1
|
Hu Z, Zhou X, Zhang W, Zhang L, Li L, Gao Y, Wang C. Photothermal amplified multizyme activity for synergistic photothermal-catalytic tumor therapy. J Colloid Interface Sci 2025; 679:375-383. [PMID: 39366266 DOI: 10.1016/j.jcis.2024.09.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Nano-enzymatic catalytic therapy has been widely explored as a promising tumor therapeutic method with specific responsiveness to the tumor microenvironment (TME). However, the inherent lower and simplex catalytic efficiency impairs their anti-tumor efficacy. Therefore, developing novel nanozymes with relatively high and multiple catalytic characteristics, simultaneously enhancing the enzyme-like activity of nanozymes using the proper method, photothermal promoted catalytic property, is a reliable way. In this paper, we report a manganese oxide/nitrogen-doped carbon composite nanoparticles (MnO-N/C NPs) with multi-enzyme mimetic activity and photothermal conversional effect. The peroxidase (POD)-like/oxidase (OXD)-like/catalase (CAT)-like activity of MnO-N/C nanozymes was accelerated upon exposure to an 808 nm NIR laser. In vitro and in vivo results proved that the MnO-N/C NPs shown excellent magnetic resonance imaging (MRI) guided synergistic photothermal-enhanced catalytic treatment and photothermal therapy of liver cancer. The photothermal enhanced multi-enzyme activity maximizes the efficacy of catalytic and photothermal therapy while reducing harm to healthy cells, thereby offering valuable insights for the development of next-generation photothermal nanozymes to enhance tumor therapy.
Collapse
Affiliation(s)
- Zhichao Hu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Xue Zhou
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Wei Zhang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Ying Gao
- Department of Stomatology, No. 964 Hospital, Changchun, Jilin 130021, PR China.
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China.
| |
Collapse
|
2
|
Xiao M, Zhang Y, Xing J, Qiao K, Ba Y, Wang X, Gao S, Yuan Z. Ru-Ph Nanozyme-Based Hydrogels for Tumor Chemodynamic Therapy by Enhancing Enzyme Catalytic Efficiency Through Multiple Pathways. Adv Healthc Mater 2024:e2403868. [PMID: 39716831 DOI: 10.1002/adhm.202403868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Indexed: 12/25/2024]
Abstract
The discovery of nanozymes has opened new possibilities for tumor therapy. However, their reliance on the tumor microenvironment and limited catalytic efficiency hinder broader applications. In this study, ruthenium-phenanthroline nanoparticles (Ru-Phs) are synthesized by combining ruthenium with phenanthroline and subsequently coloaded with the proton pump inhibitor (PPI) pantoprazole into sodium alginate (ALG) to form a Ru-Phs-PPI-ALG hydrogel for in situ tumor therapy. This hydrogel demonstrates excellent chemodynamic properties, forming a gel within tumor tissues and gradually releasing Ru-Phs, which generates highly toxic reactive oxygen species (ROS) via peroxidase-like (POD-like) activity. The inclusion of PPI reduced the intracellular pH of tumor cells, accelerating the Fenton reaction and ROS accumulation. Additionally, the high photothermal conversion efficiency of Ru-Phs-PPI-ALG enables heat generation under near-infrared (NIR) irradiation, which not only disrupts tumor cell structures but also further enhances the POD-like catalytic activity of Ru-Phs. The hydrogel effectively killed 4T1 cells in vitro, and transcriptomic analysis confirms its potent chemodynamic efficacy. In vivo experiments demonstrate significant tumor ablation and excellent biocompatibility. This multipathway strategy to increase enzyme activity and improve chemodynamic effects provides a promising approach for advancing nanozyme applications in tumor therapy.
Collapse
Affiliation(s)
- Min Xiao
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Yiqun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jianghao Xing
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
| | - Kun Qiao
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Yuling Ba
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Song Gao
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Zhennan Yuan
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| |
Collapse
|
3
|
Zheng S, Wang H, Sun S, Chang Z, Chen X, Chen J, Zhao H, Sha L, Guo D, Chen Y, Tian Q. Supramolecular engineering of cellulose-polyaniline composites using CuTA for superior energy storage applications. Int J Biol Macromol 2024; 289:138737. [PMID: 39674481 DOI: 10.1016/j.ijbiomac.2024.138737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Cellulose, the most abundant biomass, is highly appreciated for its robustness, biodegradability, and renewability, garnering significant interest for innovative applications in sustainable functional materials. Composites of cellulose and polyaniline (PANI) are particularly promising for flexible supercapacitors because of their ease of processing, excellent electrical conductivity, and high theoretical specific capacitance. However, challenges persist due to the tendency of PANI to agglomerate and the weak interfacial interactions between PANI and cellulose fibers (CFs). Herein, copper tannin (CuTA), a metal-phenolic supramolecular complex, is utilized to strengthen the interface between the cellulose and PANI, while also modulating the nanostructure of the PANI layer to create high-performance cellulose-based flexible electrodes. Consequently, after incorporating CuTA, the composite electrodes demonstrated a significantly high capacitance of 5147 mF/cm2. Furthermore, the mechanism underlying the superior energy density of supercapacitors is investigated. This strategy provides a novel method for promoting the development of green, economical, and high-performing cellulose-based supercapacitors.
Collapse
Affiliation(s)
- Shuo Zheng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haiping Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shirong Sun
- Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
| | - Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Xiaohong Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jianbin Chen
- Winbon Schoeller New Materials Co., Ltd., Quzhou 324400, China
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yanguang Chen
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Qingquan Tian
- Kewan New Materials Technology Co., Ltd, Hangzhou 310023, China
| |
Collapse
|
4
|
Hu J, Zheng Y, Yin C, Wang L, Huang H, Li Y. A novel and facile oxygen-activated time-temperature indicator with wide temperature monitoring range and good stability based on the laccase-like nanozyme. Anal Chim Acta 2024; 1330:343272. [PMID: 39489956 DOI: 10.1016/j.aca.2024.343272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Time-Temperature Indicator (TTI) is an indicator device for real-time monitoring of the thermal history of the product. Due to the enzymatic reactions are affected by both time and temperature, enzymatic TTIs have been extensively studied and developed in recent years. However, enzymatic TTIs contain biologically active molecules (enzymes), which require high storage and use conditions. Most of them are designed to mix the system species together and irreversible reaction is undertaken. Nanozymes are the synthetic nanomaterials with similar biocatalytic functions as natural enzymes, which have extensive applications in analytical chemistry, biosensing, and environmental protection due to their facile synthesis, low cost, high stability and durability. RESULTS This work proposed to replace the natural laccase to laccase-like nanozyme, designed a novel and facile O2-activated time-temperature indicator for the first time. Nanozyme had excellent thermal and storage stability, which could maintain fabulous catalytic activity in the wide temperature range of 10-80 °C and after a long-term storage. Based on the O2 was required to participate in the oxidation of laccase-catalyzed substrates, a squeeze-type O2-activated TTI was designed by controlling O2 in the TTI system. The TTI was activated through extruding the O2-coated airbag ruptured and producing an irreversible color reaction. Combined with a smartphone to extract the chromaticity for portable visual real-time monitoring. Five sets of TTIs were prepared based on the concentration of nanozyme, and the activation energies (Ea) ranging from 28.45 to 72.85 kJ mol-1, which were able to be fitted to products with Ea ranging from 3.45 to 97.8 kJ mol-1 and the monitoring-time of less than 7 days. SIGNIFICANCE Compared to the traditional enzymatic TTI, the TTIs designed based on nanozyme has the advantages of controlled activation, wider temperature monitor range and good stability. Providing a new approach to the development of real-time monitoring of smart devices.
Collapse
Affiliation(s)
- Jiakang Hu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yuchen Zheng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Chenghui Yin
- College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Le Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Yongxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
5
|
Chen T, Jiang Y, Wu Y, Lai M, Huang X, Gu Z, Wu J, Gan Y, Chen H, Zhi W, Sun P, Cai F, Li T, Zhou H, Zheng J. Doughnut-shaped bimetallic Cu-Zn-MOF with peroxidase-like activity for colorimetric detection of glucose and antibacterial applications. Talanta 2024; 279:126544. [PMID: 39032456 DOI: 10.1016/j.talanta.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Metal-organic frameworks (MOFs), especially bimetallic MOFs, have attracted widespread attention for simulating the structure and function of natural enzymes. In this study, different morphologies of bimetallic Cu-Zn-MOF with different peroxidase (POD)-like activities were prepared by simply controlling the molar ratio of Cu2+ and Zn2+. Among them, the doughnut-shaped Cu9-Zn1-MOF exhibited the largest POD-like activity. Cu9-Zn1-MOF was combined with glucose oxidase to construct a sensitive and selective glucose colorimetric biosensor with a linear detection range of 10-300 μM and a detection limit of 7.1 μm. Furthermore, Cu9-Zn1-MOF can efficiently convert hydrogen peroxide (H2O2) into hydroxyl radicals that effectively kill both gram-negative and gram-positive bacteria at low H2O2 level. The results of this study may promote the synthesis of bimetallic MOFs and broaden their applications in the biomedical field.
Collapse
Affiliation(s)
- Tingting Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yunchuan Jiang
- Department of Anatomy, Division of Basic Medicine, YongZhou Vocational Technical College, Yongzhou, 425100, China
| | - Yinbing Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meilin Lai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xueqin Huang
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Zimin Gu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiamin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuhui Gan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haoming Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weixia Zhi
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China
| | - Fei Cai
- Wuwei Occupational College, Wuwei, 733000, China.
| | - Ting Li
- Wuwei Occupational College, Wuwei, 733000, China.
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Lin X, Dong Q, Chang Y, Shi P, Zhang S. Transition-metal-based nanozymes for biosensing and catalytic tumor therapy. Anal Bioanal Chem 2024; 416:5933-5948. [PMID: 38782780 DOI: 10.1007/s00216-024-05345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Nanozymes, as an emerging class of enzyme mimics, have attracted much attention due to their adjustable catalytic activity, low cost, easy modification, and good stability. Researchers have made great efforts in developing and applying high-performance nanozymes. Recently, transition-metal-based nanozymes have been designed and widely developed because they possess unique photoelectric properties and high enzyme-like catalytic activities. To highlight these achievements and help researchers to understand the research status of transition-metal-based nanozymes, the development of transition-metal-based nanozymes from material characteristics to biological applications is summarized. Herein, we focus on introducing six categories of transition-metal-based nanozymes and highlight their progress in biomarker sensing and catalytic therapy for tumors. We hope that this review can guide the further development of transition-metal-based nanozymes and promote their practical applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangfang Lin
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Qinhui Dong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Yalin Chang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China.
| |
Collapse
|
7
|
Zhou X, Shao Z, Yan S, Lin Y, Liu Y, Feng X, Sha J, Ding L, Wang K. Coencapsulating TMB Probes and Bimetallic MOF Nanozymes in a Hydrogel Patch for Fabricating Reusable Visual VC Sensors. Anal Chem 2024; 96:17310-17318. [PMID: 39412411 DOI: 10.1021/acs.analchem.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
As a typical chromogenic probe, 3,3',5,5'-tetramethylbenzidine (TMB) has been widely applied in the field of visual detection due to its low toxicity and highly sensitive response. Due to the hydrophobic nature of TMB, encapsulating it into a hydrogel, which serves as an ideal matrix for wearable sensors, presents significant challenges that complicate the fabrication of visual wearable devices. Herein, the TMB probe and bimetallic MOF nanozymes are coencapsulated in a hydrogel patch for the fabrication of reusable visual sensors. Hydrophobic TMB is oxidized to hydrophilic ox-TMB by a bimetallic MOF (CuFe-MOF), allowing its diffusion into a hydrophilic agarose hydrogel patch, where it is reduced back to TMB. This process allows the coimmobilization and coencapsulation of CuFe-MOF and TMB within the hydrogel patch. Leveraging the color change between TMB and ox-TMB, as a proof-of-concept application, a reusable visual "On-Off-On" sensor is simply constructed and successfully applied to detect vitamin C in human sweat. Color changes can be quickly read by the naked eye or by smart devices without the need for external equipment. Meanwhile, based on the reversible conversion relationship between TMB and ox-TMB, a reusable sensor construction strategy is proposed. This approach not only facilitates the use of a TMB probe in hydrogel applications but also offers inspiration for the development of point-of-care testing equipment, demonstrating significant application potential.
Collapse
Affiliation(s)
- Xilong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhiying Shao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Sihan Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuhang Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanhao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Junling Sha
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
8
|
Fu B, Zhang Q, Nie L, Li S, Wang S. Two-dimensional black phosphorus/platinum catalase-like nanozyme-based Fenton reaction-mediated dual-mode immunoassays for the detection of enrofloxacin. Mikrochim Acta 2024; 191:647. [PMID: 39367939 DOI: 10.1007/s00604-024-06739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024]
Abstract
Hydrogen peroxide-based Fenton reaction can effectively degrade many small-molecule fluorescent dyes, leading to notable alterations in fluorescence signals. Additionally, the two-dimensional black phosphorus/platinum nanocomposite (BP/Pt) demonstrates exceptional catalase (CAT) characteristics. Based on these, a colorimetric-fluorescence dual-mode signal output pattern based on BP/Pt-Fenton reaction-rhodamine B tandem reaction system is reported. The physical adsorption property of the BP/Pt nanozymes was utilized to couple with antibodies, thus constructing a novel dual-mode nanozyme-based immuno-sensing assay (NISA). By using the migratory antibiotic enrofloxacin (ENR) as the target, the NISA provided highly sensitive detection with the detection limits of 0.058 ng/mL for colorimetric-mode and 0.025 ng/mL for fluorescence-mode and achieved accurate quantitative detection in environmental water and crucian carp samples. This work provides an innovative design for monitoring antibiotics in the environment and broadens the idea for the application of nanozymes and Fenton systems in immunosensing assays.
Collapse
Affiliation(s)
- Binying Fu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Linqing Nie
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Komkova MA, Kostyukov AA, Shneiderman AA, Kuzmin VA, Karyakin AA. Fast Reaction of the Prussian Blue Based Nanozyme "Artificial Peroxidase" with the Substrates: Pre-Steady-State Kinetic Approach. J Phys Chem Lett 2024; 15:8642-8649. [PMID: 39150756 DOI: 10.1021/acs.jpclett.4c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This letter introduces the pre-steady-state kinetic approach, which is traditional for evaluation of elementary constants in molecular (enzyme) catalysis, for nanozymes. Apparently, the most active peroxidase-mimicking nanozyme based on catalytically synthesized Prussian Blue nanoparticles has been chosen. The elementary constants (k1) for the nanozymes' reduction by an electron-donor substrate (being the fastest stage according to steady-state kinetic data) have been determined by means of stopped-flow spectroscopy. These constants have been found to be dependent on both the size of the nanozyme and the reducing substrate redox potential. For the smallest nanozymes (32 nm in diameter), log(k1) linearly decays with an increase of the substrate redox potential (cotangent value ≈125 mV). On the contrary, for the largest nanozymes with a diameter above 150 nm, k1 is almost independent of it. Moreover, for the substrate with the lowest redox potential (K4[Fe(CN)6]), the rate constant under discussion (k1) is almost independent of the nanozymes' size. Perhaps, the rate of the intrananozyme electron transfer causing bleaching becomes comparative or even lower than that of the nanoparticle interaction with the fastest substrate. Anyway, the elementary constant of nanozyme reduction with potassium ferrocyanide (k1) reaches the value of 1 × 1010 M-1 s-1, which is 3-4 orders of magnitude faster than for enzymes peroxidases. The obtained results obviously demonstrate that the pre-steady-state kinetic approach is able to discover novel advantages of nanozymes from both fundamental and practical points of view.
Collapse
Affiliation(s)
- Maria A Komkova
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia
| | - Aleksandra A Shneiderman
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia
| | - Arkady A Karyakin
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
10
|
Jin W, Xie X, Shen S, Zhou X, Wang S, Zhang L, Su X. Ultrasmall polyvinylpyrrolidone-modified iridium nanoparticles with antioxidant and anti-inflammatory activity for acute pancreatitis alleviation. J Biomed Mater Res A 2024; 112:988-1003. [PMID: 38318924 DOI: 10.1002/jbm.a.37679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Acute pancreatitis (AP) is a common and serious acute inflammatory disease with high severity rate and mortality. Inflammation and oxidative stress play an extremely important role in the development of AP disease. Polyvinylpyrrolidone-modified iridium nanoparticles (IrNP-PVP) have multienzyme mimetic activity, and the aim of this article is to discuss the therapeutic alleviative effects of the ultrasmall nanozymes IrNP-PVP on AP through their antioxidant and anti-inflammatory effects. IrNP-PVP were proved to inhibit inflammation and scavenge reactive oxygen species (ROS) at the cellular level. The synthetic IrNP-PVP exhibit remarkable antioxidant and anti-inflammatory activities in the prevention and treatment of AP mice by establishing murine AP model, which can reduce the oxidative stress and inflammatory response. The results of this article indicated that the ultrasmall nanozymes IrNP-PVP effectively alleviate AP via scavenging ROS as well as suppressing inflammation both in vivo and in vitro, which might provide enormous promise for the AP management.
Collapse
Affiliation(s)
- Wenzhang Jin
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xueting Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shuqi Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xingjian Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shunfu Wang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lijiang Zhang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiang Su
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
11
|
Song G, Li C, Fauconnier ML, Zhang D, Gu M, Chen L, Lin Y, Wang S, Zheng X. Research progress of chilled meat freshness detection based on nanozyme sensing systems. Food Chem X 2024; 22:101364. [PMID: 38623515 PMCID: PMC11016872 DOI: 10.1016/j.fochx.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
It is important to develop rapid, accurate, and portable technologies for detecting the freshness of chilled meat to meet the current demands of meat industry. This report introduces freshness indicators for monitoring the freshness changes of chilled meat, and systematically analyzes the current status of existing detection technologies which focus on the feasibility of using nanozyme for meat freshness sensing detection. Furthermore, it examines the limitations and foresees the future development trends of utilizing current nanozyme sensing systems in evaluating chilled meat freshness. Harmful chemicals are produced by food spoilage degradation, including biogenic amines, volatile amines, hydrogen sulfide, and xanthine, which have become new freshness indicators to evaluate the freshness of chilled meat. The recognition mechanisms are clarified based on the special chemical reaction with nanozyme or directly inducting the enzyme-like catalytic activity of nanozyme.
Collapse
Affiliation(s)
- Guangchun Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yaoxin Lin
- National Center for Nanoscience and Technology, Beijing, 100081, China
| | - Songlei Wang
- Department of Food Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
12
|
Liu S, Zhang M, Chen Q, Ouyang Q. Multifunctional Metal-Organic Frameworks Driven Three-Dimensional Folded Paper-Based Microfluidic Analysis Device for Chlorpyrifos Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14375-14385. [PMID: 38860923 DOI: 10.1021/acs.jafc.4c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Chlorpyrifos (CPF) residues in food pose a serious threat to ecosystems and human health. Herein, we propose a three-dimensional folded paper-based microfluidic analysis device (3D-μPAD) based on multifunctional metal-organic frameworks, which can achieve rapid quantitative detection of CPF by fluorescence-colorimetric dual-mode readout. Upconversion nanomaterials were first coupled with a bimetal organic framework possessing peroxidase activity to create a fluorescence-quenched nanoprobe. After that, the 3D-μPAD was finished by loading the nanoprobe onto the paper-based detection zone and spraying it with a color-developing solution. With CPF present, the fluorescence intensity of the detection zone gradually recovers, the color changes from colorless to blue. This showed a good linear relationship with the concentration of CPF, and the limits of detection were 0.028 (fluorescence) and 0.043 (colorimetric) ng/mL, respectively. Moreover, the 3D-μPAD was well applied in detecting real samples with no significant difference compared with the high-performance liquid chromatography method. We believe it has huge potential for application in the on-site detection of food hazardous substance residues.
Collapse
Affiliation(s)
- Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Tea industry Research Institute, Fujian Eight Horses Tea Co., Ltd, Quanzhou 362442, PR China
| |
Collapse
|
13
|
Xia N, Gao F, Zhang J, Wang J, Huang Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024; 29:2796. [PMID: 38930860 PMCID: PMC11206384 DOI: 10.3390/molecules29122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
14
|
Chen S, Li R, Zhao B, Fang M, Tian Y, Lei Y, Li Y, Geng L. Multifunctional N, Fe-doped carbon dots with peroxidase-like activity for the determination of H 2O 2 and ascorbic acid and cell protection against oxidation. Mikrochim Acta 2024; 191:384. [PMID: 38861028 DOI: 10.1007/s00604-024-06456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Multifunctional N, Fe-doped carbon dots (N, Fe-CDs) were synthesized by the one-step hydrothermal method using ferric ammonium citrate and dicyandiamide as raw materials. The N, Fe-CDs exhibited peroxidase-like (POD) activity by catalyzing the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) to the green oxidation state ox-TMB in the presence of hydrogen peroxide (H2O2). Subsequently, based on the POD activity of N, Fe-CDs, an efficient and sensitive colorimetric method for the detection of H2O2 and ascorbic acid (AA) was established with a limit of detection of 0.40 µM and 2.05 µM. The proposed detection method has been successfully applied to detect AA in fruit juice, vitamin C tablets, and human serum samples and has exhibited excellent application prospects in biotechnology and food fields. Furthermore, N, Fe-CDs also showed a protective effect on the cell damage caused by H2O2 and could be used as an antioxidant agent.
Collapse
Affiliation(s)
- Shenna Chen
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Ronghui Li
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Bo Zhao
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Mei Fang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Yun Tian
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Yuhua Lei
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Yayong Li
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, 050000, P. R. China
| | - Lina Geng
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| |
Collapse
|
15
|
Gao L, Zhang L, Yang J, Ma T, Wang B, Yang H, Lin F, Xu X, Yang ZQ. Immobilization of a broad host range phage on the peroxidase-like Fe-MOF for colorimetric determination of multiple Salmonella enterica strains in food. Mikrochim Acta 2024; 191:331. [PMID: 38744722 DOI: 10.1007/s00604-024-06402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
A broad host range phage-based nanozyme (Fe-MOF@SalmpYZU47) was prepared for colorimetric detection of multiple Salmonella enterica strains. The isolation of a broad host range phage (SalmpYZU47) capable of infecting multiple S. enterica strains was achieved. Then, it was directly immobilized onto the Fe-MOF to prepare Fe-MOF@SalmpYZU47, exhibiting peroxidase-like activity. The peroxidase-like activity can be specifically inhibited by multiple S. enterica strains, benefiting from the broad host range capture ability of Fe-MOF@SalmpYZU47. Based on it, a colorimetric detection approach was developed for S. enterica in the range from 1.0 × 102 to 1.0 × 108 CFU mL-1, achieving a low limit of detection (LOD) of 11 CFU mL-1. The Fe-MOF@SalmpYZU47 was utilized for detecting S. enterica in authentic food samples, achieving recoveries ranging from 91.88 to 105.34%. Hence, our proposed broad host range phage-based nanozyme exhibits significant potential for application in the colorimetric detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Lu Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ling Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Juanli Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Tong Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Bo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Huan Yang
- School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China.
| | - Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China.
| | - Zhen-Quan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| |
Collapse
|
16
|
Zhai Z, Wang W, Chai Z, Yuan Y, Zhu Q, Ge J, Li Z. A ratiometric fluorescence platform based on WS 2 QDs/CoOOH nanosheet system for α-glucosidase activity detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123959. [PMID: 38290280 DOI: 10.1016/j.saa.2024.123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
In this study, we have constructed a ratiometric fluorescence sensor for sensitive sensing of α-glucosidase activity based on WS2 QDs/ CoOOH nanosheet system. In this system, as an oxidase-imimicking nanomaterial, CoOOH nanosheet could convert o-phenylenediamine into 2,3-diaminophenazine (DAP), which had a high fluorescence emission at 575 nm. The DAP subsequently could quench the fluorescence of WS2 QDs via the inner filter effect (IFE). L-Ascorbic acid-2-O-α-D-glucopyranose could be hydrolyzed by α-glucosidase to yield ascorbic acid. CoOOH nanosheet can be converted to Co2+ ions by ascorbic acid, leading to the fluorescence decrease of DAP and the fluorescence recovery of WS2 QDs. Therefore, a novel ratio fluorescence sensing strategy was established for α-glucosidase detection based on WS2 QDs/CoOOH nanosheet system. This WS2 QDs/CoOOH nanosheet system has a low detection limit of 0.009 U/mL for α-Glu assay. The proposed strategy succeeded in detecting α-Glu in human serum samples.
Collapse
Affiliation(s)
- Zhiyao Zhai
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Weixia Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ziwei Chai
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yating Yuan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qianqian Zhu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jia Ge
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
17
|
Lyu Y, Becerril LM, Vanzan M, Corni S, Cattelan M, Granozzi G, Frasconi M, Rajak P, Banerjee P, Ciancio R, Mancin F, Scrimin P. The Interaction of Amines with Gold Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211624. [PMID: 36952309 DOI: 10.1002/adma.202211624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Understanding the interactions between amines and the surface of gold nanoparticles is important because of their role in the stabilization of the nanosystems, in the formation of the protein corona, and in the preparation of semisynthetic nanozymes. By using fluorescence spectroscopy, electrochemistry, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and molecular simulation, a detailed picture of these interactions is obtained. Herein, it is shown that amines interact with surface Au(0) atoms of the nanoparticles with their lone electron pair with a strength linearly correlating with their basicity corrected for steric hindrance. The kinetics of binding depends on the position of the gold atoms (flat surfaces or edges) while the mode of binding involves a single Au(0) with nitrogen sitting on top of it. A small fraction of surface Au(I) atoms, still present, is reduced by the amines yielding a much stronger Au(0)-RN.+ (RN. , after the loss of a proton) interaction. In this case, the mode of binding involves two Au(0) atoms with a bridging nitrogen placed between them. Stable Au nanoparticles, as those required for robust semisynthetic nanozymes preparation, are better obtained when the protein is involved (at least in part) in the reduction of the gold ions.
Collapse
Affiliation(s)
- Yanchao Lyu
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | | | - Mirko Vanzan
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Mattia Cattelan
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Piu Rajak
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Abdus Salam International Centre for Theoretical Physics, Via Beirut, 6, Trieste, 34151, Italy
| | - Pritam Banerjee
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Abdus Salam International Centre for Theoretical Physics, Via Beirut, 6, Trieste, 34151, Italy
| | - Regina Ciancio
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Area Science Park, Padriciano 99, Trieste, 34149, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| |
Collapse
|
18
|
Liu J, Chen Z, Liu H, Qin S, Li M, Shi L, Zhou C, Liao T, Li C, Lv Q, Liu M, Zou M, Deng Y, Wang Z, Wang L. Nickel-Based Metal-Organic Frameworks Promote Diabetic Wound Healing via Scavenging Reactive Oxygen Species and Enhancing Angiogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305076. [PMID: 37909382 DOI: 10.1002/smll.202305076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Chronic diabetic wounds remain a worldwide challenge for both the clinic and research. Given the vicious circle of oxidative stress and inflammatory response as well as the impaired angiogenesis of the diabetic wound tissues, the wound healing process is disturbed and poorly responds to the current treatments. In this work, a nickel-based metal-organic framework (MOF, Ni-HHTP) with excellent antioxidant activity and proangiogenic function is developed to accelerate the healing process of chronic diabetic wounds. The Ni-HHTP can mimic the enzymatic catalytic activities of antioxidant enzymes to eliminate multi-types of reactive species through electron transfer reactions, which protects cells from oxidative stress-related damage. Moreover, this Ni-based MOF can promote cell migration and angiogenesis by activating transforming growth factor-β1 (TGF-β1) in vitro and reprogram macrophages to the anti-inflammatory phenotype. Importantly, Ni-HHTP effectively promotes the healing process of diabetic wounds by suppressing the inflammatory response and enhancing angiogenesis in vivo. This study reports a versatile and promising MOF-based nanozyme for diabetic wound healing, which may be extended in combination with other wound dressings to enhance the management of diabetic or non-healing wounds.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhongyin Chen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huan Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sumei Qin
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mingyi Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Liao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
19
|
Wang X, Liu H, Qiao C, Ma Y, Luo H, Hou C, Huo D. A dual-functional single-atom Fe nanozyme-based sensitive colorimetric sensor for tannins quantification in brandy. Food Chem 2024; 434:137523. [PMID: 37742553 DOI: 10.1016/j.foodchem.2023.137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Traditional methods of tannins detection suffer from complex pretreatment, long detection time, and limited sensitivity. Modern techniques like liquid chromatography require expertise, involve tedious result processing, and lack effective data visualization. Therefore, there is a need for an alternative detection method that simplifies pretreatment and detection steps, reduces analysis time, and provides visualized results. In this study, a novel colorimetric sensor based on single-atom Fe nanozyme (Fe@CN-20) was developed for tannins detection. Fe@CN-20 exhibited laccase-like and oxidase-like activities, enabling simultaneous oxidation of tannins and a substrate called TMB. Tannins competed with TMB, allowing quantification of tannins content. The Fe@CN-20/TMB system provided a detection range of 5-100 mg/L tannic acid, with a detection limit of 0.13 mg/L (S/N = 3). Analysis time was approximately 30 min. The platform successfully quantified tannins in brandy, showing less than 5% deviation compared to the standard method. The sensor was simple, sensitive, rapid, and provided strong visualization.
Collapse
Affiliation(s)
- Xinrou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
20
|
Wang L, Sun Y, Zhang H, Shi W, Huang H, Li Y. Selective sensing of catechol based on a fluorescent nanozyme with catechol oxidase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123003. [PMID: 37336190 DOI: 10.1016/j.saa.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Nanozymes, an unusual category of nanomaterials possessing enzymatic properties, and have generated considerable interest regarding their application feasibilities on several important fronts. In the present work, an innovative sensing device for catechol was established ground on a fluorescent nanozyme (Cu-BDC-NH2) that exhibited catechol oxidase activity. The fluorescent nanozyme combines both functions of catechol recognition and response signal output, and can realize the sensing of catechol without the addition of other chromogenic agents. In the existence of Cu-BDC-NH2, catechol can be oxidized efficiently to produce quinones or polymers with strong electron absorption capacity, which immediately results in efficient fluorescence quenching of Cu-BDC-NH2. However, other common phenolic compounds, such as phenol, the other two diphenols (hydroquinone and resorcinol), phloroglucinol, and chlorophenol, do not result in efficient fluorescence quenching of Cu-BDC-NH2. The method shows a nice linear relationship between catechol concentration prep the fluorescence intensity of Cu-BDC-NH2 in the scope of 0-10 μM, with a detection limit of 0.997 μM. The detection of catechol in actual water samples has also achieved the satisfactory consequences, which provides a new strategy for the convenient and selective detection of catechol.
Collapse
Affiliation(s)
- Le Wang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yue Sun
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hao Zhang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenqi Shi
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
21
|
Liu C, Zhao X, Wang Z, Zhao Y, Li R, Chen X, Chen H, Wan M, Wang X. Metal-organic framework-modulated Fe 3O 4 composite au nanoparticles for antibacterial wound healing via synergistic peroxidase-like nanozymatic catalysis. J Nanobiotechnology 2023; 21:427. [PMID: 37968680 PMCID: PMC10647143 DOI: 10.1186/s12951-023-02186-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Bacterial wound infections are a serious threat due to the emergence of antibiotic resistance. Herein, we report an innovative hybrid nanozyme independent of antibiotics for antimicrobial wound healing. The hybrid nanozymes are fabricated from ultra-small Au NPs via in-situ growth on metal-organic framework (MOF)-stabilised Fe3O4 NPs (Fe3O4@MOF@Au NPs, FMA NPs). The fabricated hybrid nanozymes displayed synergistic peroxidase (POD)-like activities. It showed a remarkable level of hydroxyl radicals (·OH) in the presence of a low dose of H2O2 (0.97 mM). Further, the hybrid FMA nanozymes exhibited excellent biocompatibility and favourable antibacterial effects against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The animal experiments indicated that the hybrid nanozymes promoted wound repair with adequate biosafety. Thus, the well-designed hybrid nanozymes represent a potential strategy for healing bacterial wound infections, without any toxic side effects, suggesting possible applications in antimicrobial therapy.
Collapse
Affiliation(s)
- Chuan Liu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Xuanping Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Zichao Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Yingyuan Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Ruifang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Xuyang Chen
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Hong Chen
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Mengna Wan
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Xueqin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
22
|
Sun M, Huang S, Jiang S, Su G, Lu Z, Wu C, Ye Q, Feng B, Zhuo Y, Jiang X, Xu S, Wu D, Liu D, Song X, Song C, Yan X, Rao H. The mechanism of nanozyme activity of ZnO-Co 3O 4-v: Oxygen vacancy dynamic change and bilayer electron transfer pathway for wound healing and virtual reality revealing. J Colloid Interface Sci 2023; 650:1786-1800. [PMID: 37506419 DOI: 10.1016/j.jcis.2023.06.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Since the catalyst's surface was the major active location, the inner structure's contribution to catalytic activity was typically overlooked. Here, ZnO-Co3O4-v nanozymes with several surfaces and bulk oxygen vacancies were created. The O atoms of H2O2 moved inward to preferentially fill the oxygen vacancies in the interior and form new "lattice oxygen" by the X-ray photoelectron spectroscopy depth analysis and X-ray absorption fine structure. The internal Co2+ continually transferred electrons to the surface for a continuous catalytic reaction, which generated a significant amount of reactive oxygen species. Inner and outer double-layer electron cycles accompanied this process. A three-dimensional model of ZnO-Co3O4-v was constructed using virtual reality interactive modelling technology to illustrate nanozyme catalysis. Moreover, the bactericidal rate of ZnO-Co3O4-v for Methionine-resistant Staphylococcus aureus and Multiple drug resistant Escherichia coli was as high as 99%. ZnO-Co3O4-v was biocompatible and might be utilized to heal wounds following Methionine-resistant Staphylococcus aureus infection. This work offered a new idea for nanozymes to replace of conventional antibacterial medications.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Shu Huang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Shaojuan Jiang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Danni Liu
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xianyang Song
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Chang Song
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xiaorong Yan
- Ya'an People's Hospital, City Back Road, Yucheng District, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
23
|
Mei W, Huang W, Liu X, Wang H, Wang Q, Yang X, Wang K. DNA-Encoded Bidirectional Regulation of the Peroxidase Activity of Pt Nanozymes for Bioanalysis. Anal Chem 2023; 95:11391-11398. [PMID: 37459119 DOI: 10.1021/acs.analchem.3c01564] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Rational regulation of nanozyme activity can promote biochemical sensing by expanding sensing strategies and improving sensing performance, but the design of effective regulatory strategies remains a challenge. Herein, a rapid DNA-encoded strategy was developed for the efficient regulation of Pt nanozyme activity. Interestingly, we found that the catalytic activity of Pt nanozymes was sequence-dependent, and its peroxidase activity was significantly enhanced only in the presence of T-rich sequences. Thus, different DNA sequences realized bidirectional regulation of Pt nanozyme peroxidase activity. Furthermore, the DNA-encoded strategy can effectively enhance the stability of Pt nanozymes at high temperatures, freezing, and long-term storage. Meanwhile, a series of studies demonstrated that the presence of DNA influenced the reduction degree of H2PtCl6 precursors, which in turn affected the peroxidase activity of Pt nanozymes. As a proof of application, the sensor array based on the Pt nanozyme system showed superior performance in the accurate discrimination of antioxidants. This study obtained the regulation rules of DNA on Pt nanozymes, which provided theoretical guidance for the development of new sensing platforms and new ideas for the regulation of other nanozyme activities.
Collapse
Affiliation(s)
- Wenjing Mei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Weixuanzi Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
24
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
25
|
Hou X, Wang R, Zhang H, Zhang M, Qu X, Hu X. Iron-Coordinated L-Lysine-Based Nanozymes with High Peroxidase-like Activity for Sensitive Hydrogen Peroxide and Glucose Detection. Polymers (Basel) 2023; 15:3002. [PMID: 37514392 PMCID: PMC10383789 DOI: 10.3390/polym15143002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
It is crucial to develop sensitive and accurate sensing strategies to detect H2O2 and glucose in biological systems. Herein, biocompatible iron-coordinated L-lysine-based hydrogen peroxide (H2O2)-mimetic enzymes (Lys-Fe-NPs) were prepared by precipitation polymerization in aqueous solution. The coordinated Fe2+ ion acted as centers of peroxidase-like enzymes of Lys-Fe-NPs, and the catalytic activity was evaluated via the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. Therefore, a sensitive colorimetric detection sensor for H2O2 was constructed with a linear range of 1 to 200 μM and a detection limit of 0.51 μM. The same method could also be applied to highly sensitive and selective detection of glucose, with a linear range of 0.5 to 150 μM and a detection limit of 0.32 μM. In addition, an agarose-based hydrogel biosensor colorimetric was successfully implemented for visual assessment and quantitative detection of glucose. The design provided a novel platform for constructing stable and nonprotein enzyme mimics with lysine and showed great potential applications in biorelevant assays.
Collapse
Affiliation(s)
- Xiuqing Hou
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ruoxue Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Huijuan Zhang
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Meng Zhang
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiongwei Qu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiuli Hu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
26
|
Zhang X, Wang Y, Dai Y, Xia F. Tuning the enzyme-like activity of peptide-nanoparticle conjugates with amino acid sequences. NANOSCALE 2023; 15:8148-8152. [PMID: 37071116 DOI: 10.1039/d3nr00171g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We constructed peptide-nanoparticle conjugates (AuNP@CDs-Azo-peptide) by self-assembly of cyclodextrin capped gold nanoparticles (AuNP@CDs) and azobenzene terminated peptide (Azo-peptide) through host-guest interactions. AuNP@CDs-Azo-peptide shows hydrolase-like activity, which is tuned by amino acid sequences.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yichuan Wang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yu Dai
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
27
|
Single-atom nanozymes Co-N-C as an electrochemical sensor for detection of bioactive molecules. Talanta 2023; 254:124171. [PMID: 36495773 DOI: 10.1016/j.talanta.2022.124171] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
A properly designed sensing interface is crucial for the accurate and sensitive detection of biologically active molecules. Single-atom nanozymes from transition metal and nitrogen-doped carbon materials (M-N-C) have caught attention owing to their large surface area and strong bionic enzyme activity. Herein, a three-dimensional layered electrochemical electrode consisting of a Co-N-C nanoenzyme embedded in a reduced graphene oxide aerogel was prepared for the detection of hydrogen peroxide (H2O2), dopamine (DA) and uric acid (UA). Due to its unique three-dimensional layered structure, rGA has excellent electrical conductivity and high material loading and is used to enhance the electrocatalytic performance of Co-N-C. The combination of single-atom nanozymes and electrochemical detection shows unique advantages in catalytic activity and selectivity. The limit of detection and detection range are 0.74 μM and 3-2991 μM respectively for H2O2. Furthermore, it has been successfully implemented for the in-situ detection of H2O2 in living cells. In addition, their simultaneous detection is also realized by the sensors for DA and UA. And it can accurately capture the signal of UA and DA in the urine. Meanwhile, the electrode displays satisfactory stability and repeatability. Therefore, this paper provides a new detection strategy for a variety of bioactive molecules, showing great potential in cell biology, pathophysiology and diagnostics.
Collapse
|
28
|
Han J, Wang J, Shi H, Li Q, Zhang S, Wu H, Li W, Gan L, Brown-Borg HM, Feng W, Chen Y, Zhao RC. Ultra-small polydopamine nanomedicine-enabled antioxidation against senescence. Mater Today Bio 2023; 19:100544. [PMID: 36747580 PMCID: PMC9898451 DOI: 10.1016/j.mtbio.2023.100544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Senescence is a cellular response characterized by cells irreversibly stopping dividing and entering a state of permanent growth arrest. One of the underlying pathophysiological causes of senescence is the oxidative stress-induced damage, indicating that eliminating the reactive oxygen and nitrogen species (RONS) may be beneficial to prevent and/or alleviate senescence. Herein, we developed ultra-small polydopamine nanoparticles (UPDA NPs) with superoxide dismutase (SOD)/catalase (CAT) enzyme-mimic activities, featuring broad-spectrum RONS-scavenging capability for inducing cytoprotective effects against RONS-mediated damage. The engineered UPDA NPs can restore senescence-related renal function, tissue homeostasis, fur density, and motor ability in mice, potentially associated with the regulation of multiple genes involved in lipid metabolism, mitochondrial function, energy homeostasis, telomerase activity, neuroprotection, and inflammatory responses. Importantly, the dietary UPDA NPs can enhance the antioxidant capacity, improve the climbing ability, and prolong the lifespan of Drosophila. Notably, UPDA NPs possess excellent biocompatibility stemming from the ultra-small size, ensuring quick clearance out of the body. These findings reveal that UPDA NPs can delay aging through reducing oxidative stress and provide a paradigm and practical strategy for treating senescence and senescence-related diseases.
Collapse
Affiliation(s)
- Jiamei Han
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongwei Shi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China,Cell Energy Life Sciences Group Co. LTD, Qingdao, Shandong, China
| | - Shibo Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hao Wu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenjun Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Linhua Gan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND, USA,Corresponding author.
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai, China,Corresponding authors.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China,Corresponding author.
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China,Corresponding authors. School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
29
|
Liu Y, Su G, Zhang R, Dai R, Li Z. Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds. Int J Mol Sci 2022; 24:336. [PMID: 36613778 PMCID: PMC9820076 DOI: 10.3390/ijms24010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainly divided into physical embedding and chemical synthesis of the NMFHs, are summarized and illustrated. Then, functions of the NMFHs brought by the NMs are reviewed, including hemostasis, antimicrobial activity, conductivity, regulation of reactive oxygen species (ROS) level, and stimulus responsiveness (pH responsiveness, photo-responsiveness, and magnetic responsiveness). Finally, current challenges and future perspectives in this field are discussed with the hope of inspiring additional ideas.
Collapse
Affiliation(s)
- Yangkun Liu
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
30
|
Yin SJ, Chen GY, Zhang CY, Wang JL, Yang FQ. Zeolitic imidazolate frameworks as light-responsive oxidase-like mimics for the determination of adenosine triphosphate and discrimination of phenolic pollutants. Mikrochim Acta 2022; 190:25. [PMID: 36515784 DOI: 10.1007/s00604-022-05602-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
In this study, 3,3',5,5'-tetramethylbenzidine (TMB) was selected as a chromogenic substrate to evaluate the light-responsive oxidase-like activity of different zeolitic imidazolate frameworks (ZIFs). The synthesized ZIFs were systematically characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. Several main operational parameters, including ZIFs and TMB concentrations, pH value, radiation time, and working current, in the reaction process were optimized. The kinetic measurement results show that ZIF-90 exhibits higher affinity to the substrate than horseradish peroxidase. Furthermore, given that adenosine triphosphate (ATP) can specifically combine with Zn2+ binding site and destroy the structure of ZIF-90, a specific and sensitive colorimetric method was established for the quantitative detection of ATP within the range 10 - 240 μM. In addition, on the basis that phenolic pollutants can impact the reaction kinetics diversely on different ZIFs, a sensor array was constructed and successfully applied to differentiate five phenolic pollutants in lake water samples. This work is expected to shed light on the establishment of ZIF-based light-responsive oxidase-like nanozymes for the highly selective colorimetric detection and sensor array.
Collapse
Affiliation(s)
- Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Chun-Yan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
31
|
Xu G, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204131. [PMID: 36161698 DOI: 10.1002/smll.202204131] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Collapse
Affiliation(s)
- Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
32
|
Ouyang Y, Fadeev M, Zhang P, Carmieli R, Li J, Sohn YS, Karmi O, Nechushtai R, Pikarsky E, Fan C, Willner I. Aptamer-Modified Au Nanoparticles: Functional Nanozyme Bioreactors for Cascaded Catalysis and Catalysts for Chemodynamic Treatment of Cancer Cells. ACS NANO 2022; 16:18232-18243. [PMID: 36286233 PMCID: PMC9706657 DOI: 10.1021/acsnano.2c05710] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polyadenine-stabilized Au nanoparticles (pA-AuNPs) reveal dual nanozyme catalytic activities toward the H2O2-mediated oxidation of dopamine to aminochrome and toward the aerobic oxidation of glucose to gluconic acid and H2O2. The conjugation of a dopamine-binding aptamer (DBA) to the pA-AuNPs yields aptananozyme structures catalyzing simultaneously the H2O2-mediated oxidation of dopamine to aminochrome through the aerobic oxidation of glucose. A set of aptananozymes consisting of DBA conjugated through the 5'- or 3'-end directly or spacer bridges to pA-AuNPs were synthesized. The set of aptananozymes revealed enhanced catalytic activities toward the H2O2-catalyzed oxidation of dopamine to dopachrome, as compared to the separated pA-AuNPs and DBA constituents, and structure-function relationships within the series of aptananozymes were demonstrated. The enhanced catalytic function of the aptananozymes was attributed to the concentration of the dopamine at the catalytic interfaces by means of aptamer-dopamine complexes. The dual catalytic activities of aptananozymes were further applied to design bioreactors catalyzing the effective aerobic oxidation of dopamine in the presence of glucose. Mechanistic studies demonstrated that the aptananozymes generate reactive oxygen species. Accordingly, the AS1411 aptamer, recognizing the nucleolin receptor associated with cancer cells, was conjugated to the pA-AuNPs, yielding a nanozyme for the chemodynamic treatment of cancer cells. The AS1411 aptamer targets the aptananozyme to the cancer cells and facilitates the selective permeation of the nanozyme into the cells. Selective cytotoxicity toward MDA-MB-231 breast cancer cells (ca. 70% cell death) as compared to MCF-10A epithelial cells (ca. 2% cell death) is demonstrated.
Collapse
Affiliation(s)
- Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Jiang Li
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Zhangjiang Laboratory, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Eli Pikarsky
- The Lautenberg
Center for Immunology and Cancer Research, IMRIC, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
33
|
Lu L, Hu X, Zeng R, Lin Q, Huang X, Li M, Tang D. Dual-mode colorimetric-photothermal sensing platform of acetylcholinesterase activity based on the peroxidase-like activity of Fe-N-C nanozyme. Anal Chim Acta 2022; 1229:340383. [PMID: 36156227 DOI: 10.1016/j.aca.2022.340383] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Sensors based on colorimetry, fluorescence, and electrochemistry have been widely employed to detect acetylcholinesterase and its inhibitors, however, there are only a minority of strategies for AChE detection based on photothermal method. This work reports a versatile dual-mode colorimetric and photothermal biosensing platform for acetylcholinesterase (AChE) detection and its inhibitor (paraoxon-ethyl, a model of AChE inhibitors) monitor based on Fe-N-C/H2O2/3,3',5,5'-tetramethylbenzidine (TMB) system. The Fe-N-C with abundant active Fe-Nx sites shows outstanding peroxidase-mimicking activity and can be used to promote the generation of •OH by H2O2 to oxidize TMB. However, the introduction of mercapto molecules tending to coordinate with metal atoms result in the block of action site in Fe-N-C, thereby decrease its peroxidase-mimetic activity. The designed biosensor principle is based on the block of active sites of Fe-N-C by thiocholine (TCh, one kind of mercapto molecules) that can be produced by acetylthiocholine (ATCh) in the presence of AChE. Under optimum conditions, the limit of detection (LOD) for AChE activity is 1.9 mU mL-1 (colorimetric) and 2.2 mU mL-1 (photothermal), while for paraoxon-ethyl is 0.012 μg mL-1 (colorimetric) and 0.013 μg mL-1 (photothermal), respectively. The assay we proposed not only can be designed to monitor AChE detection and its inhibitors, but also can be easily extended for the detection of other biomolecules relate to the generation or consumption of H2O2.
Collapse
Affiliation(s)
- Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xuehan Hu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
34
|
Jiang Q, Xiao Y, Hong AN, Gao Z, Shen Y, Fan Q, Feng P, Zhong W. Bimetallic Metal-Organic Framework Fe/Co-MIL-88(NH 2) Exhibiting High Peroxidase-like Activity and Its Application in Detection of Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41800-41808. [PMID: 36083615 DOI: 10.1021/acsami.2c12115] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) have many attractive features, including tunable composition, rigid structure, controllable pore size, and large specific surface area, and thus are highly applicable in molecular analysis. Depending on the MOF structure, a high number of unsaturated metal sites can be exposed to catalyze chemical reactions. In the present work, we report that using both Co(II) and Fe(III) to prepare the MIL-88(NH2) MOF, we can produce the bimetallic MOF that can catalyze the conversion of 3,3',5,5″-tetramethylbenzidine (TMB) to a color product through a reaction with H2O2 at a higher reaction rate than the monometallic Fe-MIL-88(NH2). The Michaelis constants (Km) of the catalytic reaction for TMB and H2O2 are 3-5 times smaller, and the catalytic constants (kcat) are 5-10 times higher than those of the horseradish peroxidase (HRP), supporting ultrahigh peroxidase-like activity. These values are also much more superior to those of the HRP-mimicking MOFs reported previously. Interestingly, the bimetallic MOF can be coupled with glucose oxidase (GOx) to trigger the cascade enzymatic reaction for highly sensitive detection of extracellular vesicles (EVs), a family of important biomarkers. Through conjugation to the aptamer that recognizes the marker protein on EV surface, the MOF can help isolate the EVs from biological matrices, which are subsequently labeled by GOx via antibody recognition. The cascade enzymatic reaction between MOF and GOx enables the detection of EVs at a concentration as low as 7.8 × 104 particles/mL. The assay can be applied to monitor EV secretion by cultured cells and also can successfully detect the different EV quantities in the sera samples collected from cancer patients and healthy controls. Overall, we prove that the bimetallic Fe/Co-MIL-88(NH2) MOF, with its high peroxidase activity and high biocompatibility, is a valuable tool deployable in clinical assays to facilitate disease diagnosis and prognosis.
Collapse
|
35
|
Li G, Liu S, Huo Y, Zhou H, Li S, Lin X, Kang W, Li S, Gao Z. “Three-in-one” nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Anal Chim Acta 2022; 1222:340178. [DOI: 10.1016/j.aca.2022.340178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022]
|
36
|
Pan MM, Ouyang Y, Song YL, Si LQ, Jiang M, Yu X, Xu L, Willner I. Au 3+ -Functionalized UiO-67 Metal-Organic Framework Nanoparticles: O 2•- and •OH Generating Nanozymes and Their Antibacterial Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200548. [PMID: 35460191 DOI: 10.1002/smll.202200548] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The synthesis and characterization of Au3+ -modified UiO-67 metal-organic framework nanoparticles, Au3+ -NMOFs, are described. The Au3+ -NMOFs reveal dual oxidase-like and peroxidase-like activities and act as an active catalyst for the catalyzed generation of O2•- under aerobic conditions or •OH in the presence of H2 O2 . The two reactive oxygen species (ROS) agents O2•- and •OH are cooperatively formed by Au3+ -NMOFs under aerobic conditions, and in the presence of H2 O2. The Au3+ -NMOFs are applied as an effective catalyst for the generation ROS agents for antibacterial and wound healing applications. Effective antibacterial cell death and inhibition of cell proliferation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial colonies are demonstrated in the presence of the Au3+ -NMOFs. In addition, in vivo experiments demonstrate effective wound healing of mice wounds infected by S. aureus, treated by the Au3+ -NMOFs.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yu Ouyang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yong-Li Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Lu-Qin Si
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
37
|
Duo Y, Suo M, Zhu D, Li Z, Zheng Z, Tang BZ. AIEgen-Based Bionic Nanozymes for the Interventional Photodynamic Therapy-Based Treatment of Orthotopic Colon Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26394-26403. [PMID: 35543331 PMCID: PMC9204689 DOI: 10.1021/acsami.2c04210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Relative to traditional photosensitizer (PS) agents, those that exhibit aggregation-induced emission (AIE) properties offer key advantages in the context of photodynamic therapy (PDT). At present, PDT efficacy is markedly constrained by the hypoxic microenvironment within tumors and the limited depth to which lasers can penetrate in a therapeutic context. Herein, we developed platelet-mimicking MnO2 nanozyme/AIEgen composites (PMD) for use in the interventional PDT treatment of hypoxic tumors. The resultant biomimetic nanoparticles (NPs) exhibited excellent stability and were able to efficiently target tumors. Moreover, they were able to generate O2 within the tumor microenvironment owing to their catalase-like activity. Notably, through an interventional approach in which an optical fiber was introduced into the abdominal cavity of mice harboring orthotopic colon tumors, good PDT efficacy was achieved. We thus propose that a novel strategy consisting of a combination of an AIEgen-based bionic nanozyme and a biomimetic cell membrane coating represents an ideal therapeutic platform for targeted antitumor PDT. This study is the first to have combined interventional therapy and AIEgen-based PDT, thereby overcoming the limited light penetration that typically constrains the therapeutic efficacy of this technique, highlighting a promising new AIEgen-based PDT treatment strategy.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, The Second Clinical
Medical College of Jinan University, 1st Affiliated Hospital of Southern
University of Science and Technology, Shenzhen People’s Hospital, Shenzhen 518020, China
- Department
of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm 17177, Sweden
- Department
of Sports Medicine and Rehabilitation, Shenzhen
Hospital Peking University, Shenzhen 518036, China
| | - Meng Suo
- Department
of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Daoming Zhu
- Department
of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zihuang Li
- Department
of Radiation Oncology, The Second Clinical
Medical College of Jinan University, 1st Affiliated Hospital of Southern
University of Science and Technology, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Zheng Zheng
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
- AnHui
Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid
Functionalized Materials, Anhui University, Hefei 230601, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
38
|
Liu R, Zhang X, Xia F, Dai Y. Azobenzene-based photoswitchable catalysts: State of the art and perspectives. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Abedanzadeh S, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Nanozymes: Supramolecular perspective. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Wang N, Shi J, Liu Y, sun W, Su X. Constructing bifunctional metal–organic framework based nanozymes with fluorescence and oxidase activity for the dual-channel detection of butyrylcholinesterase. Anal Chim Acta 2022; 1205:339717. [DOI: 10.1016/j.aca.2022.339717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
|
41
|
Xie P, Zhang L, Shen H, Wu H, Zhao J, Wang S, Hu L. Biodegradable MoSe2-polyvinylpyrrolidone nanoparticles with multi-enzyme activity for ameliorating acute pancreatitis. J Nanobiotechnology 2022; 20:113. [PMID: 35248068 PMCID: PMC8898412 DOI: 10.1186/s12951-022-01288-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Exogenous antioxidant materials mimicking endogenous antioxidant systems are commonly used for the treatment of oxidative stress-induced injuries. Thus, artificial enzymes have emerged as promising candidates for balancing and treating the dysregulation of redox homeostasis in vivo. Herein, a one-pot hydrothermal strategy for the facile preparation of MoSe2-polyvinylpyrrolidone (PVP) nanoparticles (NPs) is reported. The synthesized NPs were biodegradable due to their exposure to oxygen and exhibited high stability. Moreover, they effectively mimicked various naturally occurring enzymes (including catalase, superoxide dismutase, peroxidase, and glutathione peroxidase) and scavenged free radicals, such as 3-ethylbenzothiazoline-6-sulfonic acid, ·OH, ·O2−, and 1,1-diphenyl-2-picrylhydrazyl radical. Further apoptosis detection studies revealed that MoSe2-PVP NPs significantly increased the cell survival probability in H2O2 in a concentration-dependent manner. The cytoprotective effect of MoSe2-PVP NPs was explored for an animal model of acute pancreatitis, which confirmed its remarkable therapeutic efficacy. Owing to the biodegradable and biocompatible nature of MoSe2-PVP NPs, the findings of this work can stimulate the development of other artificial nanoenzymes for antioxidant therapies.
Collapse
|
42
|
Han Y, Li J, Zhang X, Xia F, Dai Y. Reversible down-regulation and up-regulation of catalytic activity of poly( N-isopropylacrylamide)-anchored gold nanoparticles. NANOTECHNOLOGY 2022; 33:165601. [PMID: 34986462 DOI: 10.1088/1361-6528/ac487b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Regulating catalytic activity plays an important role in further optimizing and developing multifunctional catalysts with high selectivity and high activity. Reversible dual regulation of catalytic activity has always been a challenging task. Here, we prepared poly(N-isopropylacrylamide)-anchored gold nanoparticles (AuNP@CDs-Azo-PNIPAM) through host-guest interaction of cyclodextrin capped gold nanoparticles (AuNP@CDs) and azobenzene-terminated poly(N-isopropylacrylamide) (Azo-PNIPAM). Azo-PNIPAM as thermal and light responsive ligand allows reversible dual regulation of catalytic activity. When the temperature is higher than the lowest critical solution temperature, the PNIPAM chain shrinks rapidly, increasing the steric hindrance around AuNPs and reducing the catalytic activity. Under ultraviolet light irradiation,cis-azobenzene disassembles from cyclodextrin and the number of surface active sites of AuNPs increases, which improves the catalytic activity. The reaction rate of UV irradiation is almost 1.3 times that of visible light irradiation. This work provides a simple and effective strategy for the construction of reversible catalysts.
Collapse
Affiliation(s)
- Yufen Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Jiaqian Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Yu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
43
|
Han M, Ren M, Li Z, Qu L, Yu L. A two-dimensional thin Co-MOF nanosheet as a nanozyme with high oxidase-like activity for GSH detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj00876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-dimensional thin Co-MOF (ZIF-67) nanosheet with high oxidase-like activity was applied for sensitive visual GSH detection.
Collapse
Affiliation(s)
- Miaomiao Han
- College of Chemistry, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mengzhen Ren
- College of Chemistry, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhaohui Li
- College of Chemistry, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lanlan Yu
- College of Chemistry, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
44
|
Li Z, Zhang J, Dai G, Luo F, Chu Z, Geng X, He P, Zhang F, Wang Q. A ratiometric electrochemical biosensor for glycated albumin detection based on enhanced nanozyme catalysis of cuprous oxide-modified reduced graphene oxide nanocomposites. J Mater Chem B 2021; 9:9324-9332. [PMID: 34710204 DOI: 10.1039/d1tb01912k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanozymes have enzyme-like characteristics and nanozyme-based electrochemical sensors have been widely studied for biomarker detection. In this work, cuprous oxide-modified reduced graphene oxide (Cu2O-rGO) nanozyme was prepared by simultaneous reduction of copper chloride and graphene oxide. This Cu2O-rGO nanozyme displayed an outstanding electrocatalytic activity to glucose oxidation and was used as the modified material of a glassy carbon electrode to fabricate an electrochemical ratiometric biosensor for glycated albumin (GA) detection. In this ratiometric biosensor, methylene blue-labeled DNA tripods (MB-tDNA) were adsorbed on the Cu2O-rGO/GCE surface to form a bioinspired electrode (MB-tDNA/Cu2O-rGO/GCE), in which the catalytic sites of Cu2O-rGO were covered by MB-tDNA. In the presence of target GA, GA could be identified by the aptamer sequence contained in MB-tDNA, and a MB-tDNA/GA complex was formed and released into the solution, so the reduced current of MB-tDNA was decreased. Simultaneously, the oxidized current of the outer added glucose was increased since more catalytic sites of Cu2O-rGO nanozyme on the substrate electrode surface were exposed. The ratio of the peak currents of glucose oxidation and methylene blue reduction (IGlu/IMB) was used to monitor the GA level and ultimately improve the accuracy of the method. The electrochemical sensor showed a low detection limit of 0.007 μg mL-1 and a wide linear range from 0.02 to 1500 μg mL-1. The proposed sensor was also successfully used to measure the GA expression level in the blood serum of a diabetic mouse model.
Collapse
Affiliation(s)
- Zhi Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Jingwen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Ge Dai
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Feifei Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Xing Geng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| |
Collapse
|
45
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. BIOSENSORS 2021; 11:410. [PMID: 34821626 PMCID: PMC8615953 DOI: 10.3390/bios11110410] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
The use of sensors in critical areas for human development such as water, food, and health has increased in recent decades. When the sensor uses biological recognition, it is known as a biosensor. Nowadays, the development of biosensors has been increased due to the need for reliable, fast, and sensitive techniques for the detection of multiple analytes. In recent years, with the advancement in nanotechnology within biocatalysis, enzyme-based biosensors have been emerging as reliable, sensitive, and selectively tools. A wide variety of enzyme biosensors has been developed by detecting multiple analytes. In this way, together with technological advances in areas such as biotechnology and materials sciences, different modalities of biosensors have been developed, such as bi-enzymatic biosensors and nanozyme biosensors. Furthermore, the use of more than one enzyme within the same detection system leads to bi-enzymatic biosensors or multi-enzyme sensors. The development and synthesis of new materials with enzyme-like properties have been growing, giving rise to nanozymes, considered a promising tool in the biosensor field due to their multiple advantages. In this review, general views and a comparison describing the advantages and disadvantages of each enzyme-based biosensor modality, their possible trends and the principal reported applications will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (L.A.-R.); (M.R.-A.); (J.R.-R.); (J.E.S.-H.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|
46
|
Tan X, Xu Y, Lin S, Dai G, Zhang X, Xia F, Dai Y. Peptide-anchored gold nanoparticles with bicatalytic sites for photo-switchable cascade catalysis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Lyu Y, Scrimin P. Mimicking Enzymes: The Quest for Powerful Catalysts from Simple Molecules to Nanozymes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01219] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanchao Lyu
- University of Padova, Department of Chemical Sciences, via Marzolo, 1, 35131 Padova, Italy
| | - Paolo Scrimin
- University of Padova, Department of Chemical Sciences, via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
48
|
An JM, Ju Y, Kim JH, Lee H, Jung Y, Kim J, Kim YJ, Kim J, Kim D. A metastasis suppressor Pt-dendrimer nanozyme for the alleviation of glioblastoma. J Mater Chem B 2021; 9:4015-4023. [PMID: 33954328 DOI: 10.1039/d1tb00425e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanozymes are nanostructure-based materials which mimic the enzymatic characteristics of natural enzymes. Biological applications of nanozymes have been highlighted in basic research, industry, and translational medicine as a new cutting-edge tool. In this work, and for the first time, we disclose a tumor alleviation property of a nanozyme that is made up of amine-terminated sixth-generation polyamidoamine dendrimers with encapsulated tiny platinum nanoparticles. We systematically conducted the synthesis and characterization of the dendrimer-encapsulated Pt nanoparticles (denoted Pt-dendrimer) and confirmed their enzymatic function (hydrogen peroxide (H2O2) decomposition) within various cell lines (normal, cancerous), including glioblastoma (GBM) cells. By understanding the effects of the Pt-dendrimer at the gene level, especially related to cancer cell metastasis, we have thoroughly demonstrated its ability for tumor alleviation and suppressing GBM migration, invasion, and adhesion. The present findings show great promise for the application of the nanozyme for use in GBM-related basic research as well as at clinical sites.
Collapse
Affiliation(s)
- Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Youngwon Ju
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jeong Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Yuna Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jaehoon Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. and Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea. and KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. and KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea and Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea and Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea and Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
49
|
Zhao H, Zhang R, Yan X, Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B 2021; 9:6939-6957. [PMID: 34161407 DOI: 10.1039/d1tb00720c] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Superoxide dismutases (SODs) are a group of metalloenzymes that catalyze the dismutation of superoxide radicals (O2˙-) into hydrogen peroxide (H2O2) and oxygen (O2). As the first line of defense against reactive oxygen species (ROS)-mediated damage, SODs are expected to play an important role in the treatment of oxidative stress-related diseases. However, the clinical applications of SODs have been severely limited by their structural instability and high cost. Compared with natural enzymes, nanozymes, nanomaterials with enzyme-like activity, are more stable, and economical, can be easily modified and their activities can be adjusted. Due to their excellent characteristics, nanozymes have attracted widespread attention in recent years and are expected to become effective substitutes for natural enzymes in many application fields. Importantly, some nanozymes with SOD-like activity have been developed and proved to have a mitigating effect on diseases caused by oxidative stress. These studies on SOD-like nanozymes provide a feasible strategy for breaking through the dilemma of SOD clinical applications. However, at present, the specific catalytic mechanism of SOD-like nanozymes is still unclear, and many important issues need to be resolved. Although there are many comprehensive reviews to introduce the overall situation of the nanozyme field, the research on SOD-like nanozymes still lacks a systematic review. From the structure and mechanism of natural SOD enzymes to the structure and regulation of SOD-like nanozymes, and then to the measurement and application of nanozymes, this review systematically summarizes the recent progress in SOD-like nanozymes. The existing shortcomings and possible future research hotspots in the development of SOD-like nanozymes are summarized and prospected. We hope that this review would provide ideas and inspirations for further research on the catalytic mechanism and rational design of SOD-like nanozymes.
Collapse
Affiliation(s)
- Hanqing Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China and Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China and Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
50
|
Yu R, Wang R, Wang Z, Liu B, He X, Dai Z. An enzyme cascade sensor with resistance to the inherent intermediate product by logic-controlled peroxidase mimic catalysis. Chem Commun (Camb) 2021; 57:2089-2092. [PMID: 33514982 DOI: 10.1039/d0cc08284h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Enzyme cascade sensors usually could not discriminate between the target and intermediate product. Herein, based on "AND" logic-controlled activation of the glucose oxidase-copper peroxide sensing system, enzyme cascade detection for glucose with resistance to inherently existing intermediate product H2O2 was reported for the first time, which may provide a novel way for facilitating enzyme cascade sensing.
Collapse
Affiliation(s)
- Renzhong Yu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Bi-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | | | | | | | | | | |
Collapse
|