1
|
Yu PC, Hou D, Chang B, Liu N, Xu CH, Chen X, Hu CL, Liu T, Wang X, Zhang Q, Liu P, Jiang Y, Fei MY, Zong LJ, Zhang JY, Liu H, Chen BY, Chen SB, Wang Y, Li ZJ, Li X, Deng CH, Ren YY, Zhao M, Jiang S, Wang R, Jin J, Yang S, Xue K, Shi J, Chang CK, Shen S, Wang Z, He PC, Chen Z, Chen SJ, Sun XJ, Wang L. SMARCA5 reprograms AKR1B1-mediated fructose metabolism to control leukemogenesis. Dev Cell 2024; 59:1954-1971.e7. [PMID: 38776924 DOI: 10.1016/j.devcel.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/13/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
A significant variation in chromatin accessibility is an epigenetic feature of leukemia. The cause of this variation in leukemia, however, remains elusive. Here, we identify SMARCA5, a core ATPase of the imitation switch (ISWI) chromatin remodeling complex, as being responsible for aberrant chromatin accessibility in leukemia cells. We find that SMARCA5 is required to maintain aberrant chromatin accessibility for leukemogenesis and then promotes transcriptional activation of AKR1B1, an aldo/keto reductase, by recruiting transcription co-activator DDX5 and transcription factor SP1. Higher levels of AKR1B1 are associated with a poor prognosis in leukemia patients and promote leukemogenesis by reprogramming fructose metabolism. Moreover, pharmacological inhibition of AKR1B1 has been shown to have significant therapeutic effects in leukemia mice and leukemia patient cells. Thus, our findings link the aberrant chromatin state mediated by SMARCA5 to AKR1B1-mediated endogenous fructose metabolism reprogramming and shed light on the essential role of AKR1B1 in leukemogenesis, which may provide therapeutic strategies for leukemia.
Collapse
Affiliation(s)
- Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Hou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Binhe Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Liu
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinchi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qunling Zhang
- Department of Medical Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yilun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shu-Bei Chen
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Muying Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiyu Jiang
- Department of Medical Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Roujia Wang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiacheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Peng-Cheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
Chan FF, Yuen VWH, Shen J, Chin DWC, Law CT, Wong BPY, Chan CYK, Cheu JWS, Ng IOL, Wong CCL, Wong CM. Inhibition of CAF-1 histone chaperone complex triggers cytosolic DNA and dsRNA sensing pathways and induces intrinsic immunity of hepatocellular carcinoma. Hepatology 2024; 80:295-311. [PMID: 38051950 DOI: 10.1097/hep.0000000000000709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AND AIMS Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC. APPROACH AND RESULTS CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC. CONCLUSIONS Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.
Collapse
Affiliation(s)
- For-Fan Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Hin Yuen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jialing Shen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bowie Po-Yee Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Cerise Yuen-Ki Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jacinth Wing-Sum Cheu
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Lin HY, Mohammadhosseini M, McClatchy J, Villamor-Payà M, Jeng S, Bottomly D, Tsai CF, Posso C, Jacobson J, Adey A, Gosline S, Liu T, McWeeney S, Stracker TH, Agarwal A. The TLK-ASF1 histone chaperone pathway plays a critical role in IL-1β-mediated AML progression. Blood 2024; 143:2749-2762. [PMID: 38498025 PMCID: PMC11340594 DOI: 10.1182/blood.2023022079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Identifying and targeting microenvironment-driven pathways that are active across acute myeloid leukemia (AML) genetic subtypes should allow the development of more broadly effective therapies. The proinflammatory cytokine interleukin-1β (IL-1β) is abundant in the AML microenvironment and promotes leukemic growth. Through RNA-sequencing analysis, we identify that IL-1β-upregulated ASF1B (antisilencing function-1B), a histone chaperone, in AML progenitors compared with healthy progenitors. ASF1B, along with its paralogous protein ASF1A, recruits H3-H4 histones onto the replication fork during S-phase, a process regulated by Tousled-like kinase 1 and 2 (TLKs). Although ASF1s and TLKs are known to be overexpressed in multiple solid tumors and associated with poor prognosis, their functional roles in hematopoiesis and inflammation-driven leukemia remain unexplored. In this study, we identify that ASF1s and TLKs are overexpressed in multiple genetic subtypes of AML. We demonstrate that depletion of ASF1s significantly reduces leukemic cell growth in both in vitro and in vivo models using human cells. Using a murine model, we show that overexpression of ASF1B accelerates leukemia progression. Moreover, Asf1b or Tlk2 deletion delayed leukemia progression, whereas these proteins are dispensable for normal hematopoiesis. Through proteomics and phosphoproteomics analyses, we uncover that the TLK-ASF1 pathway promotes leukemogenesis by affecting the cell cycle and DNA damage pathways. Collectively, our findings identify the TLK1-ASF1 pathway as a novel mediator of inflammatory signaling and a promising therapeutic target for AML treatment across diverse genetic subtypes. Selective inhibition of this pathway offers potential opportunities to intervene effectively, address intratumoral heterogeneity, and ultimately improve clinical outcomes in AML.
Collapse
Affiliation(s)
- Hsin-Yun Lin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Mona Mohammadhosseini
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - John McClatchy
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Chia-Feng Tsai
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Camilo Posso
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Jeremy Jacobson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Andrew Adey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
| | - Sara Gosline
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Tao Liu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Travis H. Stracker
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
4
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Christiansen C, Potier L, Martin TC, Villicaña S, Castillo-Fernandez JE, Mangino M, Menni C, Tsai PC, Campbell PJ, Mullin S, Ordoñana JR, Monteagudo O, Sachdev PS, Mather KA, Trollor JN, Pietilainen KH, Ollikainen M, Dalgård C, Kyvik K, Christensen K, van Dongen J, Willemsen G, Boomsma DI, Magnusson PKE, Pedersen NL, Wilson SG, Grundberg E, Spector TD, Bell JT. Enhanced resolution profiling in twins reveals differential methylation signatures of type 2 diabetes with links to its complications. EBioMedicine 2024; 103:105096. [PMID: 38574408 PMCID: PMC11004697 DOI: 10.1016/j.ebiom.2024.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression. METHODS We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites. FINDINGS We find and replicate 3 previously unreported T2D differentially methylated CpG positions (T2D-DMPs) at FDR 5% in RGL3, NGB and OTX2, and 20 signals at FDR 25%, of which 14 replicated. Integrating genetic variation and T2D-discordant monozygotic twin analyses, we identify both genetic-based and genetic-independent T2D-DMPs. The signals annotate to genes with established GWAS and EWAS links to T2D and its complications, including blood pressure (RGL3) and eye disease (OTX2). INTERPRETATION The results help to improve our understanding of T2D disease pathogenesis and progression and may provide biomarkers for its complications. FUNDING Funding acknowledgements for each cohort can be found in the Supplementary Note.
Collapse
Affiliation(s)
| | - Louis Potier
- APHP, Paris Cité University, INSERM, Paris, France
| | | | | | | | | | | | - Pei-Chien Tsai
- King's College London, UK; Department of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | | | | | | | - Kirsi H Pietilainen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; HealthyWeightHub, Abdominal Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Miina Ollikainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Finland
| | | | | | | | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | | | | | - Scott G Wilson
- King's College London, UK; Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | | |
Collapse
|
6
|
Tsotridou E, Georgiou E, Tragiannidis A, Avgeros C, Tzimagiorgis G, Lambrou M, Papakonstantinou E, Galli-Tsinopoulou A, Hatzipantelis E. miRNAs as predictive biomarkers of response to treatment in pediatric patients with acute lymphoblastic leukemia. Oncol Lett 2024; 27:71. [PMID: 38192661 PMCID: PMC10773203 DOI: 10.3892/ol.2023.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
MicroRNAs (miRNAs/miRs) are promising prognostic biomarkers in pediatric acute lymphoblastic leukemia (ALL). The present study aimed to identify miRNAs that could serve as prognostic biomarkers or as novel therapeutic targets in ALL. The expression levels of 84 miRNAs were assessed in the bone marrow aspirates of 10 pediatric patients with newly diagnosed ALL at diagnosis and on day 33 of induction of the ALL Intercontinental Berlin-Frankfurt-Münster 2009 protocol, and associations with established prognostic factors were evaluated. The levels at diagnosis of 25 miRNAs were associated with ≥2 prognostic factors. Higher expression levels of let-7c-5p, miR-106b-5p, miR-26a-5p, miR-155-5p, miR-191-5p, miR-30b-5p and miR-31-5p were significantly associated with a good prednisone response. The expression levels of miR-125b-5p, miR-150-5p and miR-99a-5p were significantly higher in standard- or intermediate-risk patients compared with those in high-risk patients (P=0.017, P=0.033 and P=0.017, respectively), as well as in those with a complete response at the end of induction (P=0.044 for all three miRNAs). The change in expression levels between diagnosis and the end of induction differed significantly between risk groups for three miRNAs: miR-206, miR-210 and miR-99a (P=0.033, P=0.047 and P=0.008, respectively), with the post induction levels of miR-206 increased in high-risk patients, whilst miR-210 and miR-99a levels were increased in intermediate/standard risk patients. Therefore, miRNAs that could be integrated into the risk stratification of pediatric ALL after further evaluation in larger patient cohorts were identified.
Collapse
Affiliation(s)
- Eleni Tsotridou
- Children and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki 546 36, Greece
| | - Elisavet Georgiou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Athanasios Tragiannidis
- Children and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki 546 36, Greece
| | - Chrysostomos Avgeros
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Maria Lambrou
- Department of Pediatric Hematology and Oncology, Hippokration General Hospital, Thessaloniki 546 42, Greece
| | - Eugenia Papakonstantinou
- Department of Pediatric Hematology and Oncology, Hippokration General Hospital, Thessaloniki 546 42, Greece
| | - Assimina Galli-Tsinopoulou
- Children and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki 546 36, Greece
| | - Emmanouel Hatzipantelis
- Children and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki 546 36, Greece
| |
Collapse
|
7
|
Bao Y, Pan Q, Xu P, Liu Z, Zhang Z, Liu Y, Xu Y, Yu Y, Zhou Z, Wei W. Unbiased interrogation of functional lysine residues in human proteome. Mol Cell 2023; 83:4614-4632.e6. [PMID: 37995688 DOI: 10.1016/j.molcel.2023.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
CRISPR screens have empowered the high-throughput dissection of gene functions; however, more explicit genetic elements, such as codons of amino acids, require thorough interrogation. Here, we establish a CRISPR strategy for unbiasedly probing functional amino acid residues at the genome scale. By coupling adenine base editors and barcoded sgRNAs, we target 215,689 out of 611,267 (35%) lysine codons, involving 85% of the total protein-coding genes. We identify 1,572 lysine codons whose mutations perturb human cell fitness, with many of them implicated in cancer. These codons are then mirrored to gene knockout screen data to provide functional insights into the role of lysine residues in cellular fitness. Mining these data, we uncover a CUL3-centric regulatory network in which lysine residues of CUL3 CRL complex proteins control cell fitness by specifying protein-protein interactions. Our study offers a general strategy for interrogating genetic elements and provides functional insights into the human proteome.
Collapse
Affiliation(s)
- Ying Bao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Qian Pan
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yiyuan Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
8
|
Hao H, Ren C, Lian Y, Zhao M, Bo T, Xu J, Wang W. Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in Tetrahymena thermophila. Cells 2023; 12:2828. [PMID: 38132148 PMCID: PMC10741905 DOI: 10.3390/cells12242828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Histones and DNA associate to form the nucleosomes of eukaryotic chromatin. Chromatin assembly factor 1 (CAF-1) complex and histone regulatory protein A (HIRA) complex mediate replication-couple (RC) and replication-independent (RI) nucleosome assembly, respectively. CHAF1B and HIRA share a similar domain but play different roles in nucleosome assembly by binding to the different interactors. At present, there is limited understanding for the similarities and differences in their respective functions. Tetrahymena thermophila contains transcriptionally active polyploid macronuclei (MAC) and transcriptionally silent diploid micronuclei (MIC). Here, the distribution patterns of Caf1b and Hir1 exhibited both similarities and distinctions. Both proteins localized to the MAC and MIC during growth, and to the MIC during conjugation. However, Hir1 exhibited additional signaling on parental MAC and new MAC during sexual reproduction and displayed a punctate signal on developing anlagen. Caf1b and Hir1 only co-localized in the MIC with Pcna1 during conjugation. Knockdown of CAF1B impeded cellular growth and arrested sexual reproductive development. Loss of HIR1 led to MIC chromosome defects and aborted sexual development. Co-interference of CAF1B and HIR1 led to a more severe phenotype. Moreover, CAF1B knockdown led to the up-regulation of HIR1 expression, while knockdown of HIR1 also led to an increase in CAF1B expression. Furthermore, Caf1b and Hir1 interacted with different interactors. These results showed that CAF-1 and Hir1 have independent and complementary functions for chromatin assembly in T. thermophila.
Collapse
Affiliation(s)
- Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Chenhui Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Min Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
9
|
Jin M, Fan W, Piao J, Zhao F, Piao J. Effects of lncRNA MTC on protein expression in skin fibroblasts of Liaoning Cashmere goat based on iTRAQ technique. Anim Biotechnol 2023; 34:2817-2826. [PMID: 36093624 DOI: 10.1080/10495398.2022.2119406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Existing experiments have found a new intergenic lncRNA activated by melatonin, which is called lncRNA MTC. However, the regulatory mechanism of lncRNA MTC in Liaoning Cashmere goat skin fibroblasts has not been clarified. Specific knockdown of lncRNA MTC inhibits cell proliferation and increases apoptosis. iTRAQ reagent was used for relative and absolute quantification of proteins in lncRNA MTC-KD and NC groups to evaluate changes in protein expression during dermal fibroblast development following lncRNA MTC deletion. A total of 5931 proteins were found in Liaoning Cashmere goat skin fibroblasts, of which 123 were differentially expressed, including 32 up-regulated proteins and 91 down-regulated proteins. Of the 91 down-regulated proteins, 32 act mainly through related pathways (e.g., cell cycle, mitochondrial function, ribosomal structure, vesicular transport, cytoskeletal components and skin morphogenesis). LncRNA MTC facilitates the proliferation of Liaoning Cashmere goat skin fibroblasts by regulating ITGB5, TlN2, CTSS, POLG, RAP1B, CHAF1A, CDCA8 and other proteins involved in cell proliferation. The results of this study provide some candidate proteins for the in-depth investigation of the molecular mechanism of lncRNA MTC, which facilitates hair growth in cashmere goats and provides more insights into their regulatory networks and biochemical pathways.
Collapse
Affiliation(s)
- Mei Jin
- Department of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Weiyu Fan
- Department of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Jun Piao
- Department of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Fengqin Zhao
- Department of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Jing'ai Piao
- Department of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
10
|
Liang J, Wei J, Cao J, Qian J, Gao R, Li X, Wang D, Gu Y, Dong L, Yu J, Zhao B, Wang X. In-organoid single-cell CRISPR screening reveals determinants of hepatocyte differentiation and maturation. Genome Biol 2023; 24:251. [PMID: 37907970 PMCID: PMC10617096 DOI: 10.1186/s13059-023-03084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Harnessing hepatocytes for basic research and regenerative medicine demands a complete understanding of the genetic determinants underlying hepatocyte differentiation and maturation. Single-cell CRISPR screens in organoids could link genetic perturbations with parallel transcriptomic readout in single cells, providing a powerful method to delineate roles of cell fate regulators. However, a big challenge for identifying key regulators during data analysis is the low expression levels of transcription factors (TFs), which are difficult to accurately estimate due to noise and dropouts in single-cell sequencing. Also, it is often the changes in TF activities in the transcriptional cascade rather than the expression levels of TFs that are relevant to the cell fate transition. RESULTS Here, we develop Organoid-based Single-cell CRISPR screening Analyzed with Regulons (OSCAR), a framework using regulon activities as readouts to dissect gene knockout effects in organoids. In adult-stem-cell-derived liver organoids, we map transcriptomes in 80,576 cells upon 246 perturbations associated with transcriptional regulation of hepatocyte formation. Using OSCAR, we identify known and novel positive and negative regulators, among which Fos and Ubr5 are the top-ranked ones. Further single-gene loss-of-function assays demonstrate that Fos depletion in mouse and human liver organoids promote hepatocyte differentiation by specific upregulation of liver metabolic genes and pathways, and conditional knockout of Ubr5 in mouse liver delays hepatocyte maturation. CONCLUSIONS Altogether, we provide a framework to explore lineage specifiers in a rapid and systematic manner, and identify hepatocyte determinators with potential clinical applications.
Collapse
Affiliation(s)
- Junbo Liang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Jinsong Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Cao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
- Institute of Clinical Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Translational Medicine Center, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jun Qian
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Ran Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Xiaoyu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dingding Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Yani Gu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, 210023, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Organoid Technology, Kunming Medical University, Kunming, 650500, China.
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
- Institute of Clinical Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Translational Medicine Center, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
11
|
Dean ST, Ishikawa C, Zhu X, Walulik S, Nixon T, Jordan JK, Henderson S, Wyder M, Salomonis N, Wunderlich M, Greis KD, Starczynowski DT, Volk AG. Repression of TRIM13 by chromatin assembly factor CHAF1B is critical for AML development. Blood Adv 2023; 7:4822-4837. [PMID: 37205848 PMCID: PMC10469560 DOI: 10.1182/bloodadvances.2022009438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer that stems from the rapid expansion of immature leukemic blasts in the bone marrow. Mutations in epigenetic factors represent the largest category of genetic drivers of AML. The chromatin assembly factor CHAF1B is a master epigenetic regulator of transcription associated with self-renewal and the undifferentiated state of AML blasts. Upregulation of CHAF1B, as observed in almost all AML samples, promotes leukemic progression by repressing the transcription of differentiation factors and tumor suppressors. However, the specific factors regulated by CHAF1B and their contributions to leukemogenesis are unstudied. We analyzed RNA sequencing data from mouse MLL-AF9 leukemic cells and bone marrow aspirates, representing a diverse collection of pediatric AML samples and identified the E3 ubiquitin ligase TRIM13 as a target of CHAF1B-mediated transcriptional repression associated with leukemogenesis. We found that CHAF1B binds the promoter of TRIM13, resulting in its transcriptional repression. In turn, TRIM13 suppresses self-renewal of leukemic cells by promoting pernicious entry into the cell cycle through its nuclear localization and catalytic ubiquitination of cell cycle-promoting protein, CCNA1. Overexpression of TRIM13 initially prompted a proliferative burst in AML cells, which was followed by exhaustion, whereas loss of total TRIM13 or deletion of its catalytic domain enhanced leukemogenesis in AML cell lines and patient-derived xenografts. These data suggest that CHAF1B promotes leukemic development, in part, by repressing TRIM13 expression and that this relationship is necessary for leukemic progression.
Collapse
Affiliation(s)
- Sarai T. Dean
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Chiharu Ishikawa
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Xiaoqin Zhu
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Sean Walulik
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Timothy Nixon
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Jessica K. Jordan
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Samantha Henderson
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Michael Wyder
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati, Cincinnati, OH
| | - Nathan Salomonis
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati, Cincinnati, OH
| | - Mark Wunderlich
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kenneth D. Greis
- College of Medicine, University of Cincinnati, Cincinnati, OH
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati, Cincinnati, OH
| | - Daniel T. Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Andrew G. Volk
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
12
|
Gao Q, Ryan SL, Iacobucci I, Ghate PS, Cranston RE, Schwab C, Elsayed AH, Shi L, Pounds S, Lei S, Baviskar P, Pei D, Cheng C, Bashton M, Sinclair P, Bentley DR, Ross MT, Kingsbury Z, James T, Roberts KG, Devidas M, Fan Y, Chen W, Chang TC, Wu G, Carroll A, Heerema N, Valentine V, Valentine M, Yang W, Yang JJ, Moorman AV, Harrison CJ, Mullighan CG. The genomic landscape of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Blood 2023; 142:711-723. [PMID: 37216686 PMCID: PMC10460677 DOI: 10.1182/blood.2022019094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.
Collapse
Affiliation(s)
- Qingsong Gao
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sarra L. Ryan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pankaj S. Ghate
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ruth E. Cranston
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Claire Schwab
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Abdelrahman H. Elsayed
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lei Shi
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Shaohua Lei
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Matthew Bashton
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Paul Sinclair
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - David R. Bentley
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Mark T. Ross
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Zoya Kingsbury
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Terena James
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Andrew Carroll
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nyla Heerema
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Virginia Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marcus Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anthony V. Moorman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Christine J. Harrison
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
13
|
Kirkiz E, Meers O, Grebien F, Buschbeck M. Histone Variants and Their Chaperones in Hematological Malignancies. Hemasphere 2023; 7:e927. [PMID: 37449197 PMCID: PMC10337764 DOI: 10.1097/hs9.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.
Collapse
Affiliation(s)
- Ecem Kirkiz
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- PhD Programme in Biomedicine, University of Barcelona, Spain
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
14
|
Page EC, Heatley SL, Rehn J, Thomas PQ, Yeung DT, White DL. Gain of chromosome 21 increases the propensity for P2RY8::CRLF2 acute lymphoblastic leukemia via increased HMGN1 expression. Front Oncol 2023; 13:1177871. [PMID: 37483494 PMCID: PMC10358767 DOI: 10.3389/fonc.2023.1177871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) patients with a gain of chromosome 21, intrachromosomal amplification of chromosome 21 (iAMP21), or Down syndrome (DS), have increased expression of genes in the DS critical region (DSCR) of chromosome 21, including the high-mobility group nucleosome-binding protein 1, HMGN1. Children with DS are predisposed to develop hematologic malignancies, providing insight into the role of chromosome 21 in the development of leukemias. A 320-kb deletion in the pseudoautosomal region of the X/Y chromosome in leukemic cells, resulting in a gene fusion between the purinergic receptor and cytokine receptor-like factor-2 (P2Y Receptor Family Member 8 (P2RY8)::CRLF2), is a common feature in ~60% of DS-ALL and ~40% of iAMP21 patients, suggesting a link between chromosome 21 and P2RY8::CRLF2. In an Australian cohort of pediatric B-ALL patients with P2RY8::CRLF2 (n = 38), eight patients harbored gain of chromosome 21 (+21), and two patients had iAMP21, resulting in a significantly increased HMGN1 expression. An inducible CRISPR/Cas9 system was used to model P2RY8::CRLF2 and investigate its cooperation with HMGN1. This model was then used to validate HMGN1 as an influencing factor for P2RY8::CRLF2 development. Using Cas9 to cleave the DNA at the pseudoautosomal region without directed repair, cells expressing HMGN1 favored repair, resulting in P2RY8::CRLF2 generation, compared with cells without HMGN1. CRISPR/Cas9 P2RY8::CRLF2 cells expressing HMGN1 exhibit increased proliferation, thymic stromal lymphopoietin receptor (TSLPR) expression, and JAK/STAT signaling, consistent with cells from patients with P2RY8::CRLF2. Our patient expression data and unique CRISPR/Cas9 modeling, when taken together, suggest that HMGN1 increases the propensity for P2RY8::CRLF2 development. This has important implications for patients with DS, +21, or iAMP21.
Collapse
Affiliation(s)
- Elyse C. Page
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | - Jacqueline Rehn
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | - Paul Q. Thomas
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
- SA Gene Editing Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
- Australasian Leukaemia and Lymphoma Group, Melbourne, VIC, Australia
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
- Australasian Leukaemia and Lymphoma Group, Melbourne, VIC, Australia
- Australian and New Zealand Children’s Hematology/Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
15
|
Kosmidou A, Tragiannidis A, Gavriilaki E. Myeloid Leukemia of Down Syndrome. Cancers (Basel) 2023; 15:3265. [PMID: 37444375 DOI: 10.3390/cancers15133265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Myeloid leukemia of Down syndrome (ML-DS) is characterized by a distinct natural history and is classified by the World Health Organization (WHO) as an independent entity, occurring with unique clinical and molecular features. The presence of a long preleukemic, myelodysplastic phase, called transient abnormal myelopoiesis (TAM), precedes the initiation of ML-DS and is defined by unusual chromosomal findings. Individuals with constitutional trisomy 21 have a profound dosage imbalance in the hematopoiesis-governing genes located on chromosome 21 and thus are subject to impaired fetal as well as to neonatal erythro-megakaryopoiesis. Almost all neonates with DS develop quantitative and morphological hematological abnormalities, yet still only 5-10% of them present with one of the preleukemic or leukemic conditions of DS. The acquired mutations in the key hematopoietic transcription factor gene GATA1, found solely in cells trisomic for chromosome 21, are considered to be the essential step for the selective growth advantage of leukemic cells. While the majority of cases of TAM remain clinically 'silent' or undergo spontaneous remission, the remaining 20% to 30% of them progress into ML-DS until the age of 4 years. The hypersensitivity of ML-DS blasts to chemotherapeutic agents, including but not limited to cytarabine, and drugs' increased infectious and cardiac toxicity have necessitated the development of risk-adapted treatment protocols for children with ML-DS. Recent advances in cytogenetics and specific molecular mechanisms involved in the evolution of TAM and ML-DS are reviewed here, as well as their integration in the improvement of risk stratification and targeted management of ML-DS.
Collapse
Affiliation(s)
- Aikaterini Kosmidou
- 2nd Department of Internal Medicine, General Hospital of Kavala, 65500 Kavala, Greece
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
16
|
Rouillon C, Eckhardt BV, Kollenstart L, Gruss F, Verkennis AE, Rondeel I, Krijger PHL, Ricci G, Biran A, van Laar T, Delvaux de Fenffe CM, Luppens G, Albanese P, Sato K, Scheltema RA, de Laat W, Knipscheer P, Dekker N, Groth A, Mattiroli F. CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands. Nucleic Acids Res 2023; 51:3770-3792. [PMID: 36942484 PMCID: PMC10164577 DOI: 10.1093/nar/gkad171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
Collapse
Affiliation(s)
- Clément Rouillon
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruna V Eckhardt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Gruss
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Rondeel
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Theo van Laar
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | | | - Georgiana Luppens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal Albanese
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Scheltema
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nynke H Dekker
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Saleiro D, Kosciuczuk EM, Fischietti M, Perez RE, Yang GS, Eckerdt F, Beauchamp EM, Hou Y, Wang Q, Weinberg RS, Fish EN, Yue F, Hoffman R, Platanias LC. Targeting CHAF1B Enhances IFN Activity against Myeloproliferative Neoplasm Cells. CANCER RESEARCH COMMUNICATIONS 2023; 3:943-951. [PMID: 37377894 PMCID: PMC10231401 DOI: 10.1158/2767-9764.crc-23-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
Interferons (IFNs) are cytokines with potent antineoplastic and antiviral properties. IFNα has significant clinical activity in the treatment of myeloproliferative neoplasms (MPN), but the precise mechanisms by which it acts are not well understood. Here, we demonstrate that chromatin assembly factor 1 subunit B (CHAF1B), an Unc-51-like kinase 1 (ULK1)-interactive protein in the nuclear compartment of malignant cells, is overexpressed in patients with MPN. Remarkably, targeted silencing of CHAF1B enhances transcription of IFNα-stimulated genes and promotes IFNα-dependent antineoplastic responses in primary MPN progenitor cells. Taken together, our findings indicate that CHAF1B is a promising newly identified therapeutic target in MPN and that CHAF1B inhibition in combination with IFNα therapy might offer a novel strategy for treating patients with MPN. Significance Our findings raise the potential for clinical development of drugs targeting CHAF1B to enhance IFN antitumor responses in the treatment of patients with MPN and should have important clinical translational implications for the treatment of MPN and possibly in other malignancies.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ewa M. Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - G. Sohae Yang
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elspeth M. Beauchamp
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Rona Singer Weinberg
- The New York Blood Center, New York, New York
- Myeloproliferative Neoplasms Research Consortium, New York, New York
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network & Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yue
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Ronald Hoffman
- Myeloproliferative Neoplasms Research Consortium, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
18
|
Gialesaki S, Bräuer-Hartmann D, Issa H, Bhayadia R, Alejo-Valle O, Verboon L, Schmell AL, Laszig S, Regényi E, Schuschel K, Labuhn M, Ng M, Winkler R, Ihling C, Sinz A, Glaß M, Hüttelmaier S, Matzk S, Schmid L, Strüwe FJ, Kadel SK, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. RUNX1 isoform disequilibrium promotes the development of trisomy 21-associated myeloid leukemia. Blood 2023; 141:1105-1118. [PMID: 36493345 PMCID: PMC10023736 DOI: 10.1182/blood.2022017619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Gain of chromosome 21 (Hsa21) is among the most frequent aneuploidies in leukemia. However, it remains unclear how partial or complete amplifications of Hsa21 promote leukemogenesis and why children with Down syndrome (DS) (ie, trisomy 21) are particularly at risk of leukemia development. Here, we propose that RUNX1 isoform disequilibrium with RUNX1A bias is key to DS-associated myeloid leukemia (ML-DS). Starting with Hsa21-focused CRISPR-CRISPR-associated protein 9 screens, we uncovered a strong and specific RUNX1 dependency in ML-DS cells. Expression of the RUNX1A isoform is elevated in patients with ML-DS, and mechanistic studies using murine ML-DS models and patient-derived xenografts revealed that excess RUNX1A synergizes with the pathognomonic Gata1s mutation during leukemogenesis by displacing RUNX1C from its endogenous binding sites and inducing oncogenic programs in complex with the MYC cofactor MAX. These effects were reversed by restoring the RUNX1A:RUNX1C equilibrium in patient-derived xenografts in vitro and in vivo. Moreover, pharmacological interference with MYC:MAX dimerization using MYCi361 exerted strong antileukemic effects. Thus, our study highlights the importance of alternative splicing in leukemogenesis, even on a background of aneuploidy, and paves the way for the development of specific and targeted therapies for ML-DS, as well as for other leukemias with Hsa21 aneuploidy or RUNX1 isoform disequilibrium.
Collapse
Affiliation(s)
- Sofia Gialesaki
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Daniela Bräuer-Hartmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna-Lena Schmell
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephanie Laszig
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Enikő Regényi
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maurice Labuhn
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lena Schmid
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Sofie-Katrin Kadel
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Dirk Heckl, Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany;
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Correspondence: Jan-Henning Klusmann, Department of Pediatrics, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| |
Collapse
|
19
|
Du W, Shi G, Shan CM, Li Z, Zhu B, Jia S, Li Q, Zhang Z. Mechanisms of chromatin-based epigenetic inheritance. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2162-2190. [PMID: 35792957 PMCID: PMC10311375 DOI: 10.1007/s11427-022-2120-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Multi-cellular organisms such as humans contain hundreds of cell types that share the same genetic information (DNA sequences), and yet have different cellular traits and functions. While how genetic information is passed through generations has been extensively characterized, it remains largely obscure how epigenetic information encoded by chromatin regulates the passage of certain traits, gene expression states and cell identity during mitotic cell divisions, and even through meiosis. In this review, we will summarize the recent advances on molecular mechanisms of epigenetic inheritance, discuss the potential impacts of epigenetic inheritance during normal development and in some disease conditions, and outline future research directions for this challenging, but exciting field.
Collapse
Affiliation(s)
- Wenlong Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guojun Shi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiming Li
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Zhiguo Zhang
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
20
|
Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells. Mol Cell Biochem 2022; 478:1361-1382. [PMID: 36309884 DOI: 10.1007/s11010-022-04594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Hematopoiesis is a highly complex process, regulated by both intrinsic and extrinsic factors. Often, these two regulatory arms work in tandem to maintain the steady-state condition of hematopoiesis. However, at times, certain intrinsic attributes of hematopoietic stem cells (HSCs) override the external stimuli and dominate the outcome. These could be genetic events like mutations or environmentally induced epigenetic or transcriptomic changes. Since leukemic stem cells (LSCs) share molecular pathways that also regulate normal HSCs, identifying specific, dominantly acting intrinsic factors could help in the development of novel therapeutic approaches. Here we have reviewed such dominantly acting intrinsic factors governing quiescence vis-à-vis activation of the HSCs in the face of external forces acting on them. For brevity, we have restricted our review to the articles dealing with adult HSCs of human and mouse origin that have been published in the last 10 years. Hematopoietic stem cells (HSCs) are closely associated with various stromal cells in their microenvironment and, thus, constantly receive signaling cues from them. The illustration depicts some dominantly acting intrinsic or cell-autonomous factors operative in the HSCs. These fall into various categories, such as epigenetic regulators, transcription factors, cell cycle regulators, tumor suppressor genes, signaling pathways, and metabolic regulators, which counteract the outcome of extrinsic signaling exerted by the HSC niche.
Collapse
|
21
|
Yin X, Zhou M, Zhang L, Fu Y, Xu M, Wang X, Cui Z, Gao Z, Li M, Dong Y, Feng H, Ma S, Chen C. Histone chaperone ASF1A accelerates chronic myeloid leukemia blast crisis by activating Notch signaling. Cell Death Dis 2022; 13:842. [PMID: 36184659 PMCID: PMC9527247 DOI: 10.1038/s41419-022-05234-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
The blast crisis (BC) is the final deadly phase of chronic myeloid leukemia (CML), which remains a major challenge in clinical management. However, the underlying molecular mechanism driving blastic transformation remains unclear. Here, we show that ASF1A, an essential activator, enhanced the transformation to CML-BC by mediating cell differentiation arrest. ASF1A expression was aberrantly increased in bone marrow samples from CML-BC patients compared with newly diagnosed CML-chronic phase (CP) patients. ASF1A inhibited cell differentiation and promoted CML development in vivo. Mechanistically, we identified ASF1A as a coactivator of the Notch transcriptional complex that induces H3K56ac modification in the promoter regions of Notch target genes, and subsequently enhanced RBPJ binding to these promoter regions, thereby enhancing Notch signaling activation to mediate differentiation arrest in CML cells. Thus, our work suggests that targeting ASF1A might represent a promising therapeutic approach and a biomarker to detect disease progression in CML patients.
Collapse
Affiliation(s)
- Xiaolin Yin
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Minran Zhou
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Lu Zhang
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Yue Fu
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Department of Physiology & Pathophysiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Man Xu
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Xiaoming Wang
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Zelong Cui
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Zhenxing Gao
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Miao Li
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Yuting Dong
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Huimin Feng
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Sai Ma
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Chunyan Chen
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong China
| |
Collapse
|
22
|
Siddaway R, Milos S, Coyaud É, Yun HY, Morcos SM, Pajovic S, Campos EI, Raught B, Hawkins C. The in vivo Interaction Landscape of Histones H3.1 and H3.3. Mol Cell Proteomics 2022; 21:100411. [PMID: 36089195 PMCID: PMC9540345 DOI: 10.1016/j.mcpro.2022.100411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.3) histone H3 variants based on BioID proximity labeling, which allows interactions in intact, living cells to be detected. Along with a significant proportion of previously reported interactions detected by affinity purification followed by mass spectrometry, three quarters of the 608 histone-associated proteins that we identified are new, uncharacterized histone associations. The data reveal important biological nuances not captured by traditional biochemical means. For example, we found that the chromatin assembly factor-1 histone chaperone not only deposits the replication-coupled H3.1 histone variant during S-phase but also associates with H3.3 throughout the cell cycle in vivo. We also identified other variant-specific associations, such as with transcription factors, chromatin regulators, and with the mitotic machinery. Our proximity-based analysis is thus a rich resource that extends the H3 interactome and reveals new sets of variant-specific associations.
Collapse
Affiliation(s)
- Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada,Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Scott Milos
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Université de Lille, Lille, France
| | - Hwa Young Yun
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shahir M. Morcos
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Pajovic
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric I. Campos
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada,Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,For correspondence: Cynthia Hawkins
| |
Collapse
|
23
|
Li J, Kalev-Zylinska ML. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front Genet 2022; 13:891214. [PMID: 36035173 PMCID: PMC9399805 DOI: 10.3389/fgene.2022.891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| |
Collapse
|
24
|
Franklin R, Guo Y, He S, Chen M, Ji F, Zhou X, Frankhouser D, Do BT, Chiem C, Jang M, Blanco MA, Vander Heiden MG, Rockne RC, Ninova M, Sykes DB, Hochedlinger K, Lu R, Sadreyev RI, Murn J, Volk A, Cheloufi S. Regulation of chromatin accessibility by the histone chaperone CAF-1 sustains lineage fidelity. Nat Commun 2022; 13:2350. [PMID: 35487911 PMCID: PMC9054786 DOI: 10.1038/s41467-022-29730-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Cell fate commitment is driven by dynamic changes in chromatin architecture and activity of lineage-specific transcription factors (TFs). The chromatin assembly factor-1 (CAF-1) is a histone chaperone that regulates chromatin architecture by facilitating nucleosome assembly during DNA replication. Accumulating evidence supports a substantial role of CAF-1 in cell fate maintenance, but the mechanisms by which CAF-1 restricts lineage choice remain poorly understood. Here, we investigate how CAF-1 influences chromatin dynamics and TF activity during lineage differentiation. We show that CAF-1 suppression triggers rapid differentiation of myeloid stem and progenitor cells into a mixed lineage state. We find that CAF-1 sustains lineage fidelity by controlling chromatin accessibility at specific loci, and limiting the binding of ELF1 TF at newly-accessible diverging regulatory elements. Together, our findings decipher key traits of chromatin accessibility that sustain lineage integrity and point to a powerful strategy for dissecting transcriptional circuits central to cell fate commitment.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States
| | - Yiming Guo
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States
| | - Shiyang He
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
| | - Meijuan Chen
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
| | - Xinyue Zhou
- Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David Frankhouser
- Department of Population Sciences City of Hope National Medical Center, Duarte, CA, United States
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, United States
| | - Carmen Chiem
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States
| | - Mihyun Jang
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - M Andres Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, United States
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Maria Ninova
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, United States
- Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA, 02138, United States
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
| | - Rui Lu
- Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, United States
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States.
| | - Andrew Volk
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States.
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, United States.
| |
Collapse
|
25
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
26
|
Stavast CJ, van Zuijen I, Karkoulia E, Özçelik A, van Hoven-Beijen A, Leon LG, Voerman JSA, Janssen GMC, van Veelen PA, Burocziova M, Brouwer RWW, van IJcken WFJ, Maas A, Bindels EM, van der Velden VHJ, Schliehe C, Katsikis PD, Alberich-Jorda M, Erkeland SJ. The tumor suppressor MIR139 is silenced by POLR2M to promote AML oncogenesis. Leukemia 2022; 36:687-700. [PMID: 34741119 PMCID: PMC8885418 DOI: 10.1038/s41375-021-01461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.
Collapse
Affiliation(s)
- Christiaan J Stavast
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Iris van Zuijen
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Elena Karkoulia
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Arman Özçelik
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | | | - Leticia G Leon
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Jane S A Voerman
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Monika Burocziova
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rutger W W Brouwer
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Wilfred F J van IJcken
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Alex Maas
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Eric M Bindels
- Erasmus MC, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands
| | | | - Christopher Schliehe
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Peter D Katsikis
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Meritxell Alberich-Jorda
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Stefan J Erkeland
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands.
| |
Collapse
|
27
|
Posttranscriptional Arid3a deregulation in AMKL. Blood 2022; 139:637-638. [PMID: 35113150 DOI: 10.1182/blood.2021014081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
|
28
|
Alejo-Valle O, Weigert K, Bhayadia R, Ng M, Issa H, Beyer C, Emmrich S, Schuschel K, Ihling C, Sinz A, Zimmermann M, Wickenhauser C, Flasinski M, Regenyi E, Labuhn M, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis. Blood 2022; 139:651-665. [PMID: 34570885 PMCID: PMC9632760 DOI: 10.1182/blood.2021012231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Given the plasticity of hematopoietic stem and progenitor cells, multiple routes of differentiation must be blocked in the the pathogenesis of acute myeloid leukemia, the molecular basis of which is incompletely understood. We report that posttranscriptional repression of the transcription factor ARID3A by miR-125b is a key event in the pathogenesis of acute megakaryoblastic leukemia (AMKL). AMKL is frequently associated with trisomy 21 and GATA1 mutations (GATA1s), and children with Down syndrome are at a high risk of developing the disease. The results of our study showed that chromosome 21-encoded miR-125b synergizes with Gata1s to drive leukemogenesis in this context. Leveraging forward and reverse genetics, we uncovered Arid3a as the main miR-125b target behind this synergy. We demonstrated that, during normal hematopoiesis, this transcription factor promotes megakaryocytic differentiation in concert with GATA1 and mediates TGFβ-induced apoptosis and cell cycle arrest in complex with SMAD2/3. Although Gata1s mutations perturb erythroid differentiation and induce hyperproliferation of megakaryocytic progenitors, intact ARID3A expression assures their megakaryocytic differentiation and growth restriction. Upon knockdown, these tumor suppressive functions are revoked, causing a blockade of dual megakaryocytic/erythroid differentiation and subsequently of AMKL. Inversely, restoring ARID3A expression relieves the arrest of megakaryocytic differentiation in AMKL patient-derived xenografts. This work illustrates how mutations in lineage-determining transcription factors and perturbation of posttranscriptional gene regulation can interact to block multiple routes of hematopoietic differentiation and cause leukemia. In AMKL, surmounting this differentiation blockade through restoration of the tumor suppressor ARID3A represents a promising strategy for treating this lethal pediatric disease.
Collapse
Affiliation(s)
- Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Karoline Weigert
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Raj Bhayadia
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Christoph Beyer
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester NY
| | - Konstantin Schuschel
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Marius Flasinski
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Hospital Tauberbischofsheim, Tauberbischofsheim, Germany
| | - Eniko Regenyi
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maurice Labuhn
- Institute for Experimental Virology, Twincore, Center for Experimental and Clinical Infection Research, Hannover, Germany; and
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| |
Collapse
|
29
|
Wen T, Chen QY. Dynamic Activity of Histone H3-Specific Chaperone Complexes in Oncogenesis. Front Oncol 2022; 11:806974. [PMID: 35087762 PMCID: PMC8786718 DOI: 10.3389/fonc.2021.806974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Canonical histone H3.1 and variant H3.3 deposit at different sites of the chromatin via distinct histone chaperones. Histone H3.1 relies on chaperone CAF-1 to mediate replication-dependent nucleosome assembly during S-phase, while H3.3 variant is regulated and incorporated into the chromatin in a replication-independent manner through HIRA and DAXX/ATRX. Current literature suggests that dysregulated expression of histone chaperones may be implicated in tumor progression. Notably, ectopic expression of CAF-1 can promote a switch between canonical H3.1 and H3 variants in the chromatin, impair the chromatic state, lead to chromosome instability, and impact gene transcription, potentially contributing to carcinogenesis. This review focuses on the chaperone proteins of H3.1 and H3.3, including structure, regulation, as well as their oncogenic and tumor suppressive functions in tumorigenesis.
Collapse
Affiliation(s)
- Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Zhang Y, Yang Y, Qiao P, Wang X, Yu R, Sun H, Xing X, Zhang Y, Su J. CHAF1b, chromatin assembly factor-1 subunit b, is essential for mouse preimplantation embryos. Int J Biol Macromol 2022; 195:547-557. [PMID: 34906611 DOI: 10.1016/j.ijbiomac.2021.11.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022]
Abstract
Chromatin assembly factor-1, subunit b (CHAF1b), the p60 subunit of the chromatin-assembly factor-1 (CAF-1) complex, is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to CHAF1b, its function in preimplantation embryos remains obscure. In this study, we showed that CHAF1b knockdown did not affect the blastocyst rate, but resulted in a low blastocyst hatching rate, outgrowth failure in vitro, and embryonic lethality after implantation in vivo. Notably, CHAF1b depletion increased apoptosis and caused down-regulated expression of key regulators of cell fate specification, including Oct4, Cdx2, Sox2, and Nanog. Further analysis revealed that CHAF1b mediated the replacement of H3.3 with H3.1/3.2, which was associated with decreased repressive histone marks (H3K9me2/3 and H3K27me2/3) and increased active histone marks (H3K4me2/3). Moreover, RNA-sequencing analysis revealed that CHAF1b depletion resulted in the differential expression of 1508 genes, including epigenetic modifications genes, multiple lineage-specific genes, and several genes encoding apoptosis proteins. In addition, assay for transposase-accessible chromatin-sequencing analysis demonstrated that silencing CHAF1b altered the chromatin accessibility of lineage-specific genes and epigenetic modifications genes. Taken together, these data imply that CHAF1b plays significant roles in preimplantation embryos, probably by regulating epigenetic modifications and lineage specification.
Collapse
Affiliation(s)
- Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ying Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Peipei Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiyue Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ruiluan Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
31
|
Ge L, Tan W, Li G, Gong N, Zhou L. Circ_0026134 promotes NSCLC progression by the miR-3619-5p/CHAF1B axis. Thorac Cancer 2022; 13:582-592. [PMID: 34985193 PMCID: PMC8841691 DOI: 10.1111/1759-7714.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Circular RNAs (circRNAs) have been implicated in the pathogenesis of NSCLC. In this study, we explored the molecular determinants underlying the oncogenic property of circ_0026134 in NSCLC. METHODS The levels of circ_0026134, miR-3619-5p and chromatin assembly factor 1 subunit B axis (CHAF1B) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell colony formation, migration, invasion and apoptosis were detected by colony formation, Transwell, and flow cytometry assays, respectively. Direct relationships among circ_0026134, miR-3619-5p and CHAF1B were verified by dual-luciferase reporter assays. RESULTS Our results showed that circ_0026134 was highly expressed in NSCLC tissues and cells. Reduced circ_0026134 expression or miR-3619-5p overexpression inhibited NSCLC cell colony formation, migration, invasion, glycolysis and promoted cell apoptosis in vitro. Moreover, circ_0026134 directly targeted miR-3619-5p, and circ_0026134 regulated CHAF1B expression through miR-3619-5p. CHAF1B was a downstream effector of circ_0026134 in affecting NSCLC cell functional behaviors in vitro. Additionally, circ_0026134 silencing weakened tumor growth in vivo. CONCLUSIONS Our study identified a novel regulatory mechanism, the circ_0026134/miR-3619-5p/CHAF1B axis, for the oncogenic role of circ_0026134 in NSCLC, highlighting circ_00261345 inhibition as a potential therapeutic method against NSCLC.
Collapse
Affiliation(s)
- Liang Ge
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Wei Tan
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Nianjin Gong
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Long Zhou
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
32
|
Niu C, Wu D, Li AJ, Qin KH, Hu DA, Wang EJ, Tucker AB, He F, Huang L, Wang H, Liu Q, Ni N, Shi D, Zhao X, Wan Y, Li T, He T, Liao P. Identification of a prognostic signature based on copy number variations (CNVs) and CNV-modulated gene expression in acute myeloid leukemia. Am J Transl Res 2021; 13:13683-13696. [PMID: 35035707 PMCID: PMC8748127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is caused by multiple genetic alterations in hematopoietic progenitors, and molecular genetic analyses have provided useful information for AML diagnosis and prognostication. This study aimed to integratively understand the prognostic value of specific copy number variation (CNV) patterns and CNV-modulated gene expression in AML. METHODS We conducted integrative CNV profiling and gene expression analysis using data from the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) and The Cancer Genome Atlas (TCGA) AML cohorts. CNV-related genes associated with survival were identified using the TARGET AML cohort and validated using the TCGA AML cohort. Genes whose CNV-modulated expression was associated with survival were also identified using the TARGET AML cohort and validated using the TCGA AML cohort, and patient bone marrow samples were then used to further validate the effects of CNV-modulated gene expression on survival. CNV and mRNA survival analyses were conducted using proportional hazards regression models (Cox regression) and the "survminer" and "survival" packages of the R Project for Statistical Computing. Genes belonging to the Kyoto Encyclopedia of Genes and Genomes (KEGG) cancer panel were extracted from KEGG cancer-related pathways. RESULTS One hundred two CNV-related genes (located at 7q31-34, 16q24) associated with patient survival were identified using the TARGET cohort and validated with the TCGA AML cohort. Among these 102 validated genes, three miRNA genes (MIR29A, MIR183, and MIR335) were included in the KEGG cancer panel. Five genes (SEMA4D, CBFB, CHAF1B, SAE1, and DNMT1) whose expression was modulated by CNVs and significantly associated with clinical outcomes were identified, and the deletion of SEMA4D and CBFB was found to potentially exert protective effects against AML. The results of these five genes were also validated using patient marrow samples. Additionally, the distribution of CNVs affecting these five CNV-modulated genes was independent of the risk group (favorable-, intermediate-, and adverse-risk groups). CONCLUSIONS Overall, this study identified 102 CNV-related genes associated with patient survival and identified five genes whose expression was modulated by CNVs and associated with patient survival. Our findings are crucial for the development of new modes of prognosis evaluation and targeted therapy for AML.
Collapse
Affiliation(s)
- Changchun Niu
- Department of Laboratory Diagnostic Medicine, The Affiliated Chongqing Hospital of The University of Chinese Academy of Sciences, Chongqing General HospitalChongqing 400021, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Alexander J Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Eric J Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Yafang Wan
- Department of Laboratory Diagnostic Medicine, The Affiliated Chongqing Hospital of The University of Chinese Academy of Sciences, Chongqing General HospitalChongqing 400021, China
| | - Tian Li
- Department of Laboratory Diagnostic Medicine, The Affiliated Chongqing Hospital of The University of Chinese Academy of Sciences, Chongqing General HospitalChongqing 400021, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Pu Liao
- Department of Laboratory Diagnostic Medicine, The Affiliated Chongqing Hospital of The University of Chinese Academy of Sciences, Chongqing General HospitalChongqing 400021, China
| |
Collapse
|
33
|
Boucher AC, Caldwell KJ, Crispino JD, Flerlage JE. Clinical and biological aspects of myeloid leukemia in Down syndrome. Leukemia 2021; 35:3352-3360. [PMID: 34518645 PMCID: PMC8639661 DOI: 10.1038/s41375-021-01414-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Children with Down syndrome are at an elevated risk of leukemia, especially myeloid leukemia (ML-DS). This malignancy is frequently preceded by transient abnormal myelopoiesis (TAM), which is self-limited expansion of fetal liver-derived megakaryocyte progenitors. An array of international studies has led to consensus in treating ML-DS with reduced-intensity chemotherapy, leading to excellent outcomes. In addition, studies performed in the past 20 years have revealed many of the genetic and epigenetic features of the tumors, including GATA1 mutations that are arguably associated with all cases of both TAM and ML-DS. Despite these advances in understanding the clinical and biological aspects of ML-DS, little is known about the mechanisms of relapse. Upon relapse, patients face a poor outcome, and there is no consensus on treatment. Future studies need to be focused on this challenging aspect of leukemia in children with DS.
Collapse
Affiliation(s)
- Austin C Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kenneth J Caldwell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Jamie E Flerlage
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
34
|
Mathison AJ, Kerketta R, de Assuncao TM, Leverence E, Zeighami A, Urrutia G, Stodola TJ, di Magliano MP, Iovanna JL, Zimmermann MT, Lomberk G, Urrutia R. Kras G12D induces changes in chromatin territories that differentially impact early nuclear reprogramming in pancreatic cells. Genome Biol 2021; 22:289. [PMID: 34649604 PMCID: PMC8518179 DOI: 10.1186/s13059-021-02498-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma initiation is most frequently caused by Kras mutations. RESULTS Here, we apply biological, biochemical, and network biology methods to validate GEMM-derived cell models using inducible KrasG12D expression. We describe the time-dependent, chromatin remodeling program that impacts function during early oncogenic signaling. We find that the KrasG12D-induced transcriptional response is dominated by downregulated expression concordant with layers of epigenetic events. More open chromatin characterizes the ATAC-seq profile associated with a smaller group of upregulated genes and epigenetic marks. RRBS demonstrates that promoter hypermethylation does not account for the silencing of the extensive gene promoter network. Moreover, ChIP-Seq reveals that heterochromatin reorganization plays little role in this early transcriptional program. Notably, both gene activation and silencing primarily depend on the marking of genes with a combination of H3K27ac, H3K4me3, and H3K36me3. Indeed, integrated modeling of all these datasets shows that KrasG12D regulates its transcriptional program primarily through unique super-enhancers and enhancers, and marking specific gene promoters and bodies. We also report chromatin remodeling across genomic areas that, although not contributing directly to cis-gene transcription, are likely important for KrasG12D functions. CONCLUSIONS In summary, we report a comprehensive, time-dependent, and coordinated early epigenomic program for KrasG12D in pancreatic cells, which is mechanistically relevant to understanding chromatin remodeling events underlying transcriptional outcomes needed for the function of this oncogene.
Collapse
Affiliation(s)
- Angela J Mathison
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Romica Kerketta
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Elise Leverence
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Atefeh Zeighami
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guillermo Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy J Stodola
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Michael T Zimmermann
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen Lomberk
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Raul Urrutia
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
35
|
Challenging, Accurate and Feasible: CAF-1 as a Tumour Proliferation Marker of Diagnostic and Prognostic Value. Cancers (Basel) 2021; 13:cancers13112575. [PMID: 34073937 PMCID: PMC8197349 DOI: 10.3390/cancers13112575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary There is an emerging need for new weapons in the battle against cancer; therefore, the discovery of new biomarkers with diagnostic, prognostic, and therapeutic value is a priority of current cancer research. An important task is to identify how quickly a tumour proliferates. A tumour’s proliferation rate is critical for grading and clinical decision-making; hence, there is an imperative need for accurate proliferation markers. Here, we review evidence demonstrating that chromatin assembly factor 1 (CAF-1) is a proliferation marker of clinical value. CAF-1 is selectively expressed in proliferating cells and its expression can be evaluated by immunohistochemistry in cytology smears and biopsies. CAF-1 expression is increased in almost all cancers and correlates strongly with the expression of Ki-67, the current routine proliferation marker. Overexpression of CAF-1 is associated with poor clinical outcome (advanced cancer stage, recurrence, metastasis, and decreased survival). CAF-1 is a robust, reproducible, and feasible proliferation marker of prognostic importance and may represent an attractive alternative or complementary to Ki-67 for cancer stratification and clinical guidance. Abstract The discovery of novel biomarkers of diagnostic, prognostic, and therapeutic value is a major challenge of current cancer research. The assessment of tumour cell proliferative capacity is pivotal for grading and clinical decision-making, highlighting the importance of proliferation markers as diagnostic and prognostic tools. Currently, the immunohistochemical analysis of Ki-67 expression levels is routinely used in clinical settings to assess tumour proliferation. Inasmuch as the function of Ki-67 is not fully understood and its evaluation lacks standardization, there is interest in chromatin regulator proteins as alternative proliferation markers of clinical value. Here, we review recent evidence demonstrating that chromatin assembly factor 1 (CAF-1), a histone chaperone selectively expressed in cycling cells, is a proliferation marker of clinical value. CAF-1 expression, when evaluated by immunocytochemistry in breast cancer cytology smears and immunohistochemistry in cancer biopsies from several tissues, strongly correlates with the expression of Ki-67 and other proliferation markers. Notably, CAF-1 expression is upregulated in almost all cancers, and CAF-1 overexpression is significantly associated, in most cancer types, with high histological tumour grade, advanced stage, recurrence, metastasis, and decreased patient survival. These findings suggest that CAF-1 is a robust, reproducible, and feasible proliferation marker of prognostic importance. CAF-1 may represent an attractive alternative or complementary to Ki-67 for cancer stratification and clinical guidance.
Collapse
|
36
|
Xu Y, Ma J, Luo H, Shi Y, Liu H, Sun A, Xu C, Ji H, Liu X. Chromatin assembly factor 1B critically controls the early development but not function acquisition of invariant natural killer T cells in mice. Eur J Immunol 2021; 51:1698-1714. [PMID: 33949677 DOI: 10.1002/eji.202049074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Indexed: 11/09/2022]
Abstract
CD4+ CD8+ double-positive thymocytes give rise to both conventional TCRαβ+ T cells and invariant natural killer T cells (iNKT cells), but these two kinds of cells display different characteristics. The molecular mechanism underlying iNKT cell lineage development and function acquisition remain to be elucidated. We show that the loss of chromatin assembly factor 1B (CHAF1b) maintains the normal development of conventional TCRαβ+ T cells but severely impairs early development of iNKT cells. This dysregulation is accompanied by the impairment in chromatin activation and gene transcription at Vα14-Jα18 locus. Notably, ectopic expression of a Vα14-Jα18 TCR rescues Chaf1b-deficient iNKT cell developmental defects. Moreover, cytokine secretion and antitumor activity are substantially maintained in Vα14-Jα18 TCR transgene-rescued Chaf1b-deficient iNKT cells. Our study identifies CHAF1b as a critical factor that controls the early development but not function acquisition of iNKT cells via lineage- and stage-specific regulation.
Collapse
Affiliation(s)
- Yu Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Junwei Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haorui Luo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yaohuang Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ao Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Chenqi Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, P. R. China
| |
Collapse
|
37
|
Duan W, Wang K, Duan Y, Chen X, Chu X, Hu P, Xiong B. Combined Analysis of RNA Sequence and Microarray Data Reveals a Competing Endogenous RNA Network as Novel Prognostic Markers in Malignant Pleural Mesothelioma. Front Oncol 2021; 11:615234. [PMID: 33968720 PMCID: PMC8104912 DOI: 10.3389/fonc.2021.615234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with short survival time. Unbalanced competing endogenous RNAs (ceRNAs) have been shown to participate in the tumor pathogenesis and served as biomarkers for the clinical prognosis. However, the comprehensive analyses of the ceRNA network in the prognosis of MPM are still rarely reported. In this study, we obtained the transcriptome data of the MPM and the normal samples from TCGA, EGA, and GEO databases and identified the differentially expressed (DE) mRNAs, lncRNAs, and miRNAs. The functions of the prognostic genes and the overlapped DEmRNAs were further annotated by the multiple enrichment analyses. Then, the targeting relationships among lncRNA–miRNA and miRNA–mRNA were predicted and calculated, and a prognostic ceRNA regulatory network was established. We included the prognostic 73 mRNAs and 13 miRNAs and 26 lncRNAs into the ceRNA network. Moreover, 33 mRNAs, three miRNAs, and seven lncRNAs were finally associated with prognosis, and a model including seven mRNAs, two lincRNAs, and some clinical factors was finally established and validated by two independent cohorts, where CDK6 and SGMS1-AS1 were significant to be independent prognostic factors. In addition, the identified co-expressed modules associated with the prognosis were overrepresented in the ceRNA network. Multiple enrichment analyses showed the important roles of the extracellular matrix components and cell division dysfunction in the invasion of MPM potentially. In summary, the prognostic ceRNA network of MPM was established and analyzed for the first time and these findings shed light on the function of ceRNAs and revealed the potential prognostic and therapeutic biomarkers of MPM.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuyi Chen
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Franklin R, Murn J, Cheloufi S. Cell Fate Decisions in the Wake of Histone H3 Deposition. Front Cell Dev Biol 2021; 9:654915. [PMID: 33959610 PMCID: PMC8093820 DOI: 10.3389/fcell.2021.654915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
An expanding repertoire of histone variants and specialized histone chaperone partners showcases the versatility of nucleosome assembly during different cellular processes. Recent research has suggested an integral role of nucleosome assembly pathways in both maintaining cell identity and influencing cell fate decisions during development and normal homeostasis. Mutations and altered expression profiles of histones and corresponding histone chaperone partners are associated with developmental defects and cancer. Here, we discuss the spatiotemporal deposition mechanisms of the Histone H3 variants and their influence on mammalian cell fate during development. We focus on H3 given its profound effect on nucleosome stability and its recently characterized deposition pathways. We propose that differences in deposition of H3 variants are largely dependent on the phase of the cell cycle and cellular potency but are also affected by cellular stress and changes in cell fate. We also discuss the utility of modern technologies in dissecting the spatiotemporal control of H3 variant deposition, and how this could shed light on the mechanisms of cell identity maintenance and lineage commitment. The current knowledge and future studies will help us better understand how organisms employ nucleosome dynamics in health, disease, and aging. Ultimately, these pathways can be manipulated to induce cell fate change in a therapeutic setting depending on the cellular context.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Jernej Murn
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Sihem Cheloufi
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
39
|
Grimm J, Heckl D, Klusmann JH. Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Front Oncol 2021; 11:636633. [PMID: 33777792 PMCID: PMC7992977 DOI: 10.3389/fonc.2021.636633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023] Open
Abstract
Individuals with Down syndrome are genetically predisposed to developing acute megakaryoblastic leukemia. This myeloid leukemia associated with Down syndrome (ML–DS) demonstrates a model of step-wise leukemogenesis with perturbed hematopoiesis already presenting in utero, facilitating the acquisition of additional driver mutations such as truncating GATA1 variants, which are pathognomonic to the disease. Consequently, the affected individuals suffer from a transient abnormal myelopoiesis (TAM)—a pre-leukemic state preceding the progression to ML–DS. In our review, we focus on the molecular mechanisms of the different steps of clonal evolution in Down syndrome leukemogenesis, and aim to provide a comprehensive view on the complex interplay between gene dosage imbalances, GATA1 mutations and somatic mutations affecting JAK-STAT signaling, the cohesin complex and epigenetic regulators.
Collapse
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
40
|
Murakami K, Sasaki H, Nishiyama A, Kurotaki D, Kawase W, Ban T, Nakabayashi J, Kanzaki S, Sekita Y, Nakajima H, Ozato K, Kimura T, Tamura T. A RUNX-CBFβ-driven enhancer directs the Irf8 dose-dependent lineage choice between DCs and monocytes. Nat Immunol 2021; 22:301-311. [PMID: 33603226 DOI: 10.1038/s41590-021-00871-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
The transcription factor IRF8 is essential for the development of monocytes and dendritic cells (DCs), whereas it inhibits neutrophilic differentiation. It is unclear how Irf8 expression is regulated and how this single transcription factor supports the generation of both monocytes and DCs. Here, we identified a RUNX-CBFβ-driven enhancer 56 kb downstream of the Irf8 transcription start site. Deletion of this enhancer in vivo significantly decreased Irf8 expression throughout the myeloid lineage from the progenitor stages, thus resulting in loss of common DC progenitors and overproduction of Ly6C+ monocytes. We demonstrated that high, low or null expression of IRF8 in hematopoietic progenitor cells promotes differentiation toward type 1 conventional DCs, Ly6C+ monocytes or neutrophils, respectively, via epigenetic regulation of distinct sets of enhancers in cooperation with other transcription factors. Our results illustrate the mechanism through which IRF8 controls the lineage choice in a dose-dependent manner within the myeloid cell system.
Collapse
Affiliation(s)
- Koichi Murakami
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Haruka Sasaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Wataru Kawase
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Tatsuma Ban
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Jun Nakabayashi
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Satoko Kanzaki
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, Kanagawa, Japan
| | - Yoichi Sekita
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, Kanagawa, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, Kanagawa, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan.
| |
Collapse
|
41
|
Wang Z, Wu R, Nie Q, Bouchonville KJ, Diasio RB, Offer SM. Chromatin assembly factor 1 suppresses epigenetic reprogramming toward adaptive drug resistance. JOURNAL OF THE NATIONAL CANCER CENTER 2021; 1:15-22. [PMID: 39036786 PMCID: PMC11256593 DOI: 10.1016/j.jncc.2020.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
The long-term effectiveness of targeted cancer therapies is limited by the development of resistance. Although epigenetic reprogramming has been implicated in resistance, the mechanisms remain elusive. Herein, we demonstrate that increased chromatin accessibility is involved in adaptive BRAF inhibitor (BRAFi)-resistance in melanoma cells. We observed loss of chromatin assembly factor 1 (CAF-1) and its related histone H3 lysine 9 trimethylation (H3K9me3) with adaptive BRAFi resistance. We further showed that depletion of CAF-1 provides chromatin plasticity for effective reprogramming by AP1 components to promote BRAFi resistance. Our data suggest that therapeutic approaches to restore H3K9me3 levels may compensate for the loss of CAF-1 and, in turn, suppress resistance to BRAF inhibitors.
Collapse
Affiliation(s)
- Zhiquan Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rentian Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Nie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kelly J. Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
42
|
Madan V, Koeffler HP. Differentiation therapy of myeloid leukemia: four decades of development. Haematologica 2021; 106:26-38. [PMID: 33054125 PMCID: PMC7776344 DOI: 10.3324/haematol.2020.262121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia is characterized by arrested differentiation, and agents that overcome this block are therapeutically useful, as shown by the efficacy of all-trans retinoic acid in acute promyelocytic leukemia. However, the early promise of differentiation therapy did not translate into clinical benefit for other subtypes of acute myeloid leukemia, in which cytotoxic chemotherapeutic regimens remained the standard of care. Recent advances, including insights from sequencing of acute myeloid leukemia genomes, have led to the development of targeted therapies, comprising agents that induce differentiation of leukemic cells in preclinical models and clinical trials, thus rejuvenating interest in differentiation therapy. These agents act on various cellular processes including dysregulated metabolic programs, signaling pathways, epigenetic machinery and the cell cycle. In particular, inhibitors of mutant IDH1/2 and FLT3 have shown clinical benefit, leading to approval by regulatory bodies of their use. Besides the focus on recently approved differentiation therapies, this review also provides an overview of differentiation- inducing agents being tested in clinical trials or investigated in preclinical research. Combinatorial strategies are currently being tested for several agents (inhibitors of KDM1A, DOT1L, BET proteins, histone deacetylases), which were not effective in clinical studies as single agents, despite encouraging anti-leukemic activity observed in preclinical models. Overall, recently approved drugs and new investigational agents being developed highlight the merits of differentiation therapy; and ongoing studies promise further advances in the treatment of acute myeloid leukemia in the near future.
Collapse
Affiliation(s)
- Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore.
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore; Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA; Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital.
| |
Collapse
|
43
|
Agrawal P, Blinka S, Pulakanti K, Reimer MH, Stelloh C, Meyer AE, Rao S. Genome editing demonstrates that the -5 kb Nanog enhancer regulates Nanog expression by modulating RNAPII initiation and/or recruitment. J Biol Chem 2020; 296:100189. [PMID: 33334884 PMCID: PMC7948488 DOI: 10.1074/jbc.ra120.015152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
Transcriptional enhancers have been defined by their ability to operate independent of distance and orientation in plasmid-based reporter assays of gene expression. At present, histone marks are used to identify and define enhancers but do not consider the endogenous role of an enhancer in the context of native chromatin. We employed a combination of genomic editing, single cell analyses, and sequencing approaches to investigate a Nanog-associated cis-regulatory element, which has been reported by others to be either an alternative promoter or a super-enhancer. We first demonstrate both distance and orientation independence in native chromatin, eliminating the issues raised with plasmid-based approaches. We next demonstrate that the dominant super-enhancer modulates Nanog globally and operates by recruiting and/or initiating RNA Polymerase II. Our studies have important implications to how transcriptional enhancers are defined and how they regulate gene expression.
Collapse
Affiliation(s)
- Puja Agrawal
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Steven Blinka
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | | | | | - Cary Stelloh
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Alison E Meyer
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
44
|
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, posttransplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we found that CAF1 depletion triggered lytic reactivation and virion secretion from Burkitt cells, despite also strongly inducing interferon-stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1 and 3.3 and of repressive histone 3 lysine 9 and 27 trimethyl (H3K9me3 and H3K27me3) marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this time point. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A nonredundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader histone regulatory homologue A (HIRA). Since EBV latency also requires histone chaperones alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX) and death domain-associated protein (DAXX), EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches.IMPORTANCE Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, during which lytic cycle factors are silenced. This property complicated EBV's discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identified histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication-independent pathways, respectively, as important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlight targets for lytic induction therapeutic strategies.
Collapse
|
45
|
Fang C, Rao S, Crispino JD, Ntziachristos P. Determinants and role of chromatin organization in acute leukemia. Leukemia 2020; 34:2561-2575. [PMID: 32690881 PMCID: PMC7999176 DOI: 10.1038/s41375-020-0981-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies.
Collapse
Affiliation(s)
- Celestia Fang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
46
|
Laurent AP, Kotecha RS, Malinge S. Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with Down syndrome. Leukemia 2020; 34:1984-1999. [PMID: 32433508 PMCID: PMC7387246 DOI: 10.1038/s41375-020-0854-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Structural and numerical alterations of chromosome 21 are extremely common in hematological malignancies. While the functional impact of chimeric transcripts from fused chromosome 21 genes such as TEL-AML1, AML1-ETO, or FUS-ERG have been extensively studied, the role of gain of chromosome 21 remains largely unknown. Gain of chromosome 21 is a frequently occurring aberration in several types of acute leukemia and can be found in up to 35% of cases. Children with Down syndrome (DS), who harbor constitutive trisomy 21, highlight the link between gain of chromosome 21 and leukemogenesis, with an increased risk of developing acute leukemia compared with other children. Clinical outcomes for DS-associated leukemia have improved over the years through the development of uniform treatment protocols facilitated by international cooperative groups. The genetic landscape has also recently been characterized, providing an insight into the molecular pathogenesis underlying DS-associated leukemia. These studies emphasize the key role of trisomy 21 in priming a developmental stage and cellular context susceptible to transformation, and have unveiled its cooperative function with additional genetic events that occur during leukemia progression. Here, using DS-leukemia as a paradigm, we aim to integrate our current understanding of the role of trisomy 21, of critical dosage-sensitive chromosome 21 genes, and of associated mechanisms underlying the development of hematological malignancies. This review will pave the way for future investigations on the broad impact of gain of chromosome 21 in hematological cancer, with a view to discovering new vulnerabilities and develop novel targeted therapies to improve long term outcomes for DS and non-DS patients.
Collapse
Affiliation(s)
- Anouchka P Laurent
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
- Université Paris Diderot, Paris, France
| | - Rishi S Kotecha
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Clinical Haematology, Oncology and Bone Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France.
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
47
|
Cheng L, Zhang X, Wang Y, Gan H, Xu X, Lv X, Hua X, Que J, Ordog T, Zhang Z. Chromatin Assembly Factor 1 (CAF-1) facilitates the establishment of facultative heterochromatin during pluripotency exit. Nucleic Acids Res 2020; 47:11114-11131. [PMID: 31586391 PMCID: PMC6868363 DOI: 10.1093/nar/gkz858] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
Establishment and subsequent maintenance of distinct chromatin domains during embryonic stem cell (ESC) differentiation are crucial for lineage specification and cell fate determination. Here we show that the histone chaperone Chromatin Assembly Factor 1 (CAF-1), which is recruited to DNA replication forks through its interaction with proliferating cell nuclear antigen (PCNA) for nucleosome assembly, participates in the establishment of H3K27me3-mediated silencing during differentiation. Deletion of CAF-1 p150 subunit impairs the silencing of many genes including Oct4, Sox2 and Nanog as well as the establishment of H3K27me3 at these gene promoters during ESC differentiation. Mutations of PCNA residues involved in recruiting CAF-1 to the chromatin also result in defects in differentiation in vitro and impair early embryonic development as p150 deletion. Together, these results reveal that the CAF-1-PCNA nucleosome assembly pathway plays an important role in the establishment of H3K27me3-mediated silencing during cell fate determination.
Collapse
Affiliation(s)
- Liang Cheng
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Xu Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Yan Wang
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haiyun Gan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiaowei Xu
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiangdong Lv
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
48
|
Stewart-Morgan KR, Petryk N, Groth A. Chromatin replication and epigenetic cell memory. Nat Cell Biol 2020; 22:361-371. [PMID: 32231312 DOI: 10.1038/s41556-020-0487-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Propagation of the chromatin landscape across cell divisions is central to epigenetic cell memory. Mechanistic analysis of the interplay between DNA replication, the cell cycle, and the epigenome has provided insights into replication-coupled chromatin assembly and post-replicative chromatin maintenance. These breakthroughs are critical for defining how proliferation impacts the epigenome during cell identity changes in development and disease. Here we review these findings in the broader context of epigenetic inheritance across mitotic cell division.
Collapse
Affiliation(s)
- Kathleen R Stewart-Morgan
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nataliya Petryk
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Epigenetics and Cell Fate, UMR7216 CNRS, University of Paris, Paris, France
| | - Anja Groth
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark. .,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
Chromatin occupancy and epigenetic analysis reveal new insights into the function of the GATA1 N terminus in erythropoiesis. Blood 2020; 134:1619-1631. [PMID: 31409672 DOI: 10.1182/blood.2019001234] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in GATA1, which lead to expression of the GATA1s isoform that lacks the GATA1 N terminus, are seen in patients with Diamond-Blackfan anemia (DBA). In our efforts to better understand the connection between GATA1s and DBA, we comprehensively studied erythropoiesis in Gata1s mice. Defects in yolks sac and fetal liver hematopoiesis included impaired terminal maturation and reduced numbers of erythroid progenitors. RNA-sequencing revealed that both erythroid and megakaryocytic gene expression patterns were altered by the loss of the N terminus, including aberrant upregulation of Gata2 and Runx1. Dysregulation of global H3K27 methylation was found in the erythroid progenitors upon loss of N terminus of GATA1. Chromatin-binding assays revealed that, despite similar occupancy of GATA1 and GATA1s, there was a striking reduction of H3K27me3 at regulatory elements of the Gata2 and Runx1 genes. Consistent with the observation that overexpression of GATA2 has been reported to impair erythropoiesis, we found that haploinsufficiency of Gata2 rescued the erythroid defects of Gata1s fetuses. Together, our integrated genomic analysis of transcriptomic and epigenetic signatures reveals that, Gata1 mice provide novel insights into the role of the N terminus of GATA1 in transcriptional regulation and red blood cell maturation which may potentially be useful for DBA patients.
Collapse
|
50
|
Ntziachristos P. iAMPlified gene expression offers new insights in B cell precursor leukemia subtype. Leuk Lymphoma 2020; 61:501-503. [PMID: 32008406 DOI: 10.1080/10428194.2019.1695055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Simpson Querrey Center for Epigenetics, Chicago, IL, USA
| |
Collapse
|