1
|
Dixit H, Upadhyay V, Kulharia M, Verma SK. The Study of Metalloproteome of DNA Viruses: Identification, Functional Annotation, and Diversity Analysis of Viral Metal-Binding Proteins. J Proteome Res 2024; 23:4014-4026. [PMID: 39134029 DOI: 10.1021/acs.jproteome.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Metalloproteins are fundamental to diverse biological processes but still lack extensive investigation in viral contexts. This study reveals the prevalence and functional diversity of metal-binding proteins in DNA viruses. Among a subset of 1432 metalloproteins, zinc and magnesium-binding proteins are notably abundant, indicating their importance in viral biology. Furthermore, significant numbers of proteins binding to iron, manganese, copper, nickel, mercury, and cadmium were also detected. Human-infecting viral proteins displayed a rich landscape of metalloproteins, with MeBiPred (964 proteins) and Pfam (666) yielding the highest numbers. Interestingly, many essential viral proteins exhibited metal-binding capabilities, including polymerases, DNA binding proteins, helicases, dUPTase, thymidine kinase, and various structural and accessory proteins. This study sheds light on the ubiquitous presence of metalloproteins, their functional signatures, subcellular placements, and metal-utilization patterns, providing valuable insights into viral biology. A similar metal utilization pattern was observed in similar functional proteins across the various DNA viruses. Furthermore, these findings provide a foundation for identifying potential drug targets for combating viral infections.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | | |
Collapse
|
2
|
Palomino-Vizcaino G, Schuth N, Domínguez-Calva JA, Rodríguez-Meza O, Martínez-Jurado E, Serebryany E, King JA, Kroll T, Costas M, Quintanar L. Copper Reductase Activity and Free Radical Chemistry by Cataract-Associated Human Lens γ-Crystallins. J Am Chem Soc 2023; 145:6781-6797. [PMID: 36918380 DOI: 10.1021/jacs.2c13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Cataracts are caused by high-molecular-weight aggregates of human eye lens proteins that scatter light, causing lens opacity. Metal ions have emerged as important potential players in the etiology of cataract disease, as human lens γ-crystallins are susceptible to metal-induced aggregation. Here, the interaction of Cu2+ ions with γD-, γC-, and γS-crystallins, the three most abundant γ-crystallins in the lens, has been evaluated. Cu2+ ions induced non-amyloid aggregation in all three proteins. Solution turbidimetry, sodium dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-PAGE), circular dichroism, and differential scanning calorimetry showed that the mechanism for Cu-induced aggregation involves: (i) loss of β-sheet structure in the N-terminal domain; (ii) decreased thermal and kinetic stability; (iii) formation of metal-bridged species; and (iv) formation of disulfide-bridged dimers. Isothermal titration calorimetry (ITC) revealed distinct Cu2+ binding affinities in the γ-crystallins. Electron paramagnetic resonance (EPR) revealed two distinct Cu2+ binding sites in each protein. Spin quantitation demonstrated the reduction of γ-crystallin-bound Cu2+ ions to Cu+ under aerobic conditions, while X-ray absorption spectroscopy (XAS) confirmed the presence of linear or trigonal Cu+ binding sites in γ-crystallins. Our EPR and XAS studies revealed that γ-crystallins' Cu2+ reductase activity yields a protein-based free radical that is likely a Tyr-based species in human γD-crystallin. This unique free radical chemistry carried out by distinct redox-active Cu sites in human lens γ-crystallins likely contributes to the mechanism of copper-induced aggregation. In the context of an aging human lens, γ-crystallins could act not only as structural proteins but also as key players for metal and redox homeostasis.
Collapse
Affiliation(s)
- Giovanni Palomino-Vizcaino
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| | - Nils Schuth
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| | - José A Domínguez-Calva
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| | - Oscar Rodríguez-Meza
- Laboratorio de Biofisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Eduardo Martínez-Jurado
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| | - Eugene Serebryany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Liliana Quintanar
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| |
Collapse
|
3
|
Zou J, Yang L, Feng W. Mechanism of Radical Initiation and Transfer in Class Id Ribonucleotide Reductase Based on Density Functional Theory. Inorg Chem 2023; 62:2561-2575. [PMID: 36721875 DOI: 10.1021/acs.inorgchem.2c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Class Id ribonucleotide reductase (RNR) is a newly discovered enzyme, which employs the dimanganese cofactor in the superoxidized state (MnIII/MnIV) as the radical initiator. The dimanganese cofactor of class Id RNR in the reduced state (inactive) is clearly based on the crystal structure of the Fj-β subunit. However, the state of the dimanganese cofactor of class Id RNR in the oxidized state (active) is not known. The X-band EPR spectra have shown that the activated Fj-β subunit exists in two distinct complexes, 1 and 2. In this work, quantum mechanical/molecular mechanical calculations were carried out to study class Id RNR. First, we have determined that complex 2 contains a MnIII-(μ-oxo)2-MnIV cluster, and complex 1 contains a MnIII-(μ-hydroxo/μ-oxo)-MnIV cluster. Then, based on the determined dimanganese cofactors, the mechanism of radical initiation and transfer in class Id RNR is revealed. The MnIII-(μ-oxo)2-MnIV cluster in complex 2 has not enough reduction potential to initiate radical transfer directly. Instead, it needs to be monoprotonated into MnIII-(μ-hydroxo/μ-oxo)-MnIV (complex 1) before the radical transfer. The protonation state of μ-oxo can be regulated by changing the protein microenvironment, which is induced by the protein aggregation and separation of β subunits with α subunits. The radical transfer between the cluster of MnIII-(μ-hydroxo/μ-oxo)-MnIV and Trp30 in the radical-transfer chain of the Fj-β subunit (MnIII/MnIV ↔ His100 ↔ Asp194 ↔ Trp30 ↔ Arg99) is a water-mediated tri-proton-coupled electron transfer, which transfers proton from the ε-amino group of Lys71 to the carboxyl group of Glu97 via the water molecule Wat551 and the bridging μ-hydroxo ligand through a three-step reaction. This newly discovered proton-coupled electron-transfer mechanism in class Id RNR is different from those reported in the known Ia-Ic RNRs. The ε-amino group of Lys71, which serves as a proton donor, plays an important role in the radical transfer.
Collapse
Affiliation(s)
- Jinxin Zou
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu Yang
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Banerjee R, Srinivas V, Lebrette H. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Subcell Biochem 2022; 99:109-153. [PMID: 36151375 DOI: 10.1007/978-3-031-00793-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
5
|
Zou J, Chen Y, Feng W. Mechanism of DOPA radical generation and transfer in metal-free class Ie ribonucleotide reductase based on density functional theory. Comput Struct Biotechnol J 2022; 20:1111-1131. [PMID: 35317236 PMCID: PMC8902622 DOI: 10.1016/j.csbj.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/12/2022] Open
Abstract
The mechanism of DOPA radical generation, transfer and regeneration is revealed. The superoxide O2•− should be protonated to HO2• prior to oxidizing Tyr126 to DOPA radical. The protonation of Asp88 is the prerequisite for the DOPA radical generation and radical transfer. Lys213 is a key residue for the transfer of the DOPA radical.
Quantum mechanical/molecular mechanical (QM/MM) calculations were carried out to investigate the mechanisms of the generation, transfer, and regeneration of the DOPA radical for metal-free class Ie ribonucleotide reductase. The crystal structure of MfR2 (Nature, 2018, 563, 416–420) was adopted for the calculations. The QM/MM calculations have revealed several key points that are vital for understanding the mechanisms. The superoxide O2•− provided by the flavoprotein NrdI cannot directly oxidize the residue Tyr126 to the DOPA radical. It should be protonated to HO2•. The calculation results suggest that the covalent modification of Tyr126 and the DOPA radical generation can be carried out with no involvement of metal cofactors. This addresses the concerns of the articles (Nature, 2018, 563, 416–420; PNAS, 2018, 115, 10022–10027). Another concern from the articles is that how the DOPA radical is transferred from the radical trap. The DFT calculations have demonstrated that Lys213 is a key residue for the radical transfer from the DOPA radical. The ε-amino group of Lys213 is used not only as a bridge for the electron transfer but also as a proton donor. It can provide a proton to DOPA126 via a water molecule, and thus the radical transfer from DOPA126 to Trp52 is facilitated. It has also been revealed that the protonation of Asp88 is the prerequisite for the DOPA radical generation and the radical transfer in class Ie. Once the radical is quenched, it can be regenerated via the oxidations by superoxide O2•− and hydroperoxyl radical HO2•.
Collapse
|
6
|
Ravindranath BS, Vishnu Vinayak S, Chandra Mohan V. RNR inhibitor binding studies of Chlamydia felis: insights from in silico molecular modeling, docking, and simulation studies. J Biomol Struct Dyn 2021; 40:9416-9428. [PMID: 34032189 DOI: 10.1080/07391102.2021.1930160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlamydia felis is the primary cause of chronic conjunctivitis without respiratory infections in cats, making conjunctiva as its primary target. It is a Gram-negative obligate intracellular bacterium that cannot survive outside the host cell. C. felis can be found worldwide and its zoonotic potential is a known phenomenon. The scope of zoonoses, its scale, and their impact experiencing today has no historical precedence. Among the identified 1415 human pathogens 868 have a zoonotic origin making it to 61%. Although with appropriate drug administration there are instances of re-occurrence of chlamydial infections, the emergence of heterotypic antimicrobial resistance to antibiotics targeting rRNA due to mutations has further complicated the diagnosis and treatment of chlamydial infections. Ribonucleotide-diphosphate reductase subunit beta (RNR) is one of the crucial target proteins of the bacterial pathogens essential in the synthesis of deoxyribonucleotides. Our current study primarily focuses on modeling the target structure through homology modeling. Further, the validated model is complexed with the specific inhibitor Cladribine through sequence-based ligand search. Docking of the identified ligand was performed to identify the different modes of interactions with amino acids present in the prioritized binding pockets. Validation of the binding modes is carried out through molecular dynamics (MD) simulations for the best binding pose with a high binding score. MD simulation study demonstrated the stability of the docked complex considered in this study. The findings from this study may be helpful in drug repurposing and novel drug research in the scenario of resistance to currently practiced antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- B S Ravindranath
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Vishnu Vinayak
- Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vivek Chandra Mohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, India
| |
Collapse
|
7
|
Young L, Rosell-Hidalgo A, Inaoka DK, Xu F, Albury M, May B, Kita K, Moore AL. Kinetic and structural characterisation of the ubiquinol-binding site and oxygen reduction by the trypanosomal alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148247. [PMID: 32565080 DOI: 10.1016/j.bbabio.2020.148247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The alternative oxidase (AOX) is a monotopic di‑iron carboxylate protein which acts as a terminal respiratory chain oxidase in a variety of plants, fungi and protists. Of particular importance is the finding that both emerging infectious diseases caused by human and plant fungal pathogens, the majority of which are multi-drug resistant, appear to be dependent upon AOX activity for survival. Since AOX is absent in mammalian cells, AOX is considered a viable therapeutic target for the design of specific fungicidal and anti-parasitic drugs. In this work, we have mutated conserved residues within the hydrophobic channel (R96, D100, R118, L122, L212, E215 and T219), which crystallography has indicated leads to the active site. Our data shows that all mutations result in a drastic reduction in Vmax and catalytic efficiency whilst some also affected the Km for quinol and oxygen. The extent to which mutation effects inhibitor sensitivity was also investigated, with mutation of R118 and T219 leading to a complete loss of inhibitor potency. However, only a slight reduction in IC50 values was observed when R96 was mutated, implying that this residue is less important in inhibitor binding. In silico modelling has been used to provide insight into the reason for such changes, which we suggest is due to disruptions in the proton transfer network, resulting in a reduction in overall reaction kinetics. We discuss our results in terms of the structural features of the ubiquinol binding site and consider the implications of such findings on the nature of the catalytic cycle. SIGNIFICANCE: The alternative oxidase is a ubiquinol oxidoreductase enzyme that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. It is widely distributed amongst the plant, fungal and parasitic kingdoms and plays a central role in metabolism through facilitating the turnover of the TCA cycle whilst reducing ROS production.
Collapse
Affiliation(s)
- Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | - Alicia Rosell-Hidalgo
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shinogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Fei Xu
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Mary Albury
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Benjamin May
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
8
|
Samanta D, Saha P, Ghosh P. Proton-Coupled Oxidation of Aldimines and Stabilization of H-Bonded Phenoxyl Radical-Phenol Skeletons. Inorg Chem 2019; 58:15060-15077. [DOI: 10.1021/acs.inorgchem.9b01568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debasish Samanta
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Pinaki Saha
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| |
Collapse
|
9
|
Grāve K, Lambert W, Berggren G, Griese JJ, Bennett MD, Logan DT, Högbom M. Redox-induced structural changes in the di-iron and di-manganese forms of Bacillus anthracis ribonucleotide reductase subunit NrdF suggest a mechanism for gating of radical access. J Biol Inorg Chem 2019; 24:849-861. [PMID: 31410573 PMCID: PMC6754363 DOI: 10.1007/s00775-019-01703-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y·) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 Å) and in complex with manganese (MnII/MnII, 1.30 Å). We also report three structures of the protein in complex with iron, either prepared anaerobically (FeII/FeII form, 1.32 Å), or prepared aerobically in the photo-reduced FeII/FeII form (1.63 Å) and with the partially oxidized metallo-cofactor (1.46 Å). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.
Collapse
Affiliation(s)
- Kristīne Grāve
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Wietske Lambert
- PRA Health Sciences, Amerikaweg 18, 9407 TK, Assen, The Netherlands
| | - Gustav Berggren
- Department of Chemistry, Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.,Department of Cell and Molecular Biology, Uppsala University. BMC, Box 596, 75124, Uppsala, Sweden
| | - Matthew D Bennett
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Derek T Logan
- Department of Biochemistry and Structural Biology, Lund University, Box 124, 221 00, Lund, Sweden.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| |
Collapse
|
10
|
Bedin M, Agarwala H, Marx J, Schünemann V, Ott S, Thapper A. Synthesis and properties of a heterobimetallic iron-manganese complex and its comparison with homobimetallic analogues. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Mondal S, Bera S, Maity S, Ghosh P. Orthometalated N-(Benzophenoxazine)- o-aminophenol: Phenolato versus Phenoxyl States. ACS OMEGA 2018; 3:13323-13334. [PMID: 31458047 PMCID: PMC6645054 DOI: 10.1021/acsomega.8b01983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/03/2018] [Indexed: 06/10/2023]
Abstract
The molecular and electronic structures of the orthometalated ruthenium(III) and osmium(III) complexes of N-(benzophenoxazine)-o-aminophenol (OXLH2) that exhibits versatile redox activities are reported. The redox chemistry of OXLH2 is remarkably different from that of N-(aryl)-o-aminophenol (APLH2). The study established that OXLH2 is redox noninnocent and is a precursor of a phenoxyl radical. One of the C-H bonds of OXLH2 is activated by ions, and OXLH2 reveals three different redox states as dianionic phenolato (OXL2-), monoanionic phenoxyl radical (OXL•-), and zwitterionic phenoxium cation (OXL±) states. The reaction of OXLH2 with [RuII(PPh3)3Cl2] in boiling toluene in air affords an orthometalated OXL2- complex of ruthenium(III), trans-[(OXL2-)RuIII(PPh3)2(Cl)] (1), whereas the similar reaction with [OsII(PPh3)3Br2] yields an orthometalated OXL•- complex, cis-[(OXL•-)OsIII(PPh3)Br2] (2). 1 and 2 exhibit ligand-based reversible redox waves due to OXL•-/OXL2-, OXL±/OXL•-, and MIII/MII couples. The 1 + ion is a OXL•- complex of ruthenium(III). 2 - exhibits temperature-dependent valence tautomerism due to [OsII(OXL•-) ↔ OsIII(OXL2-)] equilibrium. 2 2- is a OXL2- complex of osmium(II), while 1 2+ and 2 + are OXL± complexes of metal(III). 2 is an oxidant and effective catalyst for oxidation of 3,5-di-tert-butylcatechol to the corresponding quinone, and the turnover number is 119.7 h-1. The UV-vis-NIR absorption spectrum of 1 displays an NIR band at 800 nm due to an intra-ligand-charge-transfer transition, which is absent in 2 incorporating a OXL•- radical. The molecular and electronic structures of 1 and 2 and their oxidized and reduced analogues were confirmed by single-crystal X-ray crystallography, variable-temperature electron paramagnetic resonance spectroscopy, spectroelectrochemical measurements, and density functional theory calculations.
Collapse
Affiliation(s)
| | | | | | - Prasanta Ghosh
- E-mail: . Phone: +91-33-2428-7347. Fax: +91-33-2477-3597
| |
Collapse
|
12
|
Balamurugan M, Saravanan N, Ha H, Lee YH, Nam KT. Involvement of high-valent manganese-oxo intermediates in oxidation reactions: realisation in nature, nano and molecular systems. NANO CONVERGENCE 2018; 5:18. [PMID: 30101051 PMCID: PMC6061251 DOI: 10.1186/s40580-018-0150-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/19/2018] [Indexed: 05/12/2023]
Abstract
Manganese plays multiple role in many biological redox reactions in which it exists in different oxidation states from Mn(II) to Mn(IV). Among them the high-valent manganese-oxo intermediate plays important role in the activity of certain enzymes and lessons from the natural system provide inspiration for new developments of artificial systems for a sustainable energy supply and various organic conversions. This review describes recent advances and key lessons learned from the nature on high-valent Mn-oxo intermediates. Also we focus on the elemental science developed from the natural system, how the novel strategies are realised in nano particles and molecular sites at heterogeneous and homogeneous reaction conditions respectively. Finally, perspectives on the utilisation of the high-valent manganese-oxo species towards other organic reactions are proposed.
Collapse
Affiliation(s)
- Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Natarajan Saravanan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Heonjin Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| |
Collapse
|
13
|
Anderton KJ, Ermert DM, Quintero PA, Turvey MW, Fataftah MS, Abboud KA, Meisel MW, Čižmár E, Murray LJ. Correlating Bridging Ligand with Properties of Ligand-Templated [Mn II3X 3] 3+ Clusters (X = Br -, Cl -, H -, MeO -). Inorg Chem 2017; 56:12012-12022. [PMID: 28920698 DOI: 10.1021/acs.inorgchem.7b02004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polynuclear manganese compounds have garnered interest as mimics and models of the water oxidizing complex (WOC) in photosystem II and as single molecule magnets. Molecular systems in which composition can be correlated to physical phenomena, such as magnetic exchange interactions, remain few primarily because of synthetic limitations. Here, we report the synthesis of a family of trimanganese(II) complexes of the type Mn3X3L (X = Cl-, H-, and MeO-) where L3- is a tris(β-diketiminate) cyclophane. The tri(chloride) complex (2) is structurally similar to the reported tri(bromide) complex (1) with the Mn3X3 core having a ladder-like arrangement of alternating M-X rungs, whereas the tri(μ-hydride) (3) and tri(μ-methoxide) (4) complexes contain planar hexagonal cores. The hydride and methoxide complexes are synthesized in good yield (48% and 56%) starting with the bromide complex employing a metathesis-like strategy. Compounds 2-4 were characterized by combustion analysis, X-ray crystallography, X-band EPR spectroscopy, SQUID magnetometry, and infrared and UV-visible spectroscopy. Magnetic susceptibility measurements indicate that the Mn3 clusters in 2-4 are antiferromagnetically coupled, and the spin ground state of the compounds (S = 3/2 (1, 2) or S = 1/2 (3, 4)) is correlated to the identity of the bridging ligand and structural arrangement of the Mn3X3 core (X = Br, Cl, H, OCH3). Electrochemical experiments on isobutyronitrile solutions of 3 and 4 display broad irreversible oxidations centered at 0.30 V.
Collapse
Affiliation(s)
- Kevin J Anderton
- Department of Chemistry, Center for Catalysis and Center for Heterocyclic Compounds, University of Florida , Gainesville, Florida 32611, United States
| | - David M Ermert
- Department of Chemistry, Center for Catalysis and Center for Heterocyclic Compounds, University of Florida , Gainesville, Florida 32611, United States
| | - Pedro A Quintero
- Department of Physics and the National High Magnetic Field Laboratory, University of Florida , Gainesville, Florida 32611, United States
| | - Mackenzie W Turvey
- Department of Physics and the National High Magnetic Field Laboratory, University of Florida , Gainesville, Florida 32611, United States
| | - Majed S Fataftah
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Khalil A Abboud
- Department of Chemistry, Center for Catalysis and Center for Heterocyclic Compounds, University of Florida , Gainesville, Florida 32611, United States
| | - Mark W Meisel
- Department of Physics and the National High Magnetic Field Laboratory, University of Florida , Gainesville, Florida 32611, United States
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University , 04154 Košice, Slovakia
| | - Leslie J Murray
- Department of Chemistry, Center for Catalysis and Center for Heterocyclic Compounds, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
14
|
Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol 2017; 155:96-119. [PMID: 26455458 PMCID: PMC4826627 DOI: 10.1016/j.pneurobio.2015.09.012] [Citation(s) in RCA: 441] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration.
Collapse
Affiliation(s)
- Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Emanuele Ferrari
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Patricia Muñoz
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Irmgard Paris
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Sciences, Santo Tomás University, Viña del Mar, Chile
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
15
|
Zaltariov MF, Hammerstad M, Arabshahi HJ, Jovanović K, Richter KW, Cazacu M, Shova S, Balan M, Andersen NH, Radulović S, Reynisson J, Andersson KK, Arion VB. New Iminodiacetate-Thiosemicarbazone Hybrids and Their Copper(II) Complexes Are Potential Ribonucleotide Reductase R2 Inhibitors with High Antiproliferative Activity. Inorg Chem 2017; 56:3532-3549. [PMID: 28252952 DOI: 10.1021/acs.inorgchem.6b03178] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As ribonucleotide reductase (RNR) plays a crucial role in nucleic acid metabolism, it is an important target for anticancer therapy. The thiosemicarbazone Triapine is an efficient R2 inhibitor, which has entered ∼20 clinical trials. Thiosemicarbazones are supposed to exert their biological effects through effectively binding transition-metal ions. In this study, six iminodiacetate-thiosemicarbazones able to form transition-metal complexes, as well as six dicopper(II) complexes, were synthesized and fully characterized by analytical, spectroscopic techniques (IR, UV-vis; 1H and 13C NMR), electrospray ionization mass spectrometry, and X-ray diffraction. The antiproliferative effects were examined in several human cancer and one noncancerous cell lines. Several of the compounds showed high cytotoxicity and marked selectivity for cancer cells. On the basis of this, and on molecular docking calculations one lead dicopper(II) complex and one thiosemicarbazone were chosen for in vitro analysis as potential R2 inhibitors. Their interaction with R2 and effect on the Fe(III)2-Y· cofactor were characterized by microscale thermophoresis, and two spectroscopic techniques, namely, electron paramagnetic resonance and UV-vis spectroscopy. Our findings suggest that several of the synthesized proligands and copper(II) complexes are effective antiproliferative agents in several cancer cell lines, targeting RNR, which deserve further investigation as potential anticancer drugs.
Collapse
Affiliation(s)
- Mirela F Zaltariov
- Institute of Inorganic Chemistry, University of Vienna , Währinger Strasse 42, 1090 Vienna, Austria.,Inorganic Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy , Aleea G. Ghica Voda 41A, 700487 Iasi, Romania
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo , P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | | | - Katarina Jovanović
- Institute for Oncology and Radiology of Serbia , Pasterova 14, 11000 Belgrade, Serbia
| | - Klaus W Richter
- Institute of Inorganic Chemistry-Functional Materials, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Maria Cazacu
- Inorganic Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy , Aleea G. Ghica Voda 41A, 700487 Iasi, Romania
| | - Sergiu Shova
- Inorganic Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy , Aleea G. Ghica Voda 41A, 700487 Iasi, Romania
| | - Mihaela Balan
- Inorganic Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy , Aleea G. Ghica Voda 41A, 700487 Iasi, Romania
| | - Niels H Andersen
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia , Pasterova 14, 11000 Belgrade, Serbia
| | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland , Auckland, New Zealand
| | - K Kristoffer Andersson
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo , P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, University of Vienna , Währinger Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
16
|
Martinie RJ, Blaesi EJ, Krebs C, Bollinger JM, Silakov A, Pollock CJ. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis. J Am Chem Soc 2017; 139:1950-1957. [PMID: 28075562 DOI: 10.1021/jacs.6b11563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-valent iron and manganese complexes effect some of the most challenging biochemical reactions known, including hydrocarbon and water oxidations associated with the global carbon cycle and oxygenic photosynthesis, respectively. Their extreme reactivity presents an impediment to structural characterization, but their biological importance and potential chemical utility have, nevertheless, motivated extensive efforts toward that end. Several such intermediates accumulate during activation of class I ribonucleotide reductase (RNR) β subunits, which self-assemble dimetal cofactors with stable one-electron oxidants that serve to initiate the enzyme's free-radical mechanism. In the class I-c β subunit from Chlamydia trachomatis, a heterodinuclear Mn(II)/Fe(II) complex reacts with dioxygen to form a Mn(IV)/Fe(IV) intermediate, which undergoes reduction of the iron site to produce the active Mn(IV)/Fe(III) cofactor. Herein, we assess the structure of the Mn(IV)/Fe(IV) activation intermediate using Fe- and Mn-edge extended X-ray absorption fine structure (EXAFS) analysis and multifrequency pulse electron paramagnetic resonance (EPR) spectroscopy. The EXAFS results reveal a metal-metal vector of 2.74-2.75 Å and an intense light-atom (C/N/O) scattering interaction 1.8 Å from the Fe. Pulse EPR data reveal an exchangeable deuterium hyperfine coupling of strength |T| = 0.7 MHz, but no stronger couplings. The results suggest that the intermediate possesses a di-μ-oxo diamond core structure with a terminal hydroxide ligand to the Mn(IV).
Collapse
Affiliation(s)
- Ryan J Martinie
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Elizabeth J Blaesi
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher J Pollock
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Shova S, Vlad A, Cazacu M, Krzystek J, Bucinsky L, Breza M, Darvasiová D, Rapta P, Cano J, Telser J, Arion VB. A five-coordinate manganese(iii) complex of a salen type ligand with a positive axial anisotropy parameter D. Dalton Trans 2017; 46:11817-11829. [DOI: 10.1039/c7dt01809f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical calculations reproduced well the electronic absorption spectrum and spin Hamiltonian parameters for MnL(NCS).
Collapse
Affiliation(s)
- Sergiu Shova
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - Angelica Vlad
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - Maria Cazacu
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - J. Krzystek
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 81237 Bratislava
- Slovak Republic
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 81237 Bratislava
- Slovak Republic
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 81237 Bratislava
- Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 81237 Bratislava
- Slovak Republic
| | - Joan Cano
- Institut de Ciència Molecular
- Universitat de València
- 46980 Paterna
- Spain
| | - Joshua Telser
- Department of Biological
- Chemical and Physical Sciences
- Roosevelt University
- Chicago
- USA
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry of the University of Vienna
- A1090 Vienna
- Austria
| |
Collapse
|
18
|
Khan FST, Pandey AK, Rath SP. Remarkable Anion-Dependent Spin-State Switching in Diiron(III) μ-Hydroxo Bisporphyrins: What Role do Counterions Play? Chemistry 2016; 22:16124-16137. [PMID: 27682429 DOI: 10.1002/chem.201603163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Addition of 2,4,6-trinitrophenol (HTNP) to an ethene-bridged diiron(III) μ-oxo bisporphyrin (1) in CH2 Cl2 initially leads to the formation of diiron(III) μ-hydroxo bisporphyrin (2⋅TNP) with a phenolate counterion that, after further addition of HTNP or dissolution in a nonpolar solvent, converts to a diiron(III) complex with axial phenoxide coordination (3⋅(TNP)2 ). The progress of the reaction from μ-oxo to μ-hydroxo to axially ligated complex has been monitored in solution by using 1 H NMR spectroscopy because their signals appear in three different and distinct spectral regions. The X-ray structure of 2⋅TNP revealed that the nearly planar TNP counterion fits perfectly within the bisporphyrin cavity to form a strong hydrogen bond with the μ-hydroxo group, which thus stabilizes the two equivalent iron centers. In contrast, such counterions as I5 , I3 , BF4 , SbF6 , and PF6 are found to be tightly associated with one of the porphyrin rings and, therefore, stabilize two different spin states of iron in one molecule. A spectroscopic investigation of 2⋅TNP has revealed the presence of two equivalent iron centers with a high-spin state (S=5/2) in the solid state that converts to intermediate spin (S=3/2) in solution. An extensive computational study by using a range of DFT methods was performed on 2⋅TNP and 2+ , and clearly supports the experimentally observed spin flip triggered by hydrogen-bonding interactions. The counterion is shown to perturb the spin-state ordering through, for example, hydrogen-bonding interactions, switched positions between counterion and axial ligand, ion-pair interactions, and charge polarization. The present investigation thus provides a clear rationalization of the unusual counterion-specific spin states observed in the μ-hydroxo bisporphyrins that have so far remained the most outstanding issue.
Collapse
Affiliation(s)
| | - Anjani Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
19
|
Lofstad M, Gudim I, Hammerstad M, Røhr ÅK, Hersleth HP. Activation of the Class Ib Ribonucleotide Reductase by a Flavodoxin Reductase in Bacillus cereus. Biochemistry 2016; 55:4998-5001. [DOI: 10.1021/acs.biochem.6b00699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marie Lofstad
- Section
for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Ingvild Gudim
- Section
for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Marta Hammerstad
- Section
for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Åsmund Kjendseth Røhr
- Department
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Hans-Petter Hersleth
- Section
for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
20
|
Sil D, Khan FST, Rath SP. Effect of Inter-Porphyrin Distance on Spin-State in Diiron(III) μ-Hydroxo Bisporphyrins. Chemistry 2016; 22:14585-97. [DOI: 10.1002/chem.201602018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Debangsu Sil
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | | | - Sankar Prasad Rath
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| |
Collapse
|
21
|
|
22
|
Synthesis and magnetic properties of a dinuclear manganese(II) complex with two manganese(II) ions of C2-twisted octahedral geometry. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Cho E, Yen Y. Novel regulators and molecular mechanisms of p53R2 and its disease relevance. Biochimie 2016; 123:81-4. [DOI: 10.1016/j.biochi.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
24
|
Sil D, Bhowmik S, Khan FST, Rath SP. Experimental and Theoretical Investigation of a Series of Novel Dimanganese(III) μ-Hydroxo Bisporphyrins: Magneto–Structural Correlation and Effect of Metal Spin on Porphyrin Core Deformation. Inorg Chem 2016; 55:3239-51. [DOI: 10.1021/acs.inorgchem.5b02226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debangsu Sil
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Susovan Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
25
|
Zhou Y, Dong X, Zhang Y, Tong P, Qu J. Highly selective fluorescence sensors for the fluoride anion based on carboxylate-bridged diiron complexes. Dalton Trans 2016; 45:6839-46. [DOI: 10.1039/c5dt03801d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diiron–sulfur clusters bearing urea and anthracene units showed rapid and selective recognition for the fluoride ion.
Collapse
Affiliation(s)
- Yuhan Zhou
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Xiaoliang Dong
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Yixin Zhang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Peng Tong
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| |
Collapse
|
26
|
Dong X, Liu L, Zhou Y, Liu J, Zhang Y, Chen Y, Qu J. Synthesis of carboxylate-bridged iron-thiolate clusters from alcohols/aldehydes or carboxylate salts. Dalton Trans 2015; 44:14952-8. [PMID: 26228059 DOI: 10.1039/c5dt01445j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of novel carboxylate-bridged cyclopentadienyl diiron complexes [Cp*Fe(μ-SEt)2(μ-η(2)-OOCR)FeCp*][PF6] (, R = H; , R = Me; , R = Et; , R = Pr-n; , R = Ph; , R = p-Me-C6H4; , R = PhCH[double bond, length as m-dash]CH; , CH[triple bond, length as m-dash]C) were obtained from alcohols/aldehydes or sodium carboxylates at room temperature. These eight complexes were fully characterized by spectroscopy, and some of them (, , and ) were further studied by X-ray crystallography. In addition, the electrochemical properties of clusters and are also discussed.
Collapse
Affiliation(s)
- Xiaoliang Dong
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Iron management and production of electricity by microorganisms. Appl Microbiol Biotechnol 2015; 99:8329-36. [DOI: 10.1007/s00253-015-6897-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
28
|
Shahbazi-Raz F, Amani V, Noruzi EB, Safari N, Boča R, Titiš J, Notash B. Synthesis, characterization, electrochemical and magnetic study of mixed ligand mono iron and O-methoxy bridged diiron complexes. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Dragičević I, Barić D, Kovačević B, Golding BT, Smith DM. Non-enzymatic ribonucleotide reduction in the prebiotic context. Chemistry 2015; 21:6132-43. [PMID: 25754795 DOI: 10.1002/chem.201405741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/02/2015] [Indexed: 12/14/2022]
Abstract
Model studies of prebiotic chemistry have revealed compelling routes for the formation of the building blocks of proteins and RNA, but not DNA. Today, deoxynucleotides required for the construction of DNA are produced by reduction of nucleotides catalysed by ribonucleotide reductases, which are radical enzymes. This study considers potential non-enzymatic routes via intermediate radicals for the ancient formation of deoxynucleotides. In this context, several mechanisms for ribonucleotide reduction, in a putative H2 S/HS(.) environment, are characterized using computational chemistry. A bio-inspired mechanistic cycle involving a keto intermediate and HSSH production is found to be potentially viable. An alternative pathway, proceeding through an enol intermediate is found to exhibit similar energetic requirements. Non-cyclical pathways, in which HSS(.) is generated in the final step instead of HS(.) , show a markedly increased thermodynamic driving force (ca. 70 kJ mol(-1) ) and thus warrant serious consideration in the context of the prebiotic ribonucleotide reduction.
Collapse
Affiliation(s)
- Ivan Dragičević
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia); Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar (Bosnia and Herzegovina)
| | | | | | | | | |
Collapse
|
30
|
Sainna MA, Sil D, Sahoo D, Martin B, Rath SP, Comba P, de Visser SP. Spin-State Ordering in Hydroxo-Bridged Diiron(III)bisporphyrin Complexes. Inorg Chem 2015; 54:1919-30. [DOI: 10.1021/ic502803b] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mala A. Sainna
- Manchester Institute
of Biotechnology and School of Chemical Engineering and Analytical
Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Debangsu Sil
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dipankar Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Bodo Martin
- Anorganisch-Chemisches Institüt and Interdisciplinary
Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Peter Comba
- Anorganisch-Chemisches Institüt and Interdisciplinary
Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Sam P. de Visser
- Manchester Institute
of Biotechnology and School of Chemical Engineering and Analytical
Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
31
|
Abstract
In order to address how diverse metalloprotein active sites, in particular those containing iron and copper, guide O₂binding and activation processes to perform diverse functions, studies of synthetic models of the active sites have been performed. These studies have led to deep, fundamental chemical insights into how O₂coordinates to mono- and multinuclear Fe and Cu centers and is reduced to superoxo, peroxo, hydroperoxo, and, after O-O bond scission, oxo species relevant to proposed intermediates in catalysis. Recent advances in understanding the various factors that influence the course of O₂activation by Fe and Cu complexes are surveyed, with an emphasis on evaluating the structure, bonding, and reactivity of intermediates involved. The discussion is guided by an overarching mechanistic paradigm, with differences in detail due to the involvement of disparate metal ions, nuclearities, geometries, and supporting ligands providing a rich tapestry of reaction pathways by which O₂is activated at Fe and Cu sites.
Collapse
|
32
|
Torrents E. Ribonucleotide reductases: essential enzymes for bacterial life. Front Cell Infect Microbiol 2014; 4:52. [PMID: 24809024 PMCID: PMC4009431 DOI: 10.3389/fcimb.2014.00052] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 11/13/2022] Open
Abstract
Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria.
Collapse
Affiliation(s)
- Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia Barcelona, Spain
| |
Collapse
|
33
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
34
|
Metzinger R, Demeshko S, Limberg C. A Novel Pentadentate Redox-Active Ligand and Its Iron(III) Complexes: Electronic Structures and O2Reactivity. Chemistry 2014; 20:4721-35. [DOI: 10.1002/chem.201304535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/15/2014] [Indexed: 11/11/2022]
|
35
|
Offenbacher AR, Watson RA, Pagba CV, Barry BA. Redox-dependent structural coupling between the α2 and β2 subunits in E. coli ribonucleotide reductase. J Phys Chem B 2014; 118:2993-3004. [PMID: 24606240 DOI: 10.1021/jp501121d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the production of deoxyribonucleotides in all cells. In E. coli class Ia RNR, a transient α2β2 complex forms when a ribonucleotide substrate, such as CDP, binds to the α2 subunit. A tyrosyl radical (Y122O•)-diferric cofactor in β2 initiates substrate reduction in α2 via a long-distance, proton-coupled electron transfer (PCET) process. Here, we use reaction-induced FT-IR spectroscopy to describe the α2β2 structural landscapes, which are associated with dATP and hydroxyurea (HU) inhibition. Spectra were acquired after mixing E. coli α2 and β2 with a substrate, CDP, and the allosteric effector, ATP. Isotopic chimeras, (13)Cα2β2 and α2(13)Cβ2, were used to define subunit-specific structural changes. Mixing of α2 and β2 under turnover conditions yielded amide I (C═O) and II (CN/NH) bands, derived from each subunit. The addition of the inhibitor, dATP, resulted in a decreased contribution from amide I bands, attributable to β strands and disordered structures. Significantly, HU-mediated reduction of Y122O• was associated with structural changes in α2, as well as β2. To define the spectral contributions of Y122O•/Y122OH in the quaternary complex, (2)H4 labeling of β2 tyrosines and HU editing were performed. The bands of Y122O•, Y122OH, and D84, a unidentate ligand to the diferric cluster, previously identified in isolated β2, were observed in the α2β2 complex. These spectra also provide evidence for a conformational rearrangement at an additional β2 tyrosine(s), Yx, in the α2β2/CDP/ATP complex. This study illustrates the utility of reaction-induced FT-IR spectroscopy in the study of complex enzymes.
Collapse
Affiliation(s)
- Adam R Offenbacher
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | |
Collapse
|
36
|
The class Ib ribonucleotide reductase from Mycobacterium tuberculosis has two active R2F subunits. J Biol Inorg Chem 2014; 19:893-902. [PMID: 24585102 DOI: 10.1007/s00775-014-1121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides, playing a crucial role in DNA repair and replication in all living organisms. Class Ib RNRs require either a diiron-tyrosyl radical (Y·) or a dimanganese-Y· cofactor in their R2F subunit to initiate ribonucleotide reduction in the R1 subunit. Mycobacterium tuberculosis, the causative agent of tuberculosis, contains two genes, nrdF1 and nrdF2, encoding the small subunits R2F-1 and R2F-2, respectively, where the latter has been thought to serve as the only active small subunit in the M. tuberculosis class Ib RNR. Here, we present evidence for the presence of an active Fe 2 (III) -Y· cofactor in the M. tuberculosis RNR R2F-1 small subunit, supported and characterized by UV-vis, X-band electron paramagnetic resonance, and resonance Raman spectroscopy, showing features similar to those for the M. tuberculosis R2F-2-Fe 2 (III) -Y· cofactor. We also report enzymatic activity of Fe 2 (III) -R2F-1 when assayed with R1, and suggest that the active M. tuberculosis class Ib RNR can use two different small subunits, R2F-1 and R2F-2, with similar activity.
Collapse
|
37
|
Hammerstad M, Hersleth HP, Tomter AB, Røhr ÅK, Andersson KK. Crystal structure of Bacillus cereus class Ib ribonucleotide reductase di-iron NrdF in complex with NrdI. ACS Chem Biol 2014; 9:526-37. [PMID: 24295378 DOI: 10.1021/cb400757h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class Ib ribonucleotide reductases (RNRs) use a dimetal-tyrosyl radical (Y•) cofactor in their NrdF (β2) subunit to initiate ribonucleotide reduction in the NrdE (α2) subunit. Contrary to the diferric tyrosyl radical (Fe(III)2-Y•) cofactor, which can self-assemble from Fe(II)2-NrdF and O2, generation of the Mn(III)2-Y• cofactor requires the reduced form of a flavoprotein, NrdIhq, and O2 for its assembly. Here we report the 1.8 Å resolution crystal structure of Bacillus cereus Fe2-NrdF in complex with NrdI. Compared to the previously solved Escherichia coli NrdI-Mn(II)2-NrdF structure, NrdI and NrdF binds similarly in Bacillus cereus through conserved core interactions. This protein-protein association seems to be unaffected by metal ion type bound in the NrdF subunit. The Bacillus cereus Mn(II)2-NrdF and Fe2-NrdF structures, also presented here, show conformational flexibility of residues surrounding the NrdF metal ion site. The movement of one of the metal-coordinating carboxylates is linked to the metal type present at the dimetal site and not associated with NrdI-NrdF binding. This carboxylate conformation seems to be vital for the water network connecting the NrdF dimetal site and the flavin in NrdI. From these observations, we suggest that metal-dependent variations in carboxylate coordination geometries are important for active Y• cofactor generation in class Ib RNRs. Additionally, we show that binding of NrdI to NrdF would structurally interfere with the suggested α2β2 (NrdE-NrdF) holoenzyme formation, suggesting the potential requirement for NrdI dissociation before NrdE-NrdF assembly after NrdI-activation. The mode of interactions between the proteins involved in the class Ib RNR system is, however, not fully resolved.
Collapse
Affiliation(s)
- Marta Hammerstad
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Hans-Petter Hersleth
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Ane B. Tomter
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Åsmund K. Røhr
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - K. Kristoffer Andersson
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
38
|
Lu M, Chen T, Wang M, Jiang G, Lu T, Jiang G, Du J. A new μ3-oxo-centered tri-nuclear carboxyl bridged iron (III) complex with thio-methyl groups in the periphery: Structural, spectroscopic and electrochemical studies. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Okamoto Y, Onoda A, Sugimoto H, Takano Y, Hirota S, Kurtz DM, Shiro Y, Hayashi T. H2O2-dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin. Chem Commun (Camb) 2014; 50:3421-3. [PMID: 24400317 PMCID: PMC3947700 DOI: 10.1039/c3cc48108e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The O2-binding carboxylate-bridged diiron site in DcrH-Hr with an engineered His residue in place of Ile119 promotes the oxidation of guaiacol and 1,4-cyclohexadiene upon addition of H2O2.
The O2-binding carboxylate-bridged diiron site in DcrH-Hr was engineered in an effort to perform the H2O2-dependent oxidation of external substrates. A His residue was introduced near the diiron site in place of a conserved residue, Ile119. The I119H variant promotes the oxidation of guaiacol and 1,4-cyclohexadiene upon addition of H2O2.
Collapse
Affiliation(s)
- Yasunori Okamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
de Visser SP, Quesne MG, Martin B, Comba P, Ryde U. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes. Chem Commun (Camb) 2014; 50:262-82. [DOI: 10.1039/c3cc47148a] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Lassalle-Kaiser B, Boron TT, Krewald V, Kern J, Beckwith MA, Schroeder H, Alonso-Mori R, Nordlund D, Weng TC, Sokaras D, Neese F, Bergmann U, Yachandra VK, DeBeer S, Pecoraro VL, Yano J. Experimental and computational X-ray emission spectroscopy as a direct probe of protonation states in oxo-bridged Mn(IV) dimers relevant to redox-active metalloproteins. Inorg Chem 2013; 52:12915-22. [PMID: 24161081 PMCID: PMC3867288 DOI: 10.1021/ic400821g] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The protonation state of oxo bridges in nature is of profound importance for a variety of enzymes, including the Mn4CaO5 cluster of photosystem II and the Mn2O2 cluster in Mn catalase. A set of dinuclear bis-μ-oxo-bridged Mn(IV) complexes in different protonation states was studied by Kβ emission spectroscopy to form the foundation for unraveling the protonation states in the native complex. The valence-to-core regions (valence-to-core XES) of the spectra show significant changes in intensity and peak position upon protonation. DFT calculations were performed to simulate the valence-to-core XES spectra and to assign the spectral features to specific transitions. The Kβ(2,5) peaks arise primarily from the ligand 2p to Mn 1s transitions, with a characteristic low energy shoulder appearing upon oxo-bridge protonation. The satellite Kβ" peak provides a more direct signature of the protonation state change, since the transitions originating from the 2s orbitals of protonated and unprotonated μ-oxo bridges dominate this spectral region. The energies of the Kβ" features differ by ~3 eV and thus are well resolved in the experimental spectra. Additionally, our work explores the chemical resolution limits of the method, namely, whether a mixed (μ-O)(μ-OH2) motif can be distinguished from a symmetric (μ-OH)2 one. The results reported here highlight the sensitivity of Kβ valence-to-core XES to single protonation state changes of bridging ligands, and form the basis for further studies of oxo-bridged polymetallic complexes and metalloenzyme active sites. In a complementary paper, the results from X-ray absorption spectroscopy of the same Mn(IV) dimer series are discussed.
Collapse
Affiliation(s)
- Benedikt Lassalle-Kaiser
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Thaddeus T. Boron
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vera Krewald
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jan Kern
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Martha A. Beckwith
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Henning Schroeder
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - Dennis Nordlund
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Tsu-Chien Weng
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Uwe Bergmann
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Vittal K. Yachandra
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Junko Yano
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
42
|
Okamoto Y, Onoda A, Sugimoto H, Takano Y, Hirota S, Kurtz DM, Shiro Y, Hayashi T. Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin. Inorg Chem 2013; 52:13014-20. [PMID: 24187962 DOI: 10.1021/ic401632x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A nonheme diiron active site in a 13 kDa hemerythrin-like domain of the bacterial chemotaxis protein DcrH-Hr contains an oxo bridge, two bridging carboxylate groups from Glu and Asp residues, and five terminally ligated His residues. We created a unique diiron coordination sphere containing five His and three Glu/Asp residues by replacing an Ile residue with Glu in DcrH-Hr. Direct coordination of the carboxylate group of E119 to Fe2 of the diiron site in the I119E variant was confirmed by X-ray crystallography. The substituted Glu is adjacent to an exogenous ligand-accessible tunnel. UV-vis absorption spectra indicate that the additional coordination of E119 inhibits the binding of the exogenous ligands azide and phenol to the diiron site. The extent of azide binding to the diiron site increases at pH ≤ 6, which is ascribed to protonation of the carboxylate ligand of E119. The diferrous state (deoxy form) of the engineered diiron site with the extra Glu residue is found to react more slowly than wild type with O2 to yield the diferric state (met form). The additional coordination of E119 to the diiron site also slows the rate of reduction from the met form. All these processes were found to be pH-dependent, which can be attributed to protonation state and coordination status of the E119 carboxylate. These results demonstrate that modifications of the endogenous coordination sphere can produce significant changes in the ligand binding and redox properties in a prototypical nonheme diiron-carboxylate protein active site.
Collapse
Affiliation(s)
- Yasunori Okamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hypermutability and error catastrophe due to defects in ribonucleotide reductase. Proc Natl Acad Sci U S A 2013; 110:18596-601. [PMID: 24167285 DOI: 10.1073/pnas.1310849110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzyme ribonucleotide reductase (RNR) plays a critical role in the production of deoxynucleoside-5'-triphosphates (dNTPs), the building blocks for DNA synthesis and replication. The levels of the cellular dNTPs are tightly controlled, in large part through allosteric control of RNR. One important reason for controlling the dNTPs relates to their ability to affect the fidelity of DNA replication and, hence, the cellular mutation rate. We have previously isolated a set of mutants of Escherichia coli RNR that are characterized by altered dNTP pools and increased mutation rates (mutator mutants). Here, we show that one particular set of RNR mutants, carrying alterations at the enzyme's allosteric specificity site, is characterized by relatively modest dNTP pool deviations but exceptionally strong mutator phenotypes, when measured in a mutational forward assay (>1,000-fold increases). We provide evidence indicating that this high mutability is due to a saturation of the DNA mismatch repair system, leading to hypermutability and error catastrophe. The results indicate that, surprisingly, even modest deviations of the cellular dNTP pools, particularly when the pool deviations promote particular types of replication errors, can have dramatic consequences for mutation rates.
Collapse
|
44
|
Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein. Proc Natl Acad Sci U S A 2013; 110:17189-94. [PMID: 24101498 DOI: 10.1073/pnas.1304368110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although metallocofactors are ubiquitous in enzyme catalysis, how metal binding specificity arises remains poorly understood, especially in the case of metals with similar primary ligand preferences such as manganese and iron. The biochemical selection of manganese over iron presents a particularly intricate problem because manganese is generally present in cells at a lower concentration than iron, while also having a lower predicted complex stability according to the Irving-Williams series (Mn(II) < Fe(II) < Ni(II) < Co(II) < Cu(II) > Zn(II)). Here we show that a heterodinuclear Mn/Fe cofactor with the same primary protein ligands in both metal sites self-assembles from Mn(II) and Fe(II) in vitro, thus diverging from the Irving-Williams series without requiring auxiliary factors such as metallochaperones. Crystallographic, spectroscopic, and computational data demonstrate that one of the two metal sites preferentially binds Fe(II) over Mn(II) as expected, whereas the other site is nonspecific, binding equal amounts of both metals in the absence of oxygen. Oxygen exposure results in further accumulation of the Mn/Fe cofactor, indicating that cofactor assembly is at least a two-step process governed by both the intrinsic metal specificity of the protein scaffold and additional effects exerted during oxygen binding or activation. We further show that the mixed-metal cofactor catalyzes a two-electron oxidation of the protein scaffold, yielding a tyrosine-valine ether cross-link. Theoretical modeling of the reaction by density functional theory suggests a multistep mechanism including a valyl radical intermediate.
Collapse
|
45
|
Sano Y, Weitz AC, Ziller JW, Hendrich MP, Borovik A. Unsymmetrical bimetallic complexes with M(II)-(μ-OH)-M(III) cores (M(II)M(III) = Fe(II)Fe(III), Mn(II)Fe(III), Mn(II)Mn(III)): structural, magnetic, and redox properties. Inorg Chem 2013; 52:10229-31. [PMID: 23992041 PMCID: PMC3826960 DOI: 10.1021/ic401561k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heterobimetallic cores are important units within the active sites of metalloproteins but are often difficult to duplicate in synthetic systems. We have developed a synthetic approach for the preparation of a complex with a Mn(II)-(μ-OH)-Fe(III) core, in which the metal centers have different coordination environments. Structural and physical data support the assignment of this complex as a heterobimetallic system. A comparison with analogous homobimetallic complexes, Mn(II)-(μ-OH)-Mn(III) and Fe(II)-(μ-OH)-Fe(III) cores, further supports this assignment.
Collapse
Affiliation(s)
- Yohei Sano
- Department of Chemistry, University of California–Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025
| | - Andrew C. Weitz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Joseph W. Ziller
- Department of Chemistry, University of California–Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025
| | - Michael P. Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - A.S. Borovik
- Department of Chemistry, University of California–Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025
| |
Collapse
|
46
|
Røhr ÅK, Hammerstad M, Andersson KK. Tuning of thioredoxin redox properties by intramolecular hydrogen bonds. PLoS One 2013; 8:e69411. [PMID: 23936007 PMCID: PMC3720550 DOI: 10.1371/journal.pone.0069411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/07/2013] [Indexed: 01/22/2023] Open
Abstract
Thioredoxin-like proteins contain a characteristic C-x-x-C active site motif and are involved in a large number of biological processes ranging from electron transfer, cellular redox level maintenance, and regulation of cellular processes. The mechanism for deprotonation of the buried C-terminal active site cysteine in thioredoxin, necessary for dissociation of the mixed-disulfide intermediate that occurs under thiol/disulfide mediated electron transfer, is not well understood for all thioredoxin superfamily members. Here we have characterized a 8.7 kD thioredoxin (BC3987) from Bacillus cereus that unlike the typical thioredoxin appears to use the conserved Thr8 side chain near the unusual C-P-P-C active site to increase enzymatic activity by forming a hydrogen bond to the buried cysteine. Our hypothesis is based on biochemical assays and thiolate pKa titrations where the wild type and T8A mutant are compared, phylogenetic analysis of related thioredoxins, and QM/MM calculations with the BC3987 crystal structure as a precursor for modeling of reduced active sites. We suggest that our model applies to other thioredoxin subclasses with similar active site arrangements.
Collapse
|
47
|
Cotruvo JA, Stich TA, Britt RD, Stubbe J. Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate. J Am Chem Soc 2013; 135:4027-39. [PMID: 23402532 DOI: 10.1021/ja312457t] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNRs) utilize radical chemistry to reduce nucleotides to deoxynucleotides in all organisms. In the class Ia and Ib RNRs, this reaction requires a stable tyrosyl radical (Y(•)) generated by oxidation of a reduced dinuclear metal cluster. The Fe(III)2-Y(•) cofactor in the NrdB subunit of the class Ia RNRs can be generated by self-assembly from Fe(II)2-NrdB, O2, and a reducing equivalent. By contrast, the structurally homologous class Ib enzymes require a Mn(III)2-Y(•) cofactor in their NrdF subunit. Mn(II)2-NrdF does not react with O2, but it binds the reduced form of a conserved flavodoxin-like protein, NrdIhq, which, in the presence of O2, reacts to form the Mn(III)2-Y(•) cofactor. Here we investigate the mechanism of assembly of the Mn(III)2-Y(•) cofactor in Bacillus subtilis NrdF. Cluster assembly from Mn(II)2-NrdF, NrdI(hq), and O2 has been studied by stopped flow absorption and rapid freeze quench EPR spectroscopies. The results support a mechanism in which NrdI(hq) reduces O2 to O2(•-) (40-48 s(-1), 0.6 mM O2), the O2(•-) channels to and reacts with Mn(II)2-NrdF to form a Mn(III)Mn(IV) intermediate (2.2 ± 0.4 s(-1)), and the Mn(III)Mn(IV) species oxidizes tyrosine to Y(•) (0.08-0.15 s(-1)). Controlled production of O2(•-) by NrdIhq during class Ib RNR cofactor assembly both circumvents the unreactivity of the Mn(II)2 cluster with O2 and satisfies the requirement for an "extra" reducing equivalent in Y(•) generation.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
48
|
Bikas R, Hosseini-Monfared H, Zoppellaro G, Herchel R, Tucek J, Owczarzak AM, Kubicki M, Zboril R. Synthesis, structure, magnetic properties and theoretical calculations of methoxy bridged dinuclear iron(iii) complex with hydrazone based O,N,N-donor ligand. Dalton Trans 2013; 42:2803-12. [DOI: 10.1039/c2dt31751f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|