1
|
Yihong J, Zhen L, Chang L, Ziying S, Ning Z, Meiqing S, Yuhui L, Lei W. Genome-wide identification and drought stress-induced expression analysis of the NHX gene family in potato. Front Genet 2024; 15:1396375. [PMID: 39055260 PMCID: PMC11269226 DOI: 10.3389/fgene.2024.1396375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
NHX proteins are transmembrane antiporters belonging to the cation/proton antiporter gene family, with a conserved Na+ (K+)/H+ exchange (PF00999) protein domain. NHXs play a prominent role in plant growth, development, and defense. However, the role of NHX gene family in potato (Solanum tuberosum L.) is yet to be known. In this study, we conducted a genome-wide analysis of the potato NHX gene family. A total of 25 StNHX family members were identified to be unevenly distributed on 10 chromosomes. The proteins ranged in length from 252 to 1,153 amino acids, with molecular masses ranging from 27516.32 to 127860.87 kD, and isoelectric points (pI) ranging from 4.96 to 9.3. Analyses of gene structures and conserved motifs indicated that StNHX genes in the same phylogenetic cluster are conserved. Phylogenetic analysis divided the StNHX genes into three subfamilies (Classes I, II, and III). Synteny analysis indicated that StNHX gene family Class III of NHX and all Arabidopsis thaliana NHXs shared a close evolutionary relationship. Analysis of cis-acting elements in the upstream 1,500 bp promoter region of potato NHX genes showed that these genes could be regulated by light, stress, and hormones such as abscisic acid and gibberellic acid. Protein-protein interaction network analysis indicated that StNHX proteins may participate in the regulation of potato growth and stress response. Besides, To determine a potential role of these genes in tissue development and drought response, we analyzed the RNA-seq data of different DM potato tissues. The results showed that NHX genes exhibited distinct tissue-specific expression patterns. We further examined the expression patterns of StNHX in different tissues (leaves, roots, shoots, tubers, stolons, and flowers) during the flowering stage in 'Jizhangshu NO.8.' potato. The qRT-PCR results further confirmed the importance of StNHX genes in potato plant growth and development. We further analyzed the RNA-seq data (DM potato) under different abiotic stresses (salt, drought, and heat), and found that the expression of StNHX genes was induced under abiotic stress. qRT-PCR analysis of shoots and roots of 'Jizhangshu NO.8.' potato treated for 0, 6, 12, and 24 h with 15% PEG6000 confirmed that the 25 StNHX genes are involved in the response to drought stress in potato. The results of this study may be useful for selecting appropriate candidate genes for the breeding of new drought-tolerant potato varieties. Furthermore, this study lays a foundation for prospective analysis of StNHX gene functions.
Collapse
Affiliation(s)
- Ji Yihong
- Potato Research Centre, Hebei North University, Zhangjiakou, China
| | - Liu Zhen
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Liu Chang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Shao Ziying
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Zhang Ning
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Suo Meiqing
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Liu Yuhui
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Wang Lei
- Potato Research Centre, Hebei North University, Zhangjiakou, China
| |
Collapse
|
2
|
Albalawy WN, Youm EB, Shipman KE, Trull KJ, Baty CJ, Long KR, Rbaibi Y, Wang XP, Fagunloye OG, White KA, Jurczak MJ, Kashlan OB, Weisz OA. SGLT2-independent effects of canagliflozin on NHE3 and mitochondrial complex I activity inhibit proximal tubule fluid transport and albumin uptake. Am J Physiol Renal Physiol 2024; 326:F1041-F1053. [PMID: 38660713 PMCID: PMC11381006 DOI: 10.1152/ajprenal.00005.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Beyond glycemic control, SGLT2 inhibitors (SGLT2is) have protective effects on cardiorenal function. Renoprotection has been suggested to involve inhibition of NHE3 leading to reduced ATP-dependent tubular workload and mitochondrial oxygen consumption. NHE3 activity is also important for regulation of endosomal pH, but the effects of SGLT2i on endocytosis are unknown. We used a highly differentiated cell culture model of proximal tubule (PT) cells to determine the direct effects of SGLT2i on Na+-dependent fluid transport and endocytic uptake in this nephron segment. Strikingly, canagliflozin but not empagliflozin reduced fluid transport across cell monolayers and dramatically inhibited endocytic uptake of albumin. These effects were independent of glucose and occurred at clinically relevant concentrations of drug. Canagliflozin acutely inhibited surface NHE3 activity, consistent with a direct effect, but did not affect endosomal pH or NHE3 phosphorylation. In addition, canagliflozin rapidly and selectively inhibited mitochondrial complex I activity. Inhibition of mitochondrial complex I by metformin recapitulated the effects of canagliflozin on endocytosis and fluid transport, whereas modulation of downstream effectors AMPK and mTOR did not. Mice given a single dose of canagliflozin excreted twice as much urine over 24 h compared with empagliflozin-treated mice despite similar water intake. We conclude that canagliflozin selectively suppresses Na+-dependent fluid transport and albumin uptake in PT cells via direct inhibition of NHE3 and of mitochondrial function upstream of the AMPK/mTOR axis. These additional targets of canagliflozin contribute significantly to reduced PT Na+-dependent fluid transport in vivo.NEW & NOTEWORTHY Reduced NHE3-mediated Na+ transport has been suggested to underlie the cardiorenal protection provided by SGLT2 inhibitors. We found that canagliflozin, but not empagliflozin, reduced NHE3-dependent fluid transport and endocytic uptake in cultured proximal tubule cells. These effects were independent of SGLT2 activity and resulted from inhibition of mitochondrial complex I and NHE3. Studies in mice are consistent with greater effects of canagliflozin versus empagliflozin on fluid transport. Our data suggest that these selective effects of canagliflozin contribute to reduced Na+-dependent transport in proximal tubule cells.
Collapse
Affiliation(s)
- Wafaa N Albalawy
- Department of Human Genetics, Pitt Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Elynna B Youm
- Department of Human Genetics, Pitt Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Keelan J Trull
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, United States
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Xue-Ping Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Olayemi G Fagunloye
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, United States
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
3
|
Yadav A, Kumar D, Dwivedi M. Site-directed mutagenesis at the Glu78 in Ec-NhaA transporter impacting ion exchange: a biophysical study. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:193-203. [PMID: 38647543 DOI: 10.1007/s00249-024-01709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Na+/H+ antiporters facilitate the exchange of Na+ for H+ across the cytoplasmic membrane in prokaryotic and eukaryotic cells. These transporters are crucial to maintain the homeostasis of sodium ions, consequently pH, and volume of the cells. Therefore, sodium/proton antiporters are considered promising therapeutic targets in humans. The Na+/H+ antiporter in Escherichia coli (Ec-NhaA), a prototype of cation-proton antiporter (CPA) family, transports two protons and one sodium (or Li+) in opposite direction. Previous mutagenesis experiments on Ec-NhaA have proposed Asp164, Asp163, and Asp133 amino acids with the significant implication in functional and structural integrity and create site for ion-binding. However, the mechanism and the sites for the binding of the two protons remain unknown and controversial which could be critical for pH regulation. In this study, we have explored the role of Glu78 in the regulation of pH by Ec-NhaA. Although we have created various mutants, E78C has shown a considerable effect on the stoichiometry of NhaA and presented comparable phenotypes. The ITC experiment has shown the binding of ~ 5 protons in response to the transport of one lithium ion. The phenotype analysis on selective medium showed a significant expression compared to WT Ec-NhaA. This represents the importance of Glu78 in transporting the H+ across the membrane where a single mutation with Cys amino acid alters the number of H+ significantly maintaining the activity of the protein.
Collapse
Affiliation(s)
- Anuradha Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Dinesh Kumar
- Center of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India.
- Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
4
|
Rimon A, Amartely H, Padan E. The crossing of two unwound transmembrane regions that is the hallmark of the NhaA structural fold is critical for antiporter activity. Sci Rep 2024; 14:5915. [PMID: 38467695 PMCID: PMC10928194 DOI: 10.1038/s41598-024-56425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Cell pH and Na+ homeostasis requires Na+/H+ antiporters. The crystal structure of NhaA, the main Escherichia coli Na+/H+ antiporter, revealed a unique NhaA structural fold shared by prokaryotic and eukaryotic membrane proteins. Out of the 12 NhaA transmembrane segments (TMs), TMs III-V and X-XII are topologically inverted repeats with unwound TMs IV and XI forming the X shape characterizing the NhaA fold. We show that intramolecular cross-linking under oxidizing conditions of a NhaA mutant with two Cys replacements across the crossing (D133C-T340C) inhibits antiporter activity and impairs NhaA-dependent cell growth in high-salts. The affinity purified D133C-T340C protein binds Li+ (the Na+ surrogate substrate of NhaA) under reducing conditions. The cross-linking traps the antiporter in an outward-facing conformation, blocking the antiport cycle. As many secondary transporters are found to share the NhaA fold, including some involved in human diseases, our data have importance for both basic and clinical research.
Collapse
Affiliation(s)
- Abraham Rimon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Hadar Amartely
- Wolfson Center for Applied Structural Biology, Jerusalem, Israel
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.
| |
Collapse
|
5
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Tiek D, Cheng SY. DNA damage and metabolic mechanisms of cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:368-379. [PMID: 35800362 PMCID: PMC9255237 DOI: 10.20517/cdr.2021.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022]
Abstract
Cancer drug resistance is one of the main barriers to overcome to ensure durable treatment responses. While many pivotal advances have been made in first combination therapies, then targeted therapies, and now broadening out to immunomodulatory drugs or metabolic targeting compounds, drug resistance is still ultimately universally fatal. In this brief review, we will discuss different strategies that have been used to fight drug resistance from synthetic lethality to tumor microenvironment modulation, focusing on the DNA damage response and tumor metabolism both within tumor cells and their surrounding microenvironment. In this way, with a better understanding of both targetable mutations in combination with the metabolism, smarter drugs may be designed to combat cancer drug resistance.
Collapse
Affiliation(s)
- Deanna Tiek
- Correspondence to: Deanna Tiek, The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Robert H. Lurie Comprehensive Cancer Center, and Simpson Querry Institute for Epigenetics, Northwestern University, Feinberg School of Medicine, 303 E Superior St, Chicago, IL 60611, USA. E-mail: ; Shi-Yuan Cheng, The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Robert H. Lurie Comprehensive Cancer Center, and Simpson Querry Institute for Epigenetics, Northwestern University, Feinberg School of Medicine, 303 E Superior St, Chicago, IL 60611, USA. E-mail:
| | - Shi-Yuan Cheng
- Correspondence to: Deanna Tiek, The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Robert H. Lurie Comprehensive Cancer Center, and Simpson Querry Institute for Epigenetics, Northwestern University, Feinberg School of Medicine, 303 E Superior St, Chicago, IL 60611, USA. E-mail: ; Shi-Yuan Cheng, The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Robert H. Lurie Comprehensive Cancer Center, and Simpson Querry Institute for Epigenetics, Northwestern University, Feinberg School of Medicine, 303 E Superior St, Chicago, IL 60611, USA. E-mail:
| |
Collapse
|
7
|
Chen FG, Xu W, Chen J, Xiao HP, Wang HY, Chen Z, Ge JY. Dysprosium(III) Metal-Organic Framework Demonstrating Ratiometric Luminescent Detection of pH, Magnetism, and Proton Conduction. Inorg Chem 2022; 61:5388-5396. [PMID: 35319197 DOI: 10.1021/acs.inorgchem.2c00242] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multifunctional metal-organic framework, (Hdmbpy)[Dy(H2dobdc)2(H2O)]·3H2O (Dy-MOF, H4dobdc = 2,5-dihydroxyterephthalic acid, dmbpy = 4,4'-dimethyl-2,2'-bipyridine), was synthesized and structurally characterized. The metal center DyIII is connected by four carboxyl groups to form the [Dy2(CO2)4] binuclear nodes, which are further interconnected by eight separate H2dobdc2- ligands to form a three-dimensional (3D) framework including hydrophilic triangular channels and abundant hydrogen-bonding networks. Dy-MOF has good stability in aqueous solution as well as in harsh acidic or alkaline solutions (pH range: 2.0-12.0). Furthermore, the luminescence signal of Dy-MOF undergoes a visualized color change as the acidity of the solution alters, which is the typical behavior of pH ratiometric probe. At a 100% relative humidity, Dy-MOF exhibits a high proton conductivity σ (1.70 × 10-4 S cm-1 at 303 K; 1.20 × 10-3 S cm-1 at 343 K) based on the proton hopping mechanism, which can be classified as a superionic conductor with σ exceeding 10-4 S cm-1. Additionally, the ferromagnetic interaction and magnetic relaxation behavior are simultaneously achieved in Dy-MOF. Herein, the combination of luminescence sensing, magnetism, and proton conduction in a single-phase 3D MOF may offer great potential applications in smart multitasking devices.
Collapse
Affiliation(s)
- Feng-Gui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wei Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jing Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hong-Ping Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hai-Ying Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
8
|
Paul A, Chatterjee A, Subrahmanya S, Shen G, Mishra N. NHX Gene Family in Camellia sinensis: In-silico Genome-Wide Identification, Expression Profiles, and Regulatory Network Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:777884. [PMID: 34987532 PMCID: PMC8720784 DOI: 10.3389/fpls.2021.777884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants, such as Arabidopsis thaliana and cotton; however, not much is known about NHXs in tea plant. In the present study, NHX genes of tea were obtained through a genome-wide search using A. thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER; CsNHX8) and plasma membrane (PM; CsNHX9), respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location, and protein-conserved motifs and domains were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes is subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in Camellia sinensis based on the orthologous genes in A. thaliana. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.
Collapse
Affiliation(s)
| | | | | | - Guoxin Shen
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Neelam Mishra
- Department of Botany, St. Joseph’s College Autonomous, Bangalore, India
| |
Collapse
|
9
|
Decreased Brain pH and Pathophysiology in Schizophrenia. Int J Mol Sci 2021; 22:ijms22168358. [PMID: 34445065 PMCID: PMC8395078 DOI: 10.3390/ijms22168358] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Postmortem studies reveal that the brain pH in schizophrenia patients is lower than normal. The exact cause of this low pH is unclear, but increased lactate levels due to abnormal energy metabolism appear to be involved. Schizophrenia patients display distinct changes in mitochondria number, morphology, and function, and such changes promote anaerobic glycolysis, elevating lactate levels. pH can affect neuronal activity as H+ binds to numerous proteins in the nervous system and alters the structure and function of the bound proteins. There is growing evidence of pH change associated with cognition, emotion, and psychotic behaviors. Brain has delicate pH regulatory mechanisms to maintain normal pH in neurons/glia and extracellular fluid, and a change in these mechanisms can affect, or be affected by, neuronal activities associated with schizophrenia. In this review, we discuss the current understanding of the cause and effect of decreased brain pH in schizophrenia based on postmortem human brains, animal models, and cellular studies. The topic includes the factors causing decreased brain pH in schizophrenia, mitochondria dysfunction leading to altered energy metabolism, and pH effects on the pathophysiology of schizophrenia. We also review the acid/base transporters regulating pH in the nervous system and discuss the potential contribution of the major transporters, sodium hydrogen exchangers (NHEs), and sodium-coupled bicarbonate transporters (NCBTs), to schizophrenia.
Collapse
|
10
|
Mondal R, Rimon A, Masrati G, Ben-Tal N, Friedler A, Padan E. Towards Molecular Understanding of the pH Dependence Characterizing NhaA of Which Structural Fold is Shared by Other Transporters. J Mol Biol 2021; 433:167156. [PMID: 34273399 DOI: 10.1016/j.jmb.2021.167156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a 'CPA motif', we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.
Collapse
Affiliation(s)
- R Mondal
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - A Rimon
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - G Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel
| | - N Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel
| | - A Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - E Padan
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
11
|
Quick M, Dwivedi M, Padan E. Insight into the direct interaction of Na + with NhaA and mechanistic implications. Sci Rep 2021; 11:7045. [PMID: 33782459 PMCID: PMC8007835 DOI: 10.1038/s41598-021-86318-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Na+/H+ antiporters comprise a family of membrane proteins evolutionarily conserved in all kingdoms of life that are essential in cellular ion homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystals provided insight in the structure of this molecular machine. However, structural data revealing the composition of the binding site for Na+ (or its surrogate Li+) is missing, representing a bottleneck in our understanding of the correlation between the structure and function of NhaA. Here, by adapting the scintillation proximity assay (SPA) for direct determination of Na+ binding to NhaA, we revealed that (i) NhaA is well adapted as the main antiporter for Na+ homeostasis in Escherichia coli and possibly in other bacteria as the cytoplasmic Na+ concentration is similar to the Na+ binding affinity of NhaA, (ii) experimental conditions affect NhaA-mediated cation binding, (iii) in addition to Na+ and Li+, the halide Tl+ interacts with NhaA, (iv) whereas acidic pH inhibits maximum binding of Na+ to NhaA, partial Na+ binding by NhaA is independent of the pH, an important novel insight into the effect of pH on NhaA cation binding.
Collapse
Affiliation(s)
- Matthias Quick
- Department of Psychiatry and Center for Molecular Recognition, Columbia University Vagelos College of Physicians and Surgeons, and New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Manish Dwivedi
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.,Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.
| |
Collapse
|
12
|
Winklemann I, Matsuoka R, Meier PF, Shutin D, Zhang C, Orellana L, Sexton R, Landreh M, Robinson CV, Beckstein O, Drew D. Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO J 2020; 39:e105908. [PMID: 33118634 PMCID: PMC7737618 DOI: 10.15252/embj.2020105908] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Na+ /H+ exchangers (NHEs) are ancient membrane-bound nanomachines that work to regulate intracellular pH, sodium levels and cell volume. NHE activities contribute to the control of the cell cycle, cell proliferation, cell migration and vesicle trafficking. NHE dysfunction has been linked to many diseases, and they are targets of pharmaceutical drugs. Despite their fundamental importance to cell homeostasis and human physiology, structural information for the mammalian NHE was lacking. Here, we report the cryogenic electron microscopy structure of NHE isoform 9 (SLC9A9) from Equus caballus at 3.2 Å resolution, an endosomal isoform highly expressed in the brain and associated with autism spectrum (ASD) and attention deficit hyperactivity (ADHD) disorders. Despite low sequence identity, the NHE9 architecture and ion-binding site are remarkably similar to distantly related bacterial Na+ /H+ antiporters with 13 transmembrane segments. Collectively, we reveal the conserved architecture of the NHE ion-binding site, their elevator-like structural transitions, the functional implications of autism disease mutations and the role of phosphoinositide lipids to promote homodimerization that, together, have important physiological ramifications.
Collapse
Affiliation(s)
- Iven Winklemann
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Rei Matsuoka
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Pascal F Meier
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Denis Shutin
- Department of ChemistryUniversity of OxfordOxfordUK
| | - Chenou Zhang
- Department of PhysicsCenter for Biological PhysicsArizona State UniversityTempeAZUSA
| | - Laura Orellana
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Ricky Sexton
- Department of PhysicsCenter for Biological PhysicsArizona State UniversityTempeAZUSA
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstituteStockholmSweden
| | | | - Oliver Beckstein
- Department of PhysicsCenter for Biological PhysicsArizona State UniversityTempeAZUSA
| | - David Drew
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| |
Collapse
|
13
|
Dwivedi M. Site-directed mutations reflecting functional and structural properties of Ec-NhaA. Biochimie 2020; 180:79-89. [PMID: 33129932 DOI: 10.1016/j.biochi.2020.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
NhaA antiporters are secondary integral membrane protein critical for maintaining the Na+/H+ cell homeostasis, as a result, they regulate fundamental processes like cell volume and intracellular pH. Exploration of the structural and functional properties can assist to make them effective human drug targets and mechanisms of salt-resistance in plants. NhaA proteins are integrated into cytoplasmic and intracellular membranes, transport 2H+/Na + across the membrane by the canonical alternating access mechanism. There are mutagenesis studies have done on Ec-NhaA predicting residues crucial for function and structure. The unique NhaA structural fold is formed in the middle of the membrane by two transmembrane segments (TMs), TM IV and XI which cross each other creating a delicate electrostatically balanced environment for the binding of Na+/H+. Previously, Asp164, Asp163 and Asp133 residues have been proposed as crucial for Na+/Li + binding on the based on crystal structure and mutation-based studies. However, the pathway and the binding sites for the two protons are still elusive and debatable. This review will provide comprehensive details on various mutations constructed in Ec-NhaA by different research groups using site-directed or random mutagenesis techniques. The selected residues for mutations are located on the sites which are more suspected to have a crucial role in function and structure on NhaA. This information on the single platform would accelerate further studies on the structure-function relationship on NhaA as well as will facilitate to predict the role of Na+/H+ antiporters in human diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Gomtinagar Ext., Lucknow, 226028, India.
| |
Collapse
|
14
|
Yang SL, Liu WS, Li G, Bu R, Li P, Gao EQ. A pH-Sensing Fluorescent Metal-Organic Framework: pH-Triggered Fluorescence Transition and Detection of Mycotoxin. Inorg Chem 2020; 59:15421-15429. [PMID: 33022178 DOI: 10.1021/acs.inorgchem.0c02419] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to its great relevance to environmental, biological, and chemical processes, the precise detection of pH or acidic/basic species is an ongoing and imperative need. In this context, pH-sensitive luminescent systems are highly desired. We reported a three-dimensional Zn(II) MOF synthesized from a bipyridyl-tetracarboxylic ligand and composed of 4-fold interpenetrated diamond frameworks. Because the steric hindrance in the ligand prevents metal coordination with the pyridyl group, the MOF features free basic N sites accessible to the small H+ ions, which renders pH responsivity. The aqueous dispersion exhibits an abrupt, high-contrast, and reversible on-off fluorescence transition in the narrow pH range of 5.4-6.2. The sensitive bistable system can be used for the precise monitoring of pH within the range and for use as a pH-triggered optical switch. The responsive mechanism through pyridyl protonation is collaboratively supported by data fitting, absorption spectra, and molecular orbital calculations. In particular, spectral and theoretical analyses reveal the destruction of n → π* transitions and the appearance of intramolecular charge-transfer transitions upon pyridyl protonation. Moreover, by virtue of the pH-responsive fluorescence, the MOF shows appealing sensing performance for the detection of 3-nitropropionic acid, a major mycotoxin in moldy sugar cane.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wan-Shan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Peng Li
- College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
15
|
Zhang S, Tajima H, Nambara E, Blumwald E, Bassil E. Auxin Homeostasis and Distribution of the Auxin Efflux Carrier PIN2 Require Vacuolar NHX-Type Cation/H + Antiporter Activity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1311. [PMID: 33023035 PMCID: PMC7601841 DOI: 10.3390/plants9101311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022]
Abstract
The Arabidopsis vacuolar Na+/H+ transporters (NHXs) are important regulators of intracellular pH, Na+ and K+ homeostasis and necessary for normal plant growth, development, and stress acclimation. Arabidopsis contains four vacuolar NHX isoforms known as AtNHX1 to AtNHX4. The quadruple knockout nhx1nhx2nhx3nhx4, lacking any vacuolar NHX-type antiporter activity, displayed auxin-related phenotypes including loss of apical dominance, reduced root growth, impaired gravitropism and less sensitivity to exogenous IAA and NAA, but not to 2,4-D. In nhx1nhx2nhx3nhx4, the abundance of the auxin efflux carrier PIN2, but not PIN1, was drastically reduced at the plasma membrane and was concomitant with an increase in PIN2 labeled intracellular vesicles. Intracellular trafficking to the vacuole was also delayed in the mutant. Measurements of free IAA content and imaging of the auxin sensor DII-Venus, suggest that auxin accumulates in root tips of nhx1nhx2nhx3nhx4. Collectively, our results indicate that vacuolar NHX dependent cation/H+ antiport activity is needed for proper auxin homeostasis, likely by affecting intracellular trafficking and distribution of the PIN2 efflux carrier.
Collapse
Affiliation(s)
- Shiqi Zhang
- Boyce Thompson Institute, Ithaca, NY 14850, USA;
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (H.T.); (E.B.)
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (H.T.); (E.B.)
| | - Elias Bassil
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
| |
Collapse
|
16
|
Sin WC, Tam N, Moniz D, Lee C, Church J. Na/H exchanger NHE1 acts upstream of rho GTPases to promote neurite outgrowth. J Cell Commun Signal 2020; 14:325-333. [PMID: 32144636 DOI: 10.1007/s12079-020-00556-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
Na+/H+ exchanger NHE1, a major determinant of intracellular pH (pHi) in mammalian central neurons, promotes neurite outgrowth under both basal and netrin-1-stimulated conditions. The small GTP binding proteins and their effectors have a dominant role in netrin-1-stimulated neurite outgrowth. Since NHE1 has been shown previously to work downstream of the Rho GTPases-mediated polarized membrane protrusion in non-neuronal cells, we examined whether NHE1 has a similar relationship with Cdc42, Rac1 and RhoA in neuronal morphogenesis. Interestingly, our results suggest the possibility that NHE1 acting upstream of Rho GTPases to promote neurite outgrowth induced by netrin-1. First, we found that netrin-1-induced increases in the activities of Rho GTPases using FRET (Forster Resonance Energy Transfer) analyses in individual growth cones; furthermore, their increased activities were abolished by cariporide, a specific NHE1 inhibitor. Second, NHE1 inhibition had no effect on neurite retraction induced by L-α-Lysophosphatidic acid (LPA), a potent RhoA activator. The regulation of Rho GTPases by NHE1 was further evidenced by reduced Rac1, Cdc42 and RhoA activities in NHE1-null neurons. Taken together, our findings suggest that NHE1-dependent neuronal morphogenesis involves the activation of Rho-family of small GTPases.
Collapse
Affiliation(s)
- Wun Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.
| | - Nicola Tam
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - David Moniz
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Connie Lee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - John Church
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Tamtaji OR, Mirzaei H, Shamshirian A, Shamshirian D, Behnam M, Asemi Z. New trends in glioma cancer therapy: Targeting Na + /H + exchangers. J Cell Physiol 2019; 235:658-665. [PMID: 31250444 DOI: 10.1002/jcp.29014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Glioma is the oneof the most prevalent primarybrain tumors. There is a variety of oxidative stresses, inflammatory pathways, apoptosis signaling, and Na+ /H + exchangers (NHEs) involved in the pathophysiology of glioma. Previous studies have indicated a relationship between NHEs and some molecular pathways in glioma. NHEs, including NHE1, NHE5, and NHE9 affect apoptosis, tumor-associated macrophage inflammatory pathways, matrix metalloproteinases, cancer-cell growth, invasion, and migration of glioma. Also, inhibition of NHEs contributes to increased survival in animal models of glioma. Limited studies, however, have assessed the relationship between NHEs and molecular pathways in glioma. This review summarizes current knowledge and evidence regarding the relationship between NHEs and glioma, and the mechanisms involved.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Shamshirian
- Department of Medical Laboratory Sciences, Student Research Committee, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Cheng PC, Lin HY, Chen YS, Cheng RC, Su HC, Huang RC. The Na +/H +-Exchanger NHE1 Regulates Extra- and Intracellular pH and Nimodipine-sensitive [Ca 2+] i in the Suprachiasmatic Nucleus. Sci Rep 2019; 9:6430. [PMID: 31015514 PMCID: PMC6478949 DOI: 10.1038/s41598-019-42872-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
The central clock in the suprachiasmatic nucleus (SCN) has higher metabolic activity than extra-SCN areas in the anterior hypothalamus. Here we investigated whether the Na+/H+ exchanger (NHE) may regulate extracellular pH (pHe), intracellular pH (pHi) and [Ca2+]i in the SCN. In hypothalamic slices bathed in HEPES-buffered solution a standing acidification of ~0.3 pH units was recorded with pH-sensitive microelectrodes in the SCN but not extra-SCN areas. The NHE blocker amiloride alkalinised the pHe. RT-PCR revealed mRNA for plasmalemmal-type NHE1, NHE4, and NHE5 isoforms, whereas the NHE1-specific antagonist cariporide alkalinised the pHe. Real-time PCR and western blotting failed to detect day-night variation in NHE1 mRNA and protein levels. Cariporide induced intracellular acidosis, increased basal [Ca2+]i, and decreased depolarisation-induced Ca2+ rise, with the latter two effects being abolished with nimodipine blocking the L-type Ca2+ channels. Immunofluorescent staining revealed high levels of punctate colocalisation of NHE1 with serotonin transporter (SERT) or CaV1.2, as well as triple staining of NHE1, CaV1.2, and SERT or the presynaptic marker Bassoon. Our results indicate that NHE1 actively extrudes H+ to regulate pHi and nimodipine-sensitive [Ca2+]i in the soma, and along with CaV1.2 may also regulate presynaptic Ca2+ levels and, perhaps at least serotonergic, neurotransmission in the SCN.
Collapse
Affiliation(s)
- Pi-Cheng Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Hsin-Yi Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Ya-Shuan Chen
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Ruo-Ciao Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Hung-Che Su
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Rong-Chi Huang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Healthy Aging Research Center, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, 33305, Taiwan.
| |
Collapse
|
19
|
Patiño-Ruiz M, Dwivedi M, Călinescu O, Karabel M, Padan E, Fendler K. Replacement of Lys-300 with a glutamine in the NhaA Na +/H + antiporter of Escherichia coli yields a functional electrogenic transporter. J Biol Chem 2019; 294:246-256. [PMID: 30409911 PMCID: PMC6322889 DOI: 10.1074/jbc.ra118.004903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/06/2018] [Indexed: 01/28/2023] Open
Abstract
Much of the research on Na+/H+ exchange has been done in prokaryotic models, mainly on the NhaA Na+/H+-exchanger from Escherichia coli (EcNhaA). Two conserved aspartate residues, Asp-163 and Asp-164, are essential for transport and are candidates for possible binding sites for the two H+ that are exchanged for one Na+ to make the overall transport process electrogenic. More recently, a proposed mechanism of transport for EcNhaA has suggested direct binding of one of the transported H+ to the conserved Lys-300 residue, a salt bridge partner of Asp-163. This contention is supported by a study reporting that substitution of the equivalent residue, Lys-305, of a related Na+/H+ antiporter, NapA from Thermus thermophilus, renders the transporter electroneutral. In this work, we sought to establish whether the Lys-300 residue and its partner Asp-163 are essential for the electrogenicity of EcNhaA. To that end, we replaced Lys-300 with Gln, either alone or together with the simultaneous substitution of Asp-163 with Asn, and characterized these transporter variants in electrophysiological experiments combined with H+ transport measurements and stability analysis. We found that K300Q EcNhaA can still support electrogenic Na+/H+ antiport in EcNhaA, but has reduced thermal stability. A parallel electrophysiological investigation of the K305Q variant of TtNapA revealed that it is also electrogenic. Furthermore, replacement of both salt bridge partners in the ion-binding site of EcNhaA produced an electrogenic variant (D163N/K300Q). Our findings indicate that alternative mechanisms sustain EcNhaA activity in the absence of canonical ion-binding residues and that the conserved lysines confer structural stability.
Collapse
Affiliation(s)
- Miyer Patiño-Ruiz
- Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Manish Dwivedi
- Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Octavian Călinescu
- Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mehmet Karabel
- Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Etana Padan
- Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Klaus Fendler
- Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Amelioration of Lipopolysaccharide-Induced Acute Lung Injury in Rats by Na-H Exchanger-1 Inhibitor Amiloride Is Associated with Reversal of ERK Mitogen-Activated Protein Kinase. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3560234. [PMID: 30627552 PMCID: PMC6304609 DOI: 10.1155/2018/3560234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
Background Na-H exchanger-1 (NHE-1) is expressed in the lung of rats. Accumulating evidence shows that Na-H exchangers are involved in inflammation. Amiloride, an inhibitor of NHE-1, inhibits the activation of macrophages and endothelial cells and reduces their production of cytokines. Since these processes have been implicated in acute lung injury (ALI) induced by lipopolysaccharide (LPS), we examined the protective effect of amiloride on ALI induced by LPS in rats. Material and Methods ALI in specific pathogen-free male Sprague-Dawley rats was induced by an intravenous injection of 6 mg/kg LPS. Amiloride pretreated rats received an intravenous injection of 10 mg/kg amiloride 30 min before the administration of LPS. Controls received normal saline in a similar manner. All animals were sacrificed 6 h after LPS or normal saline administration. The degree of ALI was assessed by wet-to-dry weight ratio (W/D) and lung histological examination. Neutrophilic infiltration was determined by myeloperoxidase (MPO) activity in lung tissue. Concentrations of total protein (TP), tumor necrosis factor-alpha (TNF-α), and macrophage inflammatory protein-2 (MIP-2) in bronchoalveolar lavage fluid (BALF) were also measured. Expression of NHE-1 and mitogen-activated protein kinase (MAPK) p38, p-p38, ERK, and p-ERK was evaluated by western blot analysis. Results Pretreatment with amiloride significantly reduced the increase in W/D, ALI score, lung tissue MPO activity, concentrations of TP, TNF-α, and MIP-2 in BALF, resulting in attenuation of ALI induced by LPS. Meanwhile, levels of NHE-1 and p-ERK proteins were reversed, whereas that of p-p38 was not. Conclusions These findings suggest that NHE-1 inhibitor amiloride could attenuate ALI induced by LPS in rats. This effect is mediated through reversal of ERK.
Collapse
|
21
|
Zhu X, Pan T, Zhang X, Fan L, Quintero FJ, Zhao H, Su X, Li X, Villalta I, Mendoza I, Shen J, Jiang L, Pardo JM, Qiu QS. K + Efflux Antiporters 4, 5, and 6 Mediate pH and K + Homeostasis in Endomembrane Compartments. PLANT PHYSIOLOGY 2018; 178:1657-1678. [PMID: 30309966 PMCID: PMC6288736 DOI: 10.1104/pp.18.01053] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
KEA4, KEA5, and KEA6 are members of the Arabidopsis (Arabidopsis thaliana) K+ efflux antiporter (KEA) family that share high sequence similarity but whose function remains unknown. Here, we show their gene expression pattern, subcellular localization, and physiological function in Arabidopsis. KEA4, KEA5, and KEA6 had similar tissue expression patterns, and the three KEA proteins localized to the Golgi, the trans-Golgi network, and the prevacuolar compartment/multivesicular bodies, suggesting overlapping roles of these proteins in the endomembrane system. Phenotypic analyses of single, double, and triple mutants confirmed functional redundancy. The triple mutant kea4 kea5 kea6 had small rosettes, short seedlings, and was sensitive to low K+ availability and to the sodicity imposed by high salinity. Also, the kea4 kea5 kea6 mutant plants had a reduced luminal pH in the Golgi, trans-Golgi network, prevacuolar compartment, and vacuole, in accordance with the K/H exchange activity of KEA proteins. Genetic analysis indicated that KEA4, KEA5, and KEA6 as well as endosomal Na+/H+exchanger5 (NHX5) and NHX6 acted coordinately to facilitate endosomal pH homeostasis and salt tolerance. Neither cancelling nor overexpressing the vacuolar antiporters NHX1 and NHX2 in the kea4 kea5 kea6 mutant background altered the salt-sensitive phenotype. The NHX1 and NHX2 proteins in the kea4 kea5 kea6 mutant background could not suppress the acidity of the endomembrane system but brought the vacuolar pH close to wild-type values. Together, these data signify that KEA4, KEA5, and KEA6 are endosomal K+ transporters functioning in maintaining pH and ion homeostasis in the endomembrane network.
Collapse
Affiliation(s)
- Xiaojie Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Ting Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Francisco J Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Hong Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Xiaomeng Su
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Xiaojiao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Irene Villalta
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Imelda Mendoza
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Jinbo Shen
- School of Life Sciences, Center for Cell and Developmental Biology, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Center for Cell and Developmental Biology, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| |
Collapse
|
22
|
Zeng C, Vanoni S, Wu D, Caldwell JM, Wheeler JC, Arora K, Noah TK, Waggoner L, Besse JA, Yamani AN, Uddin J, Rochman M, Wen T, Chehade M, Collins MH, Mukkada VA, Putnam PE, Naren AP, Rothenberg ME, Hogan SP. Solute carrier family 9, subfamily A, member 3 (SLC9A3)/sodium-hydrogen exchanger member 3 (NHE3) dysregulation and dilated intercellular spaces in patients with eosinophilic esophagitis. J Allergy Clin Immunol 2018; 142:1843-1855. [PMID: 29729938 PMCID: PMC6448407 DOI: 10.1016/j.jaci.2018.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is characterized by histopathologic modifications of esophageal tissue, including eosinophil-rich inflammation, basal zone hyperplasia, and dilated intercellular spaces (DIS). The underlying molecular processes that drive the histopathologic features of EoE remain largely unexplored. OBJECTIVE We sought to investigate the involvement of solute carrier family 9, subfamily A, member 3 (SLC9A3) in esophageal epithelial intracellular pH (pHi) and DIS formation and the histopathologic features of EoE. METHODS We examined expression of esophageal epithelial gene networks associated with regulation of pHi in the EoE transcriptome of primary esophageal epithelial cells and an in vitro esophageal epithelial 3-dimensional model system (EPC2-ALI). Molecular and cellular analyses and ion transport assays were used to evaluate the expression and function of SLC9A3. RESULTS We identified altered expression of gene networks associated with regulation of pHi and acid-protective mechanisms in esophageal biopsy specimens from pediatric patients with EoE (healthy subjects, n = 6; patients with EoE, n = 10). The most dysregulated gene central to regulating pHi was SLC9A3. SLC9A3 expression was increased within the basal layer of esophageal biopsy specimens from patients with EoE, and expression positively correlated with disease severity (eosinophils/high-power field) and DIS (healthy subjects, n = 10; patients with EoE, n = 10). Analyses of esophageal epithelial cells revealed IL-13-induced, signal transducer and activator of transcription 6-dependent SLC9A3 expression and Na+-dependent proton secretion and that SLC9A3 activity correlated positively with DIS formation. Finally, we showed that IL-13-mediated, Na+-dependent proton secretion was the primary intracellular acid-protective mechanism within the esophageal epithelium and that blockade of SLC9A3 transport abrogated IL-13-induced DIS formation. CONCLUSIONS SLC9A3 plays a functional role in DIS formation, and pharmacologic interventions targeting SLC9A3 function may suppress the histopathologic manifestations in patients with EoE.
Collapse
Affiliation(s)
- Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Justin C Wheeler
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kavisha Arora
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Taeko K Noah
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amnah N Yamani
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jazib Uddin
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Margaret H Collins
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vincent A Mukkada
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Philip E Putnam
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pathology, Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
23
|
Dragwidge JM, Ford BA, Ashnest JR, Das P, Gendall AR. Two Endosomal NHX-Type Na+/H+ Antiporters are Involved in Auxin-Mediated Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:1660-1669. [PMID: 29788486 DOI: 10.1093/pcp/pcy090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/29/2018] [Indexed: 05/16/2023]
Abstract
In Arabidopsis thaliana, the endosomal-localized Na+/H+ antiporters NHX5 and NHX6 regulate ion and pH homeostasis and are important for plant growth and development. However, the mechanism by which these endosomal NHXs function in plant development is not well understood. Auxin modulates plant growth and development through the formation of concentration gradients in plant tissue to control cell division and expansion. Here, we identified a role for NHX5 and NHX6 in the establishment and maintenance of auxin gradients in embryo and root tissues. We observed developmental impairment and abnormal cell division in embryo and root tissues in the double knockout nhx5 nhx6, consistent with these tissues showing high expression of NHX5 and NHX6. Through confocal microscopy imaging with the DR5::GFP auxin reporter, we identify defects in the perception, accumulation and redistribution of auxin in nhx5 nhx6 cells. Furthermore, we find that the steady-state levels of the PIN-FORMED (PIN) auxin efflux carriers PIN1 and PIN2 are reduced in nhx5 nhx6 root cells. Our results demonstrate that NHX5 and NHX6 function in auxin-mediated plant development by maintaining PIN abundance at the plasma membrane, and provide new insight into the regulation of plant development by endosomal NHX antiporters.
Collapse
Affiliation(s)
- Jonathan Michael Dragwidge
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
| | - Brett Andrew Ford
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Clunies Ross Street, Acton, ACT, Australia
| | - Joanne Rachel Ashnest
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
- Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, Canada
| | - Partha Das
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
- College of Agriculture, Tripura, Lembucherra, India
| | - Anthony Richard Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
| |
Collapse
|
24
|
Fan L, Zhao L, Hu W, Li W, Novák O, Strnad M, Simon S, Friml J, Shen J, Jiang L, Qiu QS. Na + ,K + /H + antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development. PLANT, CELL & ENVIRONMENT 2018; 41:850-864. [PMID: 29360148 DOI: 10.1111/pce.13153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/30/2017] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
AtNHX5 and AtNHX6 are endosomal Na+ ,K+ /H+ antiporters that are critical for growth and development in Arabidopsis, but the mechanism behind their action remains unknown. Here, we report that AtNHX5 and AtNHX6, functioning as H+ leak, control auxin homeostasis and auxin-mediated development. We found that nhx5 nhx6 exhibited growth variations of auxin-related defects. We further showed that nhx5 nhx6 was affected in auxin homeostasis. Genetic analysis showed that AtNHX5 and AtNHX6 were required for the function of the endoplasmic reticulum (ER)-localized auxin transporter PIN5. Although AtNHX5 and AtNHX6 were colocalized with PIN5 at ER, they did not interact directly. Instead, the conserved acidic residues in AtNHX5 and AtNHX6, which are essential for exchange activity, were required for PIN5 function. AtNHX5 and AtNHX6 regulated the pH in ER. Overall, AtNHX5 and AtNHX6 may regulate auxin transport across the ER via the pH gradient created by their transport activity. H+ -leak pathway provides a fine-tuning mechanism that controls cellular auxin fluxes.
Collapse
Affiliation(s)
- Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Lei Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wei Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Weina Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Sibu Simon
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
25
|
Asp133 Residue in NhaA Na+/H+ Antiporter Is Required for Stability Cation Binding and Transport. J Mol Biol 2018; 430:867-880. [DOI: 10.1016/j.jmb.2018.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 11/18/2022]
|
26
|
Woldemichael T, Rosania GR. The physiological determinants of drug-induced lysosomal stress resistance. PLoS One 2017; 12:e0187627. [PMID: 29117253 PMCID: PMC5678708 DOI: 10.1371/journal.pone.0187627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs.
Collapse
Affiliation(s)
- Tehetina Woldemichael
- Biophysics Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
27
|
Rhana P, Trivelato RR, Beirão PSL, Cruz JS, Rodrigues ALP. Is there a role for voltage-gated Na+ channels in the aggressiveness of breast cancer? ACTA ACUST UNITED AC 2017; 50:e6011. [PMID: 28591378 PMCID: PMC5463531 DOI: 10.1590/1414-431x20176011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer among women and its metastatic potential is responsible for numerous deaths. Thus, the need to find new targets for improving treatment, and even finding the cure, becomes increasingly greater. Ion channels are known to participate in several physiological functions, such as muscle contraction, cell volume regulation, immune response and cell proliferation. In breast cancer, different types of ion channels have been associated with tumorigenesis. Recently, voltage-gated Na+ channels (VGSC) have been implicated in the processes that lead to increased tumor aggressiveness. To explain this relationship, different theories, associated with pH changes, gene expression and intracellular Ca2+, have been proposed in an attempt to better understand the role of these ion channels in breast cancer. However, these theories are having difficulty being accepted because most of the findings are contrary to the present scientific knowledge. Several studies have shown that VGSC are related to different types of cancer, making them a promising pharmacological target against this debilitating disease. Molecular biology and cell electrophysiology have been used to look for new forms of treatment aiming to reduce aggressiveness and the disease progress.
Collapse
Affiliation(s)
- P Rhana
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil.,Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R R Trivelato
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| | - P S L Beirão
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - J S Cruz
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A L P Rodrigues
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| |
Collapse
|
28
|
Expression and integrated network analyses revealed functional divergence of NHX-type Na +/H + exchanger genes in poplar. Sci Rep 2017; 7:2607. [PMID: 28572621 PMCID: PMC5453932 DOI: 10.1038/s41598-017-02894-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
The Na+/H+ antiporters (NHXs) are secondary ion transporters to exchange H+ and transfer the Na+ or K+ across membrane, they play crucial roles during plant development and stress responses. To gain insight into the functional divergence of NHX genes in poplar, eight PtNHX were identified from Populus trichocarpa genome. PtNHXs containing 10 transmembrane helices (TMH) and a hydrophilic C-terminal domain, the TMH compose a hollow cylinder to provide the channel for Na+ and H+ transport. The expression patterns and cis-acting elements showed that all the PtNHXs were response to single or multiple stresses including drought, heat, cold, salinity, MV, and ABA. Both the co-expression network and protein-protein interaction network of PtNHXs implying their functional divergence. Interestingly, although PtNHX7 and PtNHX8 were generated by whole genome duplication event, they showed significant differences in expression pattern, protein structure, co-expressed genes, and interacted proteins. Only PtNHX7 interact with CBL and CIPK, indicating PtNHX7 is the primary NHX involved in CBL-CIPK pathway during salt stress responses. Natural variation analysis based on 549 P. trichocarpa individuals indicated the frequency of SNPs in PtNHX7 was significantly higher than other PtNHXs. Our findings provide new insights into the functional divergence of NHX genes in poplar.
Collapse
|
29
|
Călinescu O, Dwivedi M, Patiño-Ruiz M, Padan E, Fendler K. Lysine 300 is essential for stability but not for electrogenic transport of the Escherichia coli NhaA Na +/H + antiporter. J Biol Chem 2017; 292:7932-7941. [PMID: 28330875 PMCID: PMC5427271 DOI: 10.1074/jbc.m117.778175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/09/2017] [Indexed: 11/06/2022] Open
Abstract
Na+/H+ antiporters are located in the cytoplasmic and intracellular membranes and play crucial roles in regulating intracellular pH, Na+, and volume. The NhaA antiporter of Escherichia coli is the best studied member of the Na+/H+ exchanger family and a model system for all related Na+/H+ exchangers, including eukaryotic representatives. Several amino acid residues are important for the transport activity of NhaA, including Lys-300, a residue that has recently been proposed to carry one of the two H+ ions that NhaA exchanges for one Na+ ion during one transport cycle. Here, we sought to characterize the effects of mutating Lys-300 of NhaA to amino acid residues containing side chains of different polarity and length (i.e. Ala, Arg, Cys, His, Glu, and Leu) on transporter stability and function. Salt resistance assays, acridine-orange fluorescence dequenching, solid supported membrane-based electrophysiology, and differential scanning fluorometry were used to characterize Na+ and H+ transport, charge translocation, and thermal stability of the different variants. These studies revealed that NhaA could still perform electrogenic Na+/H+ exchange even in the absence of a protonatable residue at the Lys-300 position. However, all mutants displayed lower thermal stability and reduced ion transport activity compared with the wild-type enzyme, indicating the critical importance of Lys-300 for optimal NhaA structural stability and function. On the basis of these experimental data, we propose a tentative mechanism integrating the functional and structural role of Lys-300.
Collapse
Affiliation(s)
- Octavian Călinescu
- From the Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- the "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania, and
| | - Manish Dwivedi
- the Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Miyer Patiño-Ruiz
- From the Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Etana Padan
- the Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Klaus Fendler
- From the Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany,
| |
Collapse
|
30
|
Oberheide K, Puchkov D, Jentsch TJ. Loss of the Na +/H + exchanger NHE8 causes male infertility in mice by disrupting acrosome formation. J Biol Chem 2017; 292:10845-10854. [PMID: 28476888 DOI: 10.1074/jbc.m117.784108] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/04/2017] [Indexed: 01/02/2023] Open
Abstract
Mammalian sperm feature a specialized secretory organelle on the anterior part of the sperm nucleus, the acrosome, which is essential for male fertility. It is formed by a fusion of Golgi-derived vesicles. We show here that the predominantly Golgi-resident Na+/H+ exchanger NHE8 localizes to the developing acrosome of spermatids. Similar to wild-type mice, Nhe8-/- mice generated Golgi-derived vesicles positive for acrosomal markers and attached to nuclei, but these vesicles failed to form large acrosomal granules and the acrosomal cap. Spermatozoa from Nhe8-/- mice completely lacked acrosomes, were round-headed, exhibited abnormal mitochondrial distribution, and displayed decreased motility, resulting in selective male infertility. Of note, similar features are also found in globozoospermia, one of the causes of male infertility in humans. Germ cell-specific, but not Sertoli cell-specific Nhe8 disruption recapitulated the globozoospermia phenotype, demonstrating that NHE8's role in spermiogenesis is germ cell-intrinsic. Our work has uncovered a crucial role of NHE8 in acrosome biogenesis and suggests that some forms of human globozoospermia might be caused by a loss of function of this Na+/H+ exchanger. It points to NHE8 as a candidate gene for human globozoospermia and a possible drug target for male contraception.
Collapse
Affiliation(s)
- Karina Oberheide
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin and.,Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| | - Dmytro Puchkov
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin and
| | - Thomas J Jentsch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin and .,Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| |
Collapse
|
31
|
Morino M, Ogoda S, Krulwich TA, Ito M. Differences in the phenotypic effects of mutations in homologous MrpA and MrpD subunits of the multi-subunit Mrp-type Na +/H + antiporter. Extremophiles 2016; 21:51-64. [PMID: 27709304 DOI: 10.1007/s00792-016-0877-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Mrp antiporters are the sole antiporters in the Cation/Proton Antiporter 3 family of transporter databases because of their unusual structural complexity, 6-7 hydrophobic proteins that function as a hetero-oligomeric complex. The two largest and homologous subunits, MrpA and MrpD, are essential for antiport activity and have direct roles in ion transport. They also show striking homology with proton-conducting, membrane-embedded Nuo subunits of respiratory chain complex I of bacteria, e.g., Escherichia coli. MrpA has the closest homology to the complex I NuoL subunit and MrpD has the closest homology to the complex I NuoM and N subunits. Here, introduction of mutations in MrpD, in residues that are also present in MrpA, led to defects in antiport function and/or complex formation. No significant phenotypes were detected in strains with mutations in corresponding residues of MrpA, but site-directed changes in the C-terminal region of MrpA had profound effects, showing that the MrpA C-terminal region has indispensable roles in antiport function. The results are consistent with a divergence in adaptations that support the roles of MrpA and MrpD in secondary antiport, as compared to later adaptations supporting homologs in primary proton pumping by the respiratory chain complex I.
Collapse
Affiliation(s)
- Masato Morino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,, 573-13 Kamitanui, Tarnaki-cho, Watarai-gun, Mie, 519-0417, Japan
| | - Shinichiro Ogoda
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan
| | - Terry Ann Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Masahiro Ito
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan. .,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Saitama, 350-0815, Japan.
| |
Collapse
|
32
|
The Ec-NhaA antiporter switches from antagonistic to synergistic antiport upon a single point mutation. Sci Rep 2016; 6:23339. [PMID: 27021484 PMCID: PMC4810432 DOI: 10.1038/srep23339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
The Na+, Li+/H+ antiporter of Escherichia coli (Ec-NhaA) maintains pH, Na+ homeostasis in enterobacteria. We used isothermal titration calorimetry to perform a detailed thermodynamic analysis of Li+ binding to Ec-NhaA and several of its mutants. We found that, in line with the canonical alternative access mechanistic model of secondary transporters, Li+/H+ binding to the antiporter is antagonistically coupled. Binding of Li+ displaces 2 H+ from the binding site. The process is enthalpically driven, the enthalpic gain just compensating for an entropic loss and the buffer-associated enthalpic changes dominate the overall free-energy change. Li+ binding, H+ release and antiporter activity were all affected to the same extent by mutations in the Li+ binding site (D163E, D163N, D164N, D164E), while D133C changed the H+/Li+ stoichiometry to 4. Most striking, however, was the mutation, A167P, which converted the Ec-NhaA antagonistic binding into synergistic binding which is only known to occur in Cl−/H+ antiporter.
Collapse
|
33
|
AtNHX5 and AtNHX6 Are Required for the Subcellular Localization of the SNARE Complex That Mediates the Trafficking of Seed Storage Proteins in Arabidopsis. PLoS One 2016; 11:e0151658. [PMID: 26986836 PMCID: PMC4795774 DOI: 10.1371/journal.pone.0151658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 12/02/2022] Open
Abstract
The SNARE complex composed of VAMP727, SYP22, VTI11 and SYP51 is critical for protein trafficking and PSV biogenesis in Arabidopsis. This SNARE complex directs the fusion between the prevacuolar compartment (PVC) and the vacuole, and thus mediates protein trafficking to the vacuole. In this study, we examined the role of AtNHX5 and AtNHX6 in regulating this SNARE complex and its function in protein trafficking. We found that AtNHX5 and AtNHX6 were required for seed production, protein trafficking and PSV biogenesis. We further found that the nhx5 nhx6 syp22 triple mutant showed severe defects in seedling growth and seed development. The triple mutant had short siliques and reduced seed sets, but larger seeds. In addition, the triple mutant had numerous smaller protein storage vacuoles (PSVs) and accumulated precursors of the seed storage proteins in seeds. The PVC localization of SYP22 and VAMP727 was repressed in nhx5 nhx6, while a significant amount of SYP22 and VAMP727 was trapped in the Golgi or TGN in nhx5 nhx6. AtNHX5 and AtNHX6 were co-localized with SYP22 and VAMP727. Three conserved acidic residues, D164, E188, and D193 in AtNHX5 and D165, E189, and D194 in AtNHX6, were essential for the transport of the storage proteins, indicating the importance of exchange activity in protein transport. AtNHX5 or AtNHX6 did not interact physically with the SNARE complex. Taken together, AtNHX5 and AtNHX6 are required for the PVC localization of the SNARE complex and hence its function in protein transport. AtNHX5 and AtNHX6 may regulate the subcellular localization of the SNARE complex by their transport activity.
Collapse
|
34
|
Wu X, Kim H, Seravalli J, Barycki JJ, Hart PJ, Gohara DW, Di Cera E, Jung WH, Kosman DJ, Lee J. Potassium and the K+/H+ Exchanger Kha1p Promote Binding of Copper to ApoFet3p Multi-copper Ferroxidase. J Biol Chem 2016; 291:9796-806. [PMID: 26966178 DOI: 10.1074/jbc.m115.700500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 01/24/2023] Open
Abstract
Acquisition and distribution of metal ions support a number of biological processes. Here we show that respiratory growth of and iron acquisition by the yeast Saccharomyces cerevisiae relies on potassium (K(+)) compartmentalization to the trans-Golgi network via Kha1p, a K(+)/H(+) exchanger. K(+) in the trans-Golgi network facilitates binding of copper to the Fet3p multi-copper ferroxidase. The effect of K(+) is not dependent on stable binding with Fet3p or alteration of the characteristics of the secretory pathway. The data suggest that K(+) acts as a chemical factor in Fet3p maturation, a role similar to that of cations in folding of nucleic acids. Up-regulation of KHA1 gene in response to iron limitation via iron-specific transcription factors indicates that K(+) compartmentalization is linked to cellular iron homeostasis. Our study reveals a novel functional role of K(+) in the binding of copper to apoFet3p and identifies a K(+)/H(+) exchanger at the secretory pathway as a new molecular factor associated with iron uptake in yeast.
Collapse
Affiliation(s)
- Xiaobin Wu
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China 200234
| | - Heejeong Kim
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | - Javier Seravalli
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | - Joseph J Barycki
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | - P John Hart
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - David W Gohara
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea 456-756, and
| | - Daniel J Kosman
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14214-3000
| | - Jaekwon Lee
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664,
| |
Collapse
|
35
|
Zhao H, Carney KE, Falgoust L, Pan JW, Sun D, Zhang Z. Emerging roles of Na⁺/H⁺ exchangers in epilepsy and developmental brain disorders. Prog Neurobiol 2016; 138-140:19-35. [PMID: 26965387 DOI: 10.1016/j.pneurobio.2016.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 12/15/2022]
Abstract
Epilepsy is a common central nervous system (CNS) disease characterized by recurrent transient neurological events occurring due to abnormally excessive or synchronous neuronal activity in the brain. The CNS is affected by systemic acid-base disorders, and epileptic seizures are sensitive indicators of underlying imbalances in cellular pH regulation. Na(+)/H(+) exchangers (NHEs) are a family of membrane transporter proteins actively involved in regulating intracellular and organellar pH by extruding H(+) in exchange for Na(+) influx. Altering NHE function significantly influences neuronal excitability and plays a role in epilepsy. This review gives an overview of pH regulatory mechanisms in the brain with a special focus on the NHE family and the relationship between epilepsy and dysfunction of NHE isoforms. We first discuss how cells translocate acids and bases across the membrane and establish pH homeostasis as a result of the concerted effort of enzymes and ion transporters. We focus on the specific roles of the NHE family by detailing how the loss of NHE1 in two NHE mutant mice results in enhanced neuronal excitability in these animals. Furthermore, we highlight new findings on the link between mutations of NHE6 and NHE9 and developmental brain disorders including epilepsy, autism, and attention deficit hyperactivity disorder (ADHD). These studies demonstrate the importance of NHE proteins in maintaining H(+) homeostasis and their intricate roles in the regulation of neuronal function. A better understanding of the mechanisms underlying NHE1, 6, and 9 dysfunctions in epilepsy formation may advance the development of new epilepsy treatment strategies.
Collapse
Affiliation(s)
- Hanshu Zhao
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lindsay Falgoust
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jullie W Pan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA 15213, USA
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Abstract
Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| |
Collapse
|
37
|
Fan SHY, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell 2015; 27:702-15. [PMID: 26700318 PMCID: PMC4750928 DOI: 10.1091/mbc.e15-04-0257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022] Open
Abstract
The neuron-enriched Na+/H+ exchanger NHE5 is expressed in C6 glioma cells, acidifies recycling endosomes, and modulates cell surface abundance of receptor tyrosine kinases MET and EGFR. NHE5 depletion impairs MET recycling and facilitates degradation, thereby impairing cell migration and polarity. Increased recycling and elevated cell surface expression of receptors serve as a mechanism for persistent receptor-mediated signaling. We show that the neuron-enriched Na+/H+ exchanger NHE5 is abundantly expressed in C6 glioma cells and plays an important part in regulating cell surface expression of the receptor tyrosine kinases MET and EGF receptor. NHE5 is associated with transferrin receptor (TfR)- and Rab11-positive recycling endosomal membranes, and NHE5 knockdown by short hairpin RNA significantly elevates pH of TfR-positive recycling endosomes. We present evidence that NHE5 facilitates MET recycling to the plasma membrane, protects MET from degradation, and modulates HGF-induced phosphatidylinositol-3-kinase and mitogen-activated protein kinase signaling. Moreover, NHE5 depletion abrogates Rac1 and Cdc42 signaling and actin cytoskeletal remodeling. We further show that NHE5 knockdown impairs directed cell migration and causes loss of cell polarity. Our study highlights a possible role of recycling endosomal pH in regulating receptor-mediated signaling through vesicular trafficking.
Collapse
Affiliation(s)
- Steven Hung-Yi Fan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuka Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
38
|
Ashnest JR, Huynh DL, Dragwidge JM, Ford BA, Gendall AR. Arabidopsis Intracellular NHX-Type Sodium-Proton Antiporters are Required for Seed Storage Protein Processing. PLANT & CELL PHYSIOLOGY 2015; 56:2220-33. [PMID: 26416852 DOI: 10.1093/pcp/pcv138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/18/2015] [Indexed: 05/26/2023]
Abstract
The Arabidopsis intracellular sodium-proton exchanger (NHX) proteins AtNHX5 and AtNHX6 have a well-documented role in plant development, and have been used to improve salt tolerance in a variety of species. Despite evidence that intracellular NHX proteins are important in vacuolar trafficking, the mechanism of this role is poorly understood. Here we show that NHX5 and NHX6 are necessary for processing of the predominant seed storage proteins, and also influence the processing and activity of a vacuolar processing enzyme. Furthermore, we show by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) technology that the C-terminal tail of NHX6 interacts with a component of Retromer, another component of the cell sorting machinery, and that this tail is critical for NHX6 activity. These findings demonstrate that NHX5 and NHX6 are important in processing and activity of vacuolar cargo, and suggest a mechanism by which NHX intracellular (IC)-II antiporters may be involved in subcellular trafficking.
Collapse
Affiliation(s)
- Joanne R Ashnest
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| | - Dung L Huynh
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jonathan M Dragwidge
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brett A Ford
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia Present address: Commonwealth Scientific and Industrial Research Organization Agriculture Flagship, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
39
|
NhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability. Proc Natl Acad Sci U S A 2015; 112:E5575-82. [PMID: 26417087 DOI: 10.1073/pnas.1510964112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Escherichia coli Na(+)/H(+) antiporter (Ec-NhaA) is the best-characterized of all pH-regulated Na(+)/H(+) exchangers that control cellular Na(+) and H(+) homeostasis. Ec-NhaA has 12 helices, 2 of which (VI and VII) are absent from other antiporters that share the Ec-NhaA structural fold. This α-hairpin is located in the dimer interface of the Ec-NhaA homodimer together with a β-sheet. Here we examine computationally and experimentally the role of the α-hairpin in the stability, dimerization, transport, and pH regulation of Ec-NhaA. Evolutionary analysis (ConSurf) indicates that the VI-VII helical hairpin is much less conserved than the remaining transmembrane region. Moreover, normal mode analysis also shows that intact NhaA and a variant, deleted of the α-hairpin, share similar dynamics, suggesting that the structure may be dispensable. Thus, two truncated Ec-NhaA mutants were constructed, one deleted of the α-hairpin and another also lacking the β-sheet. The mutants were studied at physiological pH in the membrane and in detergent micelles. The findings demonstrate that the truncated mutants retain significant activity and regulatory properties but are defective in the assembly/stability of the Ec-NhaA dimer.
Collapse
|
40
|
Grefen C, Karnik R, Larson E, Lefoulon C, Wang Y, Waghmare S, Zhang B, Hills A, Blatt MR. A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion. NATURE PLANTS 2015; 1:15108. [PMID: 27250541 DOI: 10.1038/nplants.2015.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/29/2015] [Indexed: 06/05/2023]
Abstract
Growth in plants depends on ion transport for osmotic solute uptake and secretory membrane trafficking to deliver material for wall remodelling and cell expansion. The coordination of these processes lies at the heart of the question, unresolved for more than a century, of how plants regulate cell volume and turgor. Here we report that the SNARE protein SYP121 (SYR1/PEN1), which mediates vesicle fusion at the Arabidopsis plasma membrane, binds the voltage sensor domains (VSDs) of K(+) channels to confer a voltage dependence on secretory traffic in parallel with K(+) uptake. VSD binding enhances secretion in vivo subject to voltage, and mutations affecting VSD conformation alter binding and secretion in parallel with channel gating, net K(+) concentration, osmotic content and growth. These results demonstrate a new and unexpected mechanism for secretory control, in which a subset of plant SNAREs commandeer K(+) channel VSDs to coordinate membrane trafficking with K(+) uptake for growth.
Collapse
Affiliation(s)
- Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emily Larson
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ben Zhang
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
41
|
Takemoto H, Miyata K, Nishiyama N, Kataoka K. Bioresponsive polymer-based nucleic acid carriers. ADVANCES IN GENETICS 2015; 88:289-323. [PMID: 25409610 DOI: 10.1016/b978-0-12-800148-6.00010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleic acid carriers need to possess multifunctionality for overcoming biological barriers, such as the stable encapsulation of nucleic acids in extracellular milieu, internalization by target cells, controlled intracellular distribution, and release of nucleic acids at the target site of action. To fulfill these stepwise functionalities, "bioresponsive" polymers that can alter their structure responding to site-specific biological signals are highly useful. Notably, pH, redox potential, and enzymatic activities vary along with microenvironments in the body, and thus, the responsiveness to these signals enables to construct nucleic acid carriers with programmed functionalities. This chapter describes the design of bioresponsive polymers that respond to various biological microenvironments for smart nucleic acids delivery.
Collapse
Affiliation(s)
- Hiroyasu Takemoto
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kanjiro Miyata
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Japan
| |
Collapse
|
42
|
Xia CH, Liu H, Cheung D, Tang F, Chang B, Li M, Gong X. NHE8 is essential for RPE cell polarity and photoreceptor survival. Sci Rep 2015; 5:9358. [PMID: 25791178 PMCID: PMC4366848 DOI: 10.1038/srep09358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/02/2015] [Indexed: 11/09/2022] Open
Abstract
A new N-ethyl-N-nitrosourea (ENU)-induced mouse recessive mutation, identified by fundus examination of the eye, develops depigmented patches, indicating retinal disorder. Histology data show aberrant retinal pigment epithelium (RPE) and late-onset photoreceptor cell loss in the mutant retina. Chromosomal mapping and DNA sequencing reveal a point mutation (T to A) of the Slc9a8 gene, resulting in mutant sodium/proton exchanger 8 (NHE8)-M120K protein. The lysine substitution decreases the probability of forming the 3(rd) transmembrane helix, which impairs the pore structure of the Na(+)/H(+) exchanger. Various RPE defects, including mislocalization of the apical marker ezrin, and disrupted apical microvilli and basal infoldings are observed in mutant mice. We have further generated NHE8 knockout mice and confirmed similar phenotypes, including abnormal RPE cells and late-onset photoreceptor cell loss. Both in vivo and in vitro data indicate that NHE8 co-localizes with ER, Golgi and intracellular vesicles in RPE cells. Thus, NHE8 function is necessary for the survival of photoreceptor cells and NHE8 is important for RPE cell polarity and function. Dysfunctional RPE may ultimately lead to photoreceptor cell death in the NHE8 mutants. Further studies will be needed to elucidate whether or not NHE8 regulates pH homeostasis in the protein secretory pathways of RPE.
Collapse
Affiliation(s)
- Chun-hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haiquan Liu
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Debra Cheung
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felicia Tang
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Mei Li
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos. Differentiation 2015; 89:51-69. [PMID: 25771346 DOI: 10.1016/j.diff.2015.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 12/18/2022]
Abstract
The etiology of mitochondrial disease is poorly understood. Furthermore, treatment options are limited, and diagnostic methods often lack the sensitivity to detect disease in its early stages. Disrupted oxidative phosphorylation (OXPHOS) that inhibits ATP production is a common phenotype of mitochondrial disorders that can be induced in zebrafish by exposure to 2,4-dinitrophenol (DNP), a FDA-banned weight-loss agent and EPA-regulated environmental toxicant, traditionally used in research labs as an uncoupler of OXPHOS. Despite the DNP-induced OXPHOS inhibition we observed using in vivo respirometry, the development of the DNP-treated and control zebrafish were largely similar during the first half of embryogenesis. During this period, DNP-treated embryos induced gene expression of mitochondrial and nuclear genes that stimulated the production of new mitochondria and increased glycolysis to yield normal levels of ATP. DNP-treated embryos were incapable of sustaining this mitochondrial biogenic response past mid-embryogenesis, as shown by significantly lowered ATP production and ATP levels, decreased gene expression, and the onset of developmental defects. Examining neural tissues commonly affected by mitochondrial disease, we found that DNP exposure also inhibited motor neuron axon arbor outgrowth and the proper formation of the retina. We observed and quantified the molecular and physiological progression of mitochondrial dysfunction during development with this new model of OXPHOS dysfunction, which has great potential for use in diagnostics and therapies for mitochondrial disease.
Collapse
|
44
|
Yin Y, Wang J, Jiang S, Yang X, Zhang X, Cao Y, Cao L, Wu H. Novel composite membranes based on sulfonated poly(ether ether ketone) and adenosine triphosphate for enhanced proton conduction. RSC Adv 2015. [DOI: 10.1039/c5ra14143e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Novel SPEEK/ATP composite membranes were prepared via a facile method, achieving improved proton conductivity under different conditions.
Collapse
Affiliation(s)
- Yongheng Yin
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Jiahui Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Shengtao Jiang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xin Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Xuya Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Ying Cao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Li Cao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Hong Wu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
45
|
|
46
|
Ilie A, Weinstein E, Boucher A, McKinney RA, Orlowski J. Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ370WST372) associated with X-linked intellectual disability and autism. Neurochem Int 2014; 73:192-203. [DOI: 10.1016/j.neuint.2013.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 01/23/2023]
|
47
|
Alkoby D, Rimon A, Burdak M, Patino-Ruiz M, Călinescu O, Fendler K, Padan E. NhaA Na+/H+ antiporter mutants that hardly react to the membrane potential. PLoS One 2014; 9:e93200. [PMID: 24699187 PMCID: PMC3974702 DOI: 10.1371/journal.pone.0093200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/28/2014] [Indexed: 12/23/2022] Open
Abstract
pH and Na+ homeostasis in all cells requires Na+/H+ antiporters. The crystal structure, obtained at pH 4, of NhaA, the main antiporter of Escherichia coli, has provided general insights into an antiporter mechanism and its unique pH regulation. Here, we describe a general method to select various NhaA mutants from a library of randomly mutagenized NhaA. The selected mutants, A167P and F267C are described in detail. Both mutants are expressed in Escherichia coli EP432 cells at 70–95% of the wild type but grow on selective medium only at neutral pH, A167P on Li+ (0.1 M) and F267C on Na+ (0.6 M). Surprising for an electrogenic secondary transporter, and opposed to wild type NhaA, the rates of A167P and F267C are almost indifferent to membrane potential. Detailed kinetic analysis reveals that in both mutants the rate limiting step of the cation exchange cycle is changed from an electrogenic to an electroneutral reaction.
Collapse
Affiliation(s)
- Dudu Alkoby
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Abraham Rimon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Maral Burdak
- Department of Biophysical Chemistry, Max-Planck Institute for Biophysics, Frankfurt/Main, Germany
| | - Miyer Patino-Ruiz
- Department of Biophysical Chemistry, Max-Planck Institute for Biophysics, Frankfurt/Main, Germany
| | - Octavian Călinescu
- Department of Biophysical Chemistry, Max-Planck Institute for Biophysics, Frankfurt/Main, Germany
| | - Klaus Fendler
- Department of Biophysical Chemistry, Max-Planck Institute for Biophysics, Frankfurt/Main, Germany
| | - Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
48
|
Jung J, Lee MG. Role of calcium signaling in epithelial bicarbonate secretion. Cell Calcium 2014; 55:376-84. [PMID: 24598807 DOI: 10.1016/j.ceca.2014.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
49
|
Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: novel structural findings and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:857-79. [PMID: 24508215 DOI: 10.1016/j.bbabio.2014.01.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/25/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Kadmon Pharmaceuticals Corporation, Alexandria Center for Life Science, 450 East 29th Street, New York, NY 10016, USA.
| | - John L Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, Singapore 637551, Republic of Singapore; Bioinformatics Institute, A(⁎)STAR, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
50
|
Diering GH, Numata M. Endosomal pH in neuronal signaling and synaptic transmission: role of Na(+)/H(+) exchanger NHE5. Front Physiol 2014; 4:412. [PMID: 24454292 PMCID: PMC3888932 DOI: 10.3389/fphys.2013.00412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022] Open
Abstract
Neuronal precursor cells extend multiple neurites during development, one of which extends to form an axon whereas others develop into dendrites. Chemical stimulation of N-methyl D-aspartate (NMDA) receptor in fully-differentiated neurons induces projection of dendritic spines, small spikes protruding from dendrites, thereby establishing another layer of polarity within the dendrite. Neuron-enriched Na+/H+ exchanger NHE5 contributes to both neurite growth and dendritic spine formation. In resting neurons and neuro-endocrine cells, neuron-enriched NHE5 is predominantly associated with recycling endosomes where it colocalizes with nerve growth factor (NGF) receptor TrkA. NHE5 potently acidifies the lumen of TrkA-positive recycling endosomes and regulates cell-surface targeting of TrkA, whereas chemical stimulation of NMDA receptors rapidly recruits NHE5 to dendritic spines, alkalinizes dendrites and down-regulates the dendritic spine formation. Possible roles of NHE5 in neuronal signaling via proton movement in subcellular compartments are discussed.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|