1
|
Guo Z, Xu W, Wei D, Zheng S, Liu L, Cai Y. Functional analysis of a dirigent protein AtsDIR23 in Acorustatarinowii. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154098. [PMID: 37774564 DOI: 10.1016/j.jplph.2023.154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Acorus tatarinowii (A. tatarinowii) is a medicinal plant of the Araceae family. Currently, pharmacology focuses on the study of volatile oils, but there are few reports of another important secondary metabolite, lignan. Dirigent protein is thought to play an important role in plant secondary metabolism and responds to a variety of biotic and abiotic stresses. However, the DIR gene family of A. tatarinowii has not been systematically analyzed, and it is unknown whether it affects lignan synthesis. In this study, a total of 27 AtsDIRs were identified by comprehensive analysis of the genome of the medicinal plant A. tatarinowii, and the candidate gene AtsDIR23 that may be involved in lignan synthesis was screened through bioinformatics and transcriptome analysis. It is worth noting that AtsDIR23 is significantly expressed in rhizomes and is a member of the DIR-a subfamily. Subsequently, subcellular localization revealed that AtsDIR23 was localized in chloroplasts. The functional verification of AtsDIR23 b y the transient transformation of A. tatarinowii and the stable transformation of Arabidopsis thaliana showed that the content of lignans in overexpressed plants increased. Co-expression analysis screening revealed the MYB transcription factor (AtsMYB91) that is highly correlated with AtsDIR23 expression, while yeast one-hybrid assays and double luciferase experiments showed that AtsMYB91 negatively regulated the expression of AtsDIR23 b y binding to the AtsDIR23 promoter. In conclusion, AtsDIR23 can promote the accumulation of lignans, which provides a reference for further research on the regulation of lignans by DIR genes.
Collapse
Affiliation(s)
- Zihui Guo
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Dongyi Wei
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Siyan Zheng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Atukuri D, M R, M C, T A, Mujavar PH. Recent Update on the Pharmacological Significance of Isatis tinctoria L. (Brassicaceae) Extracts. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1886126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dorababu Atukuri
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | - Rashmi M
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | - Chandrashekhar M
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | - Afreen T
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | | |
Collapse
|
3
|
Wang L, Chen MH, Liu YF, Meng LJ, Guo QL, Shi JG. Lignans and a neolignan from an aqueous extract of Isatis indigotica roots. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 25:1-13. [PMID: 35749256 DOI: 10.1080/10286020.2022.2089979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Four new lignans (1-4) and one new neolignan (5), along with two known lignan derivatives (6 and 7), were isolated from an aqueous extract of the Isatis indigotica root (ban lan gen). Their structures were determined by spectroscopic data analysis, chemical method, and theoretical calculation, for which 1 was proved by single-crystal X-ray diffraction. Compound 2 exhibited antiviral activity against influenza virus A/Hanfang/359/95 (H3N2) with an IC50 value of 11.1 µM and a selective index (SI) > 9, while 1 and 5 are the first examples of sulfonated lignan and neolignan from nature.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming-Hua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-Feng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ling-Jie Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Wang L, Xu CB, Lei XQ, Guo QL, Shi JG. Sulfonated alkaloids from an aqueous extract of Isatis indigotica roots. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:503-517. [PMID: 35469506 DOI: 10.1080/10286020.2022.2064284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Eleven new sulfonated alkaloids (1 - 11) having diverse structures were isolated from an aqueous extract of the Isatis indigotica root (ban lan gen). Their structures were determined by spectroscopic data analysis, chemical method, and theoretical calculation, of which (-)-4 was proved by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Bo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Qiang Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Chen J, Zhu Z, Gao T, Chen Y, Yang Q, Fu C, Zhu Y, Wang F, Liao W. Isatidis Radix and Isatidis Folium: A systematic review on ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114648. [PMID: 34543684 DOI: 10.1016/j.jep.2021.114648] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Isatidis Radix (called Banlangen, BLG in Chinese) and Isatidis Folium (called Daqingye, DQY in Chinese) are common traditional edible-medicinal herbs in detoxifying for thousands of years, have been traditionally applied in traditional Chinese medicine for centuries. Both of them are bitter in taste, coolness in nature, acting on the heart and stomach channels. They are often used to treat influenza and other viral infectious diseases in clinic, as well as could treat fever, dizziness, and cough and sore throat caused by lung heat. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of BLG and DQY on the ethnopharmacology, phytochemistry, pharmacology, toxicity and clinical application to explore the therapeutic potential of them. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning BLG and DQY were gathered from the internet database of Google Scholar, PubMed, Baidu Scholar, GeenMedical, CNKI and Web of Science, as well as other relevant textbooks, reviews, and documents (e.g., Chinese Pharmacopoeia, 2020 edition, Chinese herbal classic books and PhD and MSc thesis, etc.). Among of them with the keywords including "Isatis indigotica" "Isatidis Radix", "Isatidis Folium", "phytochemistry", "pharmacology", "toxicology", "clinical application" etc. and their combinations. RESULTS To date, 39 Chinese patent medicines containing BLG and/or DQY have been developed on basis of the data of NMPA. Besides, 304 and 142 compounds have been found in BLG and DQY, respectively. The main chemical differences between BLG and DQY were concentrated on alkaloids and lignans, such as indican, indirubin, (R, S)-epigoitrin, 4(3H)-quinazolinone, clemastanin B and isatindigotindolines A-D. In 2020 Edition ChP, (R, S)-goitrin and indirubin are now used as the official marker to monitor the quality of BLG and DQY, respectively. Modern pharmacology has mainly studied some monomer components such as 4(3H)-quinazolinone, clemastanin B, erucic acid and adenosine, etc., all of which have shown good effects. These active compounds can resist various viruses, such as influenza virus, respiratory syncytial virus, herpes simplex virus, etc.. By regulating the level of immunity and a variety of inflammatory factors, inhibit the growth and reproduction of the virus. At the same time, it is worth noting that different components of BLG and DQY lead to BLG is more powerful in antiviral and immunomodulatory activity than DQY, while DQY possesses a higher intensity than BLG in anti-oxidant activity. CONCLUSION By collecting and collating a large number of literature and various data websites, we concluded that the common compounds are mainly alkaloids. Recent findings regarding the phytochemical and pharmacological properties of BLG and DQY have confirmed their traditional uses in antiviral, antibacterial and treatment immune diseases. Without doubt, their significant differences on ethnopharmacology, phytochemistry and pharmacology can be used as evidence of separate list of BLG and DQY. For shortcomings, some comprehensive studies should be well designed for further utilization of BLG and DQY.
Collapse
Affiliation(s)
- Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Tianhui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Qingsong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yaning Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Fang Wang
- Key Laboratory of Modern Preparation of Chinese Medicine Under Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
6
|
Chen Y, Xu C, Wang W, Wang X, Guo Q, Shi J. Phthalide-derived oxaspiroangelioic acids A–C with an unprecedented carbon skeleton from an aqueous extract of the Angelica sinensis root head. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Li RF, Zhu CG, Xu CB, Guo QL, Shi JG. Minor alkaloids from an aqueous extract of the hook-bearing stem of Uncaria rhynchophylla. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:513-526. [PMID: 33794715 DOI: 10.1080/10286020.2021.1906658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Seven new monoterpene alkaloids (1-7), along with 18 known analogues, were isolated from an aqueous decoction of the hook-bearing stems of Uncaria rhynchophylla (Gou-teng). Their structures were determined by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. Compound 1 is the first monoterpene 22-norindoloquinolizidine alkaloid with a ketene unit, while 2 and 3 are unusual indoloquinolizidine alkaloids having an oxazinane ring.[Formula: see text].
Collapse
Affiliation(s)
- Ruo-Fei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Bo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
(+)-/(−)-Angelignanine, a pair of neolignan enantiomers with an unprecedented carbon skeleton from an aqueous extract of the Angelica sinensis root head. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Li RF, Guo QL, Zhu CG, Xu CB, Wei YZ, Cai J, Wang Y, Sun H, Zhang TT, Shi JG. Minor triterpenes from an aqueous extract of the hook-bearing stem of Uncaria rhynchophylla. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:307-317. [PMID: 33506714 DOI: 10.1080/10286020.2020.1870961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Six new triterpenes, uncarinic acids KP (1-6), along with 24 known analogues, were isolated as minor constituents of an aqueous decoction of the hook-bearing stems of Uncaria rhynchophylla (Gou-teng). By comprehensive spectroscopic data analysis, their structures were elucidated as derivatives of olean-12-en-28-oic acid and urs-12-en-28-oic acid with different oxidized forms at C-3, C-6, and/or C-23, respectively. Cell-based preliminary bioassay showed that the (E)-/(Z)-coumaroyloxy and (E)-/(Z)-feruloyloxy units at C-27 of olean-12-en-28-oic acid and urs-12-en-28-oic acid played roles in their bioactivities.[Formula: see text].
Collapse
Affiliation(s)
- Ruo-Fei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Bo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Zi Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian Cai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hua Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Tai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
11
|
Wang Y, Zhang M, Zhou X, Xu C, Zhu C, Yuan Y, Chen N, Yang Y, Guo Q, Shi J. Insight into Medicinal Chemistry Behind Traditional Chinese Medicines: p-Hydroxybenzyl Alcohol-Derived Dimers and Trimers from Gastrodia elata. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:31-50. [PMID: 32761444 PMCID: PMC7933327 DOI: 10.1007/s13659-020-00258-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 05/02/2023]
Abstract
From an aqueous extract of "tian ma" (the steamed and dried rhizomes of Gastrodia elata), ten new compounds gastrodibenzins A-D (1-4) and gastrotribenzins A-F (5-10), along with known analogues (11-20), having structure features coupling between two and three p-hydroxybenzyl-derived units via carbon- and/or ether-bonds, were isolated and characterized by spectroscopic data analysis. Meanwhile, the new compounds 5a, 6a, 8a, 22, and 23, as well as the known derivatives 13a, 14a, 15, 17-21, 24, 25, and p-hydroxybenzyl aldehyde were isolated and identified from a refluxed aqueous solution of p-hydroxybenzyl alcohol. Methylation of 5a and 6a in methanol and ethylation of 6a, 8a, 13a, and 14a in ethanol produced 5 and 6 and 7, 8, 13, and 14, respectively. using ultra-performance liquid chromatography high-resolution electrospray ionization mass spectrometry (UPLC-HRESIMS) analysis of the refluxed solutions of p-hydroxybenzyl alcohol and the refluxed extracts of the fresh G. elata rhizome and "tian ma" extracts indicated consistent production and variation of the dimeric and trimeric derivatives of p-hydroxybenzyl alcohol upon extracting solvents and refluxing time. In various assays, the dimeric and trimeric derivatives showed more potent activities than p-hydroxybenzyl alcohol itself and gastrodin, which are the main known active constituents of "tian ma". These results revealed for the first time that the more effective dimers and trimers can be produced through condensation of the co-occurring p-hydroxybenzyl alcohol during processing and decocting of the G. elata rhizomes, demonstrating insights into medicinal chemistry behind application protocols of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Min Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Xue Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Chenggen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yongchun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
12
|
Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:115-176. [PMID: 33797642 DOI: 10.1007/978-3-030-64853-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secondary metabolites (SM) from organisms have served medicinal chemists over the past two centuries as an almost inexhaustible pool of new drugs, drug-like skeletons, and chemical probes that have been used in the "hunt" for new biologically active molecules with a "beneficial effect on human mind and body." Several secondary metabolites, or their derivatives, have been found to be the answer in the quest to search for new approaches to treat or even eradicate many types of diseases that oppress humanity. A special place among SM is occupied by lignans and neolignans. These phenolic compounds are generated biosynthetically via radical coupling of two phenylpropanoid monomers, and are known for their multitarget activity and low toxicity. The disadvantage of the relatively low specificity of phenylpropanoid-based SM turns into an advantage when structural modifications of these skeletons are made. Indeed, phenylpropanoid-based SM previously have proven to offer great potential as a starting point in drug development. Compounds such as Warfarin® (a coumarin-based anticoagulant) as well as etoposide and teniposide (podophyllotoxin-based anticancer drugs) are just a few examples. At the beginning of the third decade of the twenty-first century, the call for the treatment of more than a dozen rare or previously "neglected" diseases remains for various reasons unanswered. Leishmaniasis, a neglected disease that desperately needs new ways of treatment, is just one of these. This disease is caused by more than 20 leishmanial parasites that are pathogenic to humans and are spread by as many as 800 sandfly species across subtropical areas of the world. With continuing climate changes, the presence of Leishmania parasites and therefore leishmaniasis, the disease caused by these parasites, is spreading from previous locations to new areas. Thus, leishmaniasis is affecting each year a larger proportion of the world's population. The choice of appropriate leishmaniasis treatment depends on the severity of the disease and its form of manifestation. The success of current drug therapy is often limited, due in most cases to requiring long hospitalization periods (weeks to months) and the toxicity (side effects) of administered drugs, in addition to the increasing resistance of the parasites to treatment. It is thus important to develop new drugs and treatments that are less toxic, can overcome drug resistance, and require shorter periods of treatment. These aspects are especially important for the populations of developing countries. It was reported that several phenylpropanoid-based secondary metabolites manifest interesting antileishmanial activities and are used by various indigenous people to treat leishmaniasis. In this chapter, the authors shed some light on the various biological activities of phenylpropanoid natural products, with the main focus being on their possible applications in the context of antileishmanial treatment.
Collapse
|
13
|
Aconapelsulfonines A and B, seco C20-diterpenoid alkaloids deriving via Criegee rearrangements of napelline skeleton from Aconitum carmichaelii. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Babich O, Sukhikh S, Prosekov A, Asyakina L, Ivanova S. Medicinal Plants to Strengthen Immunity during a Pandemic. Pharmaceuticals (Basel) 2020; 13:E313. [PMID: 33076514 PMCID: PMC7602650 DOI: 10.3390/ph13100313] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The development of new effective anti-coronavirus drugs and therapies is important, but it requires significant human, financial and, most importantly, time expenditures. The current pandemic is neither the first nor the last. Humanity has already accumulated considerable survival experience. We cannot do without prevention and epidemiological protection measures. This study reviews medicinal plants that grow in Northeast Asia and whose antioxidant, antiviral, anti-inflammatory and immunomodulatory characteristics are already known, also in the framework of the prevention and treatment of pneumonia of various etiologies. The need for a comprehensive approach to maintaining immunodefences, including functional foods and positive emotions, is emphasized. In the period of pandemics, it is important to research various areas that allow to us accumulate a critical mass of information and cope with the next global disease.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Lyudmila Asyakina
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia
| |
Collapse
|
15
|
Guo Q, Xia H, Wu Y, Shao S, Xu C, Zhang T, Shi J. Structure, property, biogenesis, and activity of diterpenoid alkaloids containing a sulfonic acid group from Aconitum carmichaelii. Acta Pharm Sin B 2020; 10:1954-1965. [PMID: 33163346 PMCID: PMC7606178 DOI: 10.1016/j.apsb.2020.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Three new C20-diterpenoid alkaloids with a sulfonic acid unit, named aconicarmisulfonines B and C (1 and 2) and chuanfusulfonine A (3), respectively, were isolated from the Aconitum carmichaelii lateral roots ("fu zi" in Chinese). Structures of 1-3 were determined by spectroscopic data analysis. Intriguing chemical properties and reactions were observed for the C20-diterpenoid alkaloids: (a) specific selective nucleophilic addition of the carbonyl (C-12) in 1 with CD3OD; (b) interconversion between 1 and 2 in D2O; (c) stereo- and/or regioselective deuterations of H-11α in 1-3 and both H-11α and H-11β in aconicarmisulfonine A (4); (d) TMSP-2,2,3,3-d 4 promoted cleavage of the C-12-C-13 bond of 4 in D2O; (e) dehydrogenation of 4 in pyridine-d 5, and (f) Na2SO3-assisted dehydrogenation and N-deethylation of songorine (5, a putative precursor of 1-4). Biogenetically, 1 and 2 are correlated with 4, for which the same novel carbon skeleton is proposed to be derived from semipinacol rearrangements via migrations of C-13-C-16 and C-15-C-16 bonds of the napelline-type skeleton, respectively. Meanwhile, 3 is a highly possible precursor or a concurrent product in the biosynthetic pathways of 1, 2, and 4. In the acetic acid-induced mice writhing assay, at 1.0 mg/kg (i.p.), compounds 1, 2, 5, 5a, and 5b exhibited analgesic effects against mice writhing.
Collapse
Affiliation(s)
| | | | - Yuzhuo Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuai Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Xu ZY, Xi YF, Zhou WY, Lou LL, Wang XB, Huang XX, Song SJ. Alkaloids and monoterpenes from the leaves of Isatis tinctoria Linnaeus and their chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
HFIP-promoted catalyst-free cascade reactions for the synthesis of biologically relevant 3,3-di(indolyl)indolin-2-ones from indoles and isatins. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Bisindole alkaloids with nitric oxide inhibitory activities from an alcohol extract of the Isatis indigotica roots. Fitoterapia 2020; 146:104654. [PMID: 32502502 DOI: 10.1016/j.fitote.2020.104654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 11/24/2022]
Abstract
Eight bisindole alkaloids including six undescribed ones (1a/1b-5) were isolated from an alcohol extract of the Isatis indigotica roots. Their structures and absolute configurations were supported by extensive spectroscopic data analysis, including 1D, 2D NMR, HRESIMS data, specific rotation data, and comparison of the experimental and calculated ECD data. Compounds 1a and 1b were determined to be a pair of enantiomers with a ratio of approximately 1:1 by chiral-phase chromatography analysis while compound 4 was elucidated as a new type of bisindole alkaloid with the aglycone categorized as bis(indole-1'/3″-yl)methane. All the isolated compounds were tested for their nitric oxide (NO) inhibitory effects and 1-4 and 6 exhibited inhibitory effects with IC50 values ranging from 11.0 to 37.6 μM.
Collapse
|
19
|
Guo Q, Li D, Xu C, Zhu C, Guo Y, Yu H, Wang X, Shi J. Indole alkaloid glycosides with a 1'-(phenyl)ethyl unit from Isatis indigotica leaves. Acta Pharm Sin B 2020; 10:895-902. [PMID: 32528835 PMCID: PMC7280145 DOI: 10.1016/j.apsb.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Seven indole alkaloid glycosides containing a 1′-(4″-hydroxy-3″,5″-dimethoxyphenyl)ethyl unit (1–7) were isolated from an aqueous extract of Isatis indigotica leaves (da qing ye). Their structures were determined by spectroscopic data analysis combined with enzymatic hydrolysis as well as comparison of their experimental CD (circular dichroism) and calculated ECD (electrostatic circular dichroism) spectra. Based on analysis of [α]D20 and/or Cotton effect (CE) data of 1–7, two simple roles to assign location and/or configuration of β-glycopyranosyloxy and 1′-(phenyl)ethyl units in the indole alkaloid glycosides are proposed. Stereoselectivity in plausible biosynthetic pathways of 1–7 is discussed. Compounds 3 and 4 and their mixture in a 3:2 ratio showed activity against KCNQ2 in CHO cells. The mixture of 5 and 6 (3:2) exhibited antiviral activity against influenza virus H1N1 PR8 with IC50 64.7 μmol/L (ribavirin, IC50 54.3 μmol/L), however, the individual 5 or 6 was inactive. Preliminary structure–activity relationships were observed.
Collapse
|
20
|
Xu C, Xin Y, Chen M, Ba M, Guo Q, Zhu C, Guo Y, Shi J. Discovery, synthesis, and optimization of an N-alkoxy indolylacetamide against HIV-1 carrying NNRTI-resistant mutations from the Isatis indigotica root. Eur J Med Chem 2020; 189:112071. [PMID: 32004936 PMCID: PMC7111291 DOI: 10.1016/j.ejmech.2020.112071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
From an aqueous decoction of the traditional Chinese medicine "ban lan gen" (the Isatis indigotica root), an antiviral natural product CI - 39 was isolated as an NNRTI (non-nucleoside reverse transcriptase inhibitor) (EC50 = 3.40 μM). Its novel structure was determined as methyl (1-methoxy-1H-indol-3-yl)acetamidobenzoate by spectroscopic data and confirmed by single crystal X-ray diffraction. Through synthesis and structure-activity relationship (SAR) investigation of CI - 39 and 57 new derivatives (24 with EC50 values of 0.06-8.55 μM), two optimized derivatives 10f and 10i (EC50: 0.06 μM and 0.06 μM) having activity comparable to that of NVP (EC50 = 0.03 μM) were obtained. Further evaluation verified that 10f and 10i were RT DNA polymerase inhibitors and exhibited better activities and drug resistance folds compared to NVP against seven NNRTI-resistant strains carrying different mutations. Especially, 10i (EC50 = 0.43 μM) was more active to the L100I/K103N double-mutant strain as compared to both NVP (EC50 = 0.76 μM) and EFV (EC50 = 1.08 μM). The molecular docking demonstrated a possible binding pattern between 10i and RT and revealed activity mechanism of 10i against the NNRTI-resistant strains.
Collapse
Affiliation(s)
- Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yijing Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Minghua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingyu Ba
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chenggen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
21
|
Jiao WH, Xu QH, Cui J, Shang RY, Zhang Y, Sun JB, Yang Q, Liu KC, Lin HW. Spiroetherones A and B, sesquiterpene naphthoquinones, as angiogenesis inhibitors from the marine sponge Dysidea etheria. Org Chem Front 2020. [DOI: 10.1039/c9qo01346f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spiroetherones A (1) and B (2), a pair of sesquiterpene naphthoquinones with an unprecedented “spiroetherane” carbon skeleton, were isolated from the marine sponge Dysidea etheria collected from the South China Sea.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Research Center for Marine Drugs
- State Key Laboratory of Oncogene and Related Genes
- Ren Ji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Qi-Hang Xu
- Research Center for Marine Drugs
- State Key Laboratory of Oncogene and Related Genes
- Ren Ji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Jie Cui
- Research Center for Marine Drugs
- State Key Laboratory of Oncogene and Related Genes
- Ren Ji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Ru-Yi Shang
- Research Center for Marine Drugs
- State Key Laboratory of Oncogene and Related Genes
- Ren Ji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Yun Zhang
- Institute of Biology
- Qilu University of Technology
- Jinan
- China
| | - Jia-Bao Sun
- Research Center for Marine Drugs
- State Key Laboratory of Oncogene and Related Genes
- Ren Ji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Qi Yang
- Research Center for Marine Drugs
- State Key Laboratory of Oncogene and Related Genes
- Ren Ji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Ke-Chun Liu
- Institute of Biology
- Qilu University of Technology
- Jinan
- China
| | - Hou-Wen Lin
- Research Center for Marine Drugs
- State Key Laboratory of Oncogene and Related Genes
- Ren Ji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| |
Collapse
|
22
|
Lignans and Their Derivatives from Plants as Antivirals. Molecules 2020; 25:molecules25010183. [PMID: 31906391 PMCID: PMC6982783 DOI: 10.3390/molecules25010183] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Lignans are widely produced by various plant species; they are a class of natural products that share structural similarity. They usually contain a core scaffold that is formed by two or more phenylpropanoid units. Lignans possess diverse pharmacological properties, including their antiviral activities that have been reported in recent years. This review discusses the distribution of lignans in nature according to their structural classification, and it provides a comprehensive summary of their antiviral activities. Among them, two types of antiviral lignans—podophyllotoxin and bicyclol, which are used to treat venereal warts and chronic hepatitis B (CHB) in clinical, serve as examples of using lignans for antivirals—are discussed in some detail. Prospects of lignans in antiviral drug discovery are also discussed.
Collapse
|
23
|
Two folate-derived analogues from an aqueous decoction of Uncaria rhynchophylla. Chin J Nat Med 2019; 17:928-934. [DOI: 10.1016/s1875-5364(19)30115-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Indexed: 11/18/2022]
|
24
|
Xu CB, Guo QL, Wang YN, Lin S, Zhu CG, Shi JG. Gastrodin Derivatives from Gastrodia elata. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:393-404. [PMID: 31734866 PMCID: PMC6872707 DOI: 10.1007/s13659-019-00224-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 05/11/2023]
Abstract
Nine new gastrodin derivatives, including seven p-hydroxybenzyl-modified gastrodin ethers (1-7), 6'-O-acetylgastrodin (8), and 4-[α-D-glucopyranosyl-(1 →6)-β-D-glucopyranosyloxy]benzyl alcohol (9), together with seven known derivatives, were isolated from an aqueous extract of Gastrodia elata ("tian ma") rhizomes. Their structures were determined by spectroscopic and chemical methods as well as single crystal X-ray diffraction. Compounds 1-4, 7, 10, and 11 were also isolated from a reaction mixture by refluxing gastrodin and p-hydroxybenzyl alcohol in H2O. As both gastrodin and p-hydroxybenzyl alcohol exist in the plant, the reaction results provide evidence for the production and increase/decrease of potential effective/toxic components when "tian ma" is decocted solely or together with ingredients in Chinese traditional medicine formulations, though the isolates were inactive in the preliminarily cell-based assays at concentrations of 10 μM. Moreover, using ultra-performance liquid chromatography high-resolution electrospray ionization mass spectrometry (UPLC-HRESIMS), 4, 7, 10, and 11, as well as component variations, were detectable in the freshly prepared extracts of different types of samples, including the freeze-dried fresh G. elata rhizomes.
Collapse
Affiliation(s)
- Cheng-Bo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Sheng Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
25
|
Zhang D, Shi Y, Li J, Ruan D, Jia Q, Zhu W, Chen K, Li Y, Wang R. Alkaloids with Nitric Oxide Inhibitory Activities from the Roots of Isatis tinctoria. Molecules 2019; 24:molecules24224033. [PMID: 31703370 PMCID: PMC6891263 DOI: 10.3390/molecules24224033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
As our ongoing research project on Ban Lan Gen (Isatis tinctoria roots), a total of 23 alkaloids were obtained. Compounds 1 and 2 contain an unusual C–C bond between the 2(1H)-quinolinone moiety and the phenol moiety and between the 2(1H)-quinolinone moiety and the 1H-indole moiety, respectively. Compound 3 possesses an unusual carbon skeleton and its putative biosynthetic pathway was discussed, and Compound 23 was deduced as a new indole alkaloid glycoside. Compounds 4–7 were identified as four new natural products by extensive spectroscopic experiments. Additionally, the anti-inflammatory activity was assessed based on nitric oxide (NO) production using Lipopolysaccharide-stimulated RAW264.7 macrophages. Compounds 9, 15, and 17 showed inhibitory effects with IC50 values of 1.2, 5.0, and 74.4 μM.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
| | - Yanhong Shi
- Institute of TCM International Standardization of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Jingyi Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
| | - Deqing Ruan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
| | - Qi Jia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China;
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China;
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
- Correspondence: (Y.L.); (R.W.); Tel.: +86-21-5132-2191 (Y.L.); +86-21-5132-2181 (R.W.); Fax: +86-21-5132-2193 (Y.L. & R.W.)
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
- Correspondence: (Y.L.); (R.W.); Tel.: +86-21-5132-2191 (Y.L.); +86-21-5132-2181 (R.W.); Fax: +86-21-5132-2193 (Y.L. & R.W.)
| |
Collapse
|
26
|
Zhang D, Li J, Ruan D, Chen Z, Zhu W, Shi Y, Chen K, Li Y, Wang R. Lignans from Isatis indigotica roots and their inhibitory effects on nitric oxide production. Fitoterapia 2019; 137:104189. [DOI: 10.1016/j.fitote.2019.104189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/15/2022]
|
27
|
Wu Y, Shao S, Guo Q, Xu C, Xia H, Zhang T, Shi J. Aconicatisulfonines A and B, Analgesic Zwitterionic C20-Diterpenoid Alkaloids with a Rearranged Atisane Skeleton from Aconitum carmichaelii. Org Lett 2019; 21:6850-6854. [DOI: 10.1021/acs.orglett.9b02479] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuzhuo Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Shuai Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Huan Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| |
Collapse
|
28
|
Zhang D, Shi Y, Shi S, Wu X, Zhang L, Chen K, Li Y, Wang R. Isatisindigoticanine A, a novel indole alkaloid with an unpresented carbon skeleton from the roots of Isatis tinctoria. Nat Prod Res 2019; 35:1249-1255. [PMID: 31328551 DOI: 10.1080/14786419.2019.1644632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isatisindigoticanine A (1), a new indole alkaloid with an unusual carbon skeleton of a benzofuran-3-one unit connected with a 1H-indole-3-yl unit and a 4-(1,2-dihydroxyethyl)-6-oxa-3-azabicyclo[3.1.0]hexan-2-one unit via a C-3-C-8'' bond and a C-4'-C-8'' bond, was obtained from the roots of Isatis tinctoria. Its structure was determined by physicochemical properties and spectroscopic methods including 1 D, 2 D NMR, IR, HRESIMS data. The absolutely configurations were deduced by comparison of its experimental CD and calculated ECD spectra. Nitric oxide (NO) inhibitory activities of isatisindigoticanine A was also evaluated in the LPS-stimulated RAW 264.7 cells, however, no inhibitory effect was presented.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhong Shi
- Institute of TCM International Standardization of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ximin Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Shen Z, Pi C, Cui X, Wu Y. Rhodium(III)-catalyzed intermolecular cyclization of anilines with sulfoxonium ylides toward indoles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Zálešák F, Bon DJYD, Pospíšil J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res 2019; 146:104284. [PMID: 31136813 DOI: 10.1016/j.phrs.2019.104284] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
Lignans and neolignans are plant secondary metabolites derived from the oxidative coupling of phenylpropanoids. Biological activity of these phenolic compounds ranges from antioxidant, antitumor (terminaloside P, IC50 = 10 nM), anti-inflammatory, anti-neurodegenerative (schibitubin B, IC50 = 3.2 nM) and antiviral (patentiflorin A, IC50 = 14-23 nM) to antimicrobial. In addition, it was observed that several members of this group, namely enterolactone and its biochemical precursors also known as phytoestrogens, possess important protective properties. Most of these lignans and neolignans are presented in reasonable amounts in one's diet and thus the protection they provide against the colon and breast cancer, to name a few, is even more important to note. Similarly, neuroprotective properties were observed (schisanwilsonin G, IC50 = 3.2 nM) These structural motives also serve as an important starting point in the development of anticancer drugs. Presumably the most famous members of this family, etoposide and teniposide, synthetic derivatives of podophyllotoxin, are used in the clinical treatment of lymphocytic leukemia, certain brain tumors, and lung tumors already for nearly 20 years. This review describes 413 lignans and neolignans which have been isolated between 2016 and mid-2018 being reported in more than 300 peer-reviewed articles. It covers their source, structure elucidation, and bioactivity. Within the review, the structure-based overview of compounds as well as the bioactivity-based overview of compounds are described.
Collapse
Affiliation(s)
- František Zálešák
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.
| | - David Jean-Yves Denis Bon
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.
| | - Jiří Pospíšil
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
31
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2018; 35:1024-1028. [PMID: 30209473 DOI: 10.1039/c8np90032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as huperphlegmine A from Huperzia phlegmaria.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|