mL/day) containing either 787 mg (coffee A; n = 24) or 407 mg (coffee B; n = 25) of chlorogenic acids for eight weeks. We measured the total plasma levels of 46 lipids, including fatty acids, sterols, and oxysterols, at baseline and after eight weeks and assessed the effects of chlorogenic and phenolic acids, the major coffee antioxidants, in an in vitro foam cell model via targeted lipidomics. At baseline (n = 74), all participants presented oxysterols and free fatty acids (FFAs) (CVD risk markers), which are closely correlated to among them, but not with the classical clinical variables (lipid profile, waist circumference, and BMI). After eight weeks, the control group lipidome showed an increase in oxysterols (+7 ± 10%) and was strongly correlated with FFAs (e.g., arachidonic acid) and cholesteryl ester reduction (-13 ± 7%). Notably, the coffee group subjects (n = 49) had increased cholesteryl esters (+9 ± 11%), while oxysterols (-71 ± 30%) and FFAs (-29 ± 26%) decreased. No differences were found between the consumption of coffees A and B. Additionally, coffee antioxidants decreased oxysterols and regulated arachidonic acid in foam cells. Our results suggest that coffee consumption modulates the generation of oxidized and inflammatory lipids in healthy subjects, which are fundamental during CVD development. The clinical trial was registered on the International Clinical Trials Registry Platform, WHO primary registry (RPCEC00000168).
Collapse
Affiliation(s)
- Oscar J Lara-Guzmán
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellín, Colombia
| | - Rafael Álvarez
- Grupo de Investigación en Ciencias Farmacéuticas-ICIF-CES. Facultad de Ciencias y Biotecnología, Universidad CES, Calle 10A No. 22-04, Medellín, Colombia; Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Katalina Muñoz-Durango
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellín, Colombia.
| |
Collapse
|
29
|
Kanhai KMS, Goulooze SC, van der Grond J, Harms AC, Hankemeier T, Verma A, Dent G, Chavez J, Meijering H, Groeneveld GJ. Kinetics of myelin breakdown products: A labeling study in patients with progressive multiple sclerosis. Clin Transl Sci 2021; 15:638-648. [PMID: 34799987 PMCID: PMC8932820 DOI: 10.1111/cts.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 05/10/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
The majority of disease modifying therapies for multiple sclerosis (MS) reduce inflammation, but do no’t target remyelination. Development of remyelinating therapies will benefit from a method to quantify myelin kinetics in patients with MS. We labeled myelin in vivo with deuterium, and modeled kinetics of myelin breakdown products β‐galactosylceramide (β‐GalC) and N‐Octadecanoyl‐sulfatide (NO‐Sulf). Five patients with MS received 120 ml 70% D2O daily for 70 days and were compared with six healthy subjects who previously received the same procedure. Mass spectrometry and compartmental modeling were used to quantify the turnover rate of β‐GalC and NO‐Sulf in cerebrospinal fluid (CSF). Turnover rate constants of the fractions of β‐GalC and NO‐Sulf with non‐negligible turnover were 0.00186 and 0.00714, respectively, in both healthy subjects and patients with MS. The turnover half‐life of β‐GalC and NO‐Sulf was calculated as 373 days and 96.5 days, respectively. The effect of MS on the NO‐Sulf (49.4% lower fraction with non‐negligible turnover) was more pronounced compared to the effect on β‐GalC turnover (18.3% lower fraction with non‐negligible turnover). Kinetics of myelin breakdown products in the CSF are different in patients with MS compared with healthy subjects. This may be caused by slower myelin production in these patients, by a higher level of degradation of a more stable component of myelin, or, most likely, by a combination of these two processes. Labeling myelin breakdown products is a useful method that can be used to quantify myelin turnover in patients with progressive MS and can therefore be used in proof‐of‐concept studies with remyelination therapies.
Collapse
Affiliation(s)
- Kawita M S Kanhai
- Centre for Human Drug Research, Leiden, The Netherlands.,Prothya Biosolutions, Amsterdam, The Netherlands
| | - Sebastiaan C Goulooze
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Amy C Harms
- Prothya Biosolutions, Amsterdam, The Netherlands.,Radiology Department, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Ajay Verma
- Yumanity Pharmaceuticals, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
30
|
Wang Y, Pandak WM, Lesnefsky EJ, Hylemon PB, Ren S. 25-Hydroxycholesterol 3-Sulfate Recovers Acetaminophen Induced Acute Liver Injury via Stabilizing Mitochondria in Mouse Models. Cells 2021; 10:3027. [PMID: 34831255 PMCID: PMC8616185 DOI: 10.3390/cells10113027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Acetaminophen (APAP) overdose is one of the most frequent causes of acute liver failure (ALF). N-acetylcysteine (NAC) is currently being used as part of the standard care in the clinic but its usage has been limited in severe cases, in which liver transplantation becomes the only treatment option. Therefore, there still is a need for a specific and effective therapy for APAP induced ALF. In the current study, we have demonstrated that treatment with 25-Hydroxycholesterol 3-Sulfate (25HC3S) not only significantly reduced mortality but also decreased the plasma levels of liver injury markers, including LDH, AST, and ALT, in APAP overdosed mouse models. 25HC3S also decreased the expression of those genes involved in cell apoptosis, stabilized mitochondrial polarization, and significantly decreased the levels of oxidants, malondialdehyde (MDA), and reactive oxygen species (ROS). Whole genome bisulfite sequencing analysis showed that 25HC3S increased demethylation of 5mCpG in key promoter regions and thereby increased the expression of those genes involved in MAPK-ERK and PI3K-Akt signaling pathways. We concluded that 25HC3S may alleviate APAP induced liver injury via up-regulating the master signaling pathways and maintaining mitochondrial membrane polarization. The results suggest that 25HC3S treatment facilitates the recovery and significantly decreases the mortality of APAP induced acute liver injury and has a synergistic effect with NAC in propylene glycol (PG) for the injury.
Collapse
Affiliation(s)
| | | | | | | | - Shunlin Ren
- Department of Internal Medicine, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23249, USA; (Y.W.); (W.M.P.); (E.J.L.); (P.B.H.)
| |
Collapse
|
31
|
Oxysterols — how much do we know about food occurrence, dietary intake and absorption? Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Synthesis of Oxidized 3β,3'β-Disteryl Ethers and Search after High-Temperature Treatment of Sterol-Rich Samples. Int J Mol Sci 2021; 22:ijms221910421. [PMID: 34638762 PMCID: PMC8508662 DOI: 10.3390/ijms221910421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
It was proven that sterols subjected to high-temperature treatment can be concatenated, which results in polymeric structures, e.g., 3β,3'β-disteryl ethers. However, it was also proven that due to increased temperature in oxygen-containing conditions, sterols can undergo various oxidation reactions. This study aimed to prove the existence and perform quantitative analysis of oxidized 3β,3'β-disteryl ethers, which could form during high-temperature treatment of sterol-rich samples. Samples were heated at 180, 200 and 220 °C for 0.5 to 4 h. Quantitative analyses of the oxidized 3β,3'β-disteryl ethers were performed with liquid extraction, solid-phase extraction and liquid chromatography coupled with mass spectrometry. Additionally, to perform this analysis, the appropriate standards of all oxidized 3β,3'β-disteryl ethers were prepared. Eighteen various oxidized 3β,3'β-disteryl ethers (derivatives of 3β,3'β-dicholesteryl ether, 3β,3'β-disitosteryl ether and 3β,3'β-distigmasteryl ether) were prepared. Additionally, the influence of metal compounds on the mechanism of ether formation at high temperatures was investigated.
Collapse
|
33
|
de Freitas FA, Levy D, Zarrouk A, Lizard G, Bydlowski SP. Impact of Oxysterols on Cell Death, Proliferation, and Differentiation Induction: Current Status. Cells 2021; 10:cells10092301. [PMID: 34571949 PMCID: PMC8468221 DOI: 10.3390/cells10092301] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Oxysterols are oxidized derivatives of cholesterol produced by enzymatic activity or non-enzymatic pathways (auto-oxidation). The oxidation processes lead to the synthesis of about 60 different oxysterols. Several oxysterols have physiological, pathophysiological, and pharmacological activities. The effects of oxysterols on cell death processes, especially apoptosis, autophagy, necrosis, and oxiapoptophagy, as well as their action on cell proliferation, are reviewed here. These effects, also observed in several cancer cell lines, could potentially be useful in cancer treatment. The effects of oxysterols on cell differentiation are also described. Among them, the properties of stimulating the osteogenic differentiation of mesenchymal stem cells while inhibiting adipogenic differentiation may be useful in regenerative medicine.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
| | - Amira Zarrouk
- Faculty of Medicine, University of Monastir, LR12ES05, Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Monastir, Tunisia & Faculty of Medicine, University of Sousse, Sousse 5000, Tunisia;
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA, University of Bourgogne Franche-Comté, Institut National de la Santé et de la Recherche Médicale—Inserm, 7270 Dijon, France;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
- Correspondence:
| |
Collapse
|
34
|
Guidara W, Messedi M, Maalej M, Naifar M, Khrouf W, Grayaa S, Maalej M, Bonnefont-Rousselot D, Lamari F, Ayadi F. Plasma oxysterols: Altered level of plasma 24-hydroxycholesterol in patients with bipolar disorder. J Steroid Biochem Mol Biol 2021; 211:105902. [PMID: 33901658 DOI: 10.1016/j.jsbmb.2021.105902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Cholesterol and its oxygenated metabolites, including oxysterols, are intensively investigated as potential players in the pathophysiology of brain disorders. Altered oxysterol levels have been described in patients with numerous neuropsychiatric disorders. Recent studies have shown that Bipolar disorder (BD) is associated with the disruption of cholesterol metabolism. The present study was aimed at investigating the profile of oxysterols in plasma, their ratio to total cholesterol and their association with clinical parameters in patients with BD. Thirty three men diagnosed with BD and forty healthy controls matched for age and sex were included in the study. Oxysterol levels were measured by isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. Significantly higher levels were observed for cholestane-3β,5α,6β-triol, 27-hydroxycholesterol (27-OHC) and Cholestanol in patients with BD. The concentration of 24-hydroxycholesterol (24-OHC) was significantly lower in patients compared to controls. 24-OHC was also negatively correlated to MAS subscale score (r =-0.343; p = 0.049). In patients, 24-OHC was inversely correlated with age (r = -0.240; p = 0.045). Multivariate analysis found that BD acute decompensation was independently related to the rise in plasma 24-OHC (p = 0.002; OR = 0.966, 95 % CI [0.945 - 0.987]). However, the 24-OHC assay relevance as a biomarker of this disease deserves further investigation in other studies.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
| | - Meriam Messedi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C-department, University of Sfax & Hédi Chaker Hospital, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Walid Khrouf
- AP-HP, Sorbonne University, La Pitié-Salpêtrière University Hospital, Department of Metabolic Biochemistry, Paris, France
| | - Sahar Grayaa
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C-department, University of Sfax & Hédi Chaker Hospital, Sfax, Tunisia
| | - Dominique Bonnefont-Rousselot
- AP-HP, Sorbonne University, La Pitié-Salpêtrière University Hospital, Department of Metabolic Biochemistry, Paris, France; UTCBS, U1267 Inserm, UMR 8258 CNRS, Université de Paris, Paris, France
| | - Foudil Lamari
- AP-HP, Sorbonne University, La Pitié-Salpêtrière University Hospital, Department of Metabolic Biochemistry, Paris, France
| | - Fatma Ayadi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
35
|
Zhang H, Zhao W, Li X, He Y. Cholesterol Metabolism as a Potential Therapeutic Target and a Prognostic Biomarker for Cancer Immunotherapy. Onco Targets Ther 2021; 14:3803-3812. [PMID: 34188488 PMCID: PMC8232957 DOI: 10.2147/ott.s315998] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Checkpoint-based immunotherapies, such as programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) inhibitors, have shown promising clinical outcomes in many types of cancers. Unfortunately, the response rate of immune checkpoint inhibitors is low. It is very important to discover novel therapeutic targets and prognostic biomarkers. Cholesterol metabolism has been demonstrated to be related to the occurrence and development of a variety of tumors and may provide a new breakthrough in the development of immunotherapy. First of all, cholesterol metabolism in the tumor microenvironment affects the function of tumor-infiltrating immune cells. In addition, intracellular cholesterol homeostasis is an important regulator of immune cell function. Furthermore, drugs that act on cholesterol metabolism affect the efficacy of immunotherapy. What is more, peripheral blood cholesterol level can be a biomarker to predict the efficacy of immunotherapy. In this review, we aimed to explore the potential role of cholesterol metabolism on immunotherapy. By summarizing the major findings of recent preclinical and clinical studies on cholesterol metabolism in immunotherapy, we suggested that cholesterol metabolism could be a potential therapeutic target and a prognostic biomarker for immunotherapy.
Collapse
Affiliation(s)
- Huixian Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, People’s Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, People’s Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
36
|
Stawarska A, Czerwonka M, Wyrębiak R, Wrzesień R, Bobrowska-Korczak B. Zinc Affects Cholesterol Oxidation Products and Fatty Acids Composition in Rats' Serum. Nutrients 2021; 13:nu13051563. [PMID: 34066470 PMCID: PMC8148181 DOI: 10.3390/nu13051563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
The purpose of this work was to evaluate the effect of the nanosized or microsized zinc (Zn) particles on fatty acid profile, enzyme activity and the level of cholesterol, squalene and oxysterols in rats with breast cancer. Rats (female, n = 24) were divided into the following groups: control, and two test groups, whose diets were enriched with either Zn microparticles (342 nm) or Zn nanoparticles (99 nm). All rats were treated twice with the carcinogenic agent; 7,12-dimethylbenz[a]anthracene. In rats whose diet was enriched with zinc (especially in the form of nanoparticles), the number and sizes of tumors were lower. Diet supplementation also significantly reduced the cholesterol (p = 0.027) and COPs (cholesterol oxidation products) levels (p = 0.011) in rats serum. Enriching the diet with Zn microparticles decreased the Δ6-desaturase activity (p < 0.001). Zn influences fatty acids’ profile in rats’ serum as well as inhibiting desaturating enzymes. A reduced amount of pro-inflammatory arachidonic acid derivatives may be the expected effect.
Collapse
Affiliation(s)
- Agnieszka Stawarska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.S.); (M.C.)
| | - Małgorzata Czerwonka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.S.); (M.C.)
| | - Rafał Wyrębiak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Medical University of Warsaw, Poland, Banacha 1a, 02-091 Warsaw, Poland;
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.S.); (M.C.)
- Correspondence: ; Tel.: +48-22-57-20-785
| |
Collapse
|
37
|
Kim JH, Yan Q, Uppal K, Cui X, Ling C, Walker DI, Heck JE, von Ehrenstein OS, Jones DP, Ritz B. Metabolomics analysis of maternal serum exposed to high air pollution during pregnancy and risk of autism spectrum disorder in offspring. ENVIRONMENTAL RESEARCH 2021; 196:110823. [PMID: 33548296 PMCID: PMC9059845 DOI: 10.1016/j.envres.2021.110823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Previously, numerous epidemiologic studies reported an association between autism spectrum disorder (ASD) and exposure to air pollution during pregnancy. However, there have been no metabolomics studies investigating the impact of pregnancy pollution exposure to ASD risk in offspring. OBJECTIVES To identify differences in maternal metabolism that may reflect a biological response to exposure to high air pollution in pregnancies of offspring who later did or did not develop ASD. METHODS We obtained stored mid-pregnancy serum from 214 mothers who lived in California's Central Valley and experienced the highest levels of air pollution during early pregnancy. We estimated each woman's average traffic-related air pollution exposure (carbon monoxide, nitric oxides, and particulate matter <2.5 μm) during the first trimester using the California Line Source Dispersion Model, version 4 (CALINE4). By utilizing liquid chromatography-high resolution mass spectrometry, we identified the metabolic profiles of maternal serum for 116 mothers with offspring who later developed ASD and 98 control mothers. Partial least squares discriminant analysis (PLS-DA) was employed to select metabolic features associated with air pollution exposure or autism risk in offspring. We also conducted extensive pathway enrichment analysis to elucidate potential ASD-related changes in the metabolome of pregnant women. RESULTS We extracted 4022 and 4945 metabolic features from maternal serum samples in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 (negative ion mode) columns, respectively. After controlling for potential confounders, we identified 167 and 222 discriminative features (HILIC and C18, respectively). Pathway enrichment analysis to discriminate metabolic features associated with ASD risk indicated various metabolic pathway perturbations linked to the tricarboxylic acid (TCA) cycle and mitochondrial function, including carnitine shuttle, amino acid metabolism, bile acid metabolism, and vitamin A metabolism. CONCLUSION Using high resolution metabolomics, we identified several metabolic pathways disturbed in mothers with ASD offspring among women experiencing high exposure to traffic-related air pollution during pregnancy that were associated with mitochondrial dysfunction. These findings provide us with a better understanding of metabolic disturbances involved in the development of ASD under adverse environmental conditions.
Collapse
Affiliation(s)
- Ja Hyeong Kim
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, South Korea.
| | - Qi Yan
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA.
| | - Karan Uppal
- Computational Systems Medicine & Metabolomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Xin Cui
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Perinatal Epidemiology and Health Outcomes Research Unit, Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, 94304, USA; California Perinatal Quality Care Collaborative, Palo Alto, CA, 94305, USA.
| | - Chenxiao Ling
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA.
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Julia E Heck
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA.
| | - Ondine S von Ehrenstein
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
38
|
Kilvington A, Barnaba C, Rajasekaran S, Laurens Leimanis ML, Medina-Meza IG. Lipid profiling and dietary assessment of infant formulas reveal high intakes of major cholesterol oxidative product (7-ketocholesterol). Food Chem 2021; 354:129529. [PMID: 33761334 DOI: 10.1016/j.foodchem.2021.129529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Approximately two-thirds of US infants receive infant formula (IF) as a primary or sole nutritional source during the first six months of life. IF is available in a variety of commercial presentations; from a manufacturing standpoint, they can be categorized as powder- (PIF) or liquid- (LIF) based formulations. Thirty commercial IFs were analyzed in their oxidative and non-oxidative lipid profiles. We identified 7-ketocholesterol - a major end-product of cholesterol oxidation - as a potential biomarker of IF manufacturing. The statistical analysis allowed a re-classification of IF based on their metabolomic fingerprint, resulting in three groups assigned with low-to-high oxidative status. Finally, we modeled the dietary intake of cholesterol, sterols, and 7-ketocholesterol in the first year of life. The database provided in this study will be instrumental for scientists interested in infant nutrition, to establish bases for epidemiological studies aimed to find connections between nutrition and diet-associated diseases, such as sitosterolemia.
Collapse
Affiliation(s)
- Alice Kilvington
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| | - Carlo Barnaba
- Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Surender Rajasekaran
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, 100 Michigan Street NE, Grand Rapids, MI, USA; Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| | - Mara L Laurens Leimanis
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, 100 Michigan Street NE, Grand Rapids, MI, USA; Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| | - Ilce G Medina-Meza
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA; Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
39
|
Bobrowska-Korczak B, Stawarska A, Szterk A, Ofiara K, Czerwonka M, Giebułtowicz J. Determination of Pharmaceuticals, Heavy Metals, and Oxysterols in Fish Muscle. Molecules 2021; 26:1229. [PMID: 33668999 PMCID: PMC7956314 DOI: 10.3390/molecules26051229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to assess the levels of 98 multi-class pharmaceuticals including cardiovascular drugs, antidepressants, hypnotics, antibiotics, and sulfonamides occurring in the muscle tissue of fish caught in the Baltic Sea. The following fish species were collected: perch (Perca fluviatilis); flounder (Platichthys flesus); turbot (Scophthalmus maximus); plaice (Pleuronectes platessa); cod (Gadus morhua callarias); bream (Abramis brama); crucian (Carassius carassius). Additionally, in the examined fish muscle the levels of heavy metals and trace elements were determined (As; Ag; Au; Ba; Cd; Co; Cr; Cu; Hg; Li; Mo; Ni; Pb; Sb; Se; Sn; Tl; V) as well as the levels of cholesterol and its 5 derivatives (7-ketocholesterol; 7α-hydroxycholesterol; 7β-hydroxycholesterol; 5β,6β-epoxy-cholesterol; 5α,6α-epoxycholesterol). In the performed studies 11 out of 98 examined pharmaceuticals were detected in fish muscle. The levels of pharmaceuticals in fish muscle varied depending on the species. In the tissues of bream and crucian, no pharmaceuticals were found. Mercury, lead and arsenic were detected in the muscles of all examined fish. Based on the hazard factor for Hg, Pb, Cd, Ni (target hazard quotient, THQ < 1), it was found that the consumption of the studied fish does not constitute a health risk. However, the THQ for As remained >1 indicated possible risk from those metals. In the examined fish muscle the total cholesterol oxidation products (COPs) level of oxysterols were, respectively: 6.90 (cod) μg/g-4.18 μg/g (perch), which corresponded to 0.7-1.5% of cholesterol. The main COPs evaluated were 7-ketocholesterol (0.78 ± 0.14-1.79 ± 0.06 μg/g), 7β-hydroxycholesterol (0.50 ± 0.04-3.20 ± 2.95 μg/g) and 5β,6β-epoxycholesterol (0.66 ± 0.03-1.53 ± 0.66 μg/g). The assessment of health hazards due to contaminations is necessary, which may help to introduce national legislation and global standards aimed at reducing or even eliminating the exposure to contaminants.
Collapse
Affiliation(s)
- Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.S.); (M.C.)
| | - Agnieszka Stawarska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.S.); (M.C.)
| | - Arkadiusz Szterk
- Departments of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.S.); (K.O.)
| | - Karol Ofiara
- Departments of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.S.); (K.O.)
| | - Małgorzata Czerwonka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.S.); (M.C.)
| | - Joanna Giebułtowicz
- Department of Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
40
|
Interactions of Oxysterols with Atherosclerosis Biomarkers in Subjects with Moderate Hypercholesterolemia and Effects of a Nutraceutical Combination ( Bifidobacterium longum BB536, Red Yeast Rice Extract) (Randomized, Double-Blind, Placebo-Controlled Study). Nutrients 2021; 13:nu13020427. [PMID: 33525601 PMCID: PMC7911956 DOI: 10.3390/nu13020427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Oxysterol relationship with cardiovascular (CV) risk factors is poorly explored, especially in moderately hypercholesterolaemic subjects. Moreover, the impact of nutraceuticals controlling hypercholesterolaemia on plasma levels of 24-, 25- and 27-hydroxycholesterol (24-OHC, 25-OHC, 27-OHC) is unknown. Methods: Subjects (n = 33; 18–70 years) with moderate hypercholesterolaemia (low-density lipoprotein cholesterol (LDL-C:): 130–200 mg/dL), in primary CV prevention as well as low CV risk were studied cross-sectionally. Moreover, they were evaluated after treatment with a nutraceutical combination (Bifidobacterium longum BB536, red yeast rice extract (10 mg/dose monacolin K)), following a double-blind, randomized, placebo-controlled design. We evaluated 24-OHC, 25-OHC and 27-OHC levels by gas chromatography/mass spectrometry analysis. Results: 24-OHC and 25-OHC were significantly correlated, 24-OHC was correlated with apoB. 27-OHC and 27-OHC/total cholesterol (TC) were higher in men (median 209 ng/mL and 77 ng/mg, respectively) vs. women (median 168 ng/mL and 56 ng/mg, respectively); 27-OHC/TC was significantly correlated with abdominal circumference, visceral fat and, negatively, with high-density lipoprotein cholesterol (HDL-C). Triglycerides were significantly correlated with 24-OHC, 25-OHC and 27-OHC and with 24-OHC/TC and 25-OHC/TC. After intervention, 27-OHC levels were significantly reduced by 10.4% in the nutraceutical group Levels of 24-OHC, 24-OHC/TC, 25-OHC, 25-OHC/TC and 27-OHC/TC were unchanged. Conclusions: In this study, conducted in moderate hypercholesterolemic subjects, we observed novel relationships between 24-OHC, 25-OHC and 27-OHC and CV risk biomarkers. In addition, no adverse changes of OHC levels upon nutraceutical treatment were found.
Collapse
|
41
|
Oat fiber attenuates circulating oxysterols levels and hepatic inflammation via targeting TLR4 signal pathway in LDL receptor knockout mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
42
|
Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C, Düking T, Winchenbach J, Neuber J, Ewers D, Scholz P, van der Meer F, Cantuti-Castelvetri L, Sasmita AO, Meschkat M, Ruhwedel T, Möbius W, Sankowski R, Prinz M, Huitinga I, Sereda MW, Odoardi F, Ischebeck T, Simons M, Stadelmann-Nessler C, Edgar JM, Nave KA, Saher G. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci 2021; 24:47-60. [PMID: 33349711 PMCID: PMC7116742 DOI: 10.1038/s41593-020-00757-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023]
Abstract
The repair of inflamed, demyelinated lesions as in multiple sclerosis (MS) necessitates the clearance of cholesterol-rich myelin debris by microglia/macrophages and the switch from a pro-inflammatory to an anti-inflammatory lesion environment. Subsequently, oligodendrocytes increase cholesterol levels as a prerequisite for synthesizing new myelin membranes. We hypothesized that lesion resolution is regulated by the fate of cholesterol from damaged myelin and oligodendroglial sterol synthesis. By integrating gene expression profiling, genetics and comprehensive phenotyping, we found that, paradoxically, sterol synthesis in myelin-phagocytosing microglia/macrophages determines the repair of acutely demyelinated lesions. Rather than producing cholesterol, microglia/macrophages synthesized desmosterol, the immediate cholesterol precursor. Desmosterol activated liver X receptor (LXR) signaling to resolve inflammation, creating a permissive environment for oligodendrocyte differentiation. Moreover, LXR target gene products facilitated the efflux of lipid and cholesterol from lipid-laden microglia/macrophages to support remyelination by oligodendrocytes. Consequently, pharmacological stimulation of sterol synthesis boosted the repair of demyelinated lesions, suggesting novel therapeutic strategies for myelin repair in MS.
Collapse
Affiliation(s)
- Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Institute for Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Lennart Schlaphoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Tim Düking
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jan Winchenbach
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jonathan Neuber
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - David Ewers
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | | - Ludovico Cantuti-Castelvetri
- Institute of Neuronal Cell Biology, Technical University Munich, German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Andrew O Sasmita
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Julia M Edgar
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Applied Neurobiology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
43
|
Wang Y, Zhang X, Wang T, Liu W, Wang L, Hao L, Ju M, Xiao R. 27-Hydroxycholesterol Promotes the Transfer of Astrocyte-Derived Cholesterol to Neurons in Co-cultured SH-SY5Y Cells and C6 Cells. Front Cell Dev Biol 2020; 8:580599. [PMID: 33330456 PMCID: PMC7732486 DOI: 10.3389/fcell.2020.580599] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Abnormality in cholesterol homeostasis in the brain is a feature of Alzheimer’s disease (AD). 27-Hydroxycholesterol (27-OHC) has been identified as a possible biomarker of AD, but its effects on cholesterol metabolism have not been fully characterized. This study was aimed to investigate the impacts of 27-OHC on cholesterol metabolism in nerve cells. SH-SY5Y cells and C6 cells were co-cultured and treated with 5, 10, and 20 μM 27-OHC for 24 h. Results showed that 27-OHC decreased cholesterol levels and up-regulated the expression of transport-related proteins in C6 cells. In SH-SY5Y cells, 27-OHC increased cholesterol accumulation, especially on plasma membrane (PM), which was consistent with the up-regulation of expressions of cholesterol endocytosis receptors, lipid raft-related proteins, and cholesterol esterase. Simultaneously, accumulation of membrane cholesterol promoted cholesterol conversion to 24S-OHC by CYP46A1(24S-hydroxylase) transfer from the endoplasmic reticulum (ER) to PM. Besides, Aβ levels were elevated in SH-SY5Y cells after 27-OHC treatment. Our results suggest that 27-OHC motivates the transfer of astrocyte-derived cholesterol to neurons. Although there exists a feedback mechanism that excessive cholesterol promotes its conversion to 24S-OHC, the increased cholesterol induced by 27-OHC could not be wholly offset in neurons.
Collapse
Affiliation(s)
- Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tao Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Wen Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lijing Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ling Hao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Mengwei Ju
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Zmysłowski A, Sitkowski J, Bus K, Ofiara K, Szterk A. Synthesis and search for 3β,3'β-disteryl ethers after high-temperature treatment of sterol-rich samples. Food Chem 2020; 329:127132. [PMID: 32504917 DOI: 10.1016/j.foodchem.2020.127132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
It has been proven that at increased temperature, sterols can undergo various chemical reactions e.g., oxidation, dehydrogenation, dehydration and polymerisation. The objectives of this study are to prove the existence of dimers and to quantitatively analyse the dimers (3β,3'β-disteryl ethers). Sterol-rich samples were heated at 180 °C, 200 °C and 220 °C for 1 to 5 h. Quantitative analyses of the 3β,3'β-disteryl ethers were conducted using liquid extraction, solid-phase extraction and gas chromatography coupled with mass spectrometry. Additionally, for the analyses, suitable standards were synthetized from native sterols. To identify the mechanism of 3β,3'β-disteryl ether formation at high temperatures, an attempt was made to use the proposed synthesis method. Additionally, due to the association of sterols and sterol derivatives with atherosclerosis, preliminary studies with synthetized 3β,3'β-disteryl ethers on endothelial cells were conducted.
Collapse
Affiliation(s)
- Adam Zmysłowski
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland.
| | - Jerzy Sitkowski
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Katarzyna Bus
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Karol Ofiara
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Arkadiusz Szterk
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| |
Collapse
|
45
|
Kloudova-Spalenkova A, Holy P, Soucek P. Oxysterols in cancer management: From therapy to biomarkers. Br J Pharmacol 2020; 178:3235-3247. [PMID: 32986851 DOI: 10.1111/bph.15273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
Oxysterols are oxidized derivatives of cholesterol, both endogenous and exogenous. They have been implicated in numerous pathologies, including cancer. In addition to their roles in carcinogenesis, proliferation, migration, apoptosis, and multiple signalling pathways, they have been shown to modulate cancer therapy. They are known to affect therapy of hormonally positive breast cancer through modulating oestrogen receptor activity. Oxysterols have also been shown in various in vitro models to influence efficacy of chemotherapeutics, such as doxorubicin, vincristine, cisplatin, 5-fluorouracil, and others. Their effects on the immune system should also be considered in immunotherapy. Selective anti-cancer cytotoxic properties of some oxysterols make them candidates for new therapeutic molecules. Finally, differences in oxysterol levels in blood of cancer patients in different stages or versus healthy controls, and in tumour versus non-tumour tissues, show potential of oxysterols as biomarkers for cancer management and patient stratification for optimization of therapy. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Alzbeta Kloudova-Spalenkova
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Holy
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Soucek
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
46
|
Wang X, Li Y, Xia X, Zhang M, Ge C, Xia X, Xiao H, Xu S. Mutagenicity of 7-ketocholesterol in CHO cells: The role of lipid peroxidation. Toxicology 2020; 446:152587. [PMID: 33017620 DOI: 10.1016/j.tox.2020.152587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
As an important cholesterol oxide, 7-ketocholesterol plays a deleterious role in the occurrence of cancer. Although the fact had been proved that 7-ketocholesterol could induce several biological phenomena, including apoptosis, DNA damage, et al., this issue whether 7-ketocholesterol led to mutagenesis in mammalian cells remains largely unexplored. Here, we investigated the major role of lipid peroxidation in the genotoxic response to 7-ketocholesterol in chinese hamster ovary (CHO) cells. The results showed that 7-ketocholesterol induced gene mutation and DNA double-strand breaks (DSBs) in concentration- and time-dependent manner. After CHO cells were treated with 25 μM 7-ketocholesterol for 48 h, the mutation frequency at hprt gene loci and the level of γ-H2AX protein were both significantly increased. Exposure to 7-ketocholesterol resulted in a concentration-dependent increase in the apoptotic rate and the protein expression of cleaved caspase-3 and -7 in CHO cells. Moreover, a significant increase of superoxide dismutase (SOD) activity and content of malondialdehyde (MDA) was also observed. Using a inhibitor of lipid peroxidation (butylated hydroxytoluene), it was found to remarkably inhibit the genotoxicity and MDA levels caused by 7-ketocholesterol. These findings indicated that lipid peroxidation was involved in the mutagenic process of 7-ketocholesterol in CHO cells.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Yintao Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Xuanyi Xia
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Min Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Chunmei Ge
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Xiaoxiao Xia
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Hourong Xiao
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China.
| | - Shengmin Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China.
| |
Collapse
|
47
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
48
|
Nikolaou N, Arvaniti A, Appanna N, Sharp A, Hughes BA, Digweed D, Whitaker MJ, Ross R, Arlt W, Penning TM, Morris K, George S, Keevil BG, Hodson L, Gathercole LL, Tomlinson JW. Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo. J Endocrinol 2020; 245:207-218. [PMID: 32106090 PMCID: PMC7182088 DOI: 10.1530/joe-19-0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates endogenous glucocorticoids and catalyses an important step in bile acid synthesis. Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary steroid metabolite profiling in healthy volunteers was performed pre- and post-dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid clearance. In addition, AKR1D1 down-regulation alters the activation of multiple nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis gene expression profiles, which may exacerbate the adverse impact of exogenous glucocorticoids.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Anastasia Arvaniti
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical
Sciences, Oxford Brookes University, Oxford,
UK
| | - Nathan Appanna
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Anna Sharp
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Beverly A Hughes
- Institute of Metabolism and Systems
Research, University of Birmingham, Edgbaston, Birmingham,
UK
| | | | | | - Richard Ross
- Department of Oncology and
Metabolism, Faculty of Medicine, Dentistry and Health,
University of Sheffield, Sheffield, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems
Research, University of Birmingham, Edgbaston, Birmingham,
UK
- NIHR Birmingham Biomedical Research
Centre, University Hospitals Birmingham NHS Foundation Trust
and University of Birmingham, Birmingham, UK
| | - Trevor M Penning
- Department of Systems Pharmacology &
Translational Therapeutics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karen Morris
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Sherly George
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Brian G Keevil
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Laura L Gathercole
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical
Sciences, Oxford Brookes University, Oxford,
UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Correspondence should be addressed to J W Tomlinson:
| |
Collapse
|
49
|
Dabrowski R, Ripa R, Latza C, Annibal A, Antebi A. Optimization of mass spectrometry settings for steroidomic analysis in young and old killifish. Anal Bioanal Chem 2020; 412:4089-4099. [PMID: 32333075 PMCID: PMC7320053 DOI: 10.1007/s00216-020-02640-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/02/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Steroids are essential structural components of cell membranes that organize lipid rafts and modulate membrane fluidity. They can also act as signalling molecules that work through nuclear and G protein–coupled receptors to impact health and disease. Notably, changes in steroid levels have been implicated in metabolic, cardiovascular and neurodegenerative diseases, but how alterations in the steroid pool affect ageing is less well understood. One of the major challenges in steroidomic analysis is the ability to simultaneously detect and distinguish various steroids due to low in vivo concentrations and naturally occurring stereoisomers. Here, we established such a method to study the mass spectrometry behaviour of nine sterols/steroids and related molecules (cholesterol precursors: squalene, lanosterol; sterol metabolites; 7 Dehydrocholesterol, 24, 25 and 27 Hydroxycholesterol; and steroids: progesterone, testosterone, and corticosterone) during ageing in the African turquoise killifish, a new model for studying vertebrate longevity. We find that levels of all tested steroids change significantly with age in multiple tissues, suggesting that specific steroids could be used as biomarkers of ageing. These findings pave the way for use of Nothobranchius furzeri as a novel model organism to unravel the role of sterols/steroids in ageing and age-related diseases. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rahel Dabrowski
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany
| | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany
| | - Christian Latza
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany
| | - Andrea Annibal
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany.
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Josef-Stelzmann-Strasse 26, 50931, Cologne, Germany.
| |
Collapse
|
50
|
Phospholipid packing defects and oxysterols in atherosclerosis: Dietary prevention and the French paradox. Biochimie 2019; 167:145-151. [PMID: 31586653 DOI: 10.1016/j.biochi.2019.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Abstract
The research literature on atherosclerosis includes findings investigating the atherosclerotic effect of oxysterols, which are the oxidation products of cholesterol; and the literature on oxysterols refers to mechanisms by which oxysterols cause phospholipid packing defects in cell membranes. This review synthesizes these two bodies of research findings to describe how oxysterols cause phospholipid packing defects within the membranes of vascular endothelial cells, potentially increasing cell permeability of low-density lipoprotein cholesterol which may lead to atheroma formation. Exogenous sources of oxysterols are provided by dietary intake of animal-based foods that contain cholesterol oxidation products. This review proposes an explanation for the anti-atherosclerotic effect of plant-based dietary patterns, which is attributed to restriction or avoidance of dietary oxysterol intake from animal-based foods. Furthermore, raw-milk cheeses play an important role in the traditional French diet-low oxysterol content in these unheated foods may contribute to the French paradox, in which reduced coronary heart disease is associated with a diet high in saturated fat and cholesterol.
Collapse
|