1
|
Archer M, Lin KM, Kolanukuduru KP, Zhang J, Ben-David R, Kotula L, Kyprianou N. Impact of cell plasticity on prostate tumor heterogeneity and therapeutic response. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:331-351. [PMID: 39839748 PMCID: PMC11744350 DOI: 10.62347/yfrp8901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process of lineage plasticity in which epithelial cancer cells acquire mesenchymal traits, enabling them to metastasize to distant organs. This review explores the current understanding of how lineage plasticity and phenotypic reprogramming drive prostate cancer progression to lethal stages, contribute to therapeutic resistance, and highlight strategies to overcome the EMT phenotype within the prostate tumor microenvironment (TME). Emerging evidence reveals that prostate tumor cells can undergo lineage switching, adopting alternative growth pathways in response to anti-androgen therapies and taxane-based chemotherapy. These adaptive mechanisms support tumor survival and growth, underscoring the need for deeper insights into the processes driving prostate cancer differentiation, including neuroendocrine differentiation and lineage plasticity. A comprehensive understanding of these mechanisms will pave the way for innovative therapeutic strategies. Effectively targeting prostate cancer cells with heightened plasticity and therapeutic vulnerability holds promise for overcoming treatment resistance and preventing tumor recurrence. Such advancements are critical for developing effective approaches to prostate cancer treatment and improving patient survival outcomes.
Collapse
Affiliation(s)
- Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Kevin M Lin
- Department of Urology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical UniversitySyracuse, NY, USA
| | | | - Joy Zhang
- Department of Urology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, NY, USA
| | - Reuben Ben-David
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical UniversitySyracuse, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Pathology and Molecular & Cell Based Medicine, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| |
Collapse
|
2
|
Pakula H, Pederzoli F, Fanelli GN, Nuzzo PV, Rodrigues S, Loda M. Deciphering the Tumor Microenvironment in Prostate Cancer: A Focus on the Stromal Component. Cancers (Basel) 2024; 16:3685. [PMID: 39518123 PMCID: PMC11544791 DOI: 10.3390/cancers16213685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer progression is significantly affected by its tumor microenvironment, in which mesenchymal cells play a crucial role. Stromal cells are modified by cancer mutations, response to androgens, and lineage plasticity, and in turn, engage with epithelial tumor cells via a complex array of signaling pathways and ligand-receptor interactions, ultimately affecting tumor growth, immune interaction, and response to therapy. The metabolic rewiring and interplay in the microenvironment play an additional role in affecting the growth and progression of prostate cancer. Finally, therapeutic strategies and novel clinical trials with agents that target the stromal microenvironment or disrupt the interaction between cellular compartments are described. This review underscores cancer-associated fibroblasts as essential contributors to prostate cancer biology, emphasizing their potential as prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA 02215, USA
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
3
|
Gnagni L, Ruscito I, Zizzari IG, Nuti M, Napoletano C, Rughetti A. Precision oncology targeting FGFRs: A systematic review on pre-clinical activity and clinical outcomes of pemigatinib. Crit Rev Oncol Hematol 2024; 202:104464. [PMID: 39094670 DOI: 10.1016/j.critrevonc.2024.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
Fibroblast Growth Factor Receptors (FGFRs) are emerging as key factors involved in tumorigenesis, tumor microenvironment remodeling and acquired resistance to targeted therapies. Pemigatinib is a Tyrosine-Kinase Inhibitor that selectively targets aberrant FGFR1, FGFR2 and FGFR3. Pemigatinib is now approved for advanced-stage cholangiocarcinoma (CCA) but data suggests that other tumor histotypes exhibit FGFR alterations, thus hypothesizing its potential efficacy in other cancer settings. The present systematic review, based on PRISMA guidelines, aims to synthetize and critically interpret the results of all available preclinical and clinical evidence regarding Pemigatinib use in cancer. In April 2024, an extensive search was performed in PubMed, MEDLINE, and Scopus databases using the keyword "Pemigatinib". Twenty-seven studies finally met all inclusion criteria. The promising results emerging from Pemigatinib preclinical and clinical studies pave the way for Pemigatinib extension to multiple solid cancer settings.
Collapse
Affiliation(s)
- Ludovica Gnagni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, Rome 324 -00161, Italy
| | - Ilary Ruscito
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, Rome 324 -00161, Italy.
| | - Ilaria Grazia Zizzari
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, Rome 324 -00161, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, Rome 324 -00161, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, Rome 324 -00161, Italy.
| | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, Rome 324 -00161, Italy
| |
Collapse
|
4
|
Ni X, Wei Y, Li X, Pan J, Fang B, Zhang T, Lu Y, Ye D, Zhu Y. From biology to the clinic - exploring liver metastasis in prostate cancer. Nat Rev Urol 2024; 21:593-614. [PMID: 38671281 DOI: 10.1038/s41585-024-00875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Liver metastases from prostate cancer are associated with an aggressive disease course and poor prognosis. Results from autopsy studies indicate a liver metastasis prevalence of up to 25% in patients with advanced prostate cancer. Population data estimate that ~3-10% of patients with metastatic castration-resistant prostate cancer harbour liver metastases at the baseline, rising to 20-30% in post-treatment cohorts, suggesting that selective pressure imposed by novel therapies might promote metastatic spread to the liver. Liver metastases are associated with more aggressive tumour biology than lung metastases. Molecular profiling of liver lesions showed an enrichment of low androgen receptor, neuroendocrine phenotypes and high genomic instability. Despite advancements in molecular imaging modalities such as prostate-specific membrane antigen PET-CT, and liquid biopsy markers such as circulating tumour DNA, early detection of liver metastases from prostate cancer remains challenging, as both approaches are hampered by false positive and false negative results, impeding the accurate identification of early liver lesions. Current therapeutic strategies showed limited efficacy in this patient population. Emerging targeted radionuclide therapies, metastasis-directed therapy, and novel systemic agents have shown preliminary activity against liver metastases, but require further validation. Treatment with various novel prostate cancer therapies might lead to an increase in the prevalence of liver metastasis, underscoring the urgent need for coordinated efforts across preclinical and clinical researchers to improve characterization, monitoring, and management of liver metastases from prostate cancer. Elucidating molecular drivers of liver tropism and interactions with the liver microenvironment might ultimately help to identify actionable targets to enhance survival in this high-risk patient group.
Collapse
Affiliation(s)
- Xudong Ni
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
| |
Collapse
|
5
|
Zhang B, Liu M, Mai F, Li X, Wang W, Huang Q, Du X, Ding W, Li Y, Barwick BG, Ni JJ, Osunkoya AO, Chen Y, Zhou W, Xia S, Dong JT. Interruption of KLF5 acetylation promotes PTEN-deficient prostate cancer progression by reprogramming cancer-associated fibroblasts. J Clin Invest 2024; 134:e175949. [PMID: 38781024 PMCID: PMC11245161 DOI: 10.1172/jci175949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Inactivation of phosphatase and tensin homolog (PTEN) is prevalent in human prostate cancer and causes high-grade adenocarcinoma with a long latency. Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor progression, but it remains elusive whether and how PTEN-deficient prostate cancers reprogram CAFs to overcome the barriers for tumor progression. Here, we report that PTEN deficiency induced Krüppel-like factor 5 (KLF5) acetylation and that interruption of KLF5 acetylation orchestrated intricate interactions between cancer cells and CAFs that enhance FGF receptor 1 (FGFR1) signaling and promote tumor growth. Deacetylated KLF5 promoted tumor cells to secrete TNF-α, which stimulated inflammatory CAFs to release FGF9. CX3CR1 inhibition blocked FGFR1 activation triggered by FGF9 and sensitized PTEN-deficient prostate cancer to the AKT inhibitor capivasertib. This study reveals the role of KLF5 acetylation in reprogramming CAFs and provides a rationale for combined therapies using inhibitors of AKT and CX3CR1.
Collapse
Affiliation(s)
- Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Fengyi Mai
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiawei Li
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Inner Mongolia Institute of Quality and Standardization, Inner Mongolia Administration for Market Regulation, Hohhot, China
| | - Wenzhou Wang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Qingqing Huang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiancai Du
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Weijian Ding
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jianping Jenny Ni
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Adeboye O. Osunkoya
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Departments of Pathology and Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Zhang Z, Chen W, Sun M, Aalders T, Verhaegh GW, Kouwer PHJ. TempEasy 3D Hydrogel Coculture System Provides Mechanistic Insights into Prostate Cancer Bone Metastasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25773-25787. [PMID: 38739686 PMCID: PMC11129143 DOI: 10.1021/acsami.4c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Patients diagnosed with advanced prostate cancer (PCa) often experience incurable bone metastases; however, a lack of relevant experimental models has hampered the study of disease mechanisms and the development of therapeutic strategies. In this study, we employed the recently established Temperature-based Easy-separable (TempEasy) 3D cell coculture system to investigate PCa bone metastasis. Through coculturing PCa and bone cells for 7 days, our results showed a reduction in PCa cell proliferation, an increase in neovascularization, and an enhanced metastasis potential when cocultured with bone cells. Additionally, we observed increased cell proliferation, higher stemness, and decreased bone matrix protein expression in bone cells when cocultured with PCa cells. Furthermore, we demonstrated that the stiffness of the extracellular matrix had a negligible impact on molecular responses in both primary (PCa cells) and distant malignant (bone cells) sites. The TempEasy 3D hydrogel coculture system is an easy-to-use and versatile coculture system that provides valuable insights into the mechanisms of cell-cell communication and interaction in cancer metastasis.
Collapse
Affiliation(s)
- Zhaobao Zhang
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Wen Chen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Mingchen Sun
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Tilly Aalders
- Department
of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, The Netherlands
| | - Gerald W. Verhaegh
- Department
of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, The Netherlands
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
7
|
Trogisch FA, Abouissa A, Keles M, Birke A, Fuhrmann M, Dittrich GM, Weinzierl N, Wink E, Cordero J, Elsherbiny A, Martin-Garrido A, Grein S, Hemanna S, Hofmann E, Nicin L, Bibli SI, Airik R, Kispert A, Kist R, Quanchao S, Kürschner SW, Winkler M, Gretz N, Mogler C, Korff T, Koch PS, Dimmeler S, Dobreva G, Heineke J. Endothelial cells drive organ fibrosis in mice by inducing expression of the transcription factor SOX9. Sci Transl Med 2024; 16:eabq4581. [PMID: 38416842 DOI: 10.1126/scitranslmed.abq4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.
Collapse
Affiliation(s)
- Felix A Trogisch
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Aya Abouissa
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Merve Keles
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Anne Birke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Manuela Fuhrmann
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Gesine M Dittrich
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Nina Weinzierl
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Elvira Wink
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Julio Cordero
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Adel Elsherbiny
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Abel Martin-Garrido
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Steve Grein
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Shruthi Hemanna
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Ellen Hofmann
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Luka Nicin
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
- Institute of Vascular Signaling, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Rannar Airik
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Ralf Kist
- School of Dental Sciences, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Sun Quanchao
- Medical Research Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Sina W Kürschner
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Korff
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
| | - Gergana Dobreva
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Joerg Heineke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Zhang W, Huang Z, Xiao Z, Wang H, Liao Q, Deng Z, Wu D, Wang J, Li Y. NF-κB downstream miR-1262 disturbs colon cancer cell malignant behaviors by targeting FGFR1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1819-1832. [PMID: 37867436 PMCID: PMC10686795 DOI: 10.3724/abbs.2023235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/23/2023] [Indexed: 10/24/2023] Open
Abstract
Despite substantial advancements in screening, surgery, and chemotherapy, colorectal cancer remains the second most lethal form of the disease. Nuclear factor kappa B (NF-κB) signaling is a critical driver facilitating the malignant transformation of chronic inflammatory bowel diseases. In this study, deregulated miRNAs that could play a role in colon cancer are analyzed and investigated for specific functions in vitro using cancer cells and in vivo using a subcutaneous xenograft model. miRNA downstream targets are analyzed, and predicted binding and regulation are verified. miR-1262, an antitumor miRNA, is downregulated in colon cancer tissue samples and cell lines. miR-1262 overexpression suppresses colon cancer malignant behaviors in vitro and tumor development and metastasis in a subcutaneous xenograft model and a lung metastasis mouse model in vivo. miR-1262 directly targets fibroblast growth factor receptor 1 (FGFR1) and inhibits FGFR1 expression. FGFR1 overexpression shows oncogenic functions through the regulation of cancer cell proliferation, invasion, and migration; when cotransfected, lv-FGFR1 partially attenuates the antitumor effects of agomir-1262. NF-κB binds to the miR-1262 promoter region and inhibits transcription activity. The NF-κB inhibitor CAPE exerts antitumor effects; miR-1262 inhibition partially reverses CAPE effects on colon cancer cells. Conclusively, miR-1262 serves as an antitumor miRNA in colon cancer by targeting FGFR1. The NF-κB/miR-1262/FGFR1 axis modulates colon cancer cell phenotypes, including proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Weilin Zhang
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Zhongcheng Huang
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Zhigang Xiao
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Hui Wang
- Department of Cardiovascular MedicineHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Qianchao Liao
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zhengru Deng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Deqing Wu
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Junjiang Wang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Yong Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| |
Collapse
|
9
|
Li H, Zhang R, Min Y, Ma D, Zhao D, Zeng J. A knowledge-guided pre-training framework for improving molecular representation learning. Nat Commun 2023; 14:7568. [PMID: 37989998 PMCID: PMC10663446 DOI: 10.1038/s41467-023-43214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
Learning effective molecular feature representation to facilitate molecular property prediction is of great significance for drug discovery. Recently, there has been a surge of interest in pre-training graph neural networks (GNNs) via self-supervised learning techniques to overcome the challenge of data scarcity in molecular property prediction. However, current self-supervised learning-based methods suffer from two main obstacles: the lack of a well-defined self-supervised learning strategy and the limited capacity of GNNs. Here, we propose Knowledge-guided Pre-training of Graph Transformer (KPGT), a self-supervised learning framework to alleviate the aforementioned issues and provide generalizable and robust molecular representations. The KPGT framework integrates a graph transformer specifically designed for molecular graphs and a knowledge-guided pre-training strategy, to fully capture both structural and semantic knowledge of molecules. Through extensive computational tests on 63 datasets, KPGT exhibits superior performance in predicting molecular properties across various domains. Moreover, the practical applicability of KPGT in drug discovery has been validated by identifying potential inhibitors of two antitumor targets: hematopoietic progenitor kinase 1 (HPK1) and fibroblast growth factor receptor 1 (FGFR1). Overall, KPGT can provide a powerful and useful tool for advancing the artificial intelligence (AI)-aided drug discovery process.
Collapse
Affiliation(s)
- Han Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Ruotian Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Yaosen Min
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Dacheng Ma
- Research Center for Biological Computation, Zhejiang Province, Zhejiang Laboratory, 311100, Hangzhou, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
- School of Engineering, Westlake University, Zhejiang Province, 310030, Hangzhou, China.
| |
Collapse
|
10
|
Sircar A, Singh S, Xu-Monette ZY, Coyle KM, Hilton LK, Chavdoula E, Ranganathan P, Jain N, Hanel W, Tsichlis P, Alinari L, Peterson BR, Tao J, Muthusamy N, Baiocchi R, Epperla N, Young KH, Morin R, Sehgal L. Exploiting the fibroblast growth factor receptor-1 vulnerability to therapeutically restrict the MYC-EZH2-CDKN1C axis-driven proliferation in Mantle cell lymphoma. Leukemia 2023; 37:2094-2106. [PMID: 37598282 PMCID: PMC10539170 DOI: 10.1038/s41375-023-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
Mantle cell lymphoma (MCL) is a lethal hematological malignancy with a median survival of 4 years. Its lethality is mainly attributed to a limited understanding of clinical tumor progression and resistance to current therapeutic regimes. Intrinsic, prolonged drug treatment and tumor-microenvironment (TME) facilitated factors impart pro-tumorigenic and drug-insensitivity properties to MCL cells. Hence, elucidating neoteric pharmacotherapeutic molecular targets involved in MCL progression utilizing a global "unified" analysis for improved disease prevention is an earnest need. Using integrated transcriptomic analyses in MCL patients, we identified a Fibroblast Growth Factor Receptor-1 (FGFR1), and analyses of MCL patient samples showed that high FGFR1 expression was associated with shorter overall survival in MCL patient cohorts. Functional studies using pharmacological intervention and loss of function identify a novel MYC-EZH2-CDKN1C axis-driven proliferation in MCL. Further, pharmacological targeting with erdafitinib, a selective small molecule targeting FGFRs, induced cell-cycle arrest and cell death in-vitro, inhibited tumor progression, and improved overall survival in-vivo. We performed extensive pre-clinical assessments in multiple in-vivo model systems to confirm the therapeutic potential of erdafitinib in MCL and demonstrated FGFR1 as a viable therapeutic target in MCL.
Collapse
Affiliation(s)
- Anuvrat Sircar
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Satishkumar Singh
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Krysta Mila Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Evangelia Chavdoula
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Parvathi Ranganathan
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Walter Hanel
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip Tsichlis
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Lapo Alinari
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Blake R Peterson
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jianguo Tao
- Division of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Natarajan Muthusamy
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Robert Baiocchi
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Narendranath Epperla
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Durham, NC, USA
| | - Ryan Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, BC, Canada
| | - Lalit Sehgal
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
11
|
Feng D, Wang J, Shi X, Li D, Wei W, Han P. Membrane tension-mediated stiff and soft tumor subtypes closely associated with prognosis for prostate cancer patients. Eur J Med Res 2023; 28:172. [PMID: 37179366 PMCID: PMC10182623 DOI: 10.1186/s40001-023-01132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is usually considered as cold tumor. Malignancy is associated with cell mechanic changes that contribute to extensive cell deformation required for metastatic dissemination. Thus, we established stiff and soft tumor subtypes for PCa patients from perspective of membrane tension. METHODS Nonnegative matrix factorization algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable packages. RESULTS We constructed stiff and soft tumor subtypes using eight membrane tension-related genes through lasso regression and nonnegative matrix factorization analyses. We found that patients in stiff subtype were more prone to biochemical recurrence than those in soft subtype (HR 16.18; p < 0.001), which was externally validated in other three cohorts. The top ten mutation genes between stiff and soft subtypes were DNAH, NYNRIN, PTCHD4, WNK1, ARFGEF1, HRAS, ARHGEF2, MYOM1, ITGB6 and CPS1. E2F targets, base excision repair and notch signaling pathway were highly enriched in stiff subtype. Stiff subtype had significantly higher TMB and T cells follicular helper levels than soft subtype, as well as CTLA4, CD276, CD47 and TNFRSF25. CONCLUSIONS From the perspective of cell membrane tension, we found that stiff and soft tumor subtypes were closely associated with BCR-free survival for PCa patients, which might be important for the future research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Gogola S, Rejzer M, Bahmad HF, Abou-Kheir W, Omarzai Y, Poppiti R. Epithelial-to-Mesenchymal Transition-Related Markers in Prostate Cancer: From Bench to Bedside. Cancers (Basel) 2023; 15:cancers15082309. [PMID: 37190236 DOI: 10.3390/cancers15082309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men worldwide, with 288,300 new cases and 34,700 deaths estimated in the United States in 2023. Treatment options for early-stage disease include external beam radiation therapy, brachytherapy, radical prostatectomy, active surveillance, or a combination of these. In advanced cases, androgen-deprivation therapy (ADT) is considered the first-line therapy; however, PCa in most patients eventually progresses to castration-resistant prostate cancer (CRPC) despite ADT. Nonetheless, the transition from androgen-dependent to androgen-independent tumors is not yet fully understood. The physiological processes of epithelial-to-non-epithelial ("mesenchymal") transition (EMT) and mesenchymal-to-epithelial transition (MET) are essential for normal embryonic development; however, they have also been linked to higher tumor grade, metastatic progression, and treatment resistance. Due to this association, EMT and MET have been identified as important targets for novel cancer therapies, including CRPC. Here, we discuss the transcriptional factors and signaling pathways involved in EMT, in addition to the diagnostic and prognostic biomarkers that have been identified in these processes. We also tackle the various studies that have been conducted from bench to bedside and the current landscape of EMT-targeted therapies.
Collapse
Affiliation(s)
- Samantha Gogola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael Rejzer
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hisham F Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Yumna Omarzai
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
13
|
Fontugne J, Wong J, Cabel L, Neyret-Kahn H, Karboul N, Maillé P, Rapinat A, Gentien D, Nicolas A, Baulande S, Sibony M, Bernard-Pierrot I, Radvanyi F, Allory Y. Progression-associated molecular changes in basal/squamous and sarcomatoid bladder carcinogenesis. J Pathol 2023; 259:455-467. [PMID: 36695554 DOI: 10.1002/path.6060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The aggressive basal/squamous (Ba/Sq) bladder cancer (BLCA) subtype is often diagnosed at the muscle-invasive stage and can progress to the sarcomatoid variant. Identification of molecular changes occurring during progression from non-muscle-invasive BLCA (NMIBC) to Ba/Sq muscle-invasive BLCA (MIBC) is thus challenging in human disease. We used the N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) mouse model of Ba/Sq MIBC to study longitudinally the molecular changes leading to the Ba/Sq phenotype and to the sarcomatoid variant using IHC and microdissection followed by RNA-seq at all stages of progression. A shift to the Ba/Sq phenotype started in early progression stages. Pathway analysis of gene clusters with coordinated expression changes revealed Shh signaling loss and a shift from fatty acid metabolism to glycolysis. An upregulated cluster, appearing early in carcinogenesis, showed relevance to human disease, identifying NMIBC patients at risk of progression. Similar to the human counterpart, sarcomatoid BBN tumors displayed a Ba/Sq phenotype and epithelial-mesenchymal transition (EMT) features. An EGFR/FGFR1 signaling switch occurred with sarcomatoid dedifferentiation and correlated with EMT. BLCA cell lines with high EMT were the most sensitive to FGFR1 knockout and resistant to EGFR knockout. Taken together, these findings provide insights into the underlying biology of Ba/Sq BLCA progression and sarcomatoid dedifferentiation with potential clinical implications. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jacqueline Fontugne
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France.,Department of Pathology, Institut Curie, Saint-Cloud, France.,Université Paris-Saclay, Université Versailles St-Quentin, Montigny-le-Bretonneux, France
| | - Jennifer Wong
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France.,Department of Genetics, Institut Curie, Paris, France
| | - Luc Cabel
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - Hélène Neyret-Kahn
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - Narjesse Karboul
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - Pascale Maillé
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Audrey Rapinat
- Genomics Core Facility, Translational Research Department, PSL Research University, Institut Curie, Paris, France
| | - David Gentien
- Genomics Core Facility, Translational Research Department, PSL Research University, Institut Curie, Paris, France
| | - André Nicolas
- Department of Pathology, Institut Curie, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie, PSL Research University, Paris, France
| | | | - Isabelle Bernard-Pierrot
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - François Radvanyi
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - Yves Allory
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France.,Department of Pathology, Institut Curie, Saint-Cloud, France.,Université Paris-Saclay, Université Versailles St-Quentin, Montigny-le-Bretonneux, France
| |
Collapse
|
14
|
Sailer V, von Amsberg G, Duensing S, Kirfel J, Lieb V, Metzger E, Offermann A, Pantel K, Schuele R, Taubert H, Wach S, Perner S, Werner S, Aigner A. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol 2023; 20:158-178. [PMID: 36451039 DOI: 10.1038/s41585-022-00677-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/02/2022]
Abstract
Androgen deprivation therapy has a central role in the treatment of advanced prostate cancer, often causing initial tumour remission before increasing independence from signal transduction mechanisms of the androgen receptor and then eventual disease progression. Novel treatment approaches are urgently needed, but only a fraction of promising drug candidates from the laboratory will eventually reach clinical approval, highlighting the demand for critical assessment of current preclinical models. Such models include standard, genetically modified and patient-derived cell lines, spheroid and organoid culture models, scaffold and hydrogel cultures, tissue slices, tumour xenograft models, patient-derived xenograft and circulating tumour cell eXplant models as well as transgenic and knockout mouse models. These models need to account for inter-patient and intra-patient heterogeneity, the acquisition of primary or secondary resistance, the interaction of tumour cells with their microenvironment, which make crucial contributions to tumour progression and resistance, as well as the effects of the 3D tissue network on drug penetration, bioavailability and efficacy.
Collapse
Affiliation(s)
- Verena Sailer
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gunhild von Amsberg
- Department of Oncology and Hematology, University Cancer Center Hamburg Eppendorf and Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University Hospital Heidelberg and National Center for Tumour Diseases, Heidelberg, Germany
| | - Jutta Kirfel
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Verena Lieb
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Eric Metzger
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Anne Offermann
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Klaus Pantel
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Roland Schuele
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Helge Taubert
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Perner
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Werner
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Medical Faculty, Leipzig, Germany.
| |
Collapse
|
15
|
Extracellular Vesicles' Genetic Cargo as Noninvasive Biomarkers in Cancer: A Pilot Study Using ExoGAG Technology. Biomedicines 2023; 11:biomedicines11020404. [PMID: 36830940 PMCID: PMC9953104 DOI: 10.3390/biomedicines11020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The two most developed biomarkers in liquid biopsy (LB)-circulating tumor cells and circulating tumor DNA-have been joined by the analysis of extracellular vesicles (EVs). EVs are lipid-bilayer enclosed structures released by all cell types containing a variety of molecules, including DNA, mRNA and miRNA. However, fast, efficient and a high degree of purity isolation technologies are necessary for their clinical routine implementation. In this work, the use of ExoGAG, a new easy-to-use EV isolation technology, was validated for the isolation of EVs from plasma and urine samples. After demonstrating its efficiency, an analysis of the genetic material contained in the EVs was carried out. Firstly, the sensitivity of the detection of point mutations in DNA from plasma EVs isolated by ExoGAG was analyzed. Then, a pilot study of mRNA expression using the nCounter NanoString platform in EV-mRNA from a healthy donor, a benign prostate hyperplasia patient and metastatic prostate cancer patient plasma and urine samples was performed, identifying the prostate cancer pathway as one of the main ones. This work provides evidence for the value of using ExoGAG for the isolation of EVs from plasma and urine samples, enabling downstream applications of the analysis of their genetic cargo.
Collapse
|
16
|
Neumayer C, Ng D, Jiang CS, Qureshi A, Lalazar G, Vaughan R, Simon SM. Oncogenic Addiction of Fibrolamellar Hepatocellular Carcinoma to the Fusion Kinase DNAJB1-PRKACA. Clin Cancer Res 2023; 29:271-278. [PMID: 36302174 PMCID: PMC9811160 DOI: 10.1158/1078-0432.ccr-22-1851] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Gene fusions are drivers of many pediatric tumors. In fibrolamellar hepatocellular carcinoma (FLC), a fusion of DNAJB1 and PRKACA is the dominant recurrent mutation. Expression of the DNAJB1-PRKACA fusion gene in mice results in a tumor that recapitulates FLC. However, it is not known whether transient expression of DNAJB1-PRKACA is sufficient only to trigger tumor formation or whether ongoing expression is necessary for maintenance and progression. EXPERIMENTAL DESIGN We screened short hairpin RNAs (shRNA) tiled over the fusion junction and identified several potent and specific candidates in vitro and two independent FLC patient-derived xenografts (PDX). RESULTS We show that continued DNAJB1-PRKACA expression is not only required for continued tumor growth, but additionally its inhibition results in cell death. Inhibition of DNAJB1-PRKACA by an inducible shRNA in cells of PDX of FLC resulted in cell death in vitro. Induction of the shRNA inhibits FLC tumors growing in mice with no effect on xenografts from a hepatocellular carcinoma cell line engineered to express DNAJB1-PRKACA. CONCLUSIONS Our results validate DNAJB1-PRKACA as the oncogene in FLC and demonstrate both a continued requirement for the oncogene for tumor growth as well as an oncogenic addiction that can be exploited for targeted therapies. We anticipate our approach will be useful for investigations of other fusion genes in pediatric cancers and spur development of precision therapies.
Collapse
Affiliation(s)
- Christoph Neumayer
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Caroline S. Jiang
- Hospital Biostatistics, The Rockefeller University, New York, New York
| | - Adam Qureshi
- Hospital Biostatistics, The Rockefeller University, New York, New York
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Roger Vaughan
- Hospital Biostatistics, The Rockefeller University, New York, New York
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| |
Collapse
|
17
|
Jiang T, Hu W, Zhang S, Ren C, Lin S, Zhou Z, Wu H, Yin J, Tan L. Fibroblast growth factor 10 attenuates chronic obstructive pulmonary disease by protecting against glycocalyx impairment and endothelial apoptosis. Respir Res 2022; 23:269. [PMID: 36183124 PMCID: PMC9526324 DOI: 10.1186/s12931-022-02193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background The defects and imbalance in lung repair and structural maintenance contribute to the pathogenesis of chronic obstructive pulmonary diseases (COPD), yet the molecular mechanisms that regulate lung repair process are so far incompletely understood. We hypothesized that cigarette smoking causes glycocalyx impairment and endothelial apoptosis in COPD, which could be repaired by the stimulation of fibroblast growth factor 10 (FGF10)/FGF receptor 1 (FGFR1) signaling. Methods We used immunostaining (immunohistochemical [IHC] and immunofluorescence [IF]) and enzyme-linked immunosorbent assay (ELISA) to detect the levels of glycocalyx components and endothelial apoptosis in animal models and in patients with COPD. We used the murine emphysema model and in vitro studies to determine the protective and reparative role of FGF10/FGFR1. Results Exposure to cigarette smoke caused endothelial glycocalyx impairment and emphysematous changes in murine models and human specimens. Pretreatment of FGF10 attenuated the development of emphysema and the shedding of glycocalyx components induced by CSE in vivo. However, FGF10 did not attenuate the emphysema induced by endothelial-specific killing peptide CGSPGWVRC-GG-D(KLAKLAK)2. Mechanistically, FGF10 alleviated smoke-induced endothelial apoptosis and glycocalyx repair through FGFR1/ERK/SOX9/HS6ST1 signaling in vitro. FGF10 was shown to repair pulmonary glycocalyx injury and endothelial apoptosis, and attenuate smoke-induced COPD through FGFR1 signaling. Conclusions Our results suggest that FGF10 may serve as a potential therapeutic strategy against COPD via endothelial repair and glycocalyx reconstitution. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02193-5. It is the first time to prove the confirm the endothelial glycocalyx impairment in COPD. FGF10 attenuates the development of emphysema and the shedding of glycocalyx induced by CSE in vivo. FGF10 alleviates smoke-induced endothelial apoptosis and glycocalyx repair through FGFR1/ERK/SOX9/HS6ST1 signaling.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China
| | - Weiping Hu
- Department of Critical Care and Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China
| | - Changhao Ren
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Siyun Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Zhenyu Zhou
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Wu
- Department of Clinical Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China.
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China.
| |
Collapse
|
18
|
Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, Wadosky KM, Gopalan A, Choo ZN, Persad S, Choi J, LaClair J, Lawrence KE, Chaudhary O, Xu T, Masilionis I, Linkov I, Wang S, Lee C, Barlas A, Morris MJ, Mazutis L, Chaligne R, Chen Y, Goodrich DW, Karthaus WR, Pe’er D, Sawyers CL. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science 2022; 377:1180-1191. [PMID: 35981096 PMCID: PMC9653178 DOI: 10.1126/science.abn0478] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug resistance in cancer is often linked to changes in tumor cell state or lineage, but the molecular mechanisms driving this plasticity remain unclear. Using murine organoid and genetically engineered mouse models, we investigated the causes of lineage plasticity in prostate cancer and its relationship to antiandrogen resistance. We found that plasticity initiates in an epithelial population defined by mixed luminal-basal phenotype and that it depends on increased Janus kinase (JAK) and fibroblast growth factor receptor (FGFR) activity. Organoid cultures from patients with castration-resistant disease harboring mixed-lineage cells reproduce the dependency observed in mice by up-regulating luminal gene expression upon JAK and FGFR inhibitor treatment. Single-cell analysis confirms the presence of mixed-lineage cells with increased JAK/STAT (signal transducer and activator of transcription) and FGFR signaling in a subset of patients with metastatic disease, with implications for stratifying patients for clinical trials.
Collapse
Affiliation(s)
- Joseph M. Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jillian R. Love
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Current address: Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland
| | - Jimmy L. Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manu Setty
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Current address: Basic sciences division and translational data science IRC, Fred Hutchinson Cancer research center
| | - Kristine M. Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zi-Ning Choo
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sitara Persad
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Justin LaClair
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Linkov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Afsar Barlas
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael J. Morris
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Ronan Chaligne
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Current address: Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland
| | - Dana Pe’er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
19
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
20
|
Javdani H, Mollaei H, Karimi F, Mahmoudi S, Farahi A, Mirzaei-Parsa MJ, Shahabi A. Review article epithelial to mesenchymal transition‑associated microRNAs in breast cancer. Mol Biol Rep 2022; 49:9963-9973. [PMID: 35716288 DOI: 10.1007/s11033-022-07553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Despite major advances, breast cancer (BC) is the most commonly diagnosed carcinoma and remains a deadly disease among women worldwide. Many researchers point toward an important role of an epithelial to mesenchymal transition (EMT) in BC development and promoting metastasis. Here, will be discussed that how functional changes of transcription factors, signaling pathways, and microRNAs (miRNA) in BC promote EMT. A thorough understanding the EMT biology can be important to determine reversing the process and design treatment approaches. There are frequent debates as to whether EMT is really relevant to BC in vivo, in which due to the intrinsic heterogeneity and tumor microenvironment. Nevertheless, given the importance of EMT in cancer progression and metastasis, the implementation of therapies against cancer-associated EMT will continue to help us develop and test potential treatments.
Collapse
Affiliation(s)
- Hossein Javdani
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzaneh Karimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shiva Mahmoudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Farahi
- Student Research Committee, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohamad Javad Mirzaei-Parsa
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Shahabi
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran. .,Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, P. O. Box: 7618747653, Kerman, Iran.
| |
Collapse
|
21
|
Cimmino F, Montella A, Tirelli M, Avitabile M, Lasorsa VA, Visconte F, Cantalupo S, Maiorino T, De Angelis B, Morini M, Castellano A, Locatelli F, Capasso M, Iolascon A. FGFR1 is a potential therapeutic target in neuroblastoma. Cancer Cell Int 2022; 22:174. [PMID: 35488346 PMCID: PMC9052553 DOI: 10.1186/s12935-022-02587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND FGFR1 regulates cell-cell adhesion and extracellular matrix architecture and acts as oncogene in several cancers. Potential cancer driver mutations of FGFR1 occur in neuroblastoma (NB), a neural crest-derived pediatric tumor arising in sympathetic nervous system, but so far they have not been studied experimentally. We investigated the driver-oncogene role of FGFR1 and the implication of N546K mutation in therapy-resistance in NB cells. METHODS Public datasets were used to predict the correlation of FGFR1 expression with NB clinical outcomes. Whole genome sequencing data of 19 paired diagnostic and relapse NB samples were used to find somatic mutations. In NB cell lines, silencing by short hairpin RNA and transient overexpression of FGFR1 were performed to evaluate the effect of the identified mutation by cell growth, invasion and cologenicity assays. HEK293, SHSY5Y and SKNBE2 were selected to investigate subcellular wild-type and mutated protein localization. FGFR1 inhibitor (AZD4547), alone or in combination with PI3K inhibitor (GDC0941), was used to rescue malignant phenotypes induced by overexpression of FGFR1 wild-type and mutated protein. RESULTS High FGFR1 expression correlated with low relapse-free survival in two independent NB gene expression datasets. In addition, we found the somatic mutation N546K, the most recurrent point mutation of FGFR1 in all cancers and already reported in NB, in one out of 19 matched primary and recurrent tumors. Loss of FGFR1 function attenuated invasion and cologenicity in NB cells, whereas FGFR1 overexpression enhanced oncogenicity. The overexpression of FGFR1N546K protein showed a higher nuclear localization compared to wild-type protein and increased cellular invasion and cologenicity. Moreover, N546K mutation caused the failure in response to treatment with FGFR1 inhibitor by activation of ERK, STAT3 and AKT pathways. The combination of FGFR1 and PI3K pathway inhibitors was effective in reducing the invasive and colonigenic ability of cells overexpressing FGFR1 mutated protein. CONCLUSIONS FGFR1 is an actionable driver oncogene in NB and a promising therapy may consist in targeting FGFR1 mutations in patients with therapy-resistant NB.
Collapse
Affiliation(s)
- Flora Cimmino
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Annalaura Montella
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, 20122, Milan, Italy
| | - Marianna Avitabile
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | | | - Feliciano Visconte
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Sueva Cantalupo
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Teresa Maiorino
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Biagio De Angelis
- Hematology/Oncology and Cell and Gene Therapy Department, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Aurora Castellano
- Paediatric Haematology/Oncology Department, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Franco Locatelli
- IRCCS Bambino Gesù Children's Hospital, Sapienza, University of Rome, 00165, Rome, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy.
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy.
| |
Collapse
|
22
|
Han H, Wang Y, Curto J, Gurrapu S, Laudato S, Rumandla A, Chakraborty G, Wang X, Chen H, Jiang Y, Kumar D, Caggiano EG, Capogiri M, Zhang B, Ji Y, Maity SN, Hu M, Bai S, Aparicio AM, Efstathiou E, Logothetis CJ, Navin N, Navone NM, Chen Y, Giancotti FG. Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Rep 2022; 39:110595. [PMID: 35385726 PMCID: PMC9414743 DOI: 10.1016/j.celrep.2022.110595] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/18/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Bioinformatic analysis of 94 patient-derived xenografts (PDXs), cell lines, and organoids (PCOs) identifies three intrinsic transcriptional subtypes of metastatic castration-resistant prostate cancer: androgen receptor (AR) pathway + prostate cancer (PC) (ARPC), mesenchymal and stem-like PC (MSPC), and neuroendocrine PC (NEPC). A sizable proportion of castration-resistant and metastatic stage PC (M-CRPC) cases are admixtures of ARPC and MSPC. Analysis of clinical datasets and mechanistic studies indicates that MSPC arises from ARPC as a consequence of therapy-induced lineage plasticity. AR blockade with enzalutamide induces (1) transcriptional silencing of TP53 and hence dedifferentiation to a hybrid epithelial and mesenchymal and stem-like state and (2) inhibition of BMP signaling, which promotes resistance to AR inhibition. Enzalutamide-tolerant LNCaP cells re-enter the cell cycle in response to neuregulin and generate metastasis in mice. Combined inhibition of HER2/3 and AR or mTORC1 exhibits efficacy in models of ARPC and MSPC or MSPC, respectively. These results define MSPC, trace its origin to therapy-induced lineage plasticity, and reveal its sensitivity to HER2/3 inhibition.
Collapse
Affiliation(s)
- Hyunho Han
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yan Wang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Josue Curto
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sreeharsha Gurrapu
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sara Laudato
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Alekya Rumandla
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | | | - Xiaobo Wang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hong Chen
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Yan Jiang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Dhiraj Kumar
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emily G Caggiano
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Monica Capogiri
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Boyu Zhang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Yan Ji
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Sankar N Maity
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | - Min Hu
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Shanshan Bai
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Ana M Aparicio
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | | | | | - Nicholas Navin
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Nora M Navone
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program and Department of Medicine, MSKCC, New York, NY 10065, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
23
|
D’Agosto S, Pezzini F, Veghini L, Delfino P, Fiorini C, Temgue Tane GD, Del Curatolo A, Vicentini C, Ferrari G, Pasini D, Andreani S, Lupo F, Fiorini E, Lorenzon G, Lawlor RT, Rusev B, Malinova A, Luchini C, Milella M, Sereni E, Pea A, Bassi C, Bailey P, Scarpa A, Bria E, Corbo V. Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene 2022; 41:4371-4384. [PMID: 35963908 PMCID: PMC9481460 DOI: 10.1038/s41388-022-02432-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
Transcriptomic analyses of pancreatic ductal adenocarcinoma (PDAC) have identified two major epithelial subtypes with distinct biology and clinical behaviours. Here, we aimed to clarify the role of FGFR1 and FGFR4 in the definition of aggressive PDAC phenotypes. We found that the expression of FGFR4 is exclusively detected in epithelial cells, significantly elevated in the classical PDAC subtype, and associates with better outcomes. In highly aggressive basal-like/squamous PDAC, reduced FGFR4 expression aligns with hypermethylation of the gene and lower levels of histone marks associated with active transcription in its regulatory regions. Conversely, FGFR1 has more promiscuous expression in both normal and malignant pancreatic tissues and is strongly associated with the EMT phenotype but not with the basal-like cell lineage. Regardless of the genetic background, the increased proliferation of FGFR4-depleted PDAC cells correlates with hyperactivation of the mTORC1 pathway both in vitro and in vivo. Downregulation of FGFR4 in classical cell lines invariably leads to the enrichment of basal-like/squamous gene programs and is associated with either partial or full switch of phenotype. In sum, we show that endogenous levels of FGFR4 limit the malignant phenotype of PDAC cells. Finally, we propose FGFR4 as a valuable marker for the stratification of PDAC patients.
Collapse
Affiliation(s)
- Sabrina D’Agosto
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.510779.d0000 0004 9414 6915Present Address: Human Technopole, Milan, Italy
| | - Francesco Pezzini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Lisa Veghini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Pietro Delfino
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Claudia Fiorini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Gael D. Temgue Tane
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Anais Del Curatolo
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Caterina Vicentini
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giorgia Ferrari
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Davide Pasini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Silvia Andreani
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Francesca Lupo
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Elena Fiorini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Giulia Lorenzon
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T. Lawlor
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Borislav Rusev
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Antonia Malinova
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Milella
- grid.411475.20000 0004 1756 948XDepartment of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Elisabetta Sereni
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Antonio Pea
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Claudio Bassi
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Peter Bailey
- grid.8756.c0000 0001 2193 314XInstitute of Cancer Sciences, University of Glasgow, Glasgow, UK ,grid.23636.320000 0000 8821 5196Cancer Research UK Beatson Institute, Glasgow, UK ,grid.7700.00000 0001 2190 4373Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Aldo Scarpa
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Emilio Bria
- grid.411075.60000 0004 1760 4193Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Section of Medical Oncology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Corbo
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
24
|
Chaves LP, Melo CM, Saggioro FP, dos Reis RB, Squire JA. Epithelial-Mesenchymal Transition Signaling and Prostate Cancer Stem Cells: Emerging Biomarkers and Opportunities for Precision Therapeutics. Genes (Basel) 2021; 12:1900. [PMID: 34946849 PMCID: PMC8701270 DOI: 10.3390/genes12121900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancers may reactivate a latent embryonic program called the epithelial-mesenchymal transition (EMT) during the development of metastatic disease. Through EMT, tumors can develop a mesenchymal phenotype similar to cancer stem cell traits that contributes to metastasis and variation in therapeutic responses. Some of the recurrent somatic mutations of prostate cancer affect EMT driver genes and effector transcription factors that induce the chromatin- and androgen-dependent epigenetic alterations that characterize castrate-resistant prostate cancer (CRPC). EMT regulators in prostate cancer comprise transcription factors (SNAI1/2, ZEB1, TWIST1, and ETS), tumor suppressor genes (RB1, PTEN, and TP53), and post-transcriptional regulators (miRNAs) that under the selective pressures of antiandrogen therapy can develop an androgen-independent metastatic phenotype. In prostate cancer mouse models of EMT, Slug expression, as well as WNT/β-Catenin and notch signaling pathways, have been shown to increase stemness potential. Recent single-cell transcriptomic studies also suggest that the stemness phenotype of advanced prostate cancer may be related to EMT. Other evidence correlates EMT and stemness with immune evasion, for example, activation of the polycomb repressor complex I, promoting EMT and stemness and cytokine secretion through RB1, TP53, and PRC1. These findings are helping clinical trials in CRPC that seek to understand how drugs and biomarkers related to the acquisition of EMT can improve drug response.
Collapse
Affiliation(s)
- Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Fabiano Pinto Saggioro
- Pathology Department, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
25
|
Xiao L, Peng H, Yan M, Chen S. Silencing ACTG1 Expression Induces Prostate Cancer Epithelial Mesenchymal Transition Through MAPK/ERK Signaling Pathway. DNA Cell Biol 2021; 40:1445-1455. [PMID: 34767732 DOI: 10.1089/dna.2021.0416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose: Metastatic prostate cancer (PCa) has become a major obstacle in the treatment of PCa. The study's purpose is to find biomarkers of tumor metastasis by proteomics and enzyme-linked immunosorbent assay (ELISA), and to design related experiments to study its role in the progress and metastasis of PCa. Method: We analyzed serum from primary PCa stage and metastatic stage of 12 patients to find metastatic PCa serum protein biomarkers using isobaric tags for relative and absolute quantitation (iTRAQ). An effective diagnostic model based on validated biomarkers using logistic regression was established. In vivo and in vitro biological behavior experiments (wound healing, CCK8, and Transwell tests) were carried out after obtaining the biomarkers. Related mechanism has been studied, which may be associated with metastatic PCa. Result: Actin gamma 1 (ACTG1) is a potential biomarker in the metastasis of PCa. Bioinformatics and related experiments show that ACTG1 is high-expressed in PCa tissues and cells. In vivo and in vitro experiments illustrated that the ability of proliferation, migration, and invasion of PCa cells was significantly inhibited after the knockdown of ACTG1 expression. Surprisingly, ERK protein expression was downregulated after ACTG1 knockdown. At the same time, the expression of epithelial-mesenchymal transition-related markers in PCa cells decrease after treated with ERK1/2 inhibitor, which indicating that ACTG1 may affect the metastatic ability of PCa cells through MAPK/ERK signaling pathway. Conclusion: ACTG1 is a marker of metastasis PCa. It mediates cell proliferation and may regulate the metastasis of PCa through MAPK/ERK signaling pathway, which provides a useful theoretical basis for exploring the treatment of PCa.
Collapse
Affiliation(s)
- Longfei Xiao
- Department of Reproductive Medicine, Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Huahong Peng
- Department of Urology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Mo Yan
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Saipeng Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Crowley F, Sterpi M, Buckley C, Margetich L, Handa S, Dovey Z. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res Rep Urol 2021; 13:457-472. [PMID: 34235102 PMCID: PMC8256377 DOI: 10.2147/rru.s264722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy or ADT is one of the cornerstones of management of locally advanced or metastatic prostate cancer, alongside radiation therapy. However, despite early response, most advanced prostate cancers progress into an androgen unresponsive or castrate resistant state, which hitherto remains an incurable entity and the second leading cause of cancer-related mortality in men in the US. Recent advances have uncovered multiple complex and intermingled mechanisms underlying this transformation. While most of these mechanisms revolve around androgen receptor (AR) signaling, novel pathways which act independently of the androgen axis are also being discovered. The aim of this article is to review the pathophysiological mechanisms that help bypass the apoptotic effects of ADT to create castrate resistance. The article discusses castrate resistance mechanisms under two categories: 1. Direct AR dependent pathways such as amplification or gain of function mutations in AR, development of functional splice variants, posttranslational regulation, and pro-oncogenic modulation in the expression of coactivators vs corepressors of AR. 2. Ancillary pathways involving RAS/MAP kinase, TGF-beta/SMAD pathway, FGF signaling, JAK/STAT pathway, Wnt-Beta catenin and hedgehog signaling as well as the role of cell adhesion molecules and G-protein coupled receptors. miRNAs are also briefly discussed. Understanding the mechanisms involved in the development and progression of castration-resistant prostate cancer is paramount to the development of targeted agents to overcome these mechanisms. A number of targeted agents are currently in development. As we strive for more personalized treatment across oncology care, treatment regimens will need to be tailored based on the type of CRPC and the underlying mechanism of castration resistance.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Michelle Sterpi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Conor Buckley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Lauren Margetich
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
27
|
Yang Y, Lu T, Li Z, Lu S. FGFR1 regulates proliferation and metastasis by targeting CCND1 in FGFR1 amplified lung cancer. Cell Adh Migr 2021; 14:82-95. [PMID: 32380883 PMCID: PMC7250189 DOI: 10.1080/19336918.2020.1766308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims: The analysis of the online databases revealed that CCND1 expression is correlated with poor prognosis in LSCC. We aimed to explore the function of CCND1 in tumor progression in LSCC.Main methods: The expression of mRNA was measured using qRT-PCR. Protein expression was assessed by Western blot. Cell migration and invasion were assessed by transwell assay.Key findings: CCND1 was co-overexpressed with FGFR1 in lung cancer patients. Overexpression of CCND1 promoted LSCC cell proliferation and metastasis. FGFR1 promoted the processes of EMT through AKT/MAPK signaling by targeting CCND1 in FGFR1-amplification cell lines.Significance: IIn conclusion, our study demonstrated the regulatory mechanism between CCND1 and FGFR1 in FGFR1 amplified LSCC. Co-targeting CCND1 and FGFR1 could provide greater clinical benefits.
Collapse
Affiliation(s)
- Ying Yang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Undesirable Status of Prostate Cancer Cells after Intensive Inhibition of AR Signaling: Post-AR Era of CRPC Treatment. Biomedicines 2021; 9:biomedicines9040414. [PMID: 33921329 PMCID: PMC8069212 DOI: 10.3390/biomedicines9040414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in prostate cancer (PC) research unveiled real androgen receptor (AR) functions in castration-resistant PC (CRPC). Moreover, AR still accelerates PC cell proliferation via the activation of several mechanisms (e.g., mutation, variants, and amplifications in CRPC). New-generation AR signaling-targeted agents, inhibiting extremely the activity of AR, were developed based on these incontrovertible mechanisms of AR-induced CRPC progression. However, long-term administration of AR signaling-targeted agents subsequently induces the major problem that AR (complete)-independent CRPC cells present neither AR nor prostate-specific antigen, including neuroendocrine differentiation as a subtype of AR-independent CRPC. Moreover, there are few treatments effective for AR-independent CRPC with solid evidence. This study focuses on the transformation mechanisms of AR-independent from AR-dependent CRPC cells and potential treatment strategy for AR-independent CRPC and discusses them based on a review of basic and clinical literature.
Collapse
|
29
|
FGF21 facilitates autophagy in prostate cancer cells by inhibiting the PI3K-Akt-mTOR signaling pathway. Cell Death Dis 2021; 12:303. [PMID: 33753729 PMCID: PMC7985321 DOI: 10.1038/s41419-021-03588-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) plays an important role in regulating glucose and lipid metabolism, but its role in cancer is less well-studied. We aimed to investigate the action of FGF21 in the development of prostate cancer (PCa). Herein, we found that FGF21 expression was markedly downregulated in PCa tissues and cell lines. FGF21 inhibited the proliferation and clone formation of LNCaP cells (a PCa cell line) and promoted apoptosis. FGF21 also inhibited PCa cell migration and invasiveness. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that FGF21 was related to autophagy and the phosphatidylinositol 3-kinase–Akt kinase–mammalian target of rapamycin (PI3K–Akt–mTOR) pathway. Mechanistically, FGF21 promoted autophagy in LNCaP cells by inhibiting the PI3K–Akt–mTOR–70S6K pathway. In addition, FGF21 inhibited PCa tumorigenesis in vivo in nude mice. Altogether, our findings show that FGF21 inhibits PCa cell proliferation and promoted apoptosis in PCa cells through facilitated autophagy. Therefore, FGF21 might be a potential novel target in PCa therapy.
Collapse
|
30
|
Ko J, Meyer AN, Haas M, Donoghue DJ. Characterization of FGFR signaling in prostate cancer stem cells and inhibition via TKI treatment. Oncotarget 2021; 12:22-36. [PMID: 33456711 PMCID: PMC7800776 DOI: 10.18632/oncotarget.27859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Metastatic castrate-resistant prostate cancer (CRPC) remains uncurable and novel therapies are needed to better treat patients. Aberrant Fibroblast Growth Factor Receptor (FGFR) signaling has been implicated in advanced prostate cancer (PCa), and FGFR1 is suggested to be a promising therapeutic target along with current androgen deprivation therapy. We established a novel in vitro 3D culture system to study endogenous FGFR signaling in a rare subpopulation of prostate cancer stem cells (CSCs) in the cell lines PC3, DU145, LNCaP, and the induced pluripotent iPS87 cell line. 3D-propagation of PCa cells generated spheroids with increased stemness markers ALDH7A1 and OCT4, while inhibition of FGFR signaling by BGJ398 or Dovitinib decreased cell survival and proliferation of 3D spheroids. The 3D spheroids exhibited altered expression of EMT markers associated with metastasis such as E-cadherin, vimentin and Snail, compared to 2D monolayer cells. TKI treatment did not result in significant changes of EMT markers, however, specific inhibition of FGFR signaling by BGJ398 showed more favorable molecular-level changes than treatment with the multi-RTK inhibitor Dovitinib. This study provides evidence for the first time that FGFR1 plays an essential role in the proliferation of PCa CSCs at a molecular and cellular level, and suggests that TKI targeting of FGFR signaling may be a promising strategy for AR-independent CRPC.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.,Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Lu Y, Liu Y, Oeck S, Zhang GJ, Schramm A, Glazer PM. Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway. Cancer Res 2020; 80:4655-4667. [PMID: 32873635 DOI: 10.1158/0008-5472.can-20-1192] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg.
Collapse
Affiliation(s)
- Yuhong Lu
- Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, Connecticut
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, Connecticut
| | - Sebastian Oeck
- Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, Connecticut
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Gary J Zhang
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Alexander Schramm
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, Connecticut.
- Department of Genetics, Yale University School of Medicine. New Haven, Connecticut
| |
Collapse
|
32
|
Jana S, Madhu Krishna B, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. SOX9: The master regulator of cell fate in breast cancer. Biochem Pharmacol 2020; 174:113789. [PMID: 31911091 PMCID: PMC9048250 DOI: 10.1016/j.bcp.2019.113789] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
SRY-related high-mobility group box 9 (SOX9) is an indispensable transcription factor that regulates multiple developmental pathways related to stemness, differentiation, and progenitor development. Previous studies have demonstrated that the SOX9 protein directs pathways involved in tumor initiation, proliferation, migration, chemoresistance, and stem cell maintenance, thereby regulating tumorigenesis as an oncogene. SOX9 overexpression is a frequent event in breast cancer (BC) subtypes. Of note, the molecular mechanisms and functional regulation underlying SOX9 upregulation during BC progression are still being uncovered. The focus of this review is to appraise recent advances regarding the involvement of SOX9 in BC pathogenesis. First, we provide a general overview of SOX9 structure and function, as well as its involvement in various kinds of cancer. Next, we discuss pathways of SOX9 regulation, particularly its miRNA-mediated regulation, in BC. Finally, we describe the involvement of SOX9 in BC pathogenesis via its regulation of pathways involved in regulating cancer hallmarks, as well as its clinical and therapeutic importance. In general, this review article aims to serve as an ample source of knowledge on the involvement of SOX9 in BC progression. Targeting SOX9 activity may improve therapeutic strategies to treat BC, but precisely inhibiting SOX9 using drugs and/or small peptides remains a huge challenge for forthcoming cancer research.
Collapse
Affiliation(s)
- Samir Jana
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
33
|
Resistance to MET/VEGFR2 Inhibition by Cabozantinib Is Mediated by YAP/TBX5-Dependent Induction of FGFR1 in Castration-Resistant Prostate Cancer. Cancers (Basel) 2020; 12:cancers12010244. [PMID: 31963871 PMCID: PMC7016532 DOI: 10.3390/cancers12010244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022] Open
Abstract
The overall goal of this study was to elucidate the role of FGFR1 induction in acquired resistance to MET and VEGFR2 inhibition by cabozantinib in prostate cancer (PCa) and leverage this understanding to improve therapy outcomes. The response to cabozantinib was examined in mice bearing patient-derived xenografts in which FGFR1 was overexpressed. Using a variety of cell models that reflect different PCa disease states, the mechanism underpinning FGFR1 signaling activation by cabozantinib was investigated. We performed parallel investigations in specimens from cabozantinib-treated patients to confirm our in vitro and in vivo data. FGFR1 overexpression was sufficient to confer resistance to cabozantinib. Our results demonstrate transcriptional activation of FGF/FGFR1 expression in cabozantinib-resistant models. Further analysis of molecular pathways identified a YAP/TBX5-driven mechanism of FGFR1 and FGF overexpression induced by MET inhibition. Importantly, knockdown of YAP and TBX5 led to decreased FGFR1 protein expression and decreased mRNA levels of FGFR1, FGF1, and FGF2. This association was confirmed in a cohort of hormone-naïve patients with PCa receiving androgen deprivation therapy and cabozantinib, further validating our findings. These findings reveal that the molecular basis of resistance to MET inhibition in PCa is FGFR1 activation through a YAP/TBX5-dependent mechanism. YAP and its downstream target TBX5 represent a crucial mediator in acquired resistance to MET inhibitors. Thus, our studies provide insight into the mechanism of acquired resistance and will guide future development of clinical trials with MET inhibitors.
Collapse
|
34
|
Fan X, Bjerke GA, Riemondy K, Wang L, Yi R. A basal-enriched microRNA is required for prostate tumorigenesis in a Pten knockout mouse model. Mol Carcinog 2019; 58:2241-2253. [PMID: 31512783 PMCID: PMC7791532 DOI: 10.1002/mc.23112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) play important roles in prostate cancer development. However, it remains unclear how individual miRNAs contribute to the initiation and progression of prostate cancer. Here we show that a basal layer-enriched miRNA is required for prostate tumorigenesis. We identify miR-205 as the most highly expressed miRNA and enriched in the basal cells of the prostate. Although miR-205 is not required for normal prostate development and homeostasis, genetic deletion of miR-205 in a Pten null tumor model significantly compromises tumor progression and does not promote metastasis. In Pten null basal cells, loss of miR-205 attenuates pAkt levels and promotes cellular senescence. Furthermore, although overexpression of miR-205 in prostate cancer cells with luminal phenotypes inhibits cell growth in both human and mouse, miR-205 has a minimal effect on the growth of a normal human prostate cell line. Taken together, we have provided genetic evidence for a requirement of miR-205 in the progression of Pten null-induced prostate cancer.
Collapse
Affiliation(s)
- Xiying Fan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Glen A Bjerke
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Kent Riemondy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Li Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| |
Collapse
|
35
|
Kim MH, Jung SY, Song KH, Park JI, Ahn J, Kim EH, Park JK, Hwang SG, Woo HJ, Song JY. A new FGFR inhibitor disrupts the TGF-β1-induced fibrotic process. J Cell Mol Med 2019; 24:830-840. [PMID: 31692229 PMCID: PMC6933341 DOI: 10.1111/jcmm.14793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti‐fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3‐(2‐chloro‐6‐fluorobenzyl)‐1,6,7‐trimethyl‐1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione (IM‐1918), markedly inhibited transforming growth factor (TGF)‐β‐stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α‐smooth muscle actin, on human lung fibroblasts. However, IM‐1918 neither decreased Smad‐2 and Smad‐3 nor affected p38MAPK and JNK. Instead, IM‐1918 reduced Akt and extracellular signal‐regulated kinase 1/2 phosphorylation increased by TGF‐β. Additionally, IM‐1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin‐induced murine lung fibrosis model, IM‐1918 profoundly reduced fibrotic areas and decreased collagen and α‐smooth muscle actin accumulation. These results suggest that IM‐1918 can be applied to treat lung fibrosis.
Collapse
Affiliation(s)
- Mi-Hyoung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.,Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Eun-Ho Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hee-Jong Woo
- Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
36
|
Wang Y, Wu Y, Li J, Lai Y, Zhou K, Che G. Prognostic and clinicopathological significance of FGFR1 gene amplification in resected esophageal squamous cell carcinoma: a meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:669. [PMID: 31930070 DOI: 10.21037/atm.2019.10.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Previous studies about the prognostic and clinicopathological significance of fibroblast growth factor receptor 1 (FGFR1) amplification in resected esophageal squamous cell carcinoma (ESCC) are controversial. Therefore, the aim of the current meta-analysis was to determine the association of FGFR1 amplification with prognosis and clinicopathological characteristics of resected ESCC patients. Methods The PubMed, EMBASE, Web of Science, The Cochrane Library, CNKI, Wanfang, VIP and SinoMed databases were searched systematically from the establishment date of databases to April 1, 2019 to identify related studies. The correlations of FGFR1 amplification of prognosis and clinicopathological characteristics in ESCC were assessed by the combined hazard ratio (HR) with 95% confidence interval (CI) and combined odds ratio (OR) with 95% CI, respectively. All statistical analyses were performed by the Stata 12.0 software. Results A total of nine retrospective studies involving 2,326 patients who received the surgery were included into the current meta-analysis. The results indicated that FGFR1 amplification was significantly correlated with worse overall survival (OS) (HR =1.50, 95% CI: 1.25-1.81, P<0.001), disease-free survival (DFS) (HR =1.58, 95% CI: 1.27-1.96, P<0.001), lymph node metastasis (OR =1.45, 95% CI: 1.13-1.86, P=0.004), higher TNM stage (OR =1.33, 95% CI: 1.03-1.72, P=0.027) and poorer differentiation (OR =1.10, 95% CI: 1.07-1.13, P<0.001). Conclusions The current meta-analysis strongly demonstrates that FGFR1 amplification is an independent prognostic risk factor for resected ESCC patients and more prevalent among patients with advanced tumor stage and poorer differentiation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanming Wu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jialong Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yutian Lai
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
37
|
Li X, Martinez-Ledesma E, Zhang C, Gao F, Zheng S, Ding J, Wu S, Nguyen N, Clifford SC, Wen PY, Ligon KL, Yung WKA, Koul D. Tie2-FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma. Cancer Res 2019; 79:5088-5101. [PMID: 31416846 DOI: 10.1158/0008-5472.can-19-0325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/21/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
PI3K-targeting therapy represents one of the most sought-after therapies for glioblastoma (GBM). Several small-molecule inhibitors have been evaluated in clinical trials, however, the emergence of resistance limits treatment potential. Here, we generated a patient-derived glioma sphere-forming cell (GSC) xenograft model resistant to the PI3K-specific inhibitor BKM-120. Integrated RNA sequencing and high-throughput drug screening revealed that the Aurora A kinase (Aurora A)/Polo-like kinase 1 (PLK1)/cyclin-dependent kinase 1 (CDK1) signaling pathway was the main driver of PI3K inhibitor resistance in the resistant xenografts. Aurora kinase was upregulated and pCDK1 was downregulated in resistant tumors from both xenografts and tumor tissues from patients treated with the PI3K inhibitor. Mechanistically, the tyrosine kinase receptor Tie2 physically interacted with FGFR1, promoting STAT3 phosphorylation and binding to the AURKA promoter, which increased Aurora A expression in resistant GSCs. Concurrent inhibition of Aurora A and PI3K signaling overcame PI3K inhibitor-induced resistance. This study offers a proof of concept to target PI3K and the collateral-activated pathway to improve GBM therapy. SIGNIFICANCE: These findings provide novel insights into the mechanisms of PI3K inhibitor resistance in glioblastoma.
Collapse
Affiliation(s)
- Xiaolong Li
- Brain Tumor Center, Departments of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emmanuel Martinez-Ledesma
- Brain Tumor Center, Departments of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Chen Zhang
- Brain Tumor Center, Departments of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feng Gao
- Brain Tumor Center, Departments of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siyuan Zheng
- Brain Tumor Center, Departments of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jie Ding
- Brain Tumor Center, Departments of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaofang Wu
- Brain Tumor Center, Departments of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nghi Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University College of Medicine, Houston, Texas
| | - Stephan C Clifford
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University College of Medicine, Houston, Texas
| | - Patrick Y Wen
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Department of Pathology and Neurology Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Department of Pathology and Neurology Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - W K Alfred Yung
- Brain Tumor Center, Departments of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dimpy Koul
- Brain Tumor Center, Departments of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
38
|
Yang Y, Li Z, Yuan H, Ji W, Wang K, Lu T, Yu Y, Zeng Q, Li F, Xia W, Lu S. Reciprocal regulatory mechanism between miR-214-3p and FGFR1 in FGFR1-amplified lung cancer. Oncogenesis 2019; 8:50. [PMID: 31492847 PMCID: PMC6731303 DOI: 10.1038/s41389-019-0151-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/11/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miRNA) and fibroblast growth factor receptor 1 (FGFR1) dysregulation are considered to play an important role in tumor proliferation, invasion, and metastasis. However, the regulatory mechanism between miRNAs and FGFR1 in lung cancer remains unclear and extremely critical. miR-214-3p was sharply decreased and showed a significantly negative correlation with FGFR1 in lung cancer patients (n = 30). Luciferase reporter assay confirmed that miR-214-3p could downregulate FGFR1 by directly targeting 3′-untranslated region (UTR). miR-214-3p inhibited the processes of epithelial–mesenchymal transition and Wnt/MAPK/AKT (Wnt/mitogen-activated protein kinase/AKT) signaling pathway by targeting FGFR1. Moreover, miR-214-3p not only established a negative feedback regulation loop with FGFR1 through ERK (extracellular signal-regulated kinase) but also developed a synergism with FGFR1 inhibitor AZD4547. In conclusion, our study demonstrated the regulatory mechanism between miR-214-3p and FGFR1 in lung cancer. miR-214-3p acts as a vital target in FGFR1-amplified lung cancer by forming a miR-214-3p-FGFR1-Wnt/MAPK/AKT signaling pathway network. Co-targeting miR-214-3p and FGFR1 could provide greater benefits to patients with FGFR1-amplified lung cancer.
Collapse
Affiliation(s)
- Ying Yang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, 200030, Shanghai, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Hong Yuan
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Kaixuan Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Tingting Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Qingyu Zeng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, 200030, Shanghai, China
| | - Fan Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, 200030, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, 200030, Shanghai, China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China.
| |
Collapse
|
39
|
Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer. Cancers (Basel) 2019; 11:cancers11081154. [PMID: 31408968 PMCID: PMC6721537 DOI: 10.3390/cancers11081154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/13/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays important roles in regulating glucose, lipid, and energy metabolism; however, its effects in tumors remain poorly understood. To understand the role of FGF21 in regulating tumor aggressiveness in thyroid cancer, serum levels of FGF21 were measured in healthy subjects and patients with papillary thyroid cancer (PTC), and expression levels of FGF21, FGF receptors (FGFRs), and β-klotho (KLB) were investigated in human thyroid tissues. The cell viability, migrating cells, and invading cells were measured in PTC cells after treatment with recombinant FGF21. Higher serum levels of FGF21 were found in patients with thyroid cancer than in control participants, and were significantly associated with body mass index (BMI), fasting glucose levels, triglyceride levels, tumor stage, lymphovascular invasion, and recurrence. Serum FGF21 levels were positively correlated with the BMI in patients with PTC, and significantly associated with recurrence. Recombinant FGF21 led to tumor aggressiveness via activation of the FGFR signaling axis and epithelial-to-mesenchymal transition (EMT) signaling in PTC cells, and AZD4547, an FGFR tyrosine kinase inhibitor, attenuated the effects of FGF21. Hence, FGF21 may be a new biomarker for predicting tumor progression, and targeting FGFR may be a novel therapy for the treatment of obese patients with PTC.
Collapse
|
40
|
Lan T, Yuan K, Yan X, Xu L, Liao H, Hao X, Wang J, Liu H, Chen X, Xie K, Li J, Liao M, Huang J, Zeng Y, Wu H. LncRNA SNHG10 Facilitates Hepatocarcinogenesis and Metastasis by Modulating Its Homolog SCARNA13 via a Positive Feedback Loop. Cancer Res 2019; 79:3220-3234. [PMID: 31101763 DOI: 10.1158/0008-5472.can-18-4044] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 02/05/2023]
Abstract
Understanding the roles of noncoding RNAs (ncRNA) in tumorigenesis and metastasis would establish novel avenues to identify diagnostic and therapeutic targets. Here, we aimed to identify hepatocellular carcinoma (HCC)-specific ncRNA and to investigate their roles in hepatocarcinogenesis and metastasis. RNA-seq of xenografts generated by lung metastasis identified long noncoding RNA small nucleolar RNA host gene 10 (SNHG10) and its homolog SCARNA13 as novel drivers for the development and metastasis of HCC. SNHG10 expression positively correlated with SCARNA13 expression in 64 HCC cases, and high expression of SNHG10 or SCARNA13 was associated with poor overall survival. As SCARNA13 showed significant rise and decline after overexpression and knockdown of SNHG10, respectively, we hypothesized that SNHG10 might act as an upstream regulator of SCARNA13. SNHG10 and SCARNA13 coordinately contributed to the malignant phenotype of HCC cells, where SNHG10 served as a sponge for miR-150-5p and interacted with RPL4 mRNA to increase the expression and activity of c-Myb. Reciprocally, upregulated and hyperactivated c-Myb enhanced SNHG10 and SCARNA13 expression by regulating SNHG10 promoter activity, forming a positive feedback loop and continuously stimulating SCARNA13 expression. SCARNA13 mediated SNHG10-driven HCC cell proliferation, invasion, and migration and facilitated the cell cycle and epithelial-mesenchymal transition of HCC cells by regulating SOX9. Overall, we identified a complex circuitry underlying the concomitant upregulation of SNHG10 and its homolog SCARNA13 in HCC in the process of hepatocarcinogenesis and metastasis. SIGNIFICANCE: These findings unveil the role of a noncoding RNA in carcinogenesis and metastasis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tian Lan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiaokai Yan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lin Xu
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Haotian Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiangyong Hao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Jinju Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hong Liu
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kunlin Xie
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jiaxin Li
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingheng Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jiwei Huang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China. .,Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hong Wu
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China. .,Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
41
|
Cause-and-Effect relationship between FGFR1 expression and epithelial-mesenchymal transition in EGFR-mutated non-small cell lung cancer cells. Lung Cancer 2019; 132:132-140. [PMID: 31097086 DOI: 10.1016/j.lungcan.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Increased FGFR1 expression is associated with resistance to tyrosine kinase inhibitors (TKIs) in EGFR-mutated NSCLC cells and often concomitant with epithelial to mesenchymal transition (EMT). However, the cause-and-effect relationship between increased FGFR1 expression and EMT in the genetic background of EGFR-mutated non-small cell lung cancer (NSCLC) cells is not clear. Previous studies have specifically addressed the relationship between EMT and increased FGFR1 expression in the context of simultaneous TKI-mediated blocking of EGFR-signaling. Here, in the context of EGFR-mutated NSCLC cells with active EGFR-signaling, we have examined whether increased FGFR1 expression drives EMT or is an EMT passenger event. MATERIALS AND METHODS For cause-and-effect analyses between EMT and FGFR1 expression, including expression of alternative spliced FGFR1 isoforms, we used CRISPR-dCAS9-SAM-mediated induction of the endogenous FGFR1 and ZEB1 genes, as well as biochemical EMT-induction, in PC9 and HCC827 NSCLC cell lines harboring activating EGFR-mutations. RESULTS We find that FGFR1 expression correlates with a ZEB1-associated EMT gene expression profile in NSCLC cells. In experiments using NSCLC cell lines harboring activating EGFR-mutations we show that CRISPR-dCAS9-SAM-mediated induction of FGFR1 expression is neither driving an increase in ZEB1 expression nor EMT characteristics. However, CRISPR-dCAS9-SAM-mediated induction of ZEB1 expression drives EMT characteristics and an increase in FGFR1 expression. Biochemical induction of EMT also drives an increase in FGFR1 expression. CONCLUSION From our findings concerning the cause-and-effect relationship in the genetic background of EGFR-mutated NSCLC cells, we conclude that an increase in ZEB1 expression is a driver of EMT resulting in concomitant increased FGFR1 expression, whereas an increase in FGFR1 expression is insufficient to drive concomitant EMT.
Collapse
|
42
|
Santolla MF, Vivacqua A, Lappano R, Rigiracciolo DC, Cirillo F, Galli GR, Talia M, Brunetti G, Miglietta AM, Belfiore A, Maggiolini M. GPER Mediates a Feedforward FGF2/FGFR1 Paracrine Activation Coupling CAFs to Cancer Cells toward Breast Tumor Progression. Cells 2019; 8:cells8030223. [PMID: 30866584 PMCID: PMC6468560 DOI: 10.3390/cells8030223] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
The FGF2/FGFR1 paracrine loop is involved in the cross-talk between breast cancer cells and components of the tumor stroma as cancer-associated fibroblasts (CAFs). By quantitative PCR (qPCR), western blot, immunofluorescence analysis, ELISA and ChIP assays, we demonstrated that 17β-estradiol (E2) and the G protein estrogen receptor (GPER) agonist G-1 induce the up-regulation and secretion of FGF2 via GPER together with the EGFR/ERK/c-fos/AP-1 signaling cascade in (ER)-negative primary CAFs. Evaluating the genetic alterations from METABRIC and TCGA datasets, we then assessed that FGFR1 is the most frequently amplified FGFRs family member and its amplification/expression associates with shorter survival rates in breast cancer patients. Therefore, in order to assess the functional FGF2/FGFR1 interplay between CAFs and breast cancer cells, we generated the FGFR1-knockout MDA-MB-231 cells using CRISPR/Cas9 genome editing strategy. Using conditioned medium from estrogen-stimulated CAFs, we established that the activation of FGF2/FGFR1 paracrine signaling triggers the expression of the connective tissue growth factor (CTGF), leading to the migration and invasion of MDA-MB-231 cells. Our findings shed new light on the role elicited by estrogens through GPER in the activation of the FGF2/FGFR1 signaling. Moreover, our findings may identify further biological targets that could be considered in innovative combination strategies halting breast cancer progression.
Collapse
Affiliation(s)
- Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | | | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giulia Raffaella Galli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giuseppe Brunetti
- University of Natural Resources and Life Sciences, 1180 Vienna, Austria.
| | | | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
43
|
Fibroblast Growth Factor Family in the Progression of Prostate Cancer. J Clin Med 2019; 8:jcm8020183. [PMID: 30720727 PMCID: PMC6406580 DOI: 10.3390/jcm8020183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) play an important role in the maintenance of tissue homeostasis and the development and differentiation of prostate tissue through epithelial-stromal interactions. Aberrations of this signaling are linked to the development and progression of prostate cancer (PCa). The FGF family includes two subfamilies, paracrine FGFs and endocrine FGFs. Paracrine FGFs directly bind the extracellular domain of FGFRs and act as a growth factor through the activation of tyrosine kinase signaling. Endocrine FGFs have a low affinity of heparin/heparan sulfate and are easy to circulate in serum. Their biological function is exerted as both a growth factor binding FGFRs with co-receptors and as an endocrine molecule. Many studies have demonstrated the significance of these FGFs and FGFRs in the development and progression of PCa. Herein, we discuss the current knowledge regarding the role of FGFs and FGFRs—including paracrine FGFs, endocrine FGFs, and FGFRs—in the development and progression of PCa, focusing on the representative molecules in each subfamily.
Collapse
|
44
|
Wang C, Liu Z, Ke Y, Wang F. Intrinsic FGFR2 and Ectopic FGFR1 Signaling in the Prostate and Prostate Cancer. Front Genet 2019; 10:12. [PMID: 30761180 PMCID: PMC6363687 DOI: 10.3389/fgene.2019.00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/11/2019] [Indexed: 01/10/2023] Open
Abstract
Advanced castrate-resistant prostate cancer (CRPC) is a poorly prognostic disease currently lacking effective cure. Understanding the molecular mechanism that underlies the initiation and progression of CRPC will provide new strategies for treating this deadly disease. One candidate target is the fibroblast growth factor (FGF) signaling axis. Loss of the intrinsic FGF7/FGF10-type 2 FGF receptor (FGFR2) pathway and gain of the ectopic type 1 FGF receptor (FGFR1) pathway are associated with the progression to malignancy in prostate cancer (PCa) and many other epithelial originating lesions. Although FGFR1 and FGFR2 share similar amino acid sequences and structural domains, the two transmembrane tyrosine kinases elicit distinctive, even sometime opposite signals in cells. Recent studies have revealed that the ectopic FGFR1 signaling pathway contributes to PCa progression via multiple mechanisms, including promoting tumor angiogenesis, reprogramming cancer cell metabolism, and potentiating inflammation in the tumor microenvironment. Thus, suppression of FGFR1 signaling can be an effective novel strategy to treat CRPC.
Collapse
Affiliation(s)
- Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ziying Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biosciences and Technology, Texas A&M University, College Station, TX, United States
| | - Yuepeng Ke
- Institute of Biosciences and Technology, Texas A&M University, College Station, TX, United States
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
45
|
Abstract
Comprehensive knowledge of the normal prostate epithelial lineage hierarchy is a prerequisite to investigate the identity of the cells of origin for prostate cancer. The basal and luminal cells constitute most of the prostate epithelium and have been the major focuses of the study on the cells of origin for prostate cancer. Much progress has been made during the past few decades, mainly using mouse models, to understand the inter-lineage relationship and intra-lineage heterogeneity in adults as well as the lineage plasticity during conditions of stress. These studies have concluded that the adult mouse prostate basal and luminal cells are largely independently sustained under physiological conditions, but both types of cells possess the capacity for bipotent differentiation under stress or artificial experimental conditions. However, the existence or the identity of the putative progenitors within each lineage warrants further investigation. Whether the human prostate lineage hierarchy is completely the same as that of the mouse remains uncertain. Experiments from independent groups have demonstrated that both types of cells in mice and humans can serve as targets for transformation. But controversies remain whether the disease from distinct cells of origin display different clinical behaviors. Further investigation of the intra-lineage heterogeneity will provide new insights into this issue. Understanding the identity of the cells of origin for prostate cancer will help identify novel prognostic markers for early detection of aggressive prostate cancers, provide insights into the therapeutic vulnerability of these tumors, and inspire novel therapeutic strategies.
Collapse
|
46
|
Schmidt L, Møller M, Haldrup C, Strand SH, Vang S, Hedegaard J, Høyer S, Borre M, Ørntoft T, Sørensen KD. Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. Br J Cancer 2018; 119:1527-1537. [PMID: 30449885 PMCID: PMC6288156 DOI: 10.1038/s41416-018-0321-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Background The current inability to predict whether a primary prostate cancer (PC) will progress to metastatic disease leads to overtreatment of indolent PCs as well as undertreatment of aggressive PCs. Here, we explored the transcriptional changes associated with metastatic progression of multifocal hormone-naive PC. Methods Using total RNA-sequencing, we analysed laser micro-dissected primary PC foci (n = 23), adjacent normal prostate tissue samples (n = 23) and lymph node metastases (n = 9) from ten hormone-naive PC patients. Genes important for PC progression were identified using differential gene expression and clustering analysis. From these, two multi-gene-based expression signatures (models) were developed, and their prognostic potential was evaluated using Cox-regression and Kaplan–Meier analyses in three independent radical prostatectomy (RP) cohorts (>650 patients). Results We identified several novel PC-associated transcripts deregulated during PC progression, and these transcripts were used to develop two novel gene-expression-based prognostic models. The models showed independent prognostic potential in three RP cohorts (n = 405, n = 107 and n = 91), using biochemical recurrence after RP as the primary clinical endpoint. Conclusions We identified several transcripts deregulated during PC progression and developed two new prognostic models for PC risk stratification, each of which showed independent prognostic value beyond routine clinicopathological factors in three independent RP cohorts.
Collapse
Affiliation(s)
- Linnéa Schmidt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mia Møller
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christa Haldrup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Siri H Strand
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Vang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Hedegaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Høyer
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
47
|
Shimizu D, Saito T, Ito S, Masuda T, Kurashige J, Kuroda Y, Eguchi H, Kodera Y, Mimori K. Overexpression of FGFR1 Promotes Peritoneal Dissemination Via Epithelial-to-Mesenchymal Transition in Gastric Cancer. Cancer Genomics Proteomics 2018; 15:313-320. [PMID: 29976636 DOI: 10.21873/cgp.20089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Peritoneal dissemination (PD) is one of the most common causes of cancer-related mortality in gastric cancer (GC). We aimed to identify PD-associated genes and investigate their role in GC. MATERIALS AND METHODS We identified FGFR1 as a putative PD-associated gene using a bioinformatics approach. The biological significance of FGFR1 in epithelial-to-mesenchymal transition (EMT) was evaluated according to the correlation with genes that participated in EMT and FGFR1 knockdown experiments. The associations between FGFR1 expression and the clinicopathological features were examined. RESULTS FGFR1 expression positively correlated with SNAI1, VIM and ZEB1 expression, and negatively correlated with CDH1 expression. Knockdown of FGFR1 suppressed the malignant phenotype of GC cells. High FGFR1 expression significantly correlated with the peritoneal lavage cytology and synchronous PD positivity as well as poor prognosis. CONCLUSION High FGFR1 expression was associated with PD via promotion of EMT and led to a poor prognosis of GC patients.
Collapse
Affiliation(s)
- Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan.,Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Junji Kurashige
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan.,Department of Surgery, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Yosuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| |
Collapse
|
48
|
Kim SH, Ryu H, Ock CY, Suh KJ, Lee JY, Kim JW, Lee JO, Kim JW, Kim YJ, Lee KW, Bang SM, Kim JH, Lee JS, Ahn JB, Kim KJ, Rha SY. BGJ398, A Pan-FGFR Inhibitor, Overcomes Paclitaxel Resistance in Urothelial Carcinoma with FGFR1 Overexpression. Int J Mol Sci 2018; 19:ijms19103164. [PMID: 30326563 PMCID: PMC6214101 DOI: 10.3390/ijms19103164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/06/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX) is commonly used to treat urothelial carcinoma (UC) after platinum-based chemotherapy has failed. However, single-agent taxane therapy is not sufficient to inhibit tumor progression and drug resistance in advanced UC. Epithelial-to-mesenchymal transition (EMT) induced by fibroblast growth factor receptor (FGFR)1 signaling has been proposed as a mechanism of PTX resistance, but it is unclear whether this can be overcome by FGFR1 inhibition. The present study investigated whether FGFR1 overexpression contributes to PTX resistance and whether FGFR inhibition can enhance PTX efficacy in UC. The effects of PTX combined with the FGFR inhibitor BGJ398 were evaluated in UC cell lines by flow cytometry; Western blot analysis; cell viability, migration, and colony forming assays; and RNA interference. PTX+BGJ398 induced cell cycle arrest and apoptosis in UC cells with mesenchymal characteristics was accompanied by downregulation of cyclin D1 protein and upregulation of gamma-histone 2A family member X and cleaved poly(ADP-ribose) polymerase. Additionally, PTX+BGJ398 synergistically suppressed UC cell migration and colony formation via regulation of EMT-associated factors, while FGFR1 knockdown enhanced the antitumor effect of PTX. These findings provide a basis for development of effective strategies for overcoming PTX resistance in UC through inhibition of FGFR1 signaling.
Collapse
Affiliation(s)
- Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
- Department of Medicine, Graduate School of Yonsei University, Seoul 03722, Korea.
| | - Haram Ryu
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam 13605, Korea.
| | - Chan-Young Ock
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Koung Jin Suh
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Ji Yun Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Ji-Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jeong-Ok Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jin Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Yu Jung Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Keun-Wook Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Soo-Mee Bang
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jong Seok Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Joong Bae Ahn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Kui-Jin Kim
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam 13605, Korea.
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
49
|
Yang M, Yu X, Li X, Luo B, Yang W, Lin Y, Li D, Gan Z, Xu J, He T. TNFAIP3 is required for FGFR1 activation-promoted proliferation and tumorigenesis of premalignant DCIS.COM human mammary epithelial cells. Breast Cancer Res 2018; 20:97. [PMID: 30111373 PMCID: PMC6094903 DOI: 10.1186/s13058-018-1024-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Although ductal carcinoma in situ (DCIS) is a non-invasive breast cancer, many DCIS lesions may progress to invasive cancer and the genes and pathways responsible for its progression are largely unknown. FGFR1 plays an important role in cell proliferation, differentiation and carcinogenesis. The purpose of this study is to examine the roles of FGFR1 signaling in gene expression, cell proliferation, tumor growth and progression in a non-invasive DCIS model. METHODS DCIS.COM cells were transfected with an empty vector to generate DCIS-Ctrl cells. DCIS-iFGFR1 cells were transfected with an AP20187-inducible iFGFR1 vector to generate DCIS-iFGFR1 cells. iFGFR1 consists of the v-Src myristoylation membrane-targeting sequence, FGFR1 cytoplasmic domain and the AP20187-inducible FKBP12 dimerization domain, which simulates FGFR1 signaling. The CRISPR/Cas9 system was employed to knockout ERK1, ERK2 or TNFAIP3 in DCIS-iFGFR1 cells. Established cell lines were treated with/without AP20187 and with/without FGFR1, MEK, or ERK1/2 inhibitor. The effects of these treatments were determined by Western blot, RNA-Seq, real-time RT-PCR, cell proliferation, mammosphere growth, xenograft tumor growth, and tumor histopathological assays. RESULTS Activation of iFGFR1 signaling in DCIS-iFGFR1 cells enhanced ERK1/2 activities, induced partial epithelial-to-mesenchymal transition (EMT) and increased cell proliferation. Activation of iFGFR1 signaling promoted DCIS growth and progression to invasive cancer derived from DCIS-iFGFR1 cells in mice. Activation of iFGFR1 signaling also altered expression levels of 946 genes involved in cell proliferation, migration, cancer pathways, and other molecular and cellular functions. TNFAIP3, a ubiquitin-editing enzyme, is upregulated by iFGFR1 signaling in a FGFR1 kinase activity and in an ERK2-dependent manner. Importantly, TNFAIP3 knockout not only inhibited the AP20187-induced proliferation and tumor growth of DCIS-iFGFR1 cells, but also further reduced baseline proliferation and tumor growth of DCIS-iFGFR1 cells without AP20187 treatment. CONCLUSIONS Activation of iFGFR1 promotes ERK1/2 activity, EMT, cell proliferation, tumor growth, DCIS progression to invasive cancer, and altered the gene expression profile of DCIS-iFGFR1 cells. Activation of iFGFR1 upregulated TNFAIP3 in an ERK2-dependent manner and TNFAIP3 is required for iFGFR1 activation-promoted DCIS.COM cell proliferation, mammosphere growth, tumor growth and progression. These results suggest that TNFAIP3 may be a potential target for inhibiting DCIS growth and progression promoted by FGFR1 signaling.
Collapse
Affiliation(s)
- Mao Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuesen Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bo Luo
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Wenli Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yan Lin
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dabing Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhonglin Gan
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Tao He
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
50
|
Wang C, Ke Y, Liu S, Pan S, Liu Z, Zhang H, Fan Z, Zhou C, Liu J, Wang F. Ectopic fibroblast growth factor receptor 1 promotes inflammation by promoting nuclear factor-κB signaling in prostate cancer cells. J Biol Chem 2018; 293:14839-14849. [PMID: 30093411 DOI: 10.1074/jbc.ra118.002907] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Initiation of expression of fibroblast growth factor receptor 1 (FGFR1) concurrent with loss of FGFR2 expression is a well-documented event in the progression of prostate cancer (PCa). Although it is known that some FGFR isoforms confer advantages in cell proliferation and survival, the mechanism by which the subversion of different FGFR isoforms contributes to PCa progression is incompletely understood. Here, we report that fibroblast growth factor (FGF) promotes NF-κB signaling in PCa cells and that this increase is associated with FGFR1 expression. Disruption of FGFR1 kinase activity abrogated both FGF activity and NF-κB signaling in PCa cells. Of note, the three common signaling pathways downstream of FGFR1 kinase, extracellular signal-regulated kinase 1/2 (ERK1/2), phosphoinositide 3-kinase (PI3K/AKT), and phosphoinositide phospholipase Cγ (PLCγ), were not required for FGF-mediated NF-κB signaling. Instead, transforming growth factor β-activating kinase 1 (TAK1), a central regulator of the NF-κB pathway, was required for FGFR1 to stimulate NF-κB signaling. Moreover, we found that FGFR1 promotes NF-κB signaling in PCa cells by reducing TAK1 degradation and thereby supporting sustained NF-κB activation. Consistently, Fgfr1 ablation in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model reduced inflammation in the tumor microenvironment. In contrast, activation of the FGFR1 kinase in the juxtaposition of chemical-induced dimerization (CID) and kinase 1 (JOCK1) mouse model increased inflammation. As inflammation plays an important role in PCa initiation and progression, these findings suggest that ectopically expressed FGFR1 promotes PCa progression, at least in part, by increasing inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Cong Wang
- From School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, .,the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Yuepeng Ke
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Shaoyou Liu
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843.,the Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Sharon Pan
- the Gastroenterology and Hepatology Division, Seattle Children's Hospital, Seattle, Washington 98105
| | - Ziying Liu
- From School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Hui Zhang
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843.,the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China, and
| | - Zhichao Fan
- From School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Changyi Zhou
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843.,College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Junchen Liu
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Fen Wang
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843,
| |
Collapse
|