1
|
Ghosh MK, Kumar S, Begam S, Ghosh S, Basu M. GBM immunotherapy: Exploring molecular and clinical frontiers. Life Sci 2024; 356:123018. [PMID: 39214286 DOI: 10.1016/j.lfs.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
GBM is the most common, aggressive, and intracranial primary brain tumor; it originates from the glial progenitor cells, has poor overall survival (OS), and has limited treatment options. In this decade, GBM immunotherapy is in trend and preferred over several conventional therapies, due to their better patient survival outcome. This review explores the clinical trials of several immunotherapeutic approaches (immune checkpoint blockers (ICBs), CAR T-cell therapy, cancer vaccines, and adoptive cell therapy) with their efficacy and safety. Despite significant progress, several challenges (viz., immunosuppressive microenvironment, heterogeneity, and blood-brain barrier (BBB)) were experienced that hamper their immunotherapeutic potential. Furthermore, these challenges were clinically studied to be resolved by multiple combinatorial approaches, discussed in the later part of the review. Thus, this review suggests the clinical use and potential of immunotherapy in GBM and provides the holistic recent knowledge and future perspectives.
Collapse
Affiliation(s)
- Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| | - Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sabana Begam
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sayani Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN-743372, India
| |
Collapse
|
2
|
Li Q, Li Z, Chen B, Zhao J, Yu H, Hu J, Lai H, Zhang H, Li Y, Meng Z, Hu Z, Huang S. RNA splicing junction landscape reveals abundant tumor-specific transcripts in human cancer. Cell Rep 2024; 43:114893. [PMID: 39446586 DOI: 10.1016/j.celrep.2024.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
RNA splicing is a critical process governing gene expression and transcriptomic diversity. Despite its importance, a detailed examination of transcript variation at the splicing junction level remains scarce. Here, we perform a thorough analysis of RNA splicing junctions in 34,775 samples across multiple sample types. We identified 29,051 tumor-specific transcripts (TSTs) in pan-cancer, with a majority of these TSTs being unannotated. Our findings show that TSTs are positively correlated with tumor stemness and linked to unfavorable outcomes in cancer patients. Additionally, TSTs display mutual exclusivity with somatic mutations and are overrepresented in transposable-element-derived transcripts possessing oncogenic functions. Importantly, TSTs can generate putative neoantigens for immunotherapy. Moreover, TSTs can be detected in blood extracellular vesicles from cancer patients. Our results shed light on the intricacies of RNA splicing and offer promising avenues for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qin Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, and Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Ziteng Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bing Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingjing Zhao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwu Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongyan Lai
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Kumari L, Sreedharanunni S, Dahiya D, Dey P, Bhatia A. High prevalence of chromosome 17 in breast cancer micronuclei: a means to get rid of tumor suppressors? Hum Cell 2024; 38:5. [PMID: 39438374 DOI: 10.1007/s13577-024-01143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Micronuclei (MN), defined as small extra-nuclear chromatin bodies enclosed by a nuclear envelope, serve as noticeable markers of chromosomal instability (CIN). The MN have been used for breast cancer (BC) screening, diagnosis, and prognosis. However, more recently they have gained attention as seats for active chromosomal rearrangements. BC subtypes exhibit differential CIN levels and aggressiveness. This study aimed to investigate MN chromosomal contents across BC subtypes, exploring its potential role in aggressiveness and pathogenesis. Immunostaining of BC cells was performed with anti-centromeric antibody followed by confocal microscopy. Further, fluorescence in situ hybridization (FISH) was done to check the presence of specific chromosomes in the MN. The real time PCR was also done from the RNA isolated from MN to check the expression of TP53 gene. BC cell lines (CLs) showed the presence of both centromere-positive ( +) and -negative ( -) MN, with significant variation in frequency among hormone and human epidermal growth factor receptor positive and triple-negative (TN) BC cells. FISH targeting chromosomes 1, 3, 8, 11, and 17 detected centromeric signals for all the above chromosomes in MN with a relatively higher prevalence of chromosome 17 in all the CLs. Out of all the CLs, TNBC cells demonstrated the highest frequency of centromere + and chromosome 17 + MN. TP53 expression could also be demonstrated inside the MN by FISH and real time PCR. Patient sample imprints also confirmed the presence of chromosome 17 in MN with polysomy of the same in corresponding nuclei. The high prevalence of chromosome 17 in BC MN may connote the importance of its rearrangements in the pathogenesis of BC. Further, the higher prevalence of chromosome 17 and 1 signals in TNBC MN point towards the significance of pathogenetic events involving the genes located in these chromosomes in evolution of this more aggressive phenotype.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Muijlwijk T, Nauta IH, van der Lee A, Grünewald KJT, Brink A, Ganzevles SH, Baatenburg de Jong RJ, Atanesyan L, Savola S, van de Wiel MA, Peferoen LAN, Bloemena E, van de Ven R, Leemans CR, Poell JB, Brakenhoff RH. Hallmarks of a genomically distinct subclass of head and neck cancer. Nat Commun 2024; 15:9060. [PMID: 39428388 PMCID: PMC11491468 DOI: 10.1038/s41467-024-53390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer is caused by an accumulation of somatic mutations and copy number alterations (CNAs). Besides mutations, these copy number changes are key characteristics of cancer development. Nonetheless, some tumors show hardly any CNAs, a remarkable phenomenon in oncogenesis. Head and neck squamous cell carcinomas (HNSCCs) arise by either exposure to carcinogens, or infection with the human papillomavirus (HPV). HPV-negative HNSCCs are generally characterized by many CNAs and frequent mutations in CDKN2A, TP53, FAT1, and NOTCH1. Here, we present the hallmarks of the distinct subgroup of HPV-negative HNSCC with no or few CNAs (CNA-quiet) by genetic profiling of 802 oral cavity squamous cell carcinomas (OCSCCs). In total, 73 OCSCC (9.1%) are classified as CNA-quiet and 729 as CNA-other. The CNA-quiet group is characterized by wild-type TP53, frequent CASP8 and HRAS mutations, and a less immunosuppressed tumor immune microenvironment with lower density of regulatory T cells. Patients with CNA-quiet OCSCC are older, more often women, less frequently current smokers, and have a better 5-year overall survival compared to CNA-other OCSCC. This study demonstrates that CNA-quiet OCSCC should be considered as a distinct, clinically relevant subclass. Given the clinical characteristics, the patient group with these tumors will rapidly increase in the aging population.
Collapse
Affiliation(s)
- Tara Muijlwijk
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Irene H Nauta
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Anabel van der Lee
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Kari J T Grünewald
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Arjen Brink
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Sonja H Ganzevles
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | | | | | - Suvi Savola
- MRC Holland, Oncogenetics, Amsterdam, The Netherlands
| | - Mark A van de Wiel
- Amsterdam UMC, Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Laura A N Peferoen
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Pathology, Amsterdam, The Netherlands
- Academic Center for Dentistry, Maxillofacial Surgery/ Oral Pathology, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Pathology, Amsterdam, The Netherlands
- Academic Center for Dentistry, Maxillofacial Surgery/ Oral Pathology, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - C René Leemans
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jos B Poell
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| | - Ruud H Brakenhoff
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Nair NU, Schäffer AA, Gertz EM, Cheng K, Zerbib J, Sahu AD, Leor G, Shulman ED, Aldape KD, Ben-David U, Ruppin E. Chromosome 7 Gain Compensates for Chromosome 10 Loss in Glioma. Cancer Res 2024; 84:3464-3477. [PMID: 39078448 PMCID: PMC11479827 DOI: 10.1158/0008-5472.can-24-1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers. This phenomenon has been investigated since the late 1980s without resolution. Expanding beyond previous gene-centric studies, we investigated the co-occurrence in a genome-wide manner, taking an evolutionary perspective. Mining of large-scale tumor aneuploidy data confirmed the previous finding of a small-scale longitudinal study that the most likely order is chromosome 10 loss, followed by chromosome 7 gain. Extensive analysis of genomic and transcriptomic data from both patients and cell lines revealed that this co-occurrence can be explained by functional rescue interactions that are highly enriched on chromosome 7, which could potentially compensate for any detrimental consequences arising from the loss of chromosome 10. Transcriptomic data from various normal, noncancerous human brain tissues were analyzed to assess which tissues may be most predisposed to tolerate compensation of chromosome 10 loss by chromosome 7 gain. The analysis indicated that the preexisting transcriptomic states in the cortex and frontal cortex, where gliomas arise, are more favorable than other brain regions for compensation by rescuer genes that are active on chromosome 7. Collectively, these findings suggest that the phenomenon of chromosome 10 loss and chromosome 7 gain in gliomas is orchestrated by a complex interaction of many genes residing within these two chromosomes and provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain. Significance: Increased expression of multiple rescuer genes on the gained chromosome 7 could compensate for the downregulation of several vulnerable genes on the lost chromosome 10, resolving the long-standing mystery of this frequent co-occurrence in gliomas.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro A. Schäffer
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - E. Michael Gertz
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kuoyuan Cheng
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- MSD, Beijing, China
| | - Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Avinash Das Sahu
- The University of New Mexico, Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eldad D. Shulman
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth D. Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eytan Ruppin
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
6
|
Pessei V, Macagno M, Mariella E, Congiusta N, Battaglieri V, Battuello P, Viviani M, Gionfriddo G, Lamba S, Lorenzato A, Oddo D, Idrees F, Cavaliere A, Bartolini A, Guarrera S, Linnebacher M, Monteonofrio L, Cardone L, Milella M, Bertotti A, Soddu S, Grassi E, Crisafulli G, Bardelli A, Barault L, Di Nicolantonio F. DNA demethylation triggers cell free DNA release in colorectal cancer cells. Genome Med 2024; 16:118. [PMID: 39385243 PMCID: PMC11462661 DOI: 10.1186/s13073-024-01386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Liquid biopsy based on cell-free DNA (cfDNA) analysis holds significant promise as a minimally invasive approach for the diagnosis, genotyping, and monitoring of solid malignancies. Human tumors release cfDNA in the bloodstream through a combination of events, including cell death, active and passive release. However, the precise mechanisms leading to cfDNA shedding remain to be characterized. Addressing this question in patients is confounded by several factors, such as tumor burden extent, anatomical and vasculature barriers, and release of nucleic acids from normal cells. In this work, we exploited cancer models to dissect basic mechanisms of DNA release. METHODS We measured cell loss ratio, doubling time, and cfDNA release in the supernatant of a colorectal cancer (CRC) cell line collection (N = 76) representative of the molecular subtypes previously identified in cancer patients. Association analyses between quantitative parameters of cfDNA release, cell proliferation, and molecular features were evaluated. Functional experiments were performed to test the impact of modulating DNA methylation on cfDNA release. RESULTS Higher levels of supernatant cfDNA were significantly associated with slower cell cycling and increased cell death. In addition, a higher cfDNA shedding was found in non-CpG Island Methylator Phenotype (CIMP) models. These results indicate a positive correlation between lower methylation and increased cfDNA levels. To explore this further, we exploited methylation microarrays to identify a subset of probes significantly associated with cfDNA shedding and derive a methylation signature capable of discriminating high from low cfDNA releasers. We applied this signature to an independent set of 176 CRC cell lines and patient derived organoids to select 14 models predicted to be low or high releasers. The methylation profile successfully predicted the amount of cfDNA released in the supernatant. At the functional level, genetic ablation of DNA methyl-transferases increased chromatin accessibility and DNA fragmentation, leading to increased cfDNA release in isogenic CRC cell lines. Furthermore, in vitro treatment of five low releaser CRC cells with a demethylating agent was able to induce a significant increase in cfDNA shedding. CONCLUSIONS Methylation status of cancer cell lines contributes to the variability of cfDNA shedding in vitro. Changes in methylation pattern are associated with cfDNA release levels and might be exploited to increase sensitivity of liquid biopsy assays.
Collapse
Affiliation(s)
- Valeria Pessei
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Marco Macagno
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Elisa Mariella
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Noemi Congiusta
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Vittorio Battaglieri
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Battuello
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Viviani
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Giulia Gionfriddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Simona Lamba
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Daniele Oddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Fariha Idrees
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alessandro Cavaliere
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alice Bartolini
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Simonetta Guarrera
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Turin, Italy
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, UMR, Rostock, Germany
| | - Laura Monteonofrio
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Luca Cardone
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University and Hospital Trust, Verona, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Silvia Soddu
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Elena Grassi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Alberto Bardelli
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ludovic Barault
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| |
Collapse
|
7
|
Taylor AM. Cancer Genomes Sometimes Take the Longest Evolutionary Road. Cancer Discov 2024; 14:1766-1767. [PMID: 39363744 DOI: 10.1158/2159-8290.cd-24-1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/05/2024]
Abstract
Baker and colleagues developed a new algorithm called "Gain Route Identification and Timing In Cancer" (GRITIC) to uncover the path of chromosomal evolution in a tumor, particularly in the context of whole-genome duplication. Their approach found that tumors with genome doubling frequently take an indirect path from one copy number state to another. In addition, the timing of genome doubling within a tumor's evolution impacts its consequences on downstream chromosomal instability. See related article by Baker et al., p. 1810.
Collapse
Affiliation(s)
- Alison M Taylor
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| |
Collapse
|
8
|
Achom M, Sadagopan A, Bao C, McBride F, Li J, Konda P, Tourdot RW, Xu Q, Nakhoul M, Gallant DS, Ahmed UA, O'Toole J, Freeman D, Lee GSM, Hecht JL, Kauffman EC, Einstein DJ, Choueiri TK, Zhang CZ, Viswanathan SR. A genetic basis for sex differences in Xp11 translocation renal cell carcinoma. Cell 2024; 187:5735-5752.e25. [PMID: 39168126 PMCID: PMC11455617 DOI: 10.1016/j.cell.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.
Collapse
Affiliation(s)
- Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chunyang Bao
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona McBride
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Richard W Tourdot
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria Nakhoul
- Department of Informatics & Analytics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Usman Ali Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jillian O'Toole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Stewart DC, Brisson BK, Dekky B, Berger AC, Yen W, Mauldin EA, Loebel C, Gillette D, Assenmacher CA, Quincey C, Stefanovski D, Cristofanilli M, Cukierman E, Burdick JA, Borges VF, Volk SW. Prognostic and therapeutic implications of tumor-restrictive type III collagen in the breast cancer microenvironment. NPJ Breast Cancer 2024; 10:86. [PMID: 39358397 PMCID: PMC11447064 DOI: 10.1038/s41523-024-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and bioinformatic experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in non-invasive and invasive breast cancer cell lines. In human triple-negative breast cancer biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in non-invasive compared to invasive regions. Similarly, bioinformatics analysis of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free, and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces the formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective therapeutic modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashton C Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corisa Quincey
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Sdeor E, Okada H, Saad R, Ben-Yishay T, Ben-David U. Aneuploidy as a driver of human cancer. Nat Genet 2024:10.1038/s41588-024-01916-2. [PMID: 39358600 DOI: 10.1038/s41588-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Aneuploidy, an abnormal chromosome composition, is a major contributor to cancer development and progression and an important determinant of cancer therapeutic responses and clinical outcomes. Despite being recognized as a hallmark of human cancer, the exact role of aneuploidy as a 'driver' of cancer is still largely unknown. Identifying the specific genetic elements that underlie the recurrence of common aneuploidies remains a major challenge of cancer genetics. In this Review, we discuss recurrent aneuploidies and their function as drivers of tumor development. We then delve into the context-dependent identification and functional characterization of the driver genes underlying driver aneuploidies and examine emerging strategies to uncover these driver genes using cancer genomics data and cancer models. Lastly, we explore opportunities for targeting driver aneuploidies in cancer by leveraging the functional consequences of these common genetic alterations.
Collapse
Affiliation(s)
- Eran Sdeor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hajime Okada
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ron Saad
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Devillers R, Dos Santos A, Destombes Q, Laplante M, Elowe S. Recent insights into the causes and consequences of chromosome mis-segregation. Oncogene 2024; 43:3139-3150. [PMID: 39278989 DOI: 10.1038/s41388-024-03163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Mitotic cells face the challenging task of ensuring accurate and equal segregation of their duplicated, condensed chromosomes between the nascent daughter cells. Errors in the process result in chromosome missegregation, a significant consequence of which is the emergence of aneuploidy-characterized by an imbalance in chromosome number-and the associated phenomenon of chromosome instability (CIN). Aneuploidy and CIN are common features of cancer, which leverages them to promote genome heterogeneity and plasticity, thereby facilitating rapid tumor evolution. Recent research has provided insights into how mitotic errors shape cancer genomes by inducing both numerical and structural chromosomal changes that drive tumor initiation and progression. In this review, we survey recent findings regarding the mitotic causes and consequences of aneuploidy. We discuss new findings into the types of chromosome segregation errors that lead to aneuploidy and novel pathways that protect genome integrity during mitosis. Finally, we describe new developments in our understanding of the immediate consequences of chromosome mis-segregation on the genome stability of daughter cells.
Collapse
Affiliation(s)
- Romain Devillers
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Quentin Destombes
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada.
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada.
- Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
12
|
Chen Q, Le X, Li Q, Liu S, Chen Z. Exploration of inhibitors targeting KIF18A with ploidy-specific lethality. Drug Discov Today 2024; 29:104142. [PMID: 39168405 DOI: 10.1016/j.drudis.2024.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Currently, various antimitotic inhibitors applied in tumor therapy. However, these inhibitors exhibit targeted toxicity to some extent. As a motor protein, kinesin family member 18A (KIF18A) is crucial to spindle formation and is associated with tumors exhibiting ploidy-specific characteristics such as chromosomal aneuploidy, whole-genome doubling (WGD), and chromosomal instability (CIN). Differing from traditional antimitotic targets, KIF18A exhibits tumor-specific selectivity. The functional loss or attenuation of KIF18A results in vulnerability of tumor cells with ploidy-specific characteristics, with lesser effects on diploid cells. Research on inhibitors targeting KIF18A with ploidy-specific lethality holds significant importance. This review provides a brief overview of the regulatory mechanisms of the ploidy-specific lethality target KIF18A and the research advancements in its inhibitors, aiming to facilitate the development of KIF18A inhibitors.
Collapse
Affiliation(s)
- Qingsong Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Suyou Liu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| |
Collapse
|
13
|
Jain S, Bai X, Mallick S, Kinghorn B, May B, Yao AG, Allen-Gipson D, Zhang X, Henick BS, Momen-Heravi F, Carrot-Zhang J, Taylor AM. Amplification of MYC and Its Enhancer Correlates With Genetic Ancestry in Lung Squamous Cell Carcinoma. JCO Precis Oncol 2024; 8:e2400223. [PMID: 39447097 DOI: 10.1200/po.24.00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 10/26/2024] Open
Abstract
PURPOSE In lung squamous cell carcinoma (LUSC), Black patients show significantly higher incidence and lower overall survival than White patients. Although socioeconomic factors likely contribute to this survival disparity, genomic factors have yet to be elucidated in LUSC. METHODS Using 416 LUSC tumor samples in the Cancer Genome Atlas (TCGA), we assessed genomic and transcriptomic profiles by ancestry. We replicated our analyses in pan-cancer data from TCGA, the American Association of Cancer Research (AACR) Genomics Evidence Neoplasia Information Exchange (GENIE), and Columbia University Medical Center. RESULTS We found increased MYC amplification, LUSC-specific MYC enhancer amplification, and chromosome arm 8q (chr8q) gain to be significantly associated with genetic AFR (African) ancestry in LUSC in TCGA. Furthermore, expression of MYC target genes was significantly enriched in AFR samples. Local ancestry analysis identified correlation of chr8q gain with AFR ancestry at the MYC locus in TCGA. We also found a significant correlation between chr8q and AFR ancestry in multiple cancer types and pan-cancer in TCGA. Similarly, in a pan-cancer subset of AACR GENIE data, we found a significant correlation between chr8q gain and race. CONCLUSION Together, our data suggest that ancestry may influence amplification of not only MYC but also its enhancer in LUSC. They also suggest a role for genetic ancestry in chr8q aneuploidy in cancer. These studies further define and expand patients who may benefit from future anti-MYC therapeutic approaches.
Collapse
Affiliation(s)
- Sejal Jain
- University of South Florida, USF Health Morsani College of Medicine, Tampa, FL
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Xuechun Bai
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Branden Kinghorn
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT
| | - Benjamin May
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | | | - Diane Allen-Gipson
- Department of Pharmaceutical Sciences, University of South Florida, USF Health Taneja College of Pharmacy, Tampa, FL
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT
| | - Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Division of Hematology/Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Fatemeh Momen-Heravi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- College of Dental Medicine, Columbia University, New York, NY
| | - Jian Carrot-Zhang
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Clinical Genetics, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alison M Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
14
|
Chen J, Kaya NA, Zhang Y, Kendarsari RI, Sekar K, Lee Chong S, Seshachalam VP, Ling WH, Jin Phua CZ, Lai H, Yang H, Lu B, Lim JQ, Ma S, Chew SC, Chua KP, Santiago Alvarez JJ, Wu L, Ooi L, Yaw-Fui Chung A, Cheow PC, Kam JH, Wei-Chieh Kow A, Ganpathi IS, Bunchaliew C, Thammasiri J, Koh PS, Bee-Lan Ong D, Lim J, de Villa VH, Dela Cruz RD, Loh TJ, Wan WK, Leow WQ, Yang Y, Liu J, Skanderup AJ, Pang YH, Ting Soon GS, Madhavan K, Kiat-Hon Lim T, Bonney G, Goh BKP, Chew V, Dan YY, Toh HC, Sik-Yin Foo R, Tam WL, Zhai W, Kah-Hoe Chow P. A multimodal atlas of hepatocellular carcinoma reveals convergent evolutionary paths and 'bad apple' effect on clinical trajectory. J Hepatol 2024; 81:667-678. [PMID: 38782118 DOI: 10.1016/j.jhep.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a highly fatal cancer characterized by high intra-tumor heterogeneity (ITH). A panoramic understanding of its tumor evolution, in relation to its clinical trajectory, may provide novel prognostic and treatment strategies. METHODS Through the Asia-Pacific Hepatocellular Carcinoma trials group (NCT03267641), we recruited one of the largest prospective cohorts of patients with HCC, with over 600 whole genome and transcriptome samples from 123 treatment-naïve patients. RESULTS Using a multi-region sampling approach, we revealed seven convergent genetic evolutionary paths governed by the early driver mutations, late copy number variations and viral integrations, which stratify patient clinical trajectories after surgical resection. Furthermore, such evolutionary paths shaped the molecular profiles, leading to distinct transcriptomic subtypes. Most significantly, although we found the coexistence of multiple transcriptomic subtypes within certain tumors, patient prognosis was best predicted by the most aggressive cell fraction of the tumor, rather than by overall degree of transcriptomic ITH level - a phenomenon we termed the 'bad apple' effect. Finally, we found that characteristics throughout early and late tumor evolution provide significant and complementary prognostic power in predicting patient survival. CONCLUSIONS Taken together, our study generated a comprehensive landscape of evolutionary history for HCC and provides a rich multi-omics resource for understanding tumor heterogeneity and clinical trajectories. IMPACT AND IMPLICATIONS This prospective study, utilizing comprehensive multi-sector, multi-omics sequencing and clinical data from surgically resected hepatocellular carcinoma (HCC), reveals critical insights into the role of tumor evolution and intra-tumor heterogeneity (ITH) in determining the prognosis of HCC. These findings are invaluable for oncology researchers and clinicians, as they underscore the influence of distinct evolutionary paths and the 'bad apple' effect, where the most aggressive tumor fraction dictates disease progression. These insights not only enhance prognostic accuracy post-surgical resection but also pave the way for personalized treatment strategies tailored to specific tumor evolutionary and transcriptomic profiles. The coexistence of multiple subtypes within the same tumor prompts a re-appraisal of the utilities of depending on single samples to represent the entire tumor and suggests the need for clinical molecular imaging. This research thus marks a significant step forward in the clinical understanding and management of HCC, underscoring the importance of integrating tumor evolutionary dynamics and multi-omics biomarkers into therapeutic decision-making. CLINICAL TRIAL NUMBER NCT03267641 (Observational cohort).
Collapse
Affiliation(s)
- Jianbin Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore.
| | - Neslihan Arife Kaya
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Ying Zhang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Raden Indah Kendarsari
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Karthik Sekar
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Shay Lee Chong
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Veerabrahma Pratap Seshachalam
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Wen Huan Ling
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Hannah Lai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Hechuan Yang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Bingxin Lu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Cell & Developmental Biology, Division of Biosciences, Faculty of Life Sciences, Bloomsbury, London WC1E 6AP, UK
| | - Jia Qi Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Siming Ma
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Sin Chi Chew
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Khi Pin Chua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jacob Josiah Santiago Alvarez
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Lingyan Wu
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - London Ooi
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Alexander Yaw-Fui Chung
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Peng Chung Cheow
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Juinn Huar Kam
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Alfred Wei-Chieh Kow
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Republic of Singapore
| | - Iyer Shridhar Ganpathi
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Republic of Singapore
| | - Chairat Bunchaliew
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgery, National Cancer Institute, Bangkok, Thailand
| | | | - Peng Soon Koh
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Bee-Lan Ong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jasmine Lim
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanessa H de Villa
- Department of Surgery and Center for Liver Disease Management and Transplantation, The Medical City, Pasig City, Metro Manila, Philippines
| | | | - Tracy Jiezhen Loh
- Department of Pathology, Singapore General Hospital, Singapore 169608, Republic of Singapore
| | - Wei Keat Wan
- Department of Pathology, Singapore General Hospital, Singapore 169608, Republic of Singapore
| | - Wei Qiang Leow
- Department of Pathology, Singapore General Hospital, Singapore 169608, Republic of Singapore
| | - Yi Yang
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| | - Jin Liu
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Yin Huei Pang
- Department of Pathology, National University Health System, Singapore 119074, Republic of Singapore
| | - Gwyneth Shook Ting Soon
- Department of Pathology, National University Health System, Singapore 119074, Republic of Singapore
| | - Krishnakumar Madhavan
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Republic of Singapore
| | - Tony Kiat-Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore 169608, Republic of Singapore
| | - Glenn Bonney
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Republic of Singapore
| | - Brian K P Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth Duke-NUS Academic Medical Centre, Singapore, Republic of Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore, Republic of Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Center Singapore, 169610 Singapore, Republic of Singapore
| | - Roger Sik-Yin Foo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Cardiovascular Research Institute, National University of Singapore, National University Healthcare System, Singapore 119228, Republic of Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore.
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, P.R. China.
| | - Pierce Kah-Hoe Chow
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore; Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore; SingHealth-Duke-NUS Academic Surgery Program, Duke-NUS Graduate Medical School, Singapore 169857, Republic of Singapore.
| |
Collapse
|
15
|
Guardado A, Aguirre-Gamboa R, Treviño V. Systematic Modeling of Risk-Associated Copy Number Alterations in Cancer. Int J Mol Sci 2024; 25:10455. [PMID: 39408785 PMCID: PMC11477427 DOI: 10.3390/ijms251910455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The determination of the cancer prognosis is paramount for patients and medical personnel so that they can devise treatment strategies. Transcriptional-based signatures and subtypes derived from cancer biopsy material have been used in clinical practice for several cancer types to aid in setting the patient prognosis and forming treatment strategies. Other genomic features in cancer biopsies, such as copy number alterations (CNAs), have been underused in clinical practice, and yet they represent a complementary source of molecular information that can add detail to the prognosis, which is supported by recent work in breast, ovarian, and lung cancers. Here, through a systematic strategy, we explored the prognostic power of CNAs in 37 cancer types. In this analysis, we defined two modes of informative features, deep and soft, depending on the number of alleles gained or lost. These informative modes were grouped by amplifications or deletions to form four single-data prognostic models. Finally, the single-data models were summed or combined to generate four additional multidata prognostic models. First, we show that the modes of features are cancer-type dependent, where deep alterations generate better models. Nevertheless, some cancers require soft alterations to generate a feasible model due to the lack of significant deep alterations. Then, we show that the models generated by summing coefficients from amplifications and deletions appear to be more practical for many but not all cancer types. We show that the CNA-derived risk group is independent of other clinical factors. Furthermore, overall, we show that CNA-derived models can define clinically relevant risk groups in 33 of the 37 (90%) cancer types analyzed. Our study highlights the use of CNAs as biomarkers that are potentially clinically relevant to survival in cancer patients.
Collapse
Affiliation(s)
- Alejandra Guardado
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey 64710, Nuevo León, Mexico;
- School of Medicine, Tecnologico de Monterrey, Monterrey 64710, Nuevo León, Mexico
| | - Raúl Aguirre-Gamboa
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA;
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Victor Treviño
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey 64710, Nuevo León, Mexico;
- oriGen Project, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
16
|
Brown LM, Hagenson RA, Koklič T, Urbančič I, Qiao L, Strancar J, Sheltzer JM. An elevated rate of whole-genome duplications in cancers from Black patients. Nat Commun 2024; 15:8218. [PMID: 39300140 PMCID: PMC11413164 DOI: 10.1038/s41467-024-52554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
In the United States, Black individuals have higher rates of cancer mortality than any other racial group. Here, we examine chromosome copy number changes in cancers from more than 1800 self-reported Black patients. We find that tumors from self-reported Black patients are significantly more likely to exhibit whole-genome duplications (WGDs), a genomic event that enhances metastasis and aggressive disease, compared to tumors from self-reported white patients. This increase in WGD frequency is observed across multiple cancer types, including breast, endometrial, and lung cancer, and is associated with shorter patient survival. We further demonstrate that combustion byproducts are capable of inducing WGDs in cell culture, and cancers from self-reported Black patients exhibit mutational signatures consistent with exposure to these carcinogens. In total, these findings identify a type of genomic alteration that is associated with environmental exposures and that may influence racial disparities in cancer outcomes.
Collapse
Affiliation(s)
| | | | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
| | - Lu Qiao
- Yale University, School of Medicine, New Haven, CT, USA
| | - Janez Strancar
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
- Infinite d.o.o, Zagrebška cesta 20, Maribor, Slovenia
| | | |
Collapse
|
17
|
Cosper PF, Paracha M, Jones KM, Hrycyniak L, Henderson L, Bryan A, Eyzaguirre D, McCunn E, Boulanger E, Wan J, Nickel KP, Horner V, Hu R, Harari PM, Kimple RJ, Weaver BA. Chromosomal instability increases radiation sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612942. [PMID: 39345631 PMCID: PMC11429890 DOI: 10.1101/2024.09.13.612942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Continuous chromosome missegregation over successive mitotic divisions, known as chromosomal instability (CIN), is common in cancer. Increasing CIN above a maximally tolerated threshold leads to cell death due to loss of essential chromosomes. Here, we show in two tissue contexts that otherwise isogenic cancer cells with higher levels of CIN are more sensitive to ionizing radiation, which itself induces CIN. CIN also sensitizes HPV-positive and HPV-negative head and neck cancer patient derived xenograft (PDX) tumors to radiation. Moreover, laryngeal cancers with higher CIN prior to treatment show improved response to radiation therapy. In addition, we reveal a novel mechanism of radiosensitization by docetaxel, a microtubule stabilizing drug commonly used in combination with radiation. Docetaxel causes cell death by inducing CIN due to abnormal multipolar spindles rather than causing mitotic arrest, as previously assumed. Docetaxel-induced CIN, rather than mitotic arrest, is responsible for the enhanced radiation sensitivity observed in vitro and in vivo, challenging the mechanistic dogma of the last 40 years. These results implicate CIN as a potential biomarker and inducer of radiation response, which could provide valuable cancer therapeutic opportunities. Statement of Significance Cancer cells and laryngeal tumors with higher chromosome missegregation rates are more sensitive to radiation therapy, supporting chromosomal instability as a promising biomarker of radiation response.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maha Paracha
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kathryn M. Jones
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Laura Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin, Madison, WI 53705, USA
| | - Les Henderson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI
| | - Ava Bryan
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Diego Eyzaguirre
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily McCunn
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elizabeth Boulanger
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vanessa Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
18
|
Hintzen DC, Schubert M, Soto M, Medema RH, Raaijmakers JA. Reduction of chromosomal instability and inflammation is a common aspect of adaptation to aneuploidy. EMBO Rep 2024:10.1038/s44319-024-00252-0. [PMID: 39294502 DOI: 10.1038/s44319-024-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Aneuploidy, while detrimental to untransformed cells, is notably prevalent in cancer. Aneuploidy is found as an early event during tumorigenesis which indicates that cancer cells have the ability to surmount the initial stress responses associated with aneuploidy, enabling rapid proliferation despite aberrant karyotypes. To generate more insight into key cellular processes and requirements underlying adaptation to aneuploidy, we generated a panel of aneuploid clones in p53-deficient RPE-1 cells and studied their behavior over time. As expected, de novo-generated aneuploid clones initially display reduced fitness, enhanced levels of chromosomal instability (CIN), and an upregulated inflammatory response. Intriguingly, after prolonged culturing, aneuploid clones exhibit increased proliferation rates while maintaining aberrant karyotypes, indicative of an adaptive response to the aneuploid state. Interestingly, all adapted clones display reduced CIN and reduced inflammatory signaling, suggesting that these are common aspects of adaptation to aneuploidy. Collectively, our data suggests that CIN and concomitant inflammation are key processes that require correction to allow for fast proliferation in vitro. Finally, we provide evidence that amplification of oncogenic KRAS can promote adaptation.
Collapse
Affiliation(s)
- Dorine C Hintzen
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Michael Schubert
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Mar Soto
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Oncode Institute, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Jonne A Raaijmakers
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Islam MS, Jesmin. Exploring the Correlation Between Hypoxia, HIF1A Variants, and Breast Cancer in Different Ethnicities, and Bangladeshi Women: Through ELISA and Integrative Multi-Omics Analysis. Biomark Insights 2024; 19:11772719241278176. [PMID: 39314258 PMCID: PMC11418304 DOI: 10.1177/11772719241278176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Background Hypoxia, a condition where there is a lack of oxygen, is known to play a role in cancer progression. Objective This study investigates the correlation between HIF1A gene-altered expression and hypoxia in Bangladeshi breast cancer (BC) cases and TCGA_BC datasets. Design This case-control study compares BC cases to healthy controls to understand the relationship between gene changes and cancer. Method This study used advanced analysis methods to examine the transcriptional landscape of BC, and quantitatively assessed its correlation using integrated multi-omics analysis. Results In Bangladeshi BC cases, the T allele of HIF1A rs1154946 correlates notably (P-value < .001) with BC incidence. ELISA results confirmed a significant association (P-value < .005) between elevated HIF1A expression and BC-related hypoxia. Bioinformatics eQTL analysis validated the correlation between increased HIF1A expression and rs11549465 T allele (P-value < .01). Structural analyses suggested that rs11549465 (P582S) mutation may decrease protein stability (ΔΔG-value: -1.24 kcal/mole), potentially affecting HIF1A function. HIF1A enrichment analysis in BC underscores strong associations with oxygen levels, hypoxia, metabolic processes, apoptosis, and programed cell death (P-value < .001). Transcriptomic data demonstrated a robust correlation (P-value < .0001) between HIF1A expression and copy-number alterations, mutations, and abnormal methylation. Altered HIF1A expression showed strong negative correlations (P-value < .00001) with methylation and the expression of the ER (ESR1), in Whites. Survival analysis revealed marked differences in overall survival linked to high and low HIF1A expression (P-value < .00001). Furthermore, HIF1A expression significantly correlated (P-value < .000001) with hypoxia, TMB, MSI, and immune infiltration by CD8+ T cells, neutrophils, dendritic, and macrophages, providing deeper insights into the BC microenvironment. Conclusion Thus, the HIF1A gene could serve as a promising biomarker for breast cancer progression, control, and survival across ethnicities, emphasizing its role in disease development and regulation.
Collapse
Affiliation(s)
- Md. Shihabul Islam
- Department of Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jesmin
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
20
|
Chai C, Tang H, Miao X, Chen T, Su Y, Li L, Miao L, Zhang B, Wang Z, Luo W, Zhang H, Xu H, Zhou W. Establishment and characterization of a novel human gallbladder cancer cell line, GBC-X1. Sci Rep 2024; 14:21439. [PMID: 39271742 PMCID: PMC11399391 DOI: 10.1038/s41598-024-72830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, we successfully established a novel gallbladder cancer cell line, designated as GBC-X1, derived from a primary tumor of a gallbladder cancer patient. By comprehensively analyzing the cell line's phenotype, molecular characteristics, biomarkers, and histological characteristics, we confirmed that GBC-X1 serves as a valuable model for investigating the pathogenesis of gallbladder cancer and developing therapeutic agents. GBC-X1 has been continuously cultured for one year, with over 60 stable passages. Morphologically, GBC-X1 exhibits typical features of epithelial tumors. The population doubling time of GBC-X1 is 32 h. STR analysis validated a high consistency between GBC-X1 and the patient's primary tumor. Karyotype analysis revealed an abnormal hypertetraploid karyotype for GBC-X1, characterized by representative karyotypes of 98, XXXX del (4) p (12) del (5) p (21) der (10). Under suspension culture conditions, GBC-X1 efficiently forms tumor balls, while subcutaneous inoculation of GBC-X1 cells into NXG mice leads to xenograft formation with a rate of 80%. Drug sensitivity testing demonstrated that GBC-X1 is resistant to oxaliplatin and sensitive to 5-FU, gemcitabine, and paclitaxel. Immunohistochemistry revealed positive expression of CK7, CK19, E-cadherin, MMP-2, CD44, SOX2, and TP53 in GBC-X1 cells, weak positive expression of Vimentin, and a Ki67 positive rate of 35%. Our research highlights GBC-X1 as a novel gallbladder cancer cell line and emphasizes its potential as an effective experimental model for investigating the pathogenesis of gallbladder cancer and drug development.
Collapse
Affiliation(s)
- Changpeng Chai
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xin Miao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- First School of Clinical Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Yuanhui Su
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Lu Li
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Long Miao
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Bo Zhang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Zhengfeng Wang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Wei Luo
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Hui Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, China
| | - Hao Xu
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China.
- First School of Clinical Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Baba SA, Zakeri A, Desgrosellier JS. Chromosomal instability as an architect of the cancer stemness landscape. Front Cell Dev Biol 2024; 12:1450614. [PMID: 39345336 PMCID: PMC11427409 DOI: 10.3389/fcell.2024.1450614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Despite a critical role for tumor-initiating cancer stem cells (CSCs) in breast cancer progression, major questions remain about the properties and signaling pathways essential for their function. Recent discoveries highlighting mechanisms of CSC-resistance to the stress caused by chromosomal instability (CIN) may provide valuable new insight into the underlying forces driving stemness properties. While stress tolerance is a well-known attribute of CSCs, CIN-induced stress is distinctive since levels appear to increase during tumor initiation and metastasis. These dynamic changes in CIN levels may serve as a barrier constraining the effects of non-CSCs and shaping the stemness landscape during the early stages of disease progression. In contrast to most other stresses, CIN can also paradoxically activate pro-tumorigenic antiviral signaling. Though seemingly contradictory, this may indicate that mechanisms of CIN tolerance and pro-tumorigenic inflammatory signaling closely collaborate to define the CSC state. Together, these unique features may form the basis for a critical relationship between CIN and stemness properties.
Collapse
Affiliation(s)
- Shahnawaz A Baba
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Aran Zakeri
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Jay S Desgrosellier
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Wang J, Zhou W, Xu Y, Duan J, Zhou Q, Wang G, Li L, Xu C, Wang W, Cai S, Wang Z, Wang J. Antithetical impacts of deleterious LRP1B mutations in non-squamous and squamous NSCLCs on predicting benefits from immune checkpoint inhibitor alone or with chemotherapy over chemotherapy alone: retrospective analyses of the POPLAR/OAK and CHOICE-01 trials. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2554-y. [PMID: 39276256 DOI: 10.1007/s11427-023-2554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 09/16/2024]
Abstract
In non-small cell lung cancers, the non-squamous and squamous subtypes (nsqNSCLC and sqNSCLC) exhibit disparities in pathophysiology, tumor immunology, and potential genomic correlates affecting responses to immune checkpoint inhibitor (ICI)-based treatments. In our in-house training cohort (n=85), the presence of the LRP1B deleterious mutation (LRP1B-del) was associated with longer and shorter progression-free survival (PFS) on ICIs alone in nsqNSCLCs and sqNSCLCs, respectively (Pinteraction=0.008). These results were validated using a larger public ICI cohort (n=208, Pinteraction<0.001). Multiplex immunofluorescence staining revealed an association between LRP1B-del and increased and decreased numbers of tumor-infiltrating CD8+ T cells in nsqNSCLCs (P=0.040) and sqNSCLCs (P=0.014), respectively. In the POPLAR/OAK cohort, nsqNSCLCs with LRP1B-del demonstrated improved PFS benefits from atezolizumab over docetaxel (hazard ratio (HR) =0.70, P=0.046), whereas this benefit was negligible in those without LRP1B-del (HR=1.05, P=0.64). Conversely, sqNSCLCs without LRP1B-del benefited more from atezolizumab (HR=0.60, P=0.002) than those with LRP1B-del (HR=1.30, P=0.31). Consistent results were observed in the in-house CHOICE-01 cohort, in which nsqNSCLCs with LRP1B-del and sqNSCLCs without LRP1B-del benefited more from toripalimab plus chemotherapy than from chemotherapy alone (Pinteraction=0.008). This multi-cohort study delineates the antithetical impacts of LRP1B-del in nsqNSCLCs and sqNSCLCs on predicting the benefits from ICI alone or with chemotherapy over chemotherapy alone. Our findings highlight the distinct clinical utility of LRP1B-del in guiding treatment choices for nsqNSCLCs and sqNSCLCs, emphasizing the necessity for a detailed analysis based on pathological subtypes when investigating biomarkers for cancer therapeutics.
Collapse
Affiliation(s)
- Jinliang Wang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Wenyong Zhou
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Jianchun Duan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | | | | | - Leo Li
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China.
| | - Zhijie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
23
|
Zerbib J, Ippolito MR, Eliezer Y, De Feudis G, Reuveni E, Savir Kadmon A, Martin S, Viganò S, Leor G, Berstler J, Muenzner J, Mülleder M, Campagnolo EM, Shulman ED, Chang T, Rubolino C, Laue K, Cohen-Sharir Y, Scorzoni S, Taglietti S, Ratti A, Stossel C, Golan T, Nicassio F, Ruppin E, Ralser M, Vazquez F, Ben-David U, Santaguida S. Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage. Nat Commun 2024; 15:7772. [PMID: 39251587 PMCID: PMC11385192 DOI: 10.1038/s41467-024-52176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Giuseppina De Feudis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Eli Reuveni
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anouk Savir Kadmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Martin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sonia Viganò
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Julia Muenzner
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Michael Mülleder
- Charité Universitätsmedizin Berlin, Core Facility High-Throughput Mass Spectrometry, Berlin, Germany
| | - Emma M Campagnolo
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eldad D Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmela Rubolino
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Kathrin Laue
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Simone Scorzoni
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Taglietti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Ratti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
24
|
Geurts BS, Zeverijn LJ, Leek LVM, van Berge Henegouwen JM, Hoes LR, van der Wijngaart H, van der Noort V, van de Haar J, van Ommen-Nijhof A, Kok M, Roepman P, Jansen AML, de Leng WWJ, de Jonge MJA, Hoeben A, van Herpen CML, Westgeest HM, Wessels LFA, Verheul HMW, Gelderblom H, Voest EE. Efficacy of Pembrolizumab and Biomarker Analysis in Patients with WGS-Based Intermediate to High Tumor Mutational Load: Results from the Drug Rediscovery Protocol. Clin Cancer Res 2024; 30:3735-3746. [PMID: 38630551 DOI: 10.1158/1078-0432.ccr-24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/25/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE To evaluate the efficacy of pembrolizumab across multiple cancer types harboring different levels of whole-genome sequencing-based tumor mutational load (TML; total of nonsynonymous mutations across the genome) in patients included in the Drug Rediscovery Protocol (NCT02925234). PATIENTS AND METHODS Patients with solid, treatment-refractory, microsatellite-stable tumors were enrolled in cohort A: breast cancer cohort harboring a TML of 140 to 290, cohort B: tumor-agnostic cohort harboring a TML of 140 to 290, and cohort C: tumor-agnostic cohort harboring a TML >290. Patients received pembrolizumab 200 mg every 3 weeks. The primary endpoint was clinical benefit [CB; objective response or stable disease (SD) ≥16 weeks]. Pretreatment tumor biopsies were obtained for whole-genome sequencing and RNA sequencing. RESULTS Seventy-two evaluable patients with 26 different histotypes were enrolled. The CB rate was 13% in cohort A [3/24 with partial response (PR)], 21% in cohort B (3/24 with SD; 2/24 with PR), and 42% in cohort C (4/24 with SD; 6/24 with PR). In cohort C, neoantigen burden estimates and expression of inflammation and innate immune biomarkers were significantly associated with CB. Similar associations were not identified in cohorts A and B. In cohort A, CB was significantly associated with mutations in the chromatin remodeling gene PBRM1, whereas in cohort B, CB was significantly associated with expression of MICA/MICB and butyrophilins. CB and clonal TML were not significantly associated. CONCLUSIONS Although pembrolizumab lacked activity in cohort A, cohorts B and C met the study's primary endpoint. Further research is warranted to refine the selection of patients with tumors harboring lower TMLs and may benefit from a focus on innate immunity. See related commentary by Hsu and Yen, p. 3652.
Collapse
Affiliation(s)
- Birgit S Geurts
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lindsay V M Leek
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Louisa R Hoes
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Hanneke van der Wijngaart
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Joris van de Haar
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Marleen Kok
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, the Netherlands
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
25
|
Su XA, Stopsack KH, Schmidt DR, Ma D, Li Z, Scheet PA, Penney KL, Lotan TL, Abida W, DeArment EG, Lu K, Janas T, Hu S, Vander Heiden MG, Loda M, Boselli M, Amon A, Mucci LA. RAD21 promotes oncogenesis and lethal progression of prostate cancer. Proc Natl Acad Sci U S A 2024; 121:e2405543121. [PMID: 39190349 PMCID: PMC11388324 DOI: 10.1073/pnas.2405543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Higher levels of aneuploidy, characterized by imbalanced chromosome numbers, are associated with lethal progression in prostate cancer. However, how aneuploidy contributes to prostate cancer aggressiveness remains poorly understood. In this study, we assessed in patients which genes on chromosome 8q, one of the most frequently gained chromosome arms in prostate tumors, were most strongly associated with long-term risk of cancer progression to metastases and death from prostate cancer (lethal disease) in 403 patients and found the strongest candidate was cohesin subunit gene, RAD21, with an odds ratio of 3.7 (95% CI 1.8, 7.6) comparing the highest vs. lowest tertiles of mRNA expression and adjusting for overall aneuploidy burden and Gleason score, both strong prognostic factors in primary prostate cancer. Studying prostate cancer driven by the TMPRSS2-ERG oncogenic fusion, found in about half of all prostate tumors, we found that increased RAD21 alleviated toxic oncogenic stress and DNA damage caused by oncogene expression. Data from both organoids and patients indicate that increased RAD21 thereby enables aggressive tumors to sustain tumor proliferation, and more broadly suggests one path through which tumors benefit from aneuploidy.
Collapse
Affiliation(s)
- Xiaofeng A Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20817
| | - Konrad H Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Daniel R Schmidt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zhe Li
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, TX 77030
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY 10065
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817
| | - Kate Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817
| | - Sofia Hu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Dana-Farber Cancer Institute, Boston, MA 02115
| | - Massimo Loda
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY 10065
| | - Monica Boselli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Cambridge, MA 02139
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Discovery Science, American Cancer Society, Atlanta, GA 30144
| |
Collapse
|
26
|
Mertens F, Hofvander J, Mandahl N, Mitelman F. Aneuploidy in neoplasia: Single-cell data on 83,862 tumors. Int J Cancer 2024. [PMID: 39222304 DOI: 10.1002/ijc.35163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Chromosomal aneuploidy, that is, numerical chromosome aberrations, is one of the molecular hallmarks of cancer. However, when neoplasms are studied with sequencing- and array-based approaches, chromosome numbers and ploidy states are typically inferred from bulk DNA data. Furthermore, published molecular estimates of neoplasia-associated aneuploidy often also include genomic imbalances resulting from various types of structural rearrangement, which likely result from other mechanisms than numerical chromosome aberrations. We thus analyzed chromosome numbers using single-cell cytogenetic data from 83,862 tumors, and show that both benign and malignant tumors are highly heterogeneous with regard to deviations from the normal, diploid state. Focusing on the chromosome numbers in 112 specific tumor types, defined by both exact morphologic diagnosis and organ location and from which data from ≥50 cases were available, we found two major clusters: one predominated by near-diploid neoplasms and one by neoplasms with extensive aneuploidy and one or more whole genome doublings. The former cluster included most benign solid tumors, myeloid neoplasms, and malignant gene fusion-associated solid tumors, whereas the latter was predominated by malignant solid tumors and lymphomas. For 16 malignant tumor types, the distribution of chromosome numbers could be compared to TCGA ploidy level data. Cytogenetic and molecular data correlated well, but the former indicates a higher level of clonal heterogeneity. The results presented here suggest shared pathogenetic mechanisms in certain tumor types and provide a reference for molecular analyses.
Collapse
Affiliation(s)
- Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Division of Laboratory Medicine, Lund, Sweden
| | - Jakob Hofvander
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nils Mandahl
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Felix Mitelman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Xie Z, Wang Y, Chen T, Fan W, Wei L, Liu B, Situ X, Zhan Q, Fu T, Tian T, Li S, He Q, Zhou J, Wang H, Du J, Tseng HR, Lei Y, Tang KJ, Ke Z. Circulating tumor cells with increasing aneuploidy predict inferior prognosis and therapeutic resistance in small cell lung cancer. Drug Resist Updat 2024; 76:101117. [PMID: 38996549 DOI: 10.1016/j.drup.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
AIMS Treatment resistance commonly emerges in small cell lung cancer (SCLC), necessitating the development of novel and effective biomarkers to dynamically assess therapeutic efficacy. This study aims to evaluate the clinical utility of aneuploid circulating tumor cells (CTCs) for risk stratification and treatment response monitoring. METHODS A total of 126 SCLC patients (two cohorts) from two independent cancer centers were recruited as the study subjects. Blood samples were collected from these patients and aneuploid CTCs were detected. Aneuploid CTC count (ACC) and aneuploid CTC score (ACS), were used to predict progression-free survival (PFS) and overall survival (OS). The performance of the ACC and the ACS was evaluated by calculating the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS Compared to ACC, ACS exhibited superior predictive power for PFS and OS in these 126 patients. Moreover, both univariate and multivariate analyses revealed that ACS was an independent prognostic factor. Dynamic ACS changes reflected treatment response, which is more precise than ACC changes. ACS can be used to assess chemotherapy resistance and is more sensitive than radiological examination (with a median lead time of 2.8 months; P < 0.001). When patients had high ACS levels (> 1.115) at baseline, the combination of immunotherapy and chemotherapy resulted in longer PFS (median PFS, 7.7 months; P = 0.007) and OS (median OS, 16.3 months; P = 0.033) than chemotherapy alone (median PFS, 4.9 months; median OS, 13.6 months). CONCLUSIONS ACS could be used as a biomarker for risk stratification, treatment response monitoring, and individualized therapeutic intervention in SCLC patients.
Collapse
Affiliation(s)
- Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanxia Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tingfei Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Fan
- Cyttel Biomedical Technology Co., Ltd, Taizhou 225300, China
| | - Lihong Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bixia Liu
- Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaohua Situ
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qinru Zhan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tian Tian
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiong He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianwen Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huipin Wang
- Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Juan Du
- Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ke-Jing Tang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
28
|
Li Q, Chen Q, Zheng T, Wang F, Teng J, Zhou H, Chen J. CCDC68 Maintains Mitotic Checkpoint Activation by Promoting CDC20 Integration into the MCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406009. [PMID: 39018254 PMCID: PMC11425217 DOI: 10.1002/advs.202406009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 07/19/2024]
Abstract
The spindle assembly checkpoint (SAC) ensures chromosome segregation fidelity by manipulating unattached kinetochore-dependent assembly of the mitotic checkpoint complex (MCC). The MCC binds to and inhibits the anaphase promoting complex/cyclosome (APC/C) to postpone mitotic exit. However, the mechanism by which unattached kinetochores mediate MCC formation is not yet fully understood. Here, it is shown that CCDC68 is an outer kinetochore protein that preferentially localizes to unattached kinetochores. Furthermore, CCDC68 interacts with the SAC factor CDC20 to inhibit its autoubiquitination and MCC disassembly. Therefore, CCDC68 restrains APC/C activation to ensure a robust SAC and allow sufficient time for chromosome alignment, thus ensuring chromosomal stability. Hence, the study reveals that CCDC68 is required for CDC20-dependent MCC stabilization to maintain mitotic checkpoint activation.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Qingzhou Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Tao Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Haining Zhou
- Key Laboratory of Epigenetic Regulation and InterventionInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
- Center for Quantitative BiologyPeking UniversityBeijing100871China
| |
Collapse
|
29
|
Wang X, Liu X, Xiao R, Fang Y, Zhou F, Gu M, Luo X, Jiang D, Tang Y, You L, Zhao Y. Histone lactylation dynamics: Unlocking the triad of metabolism, epigenetics, and immune regulation in metastatic cascade of pancreatic cancer. Cancer Lett 2024; 598:217117. [PMID: 39019144 DOI: 10.1016/j.canlet.2024.217117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells rewire metabolism to sculpt the immune tumor microenvironment (TME) and propel tumor advancement, which intricately tied to post-translational modifications. Histone lactylation has emerged as a novel player in modulating protein functions, whereas little is known about its pathological role in pancreatic ductal adenocarcinoma (PDAC) progression. Employing a multi-omics approach encompassing bulk and single-cell RNA sequencing, metabolomics, ATAC-seq, and CUT&Tag methodologies, we unveiled the potential of histone lactylation in prognostic prediction, patient stratification and TME characterization. Notably, "LDHA-H4K12la-immuno-genes" axis has introduced a novel node into the regulatory framework of "metabolism-epigenetics-immunity," shedding new light on the landscape of PDAC progression. Furthermore, the heightened interplay between cancer cells and immune counterparts via Nectin-2 in liver metastasis with elevated HLS unraveled a positive feedback loop in driving immune evasion. Simultaneously, immune cells exhibited altered HLS and autonomous functionality across the metastatic cascade. Consequently, the exploration of innovative combination strategies targeting the metabolism-epigenetics-immunity axis holds promise in curbing distant metastasis and improving survival prospects for individuals grappling with challenges of PDAC.
Collapse
Affiliation(s)
- Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| |
Collapse
|
30
|
Spurr LF, Pitroda SP. Clinical and molecular correlates of tumor aneuploidy in metastatic non-small cell lung cancer. Sci Rep 2024; 14:19375. [PMID: 39169079 PMCID: PMC11339421 DOI: 10.1038/s41598-024-66062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/26/2024] [Indexed: 08/23/2024] Open
Abstract
Recent studies have linked elevated tumor aneuploidy to anti-tumor immune suppression and adverse survival following immunotherapy. Herein, we provide supportive evidence for tumor aneuploidy as a biomarker of response to immunotherapy in patients with non-small cell lung cancer (NSCLC). We identify a dose-response relationship between aneuploidy score and patient outcomes. In two independent NSCLC cohorts (n = 659 patients), we demonstrate a novel association between elevated aneuploidy and non-smoking-associated oncogenic driver mutations. Lastly, we report enrichment of TERT amplification and immune-suppressive phenotypes of highly aneuploid NSCLC. Taken together, our findings emphasize a potentially critical role for tumor aneuploidy in guiding immunotherapy treatment strategies.
Collapse
Affiliation(s)
- Liam F Spurr
- Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA.
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 S. Maryland Ave. MC 9006, Chicago, IL, 60637, USA.
| |
Collapse
|
31
|
Carrillo-Perez F, Cramer EM, Pizurica M, Andor N, Gevaert O. Towards Digital Quantification of Ploidy from Pan-Cancer Digital Pathology Slides using Deep Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608555. [PMID: 39229200 PMCID: PMC11370345 DOI: 10.1101/2024.08.19.608555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Abnormal DNA ploidy, found in numerous cancers, is increasingly being recognized as a contributor in driving chromosomal instability, genome evolution, and the heterogeneity that fuels cancer cell progression. Furthermore, it has been linked with poor prognosis of cancer patients. While next-generation sequencing can be used to approximate tumor ploidy, it has a high error rate for near-euploid states, a high cost and is time consuming, motivating alternative rapid quantification methods. We introduce PloiViT, a transformer-based model for tumor ploidy quantification that outperforms traditional machine learning models, enabling rapid and cost-effective quantification directly from pathology slides. We trained PloiViT on a dataset of fifteen cancer types from The Cancer Genome Atlas and validated its performance in multiple independent cohorts. Additionally, we explored the impact of self-supervised feature extraction on performance. PloiViT, using self-supervised features, achieved the lowest prediction error in multiple independent cohorts, exhibiting better generalization capabilities. Our findings demonstrate that PloiViT predicts higher ploidy values in aggressive cancer groups and patients with specific mutations, validating PloiViT potential as complementary for ploidy assessment to next-generation sequencing data. To further promote its use, we release our models as a user-friendly inference application and a Python package for easy adoption and use.
Collapse
Affiliation(s)
- Francisco Carrillo-Perez
- Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, 94304, CA, USA
| | - Eric M. Cramer
- Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, 97239, OR, USA
| | - Marija Pizurica
- Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, 94304, CA, USA
- Internet technology and Data science Lab (IDLab), Ghent University, Ghent, 9052, Ghent, Belgium
| | - Noemi Andor
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, 94304, CA, USA
- Department of Biomedical Data Science (DBDS), Stanford University, Palo Alto, 94305, CA, USA
| |
Collapse
|
32
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
33
|
Zanini E, Forster-Gross N, Bachmann F, Brüngger A, McSheehy P, Litherland K, Burger K, Groner AC, Roceri M, Bury L, Stieger M, Willemsen-Seegers N, de Man J, Vu-Pham D, van Riel HWE, Zaman GJR, Buijsman RC, Kellenberger L, Lane HA. Dual TTK/PLK1 inhibition has potent anticancer activity in TNBC as monotherapy and in combination. Front Oncol 2024; 14:1447807. [PMID: 39184047 PMCID: PMC11341980 DOI: 10.3389/fonc.2024.1447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Background Threonine tyrosine kinase (TTK) and polo-like kinase 1 (PLK1) are common essential kinases that collaborate in activating the spindle assembly checkpoint (SAC) at the kinetochore, ensuring appropriate chromosome alignment and segregation prior to mitotic exit. Targeting of either TTK or PLK1 has been clinically evaluated in cancer patients; however, dual inhibitors have not yet been pursued. Here we present the in vitro and in vivo characterization of a first in class, dual TTK/PLK1 inhibitor (BAL0891). Methods Mechanism of action studies utilized biochemical kinase and proteomics-based target-engagement assays. Cellular end-point assays included immunoblot- and flow cytometry-based cell cycle analyses and SAC integrity evaluation using immunoprecipitation and immunofluorescence approaches. Anticancer activity was assessed in vitro using cell growth assays and efficacy was evaluated, alone and in combination with paclitaxel and carboplatin, using mouse models of triple negative breast cancer (TNBC). Results BAL0891 elicits a prolonged effect on TTK, with a transient activity on PLK1. This unique profile potentiates SAC disruption, forcing tumor cells to aberrantly exit mitosis with faster kinetics than observed with a TTK-specific inhibitor. Broad anti-proliferative activity was demonstrated across solid tumor cell lines in vitro. Moreover, intermittent intravenous single-agent BAL0891 treatment of the MDA-MB-231 mouse model of TNBC induced profound tumor regressions associated with prolonged TTK and transient PLK1 in-tumor target occupancy. Furthermore, differential tumor responses across a panel of thirteen TNBC patient-derived xenograft models indicated profound anticancer activity in a subset (~40%). Using a flexible dosing approach, pathologically confirmed cures were observed in combination with paclitaxel, whereas synergy with carboplatin was schedule dependent. Conclusions Dual TTK/PLK1 inhibition represents a novel approach for the treatment of human cancer, including TNBC patients, with a potential for potent anticancer activity and a favorable therapeutic index. Moreover, combination approaches may provide an avenue to expand responsive patient populations.
Collapse
Affiliation(s)
- Elisa Zanini
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Felix Bachmann
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Adrian Brüngger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Paul McSheehy
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Karin Burger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Anna C. Groner
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Mila Roceri
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Luc Bury
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Martin Stieger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Jos de Man
- Crossfire Oncology B.V., Oss, Netherlands
| | | | | | | | | | | | - Heidi A. Lane
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| |
Collapse
|
34
|
Zhang Y, Leung AK, Kang JJ, Sun Y, Wu G, Li L, Sun J, Cheng L, Qiu T, Zhang J, Wierbowski S, Gupta S, Booth J, Yu H. A multiscale functional map of somatic mutations in cancer integrating protein structure and network topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.06.531441. [PMID: 36945530 PMCID: PMC10028849 DOI: 10.1101/2023.03.06.531441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A major goal of cancer biology is to understand the mechanisms underlying tumorigenesis driven by somatically acquired mutations. Two distinct types of computational methodologies have emerged: one focuses on analyzing clustering of mutations within protein sequences and 3D structures, while the other characterizes mutations by leveraging the topology of protein-protein interaction network. Their insights are largely non-overlapping, offering complementary strengths. Here, we established a unified, end-to-end 3D structurally-informed protein interaction network propagation framework, NetFlow3D, that systematically maps the multiscale mechanistic effects of somatic mutations in cancer. The establishment of NetFlow3D hinges upon the Human Protein Structurome, a comprehensive repository we compiled that incorporates the 3D structures of every single protein as well as the binding interfaces of all known protein interactions in humans. NetFlow3D leverages the Structurome to integrate information across atomic, residue, protein and network levels: It conducts 3D clustering of mutations across atomic and residue levels on protein structures to identify potential driver mutations. It then anisotropically propagates their impacts across the protein interaction network, with propagation guided by the specific 3D structural interfaces involved, to identify significantly interconnected network "modules", thereby uncovering key biological processes underlying disease etiology. Applied to 1,038,899 somatic protein-altering mutations in 9,946 TCGA tumors across 33 cancer types, NetFlow3D identified 1,4444 significant 3D clusters throughout the Human Protein Structurome, of which ~55% would not have been found if using only experimentally-determined structures. It then identified 26 significantly interconnected modules that encompass ~8-fold more proteins than applying standard network analyses. NetFlow3D and our pan-cancer results can be accessed from http://netflow3d.yulab.org.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, 14853, USA
| | - Alden K. Leung
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Yu Sun
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Guanxi Wu
- College of Agriculture and Life Sciences, Cornell University; Ithaca, 14853, USA
| | - Le Li
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Jiayang Sun
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
| | - Lily Cheng
- Department of Science and Technology Studies, Cornell University; Ithaca, 14853, USA
| | - Tian Qiu
- School of Electrical and Computer Engineering, Cornell University; Ithaca, 14853, USA
| | - Junke Zhang
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Shayne Wierbowski
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Shagun Gupta
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - James Booth
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Department of Statistics and Data Science, Cornell University; Ithaca, 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| |
Collapse
|
35
|
Shahrouzi P, Forouz F, Mathelier A, Kristensen VN, Duijf PHG. Copy number alterations: a catastrophic orchestration of the breast cancer genome. Trends Mol Med 2024; 30:750-764. [PMID: 38772764 DOI: 10.1016/j.molmed.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer (BCa) is a prevalent malignancy that predominantly affects women around the world. Somatic copy number alterations (CNAs) are tumor-specific amplifications or deletions of DNA segments that often drive BCa development and therapy resistance. Hence, the complex patterns of CNAs complement BCa classification systems. In addition, understanding the precise contributions of CNAs is essential for tailoring personalized treatment approaches. This review highlights how tumor evolution drives the acquisition of CNAs, which in turn shape the genomic landscapes of BCas. It also discusses advanced methodologies for identifying recurrent CNAs, studying CNAs in BCa and their clinical impact.
Collapse
Affiliation(s)
- Parastoo Shahrouzi
- Department of Medical Genetics, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Farzaneh Forouz
- School of Pharmacy, University of Queensland, Woolloongabba, Brisbane, Australia
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway; Center for Bioinformatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Division of Medicine, Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University Hospital, Lørenskog, Norway; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Pascal H G Duijf
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Centre for Cancer Biology, UniSA Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide, Australia.
| |
Collapse
|
36
|
Johnson BA, Liu AZ, Bi T, Dong Y, Li T, Zhou D, Narkar A, Wu Y, Sun SX, Larman TC, Zhu J, Li R. Simple aneuploidy evades p53 surveillance and promotes niche factor-independent growth in human intestinal organoids. Mol Biol Cell 2024; 35:br15. [PMID: 38985518 PMCID: PMC11321050 DOI: 10.1091/mbc.e24-04-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Aneuploidy is nearly ubiquitous in tumor genomes, but the role of aneuploidy in the early stages of cancer evolution remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigated how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Previous work implicated p53 activation as a downstream response to aneuploidy induction. We found that simple aneuploidy, characterized by 1-3 gained or lost chromosomes, resulted in little or modest p53 activation and cell cycle arrest when compared with more complex aneuploid cells. Single-cell RNA sequencing analysis revealed that the degree of p53 activation was strongly correlated with karyotype complexity. Single-cell tracking showed that cells could continue to divide despite the observation of one to a few lagging chromosomes. Unexpectedly, colonoids with simple aneuploidy exhibited impaired differentiation after niche factor withdrawal. These findings demonstrate that simple aneuploid cells can escape p53 surveillance and may contribute to niche factor-independent growth of cancer-initiating colon stem cells.
Collapse
Affiliation(s)
- Blake A. Johnson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Albert Z. Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Tianhao Bi
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Yi Dong
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Taibo Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Dingjingyu Zhou
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Akshay Narkar
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Sean X. Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Tatianna C. Larman
- Department of Pathology, Division of Gastrointestinal/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Rong Li
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
37
|
Li M, Yang J, Xiao R, Liu Y, Hu J, Li T, Wu P, Zhang M, Huang Y, Sun Y, Li C. The effect of trisomic chromosomes on spatial genome organization and global transcription in embryonic stem cells. Cell Prolif 2024; 57:e13639. [PMID: 38553796 PMCID: PMC11294443 DOI: 10.1111/cpr.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 08/03/2024] Open
Abstract
Aneuploidy frequently occurs in cancer and developmental diseases such as Down syndrome, with its functional consequences implicated in dosage effects on gene expression and global perturbation of stress response and cell proliferation pathways. However, how aneuploidy affects spatial genome organization remains less understood. In this study, we addressed this question by utilizing the previously established isogenic wild-type (WT) and trisomic mouse embryonic stem cells (mESCs). We employed a combination of Hi-C, RNA-seq, chromosome painting and nascent RNA imaging technologies to compare the spatial genome structures and gene transcription among these cells. We found that trisomy has little effect on spatial genome organization at the level of A/B compartment or topologically associating domain (TAD). Inter-chromosomal interactions are associated with chromosome regions with high gene density, active histone modifications and high transcription levels, which are confirmed by imaging. Imaging also revealed contracted chromosome volume and weakened transcriptional activity for trisomic chromosomes, suggesting potential implications for the transcriptional output of these chromosomes. Our data resources and findings may contribute to a better understanding of the consequences of aneuploidy from the angle of spatial genome organization.
Collapse
Affiliation(s)
- Mengfan Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Junsheng Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| | - Rong Xiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yunjie Liu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Jiaqi Hu
- School of Health HumanitiesPeking UniversityBeijingChina
| | - Tingting Li
- State Key Laboratory of ProteomicsInstitute of Basic Medical Sciences, National Center of Biomedical AnalysisBeijingChina
| | - Pengze Wu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Meili Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yue Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| |
Collapse
|
38
|
Chen X, Agustinus AS, Li J, DiBona M, Bakhoum SF. Chromosomal instability as a driver of cancer progression. Nat Rev Genet 2024:10.1038/s41576-024-00761-7. [PMID: 39075192 DOI: 10.1038/s41576-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Chromosomal instability (CIN) refers to an increased propensity of cells to acquire structural and numerical chromosomal abnormalities during cell division, which contributes to tumour genetic heterogeneity. CIN has long been recognized as a hallmark of cancer, and evidence over the past decade has strongly linked CIN to tumour evolution, metastasis, immune evasion and treatment resistance. Until recently, the mechanisms by which CIN propels cancer progression have remained elusive. Beyond the generation of genomic copy number heterogeneity, recent work has unveiled additional tumour-promoting consequences of abnormal chromosome segregation. These mechanisms include complex chromosomal rearrangements, epigenetic reprogramming and the induction of cancer cell-intrinsic inflammation, emphasizing the multifaceted role of CIN in cancer.
Collapse
Affiliation(s)
- Xuelan Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert S Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
39
|
Bastianello G, Kidiyoor GR, Lowndes C, Li Q, Bonnal R, Godwin J, Iannelli F, Drufuca L, Bason R, Orsenigo F, Parazzoli D, Pavani M, Cancila V, Piccolo S, Scita G, Ciliberto A, Tripodo C, Pagani M, Foiani M. Mechanical stress during confined migration causes aberrant mitoses and c-MYC amplification. Proc Natl Acad Sci U S A 2024; 121:e2404551121. [PMID: 38990945 PMCID: PMC11260125 DOI: 10.1073/pnas.2404551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.
Collapse
Affiliation(s)
- Giulia Bastianello
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Gururaj Rao Kidiyoor
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Conor Lowndes
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Qingsen Li
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Raoul Bonnal
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Jeffrey Godwin
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabio Iannelli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | | | - Ramona Bason
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabrizio Orsenigo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Dario Parazzoli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Mattia Pavani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Stefano Piccolo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Department of Molecular Medicine, University of Padua, Padua35123, Italy
| | - Giorgio Scita
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Andrea Ciliberto
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Claudio Tripodo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Massimiliano Pagani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Marco Foiani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Istituto di Genetica Molecolare, Centro Nazionale Ricerca, Pavia27100, Italy
- Cancer Science Institute of Singapore, National University of Singapore, Singapore117599, Singapore
| |
Collapse
|
40
|
Wei Q, Chen R, He X, Qu Y, Yan C, Liu X, Liu J, Luo J, Yu Z, Hu W, Wang L, Lin X, Wu C, Xiao J, Zhou H, Wang J, Zhu M, Yang P, Chen Y, Tan Q, Yuan X, Jing H, Zhang W. Multi-omics and single cell characterization of cancer immunosenescence landscape. Sci Data 2024; 11:739. [PMID: 38972884 PMCID: PMC11228048 DOI: 10.1038/s41597-024-03562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
Cellular senescence (CS) is closely related to tumor progression. However, the studies about CS genes across human cancers have not explored the relationship between cancer senescence signature and telomere length. Additionally, single-cell analyses have not revealed the evolutionary trends of malignant cells and immune cells at the CS level. We defined a CS-associated signature, called "senescence signature", and found that patients with higher senescence signature had worse prognosis. Higher senescence signature was related to older age, higher genomic instability, longer telomeres, increased lymphocytic infiltration, higher pro-tumor immune infiltrates (Treg cells and MDSCs), and could predict responses to immune checkpoint inhibitor therapy. Single-cell analysis further reveals malignant cells and immune cells share a consistent evolutionary trend at the CS level. MAPK signaling pathway and apoptotic processes may play a key role in CS, and senescence signature may effectively predict sensitivity of MEK1/2 inhibitors, ERK1/2 inhibitors and BCL-2 family inhibitors. We also developed a new CS prediction model of cancer survival and established a portal website to apply this model ( https://bio-pub.shinyapps.io/cs_nomo/ ).
Collapse
Affiliation(s)
- Qiuxia Wei
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Ruizhi Chen
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
- Gannan Medical University, Ganzhou, 341000, China
- Suichang County People's Hospital, Lishui, 323000, China
| | - Xue He
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanan Qu
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Changjian Yan
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xiaoni Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jing Liu
- Gannan Medical University, Ganzhou, 341000, China
| | - Jiahao Luo
- Gannan Medical University, Ganzhou, 341000, China
| | - Zining Yu
- Department of Clinical Laboratory, Shangrao Municipal Hospital, Jiangxi, 334000, China
| | - Wenping Hu
- Gannan Medical University, Ganzhou, 341000, China
| | - Liqun Wang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150000, China
| | - Xiaoya Lin
- Gannan Medical University, Ganzhou, 341000, China
| | - Chaoling Wu
- Department of Respiratory medicine, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Jinyuan Xiao
- Gannan Medical University, Ganzhou, 341000, China
| | - Haibo Zhou
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Mingxia Zhu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yingtong Chen
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Qilong Tan
- School of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoliang Yuan
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
41
|
Zhou X, Hilk A, Solis NV, Pereira De Sa N, Hogan BM, Bierbaum TA, Del Poeta M, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes. PLoS Pathog 2024; 20:e1012389. [PMID: 39078851 PMCID: PMC11315318 DOI: 10.1371/journal.ppat.1012389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/09/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3β,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
42
|
Zhang L, Fang K, Ren H, Fan S, Wang J, Guan H. Comparison of the diagnostic significance of cerebrospinal fluid metagenomic next-generation sequencing copy number variation analysis and cytology in leptomeningeal malignancy. BMC Neurol 2024; 24:223. [PMID: 38943096 PMCID: PMC11212224 DOI: 10.1186/s12883-024-03655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/26/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Diagnosis and monitoring of leptomeningeal malignancy remain challenging, and are usually based on neurological, radiological, cerebrospinal fluid (CSF) and pathological findings. This study aimed to investigate the diagnostic performance of CSF metagenomic next-generation sequencing (mNGS) and chromosome copy number variations (CNVs) analysis in the detection of leptomeningeal malignancy. METHODS Of the 51 patients included in the study, 34 patients were diagnosed with leptomeningeal malignancies, and 17 patients were diagnosed with central nervous system (CNS) inflammatory diseases. The Sayk's spontaneous cell sedimentation technique was employed for CSF cytology. And a well-designed approach utilizing the CSF mNGS-CNVs technique was explored for early diagnosis of leptomeningeal malignancy. RESULTS In the tumor group, 28 patients were positive for CSF cytology, and 24 patients were positive for CSF mNGS-CNVs. Sensitivity and specificity of CSF cytology were 82.35% (95% CI: 66.83-92.61%) and 94.12% (95% CI: 69.24-99.69%). In comparison, sensitivity and specificity of CSF mNGS-CNV were 70.59% (95% CI: 52.33-84.29%) and 100% (95% CI: 77.08-100%). There was no significant difference in diagnostic consistency between CSF cytology and mNGS-CNVs (p = 0.18, kappa = 0.650). CONCLUSIONS CSF mNGS-CNVs tend to have higher specificity compared with traditional cytology and can be used as a complementary diagnostic method for patients with leptomeningeal malignancies.
Collapse
Affiliation(s)
- Le Zhang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kechi Fang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
43
|
Wang X, Chen J, Li C, Liu Y, Chen S, Lv F, Lan K, He W, Zhu H, Xu L, Ma K, Guo H. Integrated bulk and single-cell RNA sequencing identifies an aneuploidy-based gene signature to predict sensitivity of lung adenocarcinoma to traditional chemotherapy drugs and patients' prognosis. PeerJ 2024; 12:e17545. [PMID: 38938612 PMCID: PMC11210463 DOI: 10.7717/peerj.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024] Open
Abstract
Background Patients with lung adenocarcinoma (LUAD) often develop a poor prognosis. Currently, researches on prognostic and immunotherapeutic capacity of aneuploidy-related genes in LUAD are limited. Methods Genes related to aneuploidy were screened based on bulk RNA sequencing data from public databases using Spearman method. Next, univariate Cox and Lasso regression analyses were performed to establish an aneuploidy-related riskscore (ARS) model. Results derived from bioinformatics analysis were further validated using cellular experiments. In addition, typical LUAD cells were identified by subtype clustering, followed by SCENIC and intercellular communication analyses. Finally, ESTIMATE, ssGSEA and CIBERSORT algorithms were employed to analyze the potential relationship between ARS and tumor immune environment. Results A five-gene ARS signature was developed. These genes were abnormally high-expressed in LUAD cell lines, and in particular the high expression of CKS1B promoted the proliferative, migratory and invasive phenotypes of LUAD cell lines. Low ARS group had longer overall survival time, higher degrees of inflammatory infiltration, and could benefit more from receiving immunotherapy. Patients in low ASR group responded more actively to traditional chemotherapy drugs (Erlotinib and Roscovitine). The scRNA-seq analysis annotated 17 cell subpopulations into seven cell clusters. Core transcription factors (TFs) such as CREB3L1 and CEBPD were enriched in high ARS cell group, while TFs such as BCLAF1 and UQCRB were enriched in low ARS cell group. CellChat analysis revealed that high ARS cell groups communicated with immune cells via SPP1 (ITGA4-ITGB1) and MK (MDK-NCl) signaling pathways. Conclusion In this research, integrative analysis based on the ARS model provided a potential direction for improving the diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Jiakuan Chen
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Chaofan Li
- Department of Thoracic Surgery, The 986 Military Medical Hospital of the Air Force, Xi’an, China
| | - Yufei Liu
- Department of Thoracic Surgery, The 986 Military Medical Hospital of the Air Force, Xi’an, China
| | - Shiqun Chen
- Thoracic Surgery, Weinan Central Hospital, Weinan, China
| | - Feng Lv
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Ke Lan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Wei He
- Department of Thoracic Surgery, The 986 Military Medical Hospital of the Air Force, Xi’an, China
| | - Hongsheng Zhu
- Thoracic Surgery, Shaanxi Chenggu County Hospital, Chenggu, China
| | - Liang Xu
- Thoracic Surgery, Shaanxi Chenggu County Hospital, Chenggu, China
| | - Kaiyuan Ma
- Thoracic Surgery, Shaanxi Chenggu County Hospital, Chenggu, China
| | - Haihua Guo
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
44
|
Klockner TC, Campbell CS. Selection forces underlying aneuploidy patterns in cancer. Mol Cell Oncol 2024; 11:2369388. [PMID: 38919375 PMCID: PMC11197905 DOI: 10.1080/23723556.2024.2369388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Aneuploidy, the presence of an aberrant number of chromosomes, has been associated with tumorigenesis for over a century. More recently, advances in karyotyping techniques have revealed its high prevalence in cancer: About 90% of solid tumors and 50-70% of hematopoietic cancers exhibit chromosome gains or losses. When analyzed at the level of specific chromosomes, there are strong patterns that are observed in cancer karyotypes both pan-cancer and for specific cancer types. These specific aneuploidy patterns correlate strongly with outcomes for tumor initiation, progression, metastasis formation, immune evasion and resistance to therapeutic treatment. Despite their prominence, understanding the basis underlying aneuploidy patterns in cancer has been challenging. Advances in genetic engineering and bioinformatic analyses now offer insights into the genetic determinants of aneuploidy pattern selection. Overall, there is substantial evidence that expression changes of particular genes can act as the positive selective forces for adaptation through aneuploidy. Recent findings suggest that multiple genes contribute to the selection of specific aneuploid chromosomes in cancer; however, further research is necessary to identify the most impactful driver genes. Determining the genetic basis and accompanying vulnerabilities of specific aneuploidy patterns is an essential step in selectively targeting these hallmarks of tumors.
Collapse
Affiliation(s)
- Tamara C. Klockner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
- A Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Christopher S. Campbell
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Abel J, Jain S, Rajan D, Padigela H, Leidal K, Prakash A, Conway J, Nercessian M, Kirkup C, Javed SA, Biju R, Harguindeguy N, Shenker D, Indorf N, Sanghavi D, Egger R, Trotter B, Gerardin Y, Brosnan-Cashman JA, Dhoot A, Montalto MC, Parmar C, Wapinski I, Khosla A, Drage MG, Yu L, Taylor-Weiner A. AI powered quantification of nuclear morphology in cancers enables prediction of genome instability and prognosis. NPJ Precis Oncol 2024; 8:134. [PMID: 38898127 PMCID: PMC11187064 DOI: 10.1038/s41698-024-00623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
While alterations in nucleus size, shape, and color are ubiquitous in cancer, comprehensive quantification of nuclear morphology across a whole-slide histologic image remains a challenge. Here, we describe the development of a pan-tissue, deep learning-based digital pathology pipeline for exhaustive nucleus detection, segmentation, and classification and the utility of this pipeline for nuclear morphologic biomarker discovery. Manually-collected nucleus annotations were used to train an object detection and segmentation model for identifying nuclei, which was deployed to segment nuclei in H&E-stained slides from the BRCA, LUAD, and PRAD TCGA cohorts. Interpretable features describing the shape, size, color, and texture of each nucleus were extracted from segmented nuclei and compared to measurements of genomic instability, gene expression, and prognosis. The nuclear segmentation and classification model trained herein performed comparably to previously reported models. Features extracted from the model revealed differences sufficient to distinguish between BRCA, LUAD, and PRAD. Furthermore, cancer cell nuclear area was associated with increased aneuploidy score and homologous recombination deficiency. In BRCA, increased fibroblast nuclear area was indicative of poor progression-free and overall survival and was associated with gene expression signatures related to extracellular matrix remodeling and anti-tumor immunity. Thus, we developed a powerful pan-tissue approach for nucleus segmentation and featurization, enabling the construction of predictive models and the identification of features linking nuclear morphology with clinically-relevant prognostic biomarkers across multiple cancer types.
Collapse
|
46
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
47
|
Krieg S, Rohde T, Rausch T, Butthof L, Wendler-Link L, Eckert C, Breuhahn K, Galy B, Korbel J, Billmann M, Breinig M, Tschaharganeh DF. Mitoferrin2 is a synthetic lethal target for chromosome 8p deleted cancers. Genome Med 2024; 16:83. [PMID: 38886830 PMCID: PMC11181659 DOI: 10.1186/s13073-024-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Somatic copy number alterations are a hallmark of cancer that offer unique opportunities for therapeutic exploitation. Here, we focused on the identification of specific vulnerabilities for tumors harboring chromosome 8p deletions. METHODS We developed and applied an integrative analysis of The Cancer Genome Atlas (TCGA), the Cancer Dependency Map (DepMap), and the Cancer Cell Line Encyclopedia to identify chromosome 8p-specific vulnerabilities. We employ orthogonal gene targeting strategies, both in vitro and in vivo, including short hairpin RNA-mediated gene knockdown and CRISPR/Cas9-mediated gene knockout to validate vulnerabilities. RESULTS We identified SLC25A28 (also known as MFRN2), as a specific vulnerability for tumors harboring chromosome 8p deletions. We demonstrate that vulnerability towards MFRN2 loss is dictated by the expression of its paralog, SLC25A37 (also known as MFRN1), which resides on chromosome 8p. In line with their function as mitochondrial iron transporters, MFRN1/2 paralog protein deficiency profoundly impaired mitochondrial respiration, induced global depletion of iron-sulfur cluster proteins, and resulted in DNA-damage and cell death. MFRN2 depletion in MFRN1-deficient tumors led to impaired growth and even tumor eradication in preclinical mouse xenograft experiments, highlighting its therapeutic potential. CONCLUSIONS Our data reveal MFRN2 as a therapeutic target of chromosome 8p deleted cancers and nominate MFNR1 as the complimentary biomarker for MFRN2-directed therapies.
Collapse
Affiliation(s)
- Stephan Krieg
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Rohde
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Luise Butthof
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Wendler-Link
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Eckert
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Maximilian Billmann
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany.
| | - Marco Breinig
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Darjus F Tschaharganeh
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
48
|
Chong W, Ren H, Chen H, Xu K, Zhu X, Liu Y, Sang Y, Li H, Liu J, Ye C, Shang L, Jing C, Li L. Clinical features and molecular landscape of cuproptosis signature-related molecular subtype in gastric cancer. IMETA 2024; 3:e190. [PMID: 38898987 PMCID: PMC11183172 DOI: 10.1002/imt2.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Recent studies have highlighted the biological significance of cuproptosis in disease occurrence and development. However, it remains unclear whether cuproptosis signaling also has potential impacts on tumor initiation and prognosis of gastric cancer (GC). In this study, 16 cuproptosis-related genes (CRGs) transcriptional profiles were harnessed to perform the regularized latent variable model-based clustering in GC. A cuproptosis signature risk scoring (CSRS) scheme, based on a weighted sum of principle components of the CRGs, was used to evaluate the prognosis and risk of individual tumors of GC. Four distinct cuproptosis signature-based clusters, characterized by differential expression patterns of CRGs, were identified among 1136 GC samples across three independent databases. The four clusters were also associated with different clinical outcomes and tumor immune contexture. Based on the CSRS, GC patients can be divided into CSRS-High and CSRS-Low subtypes. We found that DBT, MTF1, and ATP7A were significantly elevated in the CSRS-High subtype, while SLC31A1, GCSH, LIAS, DLAT, FDX1, DLD, and PDHA1 were increased in the CSRS-Low subtype. Patients with CSRS-Low score were characterized by prolonged survival time. Further analysis indicated that CSRS-Low score also correlated with greater tumor mutation burden (TMB) and higher mutation rates of significantly mutated genes (SMG) in GC. In addition, the CSRS-High subtype harbored more significantly amplified focal regions related to tumorigenesis (3q27.1, 12p12.1, 11q13.3, etc.) than the CSRS-Low tumors. Drug sensitivity analyses revealed the potential compounds for the treatment of gastric cancer with CSRS-High score, which were experimentally validated using GC cells. This study highlights that cuproptosis signature-based subtyping is significantly associated with different clinical features and molecular landscape of GC. Quantitative evaluation of the CSRS of individual tumors will strengthen our understanding of the occurrence and development of cuproptosis and the treatment progress of GC.
Collapse
Affiliation(s)
- Wei Chong
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Huicheng Ren
- Department of Gastrointestinal SurgeryZibo Central HospitalZiboChina
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology UnitQilu Hospital of Shandong UniversityJinanChina
| | - Kang Xu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Xingyu Zhu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yuan Liu
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yaodong Sang
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Han Li
- Department of Gastroenterological SurgeryThe First Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Jin Liu
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Chunshui Ye
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Liang Shang
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Changqing Jing
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Leping Li
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
49
|
Widman AJ, Shah M, Frydendahl A, Halmos D, Khamnei CC, Øgaard N, Rajagopalan S, Arora A, Deshpande A, Hooper WF, Quentin J, Bass J, Zhang M, Langanay T, Andersen L, Steinsnyder Z, Liao W, Rasmussen MH, Henriksen TV, Jensen SØ, Nors J, Therkildsen C, Sotelo J, Brand R, Schiffman JS, Shah RH, Cheng AP, Maher C, Spain L, Krause K, Frederick DT, den Brok W, Lohrisch C, Shenkier T, Simmons C, Villa D, Mungall AJ, Moore R, Zaikova E, Cerda V, Kong E, Lai D, Malbari MS, Marton M, Manaa D, Winterkorn L, Gelmon K, Callahan MK, Boland G, Potenski C, Wolchok JD, Saxena A, Turajlic S, Imielinski M, Berger MF, Aparicio S, Altorki NK, Postow MA, Robine N, Andersen CL, Landau DA. Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment. Nat Med 2024; 30:1655-1666. [PMID: 38877116 PMCID: PMC7616143 DOI: 10.1038/s41591-024-03040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/30/2024] [Indexed: 06/16/2024]
Abstract
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.
Collapse
Affiliation(s)
- Adam J Widman
- New York Genome Center, New York, NY, USA.
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | - Amanda Frydendahl
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniel Halmos
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Cole C Khamnei
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Nadia Øgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Srinivas Rajagopalan
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Anushri Arora
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Aditya Deshpande
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | | | - Jean Quentin
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jake Bass
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Mingxuan Zhang
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Theophile Langanay
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Laura Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Will Liao
- New York Genome Center, New York, NY, USA
| | - Mads Heilskov Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tenna Vesterman Henriksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sarah Østrup Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jesper Nors
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christina Therkildsen
- Gastro Unit, Copenhagen University Hospital, Amager - Hvidovre Hospital, Hvidovre, Denmark
| | - Jesus Sotelo
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Ryan Brand
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Joshua S Schiffman
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Ronak H Shah
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Colleen Maher
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Lavinia Spain
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Kate Krause
- Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Dennie T Frederick
- Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Wendie den Brok
- Department of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Caroline Lohrisch
- Department of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Tamara Shenkier
- Department of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Christine Simmons
- Department of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Diego Villa
- Department of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Richard Moore
- Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Elena Zaikova
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Viviana Cerda
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Esther Kong
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Daniel Lai
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | - Dina Manaa
- New York Genome Center, New York, NY, USA
| | | | - Karen Gelmon
- Department of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Genevieve Boland
- Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine Potenski
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Marcin Imielinski
- New York Genome Center, New York, NY, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Sam Aparicio
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | | | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
50
|
Muenzner J, Trébulle P, Agostini F, Zauber H, Messner CB, Steger M, Kilian C, Lau K, Barthel N, Lehmann A, Textoris-Taube K, Caudal E, Egger AS, Amari F, De Chiara M, Demichev V, Gossmann TI, Mülleder M, Liti G, Schacherer J, Selbach M, Berman J, Ralser M. Natural proteome diversity links aneuploidy tolerance to protein turnover. Nature 2024; 630:149-157. [PMID: 38778096 PMCID: PMC11153158 DOI: 10.1038/s41586-024-07442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Accessing the natural genetic diversity of species unveils hidden genetic traits, clarifies gene functions and allows the generalizability of laboratory findings to be assessed. One notable discovery made in natural isolates of Saccharomyces cerevisiae is that aneuploidy-an imbalance in chromosome copy numbers-is frequent1,2 (around 20%), which seems to contradict the substantial fitness costs and transient nature of aneuploidy when it is engineered in the laboratory3-5. Here we generate a proteomic resource and merge it with genomic1 and transcriptomic6 data for 796 euploid and aneuploid natural isolates. We find that natural and lab-generated aneuploids differ specifically at the proteome. In lab-generated aneuploids, some proteins-especially subunits of protein complexes-show reduced expression, but the overall protein levels correspond to the aneuploid gene dosage. By contrast, in natural isolates, more than 70% of proteins encoded on aneuploid chromosomes are dosage compensated, and average protein levels are shifted towards the euploid state chromosome-wide. At the molecular level, we detect an induction of structural components of the proteasome, increased levels of ubiquitination, and reveal an interdependency of protein turnover rates and attenuation. Our study thus highlights the role of protein turnover in mediating aneuploidy tolerance, and shows the utility of exploiting the natural diversity of species to attain generalizable molecular insights into complex biological processes.
Collapse
Affiliation(s)
- Julia Muenzner
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Pauline Trébulle
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Federica Agostini
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Christoph B Messner
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Martin Steger
- Evotec (München), Martinsried, Germany
- NEOsphere Biotechnologies, Martinsried, Germany
| | - Christiane Kilian
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Kate Lau
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Natalie Barthel
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Andrea Lehmann
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Kathrin Textoris-Taube
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Core Facility High-Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | - Elodie Caudal
- Université de Strasbourg, CNRS GMGM UMR 7156, Strasbourg, France
| | - Anna-Sophia Egger
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Fatma Amari
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Core Facility High-Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | | | - Vadim Demichev
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Toni I Gossmann
- Computational Systems Biology, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK.
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|