1
|
Inkster AM, Matthews AM, Phung TN, Plaisier SB, Wilson MA, Brown CJ, Robinson WP. Breaking rules: the complex relationship between DNA methylation and X-chromosome inactivation in the human placenta. Biol Sex Differ 2025; 16:18. [PMID: 40038810 DOI: 10.1186/s13293-025-00696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The human placenta is distinct from most organs due to its uniquely low-methylated genome. DNA methylation (DNAme) is particularly depleted in the placenta at partially methylated domains and on the inactive X chromosome (Xi) in XX samples. While Xi DNAme is known to be critical for X-chromosome inactivation (XCI) in other tissues, its role in the placenta remains unclear. Understanding X-linked DNAme variation in the placenta may provide insights into XCI and have implications for prenatal development and phenotypic sex differences. METHODS DNAme data were analyzed from over 350 human placental (chorionic villus) samples, along with samples from cord blood, amnion and chorion placental membranes, and fetal somatic tissues. We characterized X chromosome DNAme variation in the placenta relative to sample variables including cell composition, ancestry, maternal age, placental weight, and fetal birth weight, and compared these patterns to other tissues. We also evaluated the relationship between X-linked DNAme and previously reported XCI gene expression status in placenta. RESULTS Our findings confirm that the placenta exhibits significant depletion of DNAme on the Xi compared to other tissues. Additionally, we observe that X chromosome DNAme profiles in the placenta are influenced by cell composition, particularly trophoblast proportion, with minimal DNAme variation across gestation. Notably, low promoter DNAme is observed at most genes on the Xi regardless of XCI status, challenging known associations in somatic tissues between low promoter DNAme and escape from XCI. CONCLUSIONS This study provides evidence that the human placenta has a distinct Xi DNAme landscape, which may inform our understanding of sex differences during prenatal development. Future research should explore the mechanisms underlying the placenta's unique X-linked DNAme profile, and the factors involved in placental XCI maintenance.
Collapse
Affiliation(s)
- Amy M Inkster
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada.
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada.
| | - Allison M Matthews
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 221 Wesbrook Mall, Vancouver, BC, V6T 1Z7, Canada
| | - Tanya N Phung
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Seema B Plaisier
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Melissa A Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada
| |
Collapse
|
2
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 PMCID: PMC11721493 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Wang L, Li B, Cheng D. Influence of Long Non-Coding RNAs on Human Oocyte Development. Pharmgenomics Pers Med 2024; 17:337-345. [PMID: 38979513 PMCID: PMC11229482 DOI: 10.2147/pgpm.s449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Recent research findings have highlighted the pivotal roles played by lncRNAs in both normal human development and disease pathogenesis. LncRNAs are expressed in oocytes and early embryos, and their expression levels change dynamically once the embryonic genome is activated during early human embryonic development. Abnormal expression of lncRNAs was found in follicular fluid, granulosa cells and oocytes of patients, and these lncRNAs were related to cell proliferation and apoptosis, nuclear maturation and follicle development. The expression levels of some lncRNAs in cumulus cells demonstrate correlations with the quality of oocytes and early embryos. This paper aims to present a comprehensive overview of the influence of LncRNAs on the developmental process of human oocytes as well as their involvement in certain infertility-related diseases.
Collapse
Affiliation(s)
- Leitong Wang
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Baoshan Li
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Dongkai Cheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| |
Collapse
|
4
|
Yao F, Chu M, Xi G, Dai J, Wang Z, Hao J, Yang Q, Wang W, Tang Y, Zhang J, Yue Y, Wang Y, Xu Y, Zhao W, Ma L, Liu J, Zhang Z, Tian J, An L. Single-embryo transcriptomic atlas of oxygen response reveals the critical role of HIF-1α in prompting embryonic zygotic genome activation. Redox Biol 2024; 72:103147. [PMID: 38593632 PMCID: PMC11016760 DOI: 10.1016/j.redox.2024.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Adaptive response to physiological oxygen levels (physO2; 5% O2) enables embryonic survival in a low-oxygen developmental environment. However, the mechanism underlying the role of physO2 in supporting preimplantation development, remains elusive. Here, we systematically studied oxygen responses of hallmark events in preimplantation development. Focusing on impeded transcriptional upregulation under atmospheric oxygen levels (atmosO2; 20% O2) during the 2-cell stage, we functionally identified a novel role of HIF-1α in promoting major zygotic genome activation by serving as an oxygen-sensitive transcription factor. Moreover, during blastocyst formation, atmosO2 impeded H3K4me3 and H3K27me3 deposition by deregulating histone-lysine methyltransferases, thus impairing X-chromosome inactivation in blastocysts. In addition, we found atmosO2 impedes metabolic shift to glycolysis before blastocyst formation, thus resulting a low-level histone lactylation deposition. Notably, we also reported an increased sex-dimorphic oxygen response of embryos upon preimplantation development. Together, focusing on genetic and epigenetic events that are essential for embryonic survival and development, the present study advances current knowledge of embryonic adaptive responses to physO2, and provides novel insight into mechanism underlying irreversibly impaired developmental potential due to a short-term atmosO2 exposure.
Collapse
Affiliation(s)
- Fusheng Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Meiqiang Chu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Guangyin Xi
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jiage Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Zhaochen Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jia Hao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Qianying Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Wenjing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yawen Tang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jingyu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yuan Yue
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yue Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yefen Xu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, PR China
| | - Wei Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Lizhu Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Juan Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Zhenni Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
| | - Lei An
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
| |
Collapse
|
5
|
Montgomery SA, Berger F. Paternal imprinting in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1000-1006. [PMID: 37936346 DOI: 10.1111/nph.19377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
We are becoming aware of a growing number of organisms that do not express genetic information equally from both parents as a result of an epigenetic phenomenon called genomic imprinting. Recently, it was shown that the entire paternal genome is repressed during the diploid phase of the life cycle of the liverwort Marchantia polymorpha. The deposition of the repressive epigenetic mark H3K27me3 on the male pronucleus is responsible for the imprinted state, which is reset by the end of meiosis. Here, we put these recent reports in perspective of other forms of imprinting and discuss the potential mechanisms of imprinting in bryophytes and the causes of its evolution.
Collapse
Affiliation(s)
- Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), C/ del Dr Aiguader, 88, 08003, Barcelona, Spain
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr Bohr-Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
6
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 PMCID: PMC11550885 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
7
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Su J, Zhang Y, Su H, Wang C, Wang D, Yang Y, Li X, Qi W, Li H, Li X, Song Y, Cao G. Dosage Compensation of the X Chromosome during Sheep Testis Development Revealed by Single-Cell RNA Sequencing. Animals (Basel) 2022; 12:ani12172169. [PMID: 36077890 PMCID: PMC9454834 DOI: 10.3390/ani12172169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Male and female mammals carry the same complement of autosomes but differ with respect to their sex chromosomes: females carry XX chromosomes and males carry XY chromosomes. The evolutionary loss of genes from the Y chromosome led to a disparity in the dosage of X chromosomes versus autosomal genes, with males becoming monosomic for X-linked gene products. An imbalance in gene expression may have detrimental consequences. In males, X-linked genes need to be upregulated to levels equal to those of females, which is called dosage compensation. The existence of dosage compensation in germ cells is controversial. In testis, dosage compensation is thought to cease during meiosis. Some studies showed that the X chromosome is inactivated during meiosis and premature transcriptional inactivation of the X and Y chromosome during mid-spermatogenesis is essential for fertility. However, some studies failed to find support for male germline X inactivation. Using single-cell RNA seq data, in this study, we presented a comprehensive transcriptional map of sheep testes at different developmental stages and found that germ cell types in sheep testes show X-chromosome expression similar to that in the autosomes. The dosage compensation of germ cells at different stages was analyzed. MSL complex members are expressed in female flies and orthologs exist in many species, where dosage compensation mechanisms are absent or fundamentally different. This suggests that the MSL complex members also function outside of the dosage compensation machinery. Studies have shown that MSL complex can regulate mammalian X inactivation and activation. Abstract Dosage compensation is a mechanism first proposed by Susumu Ohno, whereby X inactivation balances X gene output between males (XY) and females (XX), while X upregulation balances X genes with autosomal gene output. These mechanisms have been actively studied in Drosophila and mice, but research regarding them lags behind in domestic species. It is unclear how the X chromosome is regulated in the sheep male germline. To address this, using single-cell RNA sequencing, we analyzed testes in three important developmental stages of sheep. We observed that the total RNA per cell from X and autosomes peaked in SSCs and spermatogonia and was then reduced in early spermatocytes. Furthermore, we counted the detected reads per gene in each cell type for X and autosomes. In cells experiencing dose compensation, close proximity to MSL (male-specific lethal), which is regulated the active X chromosome and was observed. Our results suggest that there is no dose compensation in the pre-meiotic germ cells of sheep testes and, in addition, MSL1 and MSL2 are expressed in early germ cells and involved in regulating mammalian X-chromosome inactivation and activation.
Collapse
Affiliation(s)
- Jie Su
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
- Department of Psychosomatic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Yue Zhang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Hong Su
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Caiyun Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Daqing Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agriculture & Animal Husbandry Sciences, Hohhot 010000, China
| | - Xiunan Li
- Inner Mongolia Academy of Agriculture & Animal Husbandry Sciences, Hohhot 010000, China
| | - Wangmei Qi
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Haijun Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Xihe Li
- Inner Mongolia Saikexing Institutes of Breeding and Reproductive Biotechnologies in Domestic Animal, Hohhot 011517, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- Correspondence: (Y.S.); (G.C.); Tel.: +86-133-6601-7565 (Y.S.); +86-138-4812-0488 (G.C.)
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
- Correspondence: (Y.S.); (G.C.); Tel.: +86-133-6601-7565 (Y.S.); +86-138-4812-0488 (G.C.)
| |
Collapse
|
9
|
Soares SC, Eler ES, E Silva CEF, da Silva MNF, Araújo NP, Svartman M, Feldberg E. LINE-1 and SINE-B1 mapping and genome diversification in Proechimys species (Rodentia: Echimyidae). Life Sci Alliance 2022; 5:5/6/e202101104. [PMID: 35304430 PMCID: PMC8932440 DOI: 10.26508/lsa.202101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to understand the impact of LINE-1 and SINE-B1 retroelements on the architecture and karyotypic diversification of five rodent species of the genus Proechimys from different regions of the Amazon. Karyotype comparisons were performed using fluorescent interspecific in situ hybridization. The L1 and B1 retroelements showed a non-random arrangement and a conserved pattern when the genomes of the five species of Proechimys were compared, including the two cytotypes of Proechimys guyannensis The signal homeology among the chromosomes and the degree of similarity among the formed clusters indicate rearrangements such as fusion/fission, and demonstrates that these retroelements can behave as derived characters shared in Proechimys The differentiated distribution and organization of these retroelements in the karyotypes and in the chromosomal fiber, respectively, may represent a strong indication of their role as generating sources of karyotypic diversity in the genus Proechimys and provide insights into the evolutionary relationships between taxa.
Collapse
Affiliation(s)
- Simone Cardoso Soares
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil .,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eduardo Schmidt Eler
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Carlos Eduardo Faresin E Silva
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Naiara Pereira Araújo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia de Rondônia campus Jaru, Jaru, Brazil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliana Feldberg
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
10
|
Epigenetics is Promising Direction in Modern Science. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2022. [DOI: 10.2478/cdem-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Epigenetics studies the inherited changes in a phenotype or in expression of genes caused by other mechanisms, without changing the nucleotide sequence of DNA. The most distinguished epigenetic tools are: modifications of histones, enzymatic DNA methylation, and gene silencing mediated by small RNAs (miRNA, siRNA). The resulting m5C residues in DNA substantially affect the cooperation of proteins with DNA. It is organized by hormones and aging-related alterations, one of the mechanisms controlling sex and cellular differentiation. DNA methylation regulates all genetic functions: repair, recombination, DNA replication, as well as transcription. Distortions in DNA methylation and other epigenetic signals lead to diabetes, premature aging, mental dysfunctions, and cancer.
Collapse
|
11
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
12
|
Chen X, Deng Z, Yu D, Zhang X, An Z, Wu W, Liang Q, Huang X, Huang H, Cheng H. Genome-Wide Identification and Analysis of Small Nucleolar RNAs and Their Roles in Regulating Latex Regeneration in the Rubber Tree ( Hevea brasiliensis). FRONTIERS IN PLANT SCIENCE 2021; 12:731484. [PMID: 34764965 PMCID: PMC8575768 DOI: 10.3389/fpls.2021.731484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are a class of conserved nuclear RNAs that play important roles in the modification of ribosomal RNAs (rRNAs) in plants. In rubber trees, rRNAs are run off with latex flow during tapping and need to be regenerated for maintaining the functions of the laticifer cells. SnoRNAs are expected to play essential roles in the regeneration of rRNAs. However, snoRNAs in the rubber tree have not been sufficiently characterized thus far. In this study, we performed nuclear RNA sequencing (RNA-seq) to identify snoRNAs globally and investigate their roles in latex regeneration. We identified a total of 3,626 snoRNAs by computational prediction with nuclear RNA-seq data. Among these snoRNAs, 50 were highly expressed in latex; furthermore, the results of reverse transcription polymerase chain reaction (RT-PCR) showed the abundant expression of 31 of these snoRNAs in latex. The correlation between snoRNA expression and adjusted total solid content (TSC/C) identified 13 positively yield-correlated snoRNAs. To improve the understanding of latex regeneration in rubber trees, we developed a novel insulated tapping system (ITS), which only measures the latex regenerated in specific laticifers. Using this system, a laticifer-abundant snoRNA, HbsnoR28, was found to be highly correlated with latex regeneration. To the best of our knowledge, this is the first report to globally identify snoRNAs that might be involved in latex regeneration regulation and provide new clues for unraveling the mechanisms underlying the regulation of latex regeneration.
Collapse
|
13
|
Abstract
ABSTRACT Recent research efforts have provided compelling evidence of genome-wide DNA methylation alterations in pediatrics. It is currently well established that epigenetic clocks, composed of DNA methylation sites, can estimate the gestational and chronological age of cells and tissues from different ages. Also, extensive research is aimed at their correlation with early life exposure and pediatric diseases. This review aimed to systematically summarize the epigenetic clocks in the pediatric population. Publications were collected from PubMed and Web of Science databases up to Apr 2021. Epigenetic clocks, DNA methylation clocks, epigenetic age acceleration or deceleration, pediatric and the pediatric population were used as search criteria. Here, we first review the currently applicative pediatric epigenetic clocks. We then highlight the interpretation for epigenetic age deviations in the pediatric population and their association with external factors, developmental trajectories, and pediatric diseases. Considering the remaining unknown of pediatric clocks, research strategies into them are also discussed. In all, pediatric epigenetic clocks may act as potent tools to understand development, growth and diseases in early life.
Collapse
|
14
|
Mulder RH, Neumann A, Cecil CAM, Walton E, Houtepen LC, Simpkin AJ, Rijlaarsdam J, Heijmans BT, Gaunt TR, Felix JF, Jaddoe VWV, Bakermans-Kranenburg MJ, Tiemeier H, Relton CL, van IJzendoorn MH, Suderman M. Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence. Hum Mol Genet 2021; 30:119-134. [PMID: 33450751 PMCID: PMC8033147 DOI: 10.1093/hmg/ddaa280] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
DNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a comprehensive characterization of genome-wide DNAm trajectories across this age period is currently lacking. We have therefore performed a series of epigenome-wide association studies in 5019 blood samples collected at multiple time-points from birth to late adolescence from 2348 participants of two large independent cohorts. DNAm profiles of autosomal CpG sites (CpGs) were generated using the Illumina Infinium HumanMethylation450 BeadChip. Change over time was widespread, observed at over one-half (53%) of CpGs. In most cases, DNAm was decreasing (36% of CpGs). Inter-individual variation in linear trajectories was similarly widespread (27% of CpGs). Evidence for non-linear change and inter-individual variation in non-linear trajectories was somewhat less common (11 and 8% of CpGs, respectively). Very little inter-individual variation in change was explained by sex differences (0.4% of CpGs) even though sex-specific DNAm was observed at 5% of CpGs. DNAm trajectories were distributed non-randomly across the genome. For example, CpGs with decreasing DNAm were enriched in gene bodies and enhancers and were annotated to genes enriched in immune-developmental functions. In contrast, CpGs with increasing DNAm were enriched in promoter regions and annotated to genes enriched in neurodevelopmental functions. These findings depict a methylome undergoing widespread and often non-linear change throughout childhood. They support a developmental role for DNA methylation that extends beyond birth into late adolescence and has implications for understanding life-long health and disease. DNAm trajectories can be visualized at http://epidelta.mrcieu.ac.uk.
Collapse
Affiliation(s)
- Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Psychology, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Esther Walton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Department of Psychology, University of Bath, Bath, UK
| | - Lotte C Houtepen
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew J Simpkin
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Jolien Rijlaarsdam
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.,School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Zehendner CM, Valasarajan C, Werner A, Boeckel JN, Bischoff FC, John D, Weirick T, Glaser SF, Rossbach O, Jaé N, Demolli S, Khassafi F, Yuan K, de Jesus Perez VA, Michalik KM, Chen W, Seeger W, Guenther A, Wasnick RM, Uchida S, Zeiher AM, Dimmeler S, Pullamsetti SS. Long Noncoding RNA TYKRIL Plays a Role in Pulmonary Hypertension via the p53-mediated Regulation of PDGFRβ. Am J Respir Crit Care Med 2020; 202:1445-1457. [PMID: 32634060 PMCID: PMC7786813 DOI: 10.1164/rccm.201910-2041oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
Rationale: Long noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological functions. Their role in pulmonary arterial hypertension (PAH) remains to be explored.Objectives: To elucidate the role of TYKRIL (tyrosine kinase receptor-inducing lncRNA) as a regulator of p53/ PDGFRβ (platelet-derived growth factor receptor β) signaling pathway and to investigate its role in PAH.Methods: Pericytes and pulmonary arterial smooth muscle cells exposed to hypoxia and derived from patients with idiopathic PAH were analyzed with RNA sequencing. TYKRIL knockdown was performed in above-mentioned human primary cells and in precision-cut lung slices derived from patients with PAH.Measurements and Main Results: Using RNA sequencing data, TYKRIL was identified to be consistently upregulated in pericytes and pulmonary arterial smooth muscles cells exposed to hypoxia and derived from patients with idiopathic PAH. TYKRIL knockdown reversed the proproliferative (n = 3) and antiapoptotic (n = 3) phenotype induced under hypoxic and idiopathic PAH conditions. Owing to the poor species conservation of TYKRIL, ex vivo studies were performed in precision-cut lung slices from patients with PAH. Knockdown of TYKRIL in precision-cut lung slices decreased the vascular remodeling (n = 5). The number of proliferating cell nuclear antigen-positive cells in the vessels was decreased and the number of terminal deoxynucleotide transferase-mediated dUTP nick end label-positive cells in the vessels was increased in the LNA (locked nucleic acid)-treated group compared with control. Expression of PDGFRβ, a key player in PAH, was found to strongly correlate with TYKRIL expression in the patient samples (n = 12), and TYKRIL knockdown decreased PDGFRβ expression (n = 3). From the transcription factor-screening array, it was observed that TYKRIL knockdown increased the p53 activity, a known repressor of PDGFRβ. RNA immunoprecipitation using various p53 mutants demonstrated that TYKRIL binds to the N-terminal of p53 (an important region for p300 interaction with p53). The proximity ligation assay revealed that TYKRIL interferes with the p53-p300 interaction (n = 3) and regulates p53 nuclear translocation.Conclusions: TYKRIL plays an important role in PAH by regulating the p53/PDGFRβ axis.
Collapse
Affiliation(s)
- Christoph M Zehendner
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- ZIM III, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Chanil Valasarajan
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Astrid Werner
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- ZIM III, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Jes-Niels Boeckel
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Florian C Bischoff
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- ZIM III, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Tyler Weirick
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Simone F Glaser
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Oliver Rossbach
- Department of Biology and Chemistry, Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Nicolas Jaé
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
| | - Shemsi Demolli
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
| | - Fatemeh Khassafi
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California
| | | | | | - Wei Chen
- Laboratory for Novel Sequencing Technology, Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Max-Delbruck-Centre for Molecular Medicine, Berlin, Germany
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China; and
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen, Germany
| | - Roxana M Wasnick
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen, Germany
| | - Shizuka Uchida
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Andreas M Zeiher
- ZIM III, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen, Germany
| |
Collapse
|
16
|
Identification of Key Genes Involved in Acute Myocardial Infarction by Comparative Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1470867. [PMID: 33083450 PMCID: PMC7559508 DOI: 10.1155/2020/1470867] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
Background Acute myocardial infarction (AMI) is regarded as an urgent clinical entity, and identification of differentially expressed genes, lncRNAs, and altered pathways shall provide new insight into the molecular mechanisms behind AMI. Materials and Methods Microarray data was collected to identify key genes and lncRNAs involved in AMI pathogenesis. The differential expression analysis and gene set enrichment analysis (GSEA) were employed to identify the upregulated and downregulated genes and pathways in AMI. The protein-protein interaction network and protein-RNA interaction analysis were utilized to reveal key long noncoding RNAs. Results In the present study, we utilized gene expression profiles of circulating endothelial cells (CEC) from 49 patients of AMI and 50 controls and identified a total of 552 differentially expressed genes (DEGs). Based on these DEGs, we also observed that inflammatory response-related genes and pathways were highly upregulated in AMI. Mapping the DEGs to the protein-protein interaction (PPI) network and identifying the subnetworks, we found that OMD and WDFY3 were the hub nodes of two subnetworks with the highest connectivity, which were found to be involved in circadian rhythm and organ- or tissue-specific immune response. Furthermore, 23 lncRNAs were differentially expressed between AMI and control groups. Specifically, we identified some functional lncRNAs, including XIST and its antisense RNA, TSIX, and three lncRNAs (LINC00528, LINC00936, and LINC01001), which were predicted to be interacting with TLR2 and participate in Toll-like receptor signaling pathway. In addition, we also employed the MMPC algorithm to identify six gene signatures for AMI diagnosis. Particularly, the multivariable SVM model based on the six genes has achieved a satisfying performance (AUC = 0.97). Conclusion In conclusion, we have identified key regulatory lncRNAs implicated in AMI, which not only deepens our understanding of the lncRNA-related molecular mechanism of AMI but also provides computationally predicted regulatory lncRNAs for AMI researchers.
Collapse
|
17
|
Shah SG, Mandloi T, Kunte P, Natu A, Rashid M, Reddy D, Gadewal N, Gupta S. HISTome2: a database of histone proteins, modifiers for multiple organisms and epidrugs. Epigenetics Chromatin 2020; 13:31. [PMID: 32746900 PMCID: PMC7398201 DOI: 10.1186/s13072-020-00354-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Epigenetics research is progressing in basic, pre-clinical and clinical studies using various model systems. Hence, updating the knowledge and integration of biological data emerging from in silico, in vitro and in vivo studies for different epigenetic factors is essential. Moreover, new drugs are being discovered which target various epigenetic proteins, tested in pre-clinical studies, clinical trials and approved by the FDA. It brings distinct challenges as well as opportunities to update the existing HIstome database for implementing and applying enormous data for biomedical research. RESULTS HISTome2 focuses on the sub-classification of histone proteins as variants and isoforms, post-translational modifications (PTMs) and modifying enzymes for humans (Homo sapiens), rat (Rattus norvegicus) and mouse (Mus musculus) on one interface for integrative analysis. It contains 232, 267 and 350 entries for histone proteins (non-canonical/variants and canonical/isoforms), PTMs and modifying enzymes respectively for human, rat, and mouse. Around 200 EpiDrugs for various classes of epigenetic modifiers, their clinical trial status, and pharmacological relevance have been provided in HISTome2. The additional features like 'Clustal omega' for multiple sequence alignment, link to 'FireBrowse' to visualize TCGA expression data and 'TargetScanHuman' for miRNA targets have been included in the database. CONCLUSION The information for multiple organisms and EpiDrugs on a common platform will accelerate the understanding and future development of drugs. Overall, HISTome2 has significantly increased the extent and diversity of its content which will serve as a 'knowledge Infobase' for biologists, pharmacologists, and clinicians. HISTome2: The HISTone Infobase is freely available on http://www.actrec.gov.in/histome2/ .
Collapse
Affiliation(s)
- Sanket G. Shah
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH 400085 India
| | - Tushar Mandloi
- Bioinformatics Centre, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH 410210 India
| | - Pooja Kunte
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH 410210 India
- Present Address: Diabetes Unit, King Edward Memorial Hospital Research Centre, Rasta Peth, Pune, Maharashtra 411 011 India
| | - Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH 400085 India
| | - Mudasir Rashid
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH 400085 India
| | - Divya Reddy
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH 400085 India
- Present Address: Stowers Institute for Medical Research, Kansas City, MO 64110 USA
| | - Nikhil Gadewal
- Bioinformatics Centre, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH 410210 India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH 400085 India
| |
Collapse
|
18
|
Sampathkumar NK, Bravo JI, Chen Y, Danthi PS, Donahue EK, Lai RW, Lu R, Randall LT, Vinson N, Benayoun BA. Widespread sex dimorphism in aging and age-related diseases. Hum Genet 2020; 139:333-356. [PMID: 31677133 PMCID: PMC7031050 DOI: 10.1007/s00439-019-02082-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Although aging is a conserved phenomenon across evolutionary distant species, aspects of the aging process have been found to differ between males and females of the same species. Indeed, observations across mammalian studies have revealed the existence of longevity and health disparities between sexes, including in humans (i.e. with a female or male advantage). However, the underlying mechanisms for these sex differences in health and lifespan remain poorly understood, and it is unclear which aspects of this dimorphism stem from hormonal differences (i.e. predominance of estrogens vs. androgens) or from karyotypic differences (i.e. XX vs. XY sex chromosome complement). In this review, we discuss the state of the knowledge in terms of sex dimorphism in various aspects of aging and in human age-related diseases. Where the interplay between sex differences and age-related differences has not been explored fully, we present the state of the field to highlight important future research directions. We also discuss various dietary, drug or genetic interventions that were shown to improve longevity in a sex-dimorphic fashion. Finally, emerging tools and models that can be leveraged to decipher the mechanisms underlying sex differences in aging are also briefly discussed.
Collapse
Affiliation(s)
- Nirmal K Sampathkumar
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yilin Chen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Masters Program in Nutrition, Healthspan, and Longevity, University of Southern California, Los Angeles, CA, 90089, USA
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Erin K Donahue
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rochelle W Lai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lewis T Randall
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nika Vinson
- Department of Urology, Pelvic Medicine and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90024, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA, 90089, USA.
- USC Stem Cell Initiative, Los Angeles, CA, 90089, USA.
| |
Collapse
|
19
|
Dechaud C, Volff JN, Schartl M, Naville M. Sex and the TEs: transposable elements in sexual development and function in animals. Mob DNA 2019; 10:42. [PMID: 31700550 PMCID: PMC6825717 DOI: 10.1186/s13100-019-0185-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX USA
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| |
Collapse
|
20
|
Nesterova TB, Wei G, Coker H, Pintacuda G, Bowness JS, Zhang T, Almeida M, Bloechl B, Moindrot B, Carter EJ, Alvarez Rodrigo I, Pan Q, Bi Y, Song CX, Brockdorff N. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat Commun 2019; 10:3129. [PMID: 31311937 PMCID: PMC6635394 DOI: 10.1038/s41467-019-11171-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Xist RNA, the master regulator of X chromosome inactivation, acts in cis to induce chromosome-wide silencing. Whilst recent studies have defined candidate silencing factors, their relative contribution to repressing different genes, and their relationship with one another is poorly understood. Here we describe a systematic analysis of Xist-mediated allelic silencing in mouse embryonic stem cell-based models. Using a machine learning approach we identify distance to the Xist locus and prior gene expression levels as key determinants of silencing efficiency. We go on to show that Spen, recruited through the Xist A-repeat, plays a central role, being critical for silencing of all except a subset of weakly expressed genes. Polycomb, recruited through the Xist B/C-repeat, also plays a key role, favouring silencing of genes with pre-existing H3K27me3 chromatin. LBR and the Rbm15/m6A-methyltransferase complex make only minor contributions to gene silencing. Together our results provide a comprehensive model for Xist-mediated chromosome silencing.
Collapse
Affiliation(s)
- Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Heather Coker
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Greta Pintacuda
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Joseph S Bowness
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mafalda Almeida
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Bianca Bloechl
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Benoit Moindrot
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- I2BC Paris-Sud University, Gif-Sur-Yvette, France
| | - Emma J Carter
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ines Alvarez Rodrigo
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Qi Pan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ying Bi
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
21
|
Gegenhuber B, Tollkuhn J. Sex Differences in the Epigenome: A Cause or Consequence of Sexual Differentiation of the Brain? Genes (Basel) 2019; 10:genes10060432. [PMID: 31181654 PMCID: PMC6627918 DOI: 10.3390/genes10060432] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Females and males display differences in neural activity patterns, behavioral responses, and incidence of psychiatric and neurological diseases. Sex differences in the brain appear throughout the animal kingdom and are largely a consequence of the physiological requirements necessary for the distinct roles of the two sexes in reproduction. As with the rest of the body, gonadal steroid hormones act to specify and regulate many of these differences. It is thought that transient hormonal signaling during brain development gives rise to persistent sex differences in gene expression via an epigenetic mechanism, leading to divergent neurodevelopmental trajectories that may underlie sex differences in disease susceptibility. However, few genes with a persistent sex difference in expression have been identified, and only a handful of studies have employed genome-wide approaches to assess sex differences in epigenomic modifications. To date, there are no confirmed examples of gene regulatory elements that direct sex differences in gene expression in the brain. Here, we review foundational studies in this field, describe transcriptional mechanisms that could act downstream of hormone receptors in the brain, and suggest future approaches for identification and validation of sex-typical gene programs. We propose that sexual differentiation of the brain involves self-perpetuating transcriptional states that canalize sex-specific development.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
22
|
Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts. Proc Natl Acad Sci U S A 2018; 115:13015-13020. [PMID: 30510006 DOI: 10.1073/pnas.1806811115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-chromosome inactivation (XCI) provides a dosage compensation mechanism where, in each female cell, one of the two X chromosomes is randomly silenced. However, some genes on the inactive X chromosome and outside the pseudoautosomal regions escape from XCI and are expressed from both alleles (escapees). We investigated XCI at single-cell resolution combining deep single-cell RNA sequencing with whole-genome sequencing to examine allelic-specific expression in 935 primary fibroblast and 48 lymphoblastoid single cells from five female individuals. In this framework we integrated an original method to identify and exclude doublets of cells. In fibroblast cells, we have identified 55 genes as escapees including five undescribed escapee genes. Moreover, we observed that all genes exhibit a variable propensity to escape XCI in each cell and cell type and that each cell displays a distinct expression profile of the escapee genes. A metric, the Inactivation Score-defined as the mean of the allelic expression profiles of the escapees per cell-enables us to discover a heterogeneous and continuous degree of cellular XCI with extremes represented by "inactive" cells, i.e., cells exclusively expressing the escaping genes from the active X chromosome and "escaping" cells expressing the escapees from both alleles. We found that this effect is associated with cell-cycle phases and, independently, with the XIST expression level, which is higher in the quiescent phase (G0). Single-cell allele-specific expression is a powerful tool to identify novel escapees in different tissues and provide evidence of an unexpected cellular heterogeneity of XCI.
Collapse
|
23
|
Ernst EH, Nielsen J, Ipsen MB, Villesen P, Lykke-Hartmann K. Transcriptome Analysis of Long Non-coding RNAs and Genes Encoding Paraspeckle Proteins During Human Ovarian Follicle Development. Front Cell Dev Biol 2018; 6:78. [PMID: 30087896 PMCID: PMC6066568 DOI: 10.3389/fcell.2018.00078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicated that many long non-coding (lnc)RNAs function in multiple biological processes and dysregulation of their expression can cause diseases. Most regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression through epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. Interestingly, differential lncRNA expression profiles in human oocytes and cumulus cells was recently assessed, however, lncRNAs in human follicle development has not previously been described. In this study, transcriptome dynamics in human primordial, primary and small antral follicles were interrogated and revealed information of lncRNA genes. It is known that some lncRNAs form a complex with paraspeckle proteins and therefore, we extended our transcriptional analysis to include genes encoding paraspeckle proteins. Primordial, primary follicles and small antral follicles was isolated using laser capture micro-dissection from ovarian tissue donated by three women having ovarian tissue cryopreserved before chemotherapy. After RN sequencing, a bioinformatic class comparison was performed and primordial, primary and small antral follicles were found to express several lncRNA and genes encoding paraspeckle proteins. Of particular interest, we detected the lncRNAs XIST, NEAT1, NEAT2 (MALAT1), and GAS5. Moreover, we noted a high expression of FUS, TAF15, and EWS components of the paraspeckles, proteins that belong to the FET (previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity, and mRNA/microRNA processing. We also interrogated the intra-ovarian localization of the FUS, TAF15, and EWS proteins using immunofluorescence. The presence and the dynamics of genes that encode lncRNA and paraspeckle proteins may suggest that these may mediate functions in the cyclic recruitment and differentiation of human follicles and could participate in biological processes known to be associated with lncRNAs and paraspeckle proteins, such as gene expression control, scaffold formation and epigenetic control through human follicle development. This comprehensive transcriptome analysis of lncRNAs and genes encoding paraspeckle proteins expressed in human follicles could potentially provide biomarkers of oocyte quality for the development of non-invasive tests to identify embryos with high developmental potential.
Collapse
Affiliation(s)
- Emil H. Ernst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Julie Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Malene B. Ipsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Palle Villesen
- Bioinformatic Research Centre, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun 2018; 9:2555. [PMID: 29967448 PMCID: PMC6028627 DOI: 10.1038/s41467-018-04992-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Although sex biases in disease presentation are well documented, the mechanisms mediating vulnerability or resilience to diseases are unknown. In utero insults are more likely to produce detrimental health outcomes for males versus females. In our mouse model of prenatal stress, male offspring experience long-term dysregulation of body weight and hypothalamic pituitary adrenal stress axis dysfunction, endophenotypes of male-biased neurodevelopmental disorders. Placental function is critical for healthy fetal development, and we previously showed that sex differences in placental O-linked N-acetylglucosamine transferase (OGT) mediate the effects of prenatal stress on neurodevelopmental programming. Here we show that one mechanism whereby sex differences in OGT confer variation in vulnerability to prenatal insults is by establishing sex-specific trophoblast gene expression patterns and via regulation of the canonically repressive epigenetic modification, H3K27me3. We demonstrate that high levels of H3K27me3 in the female placenta create resilience to the altered hypothalamic programming associated with prenatal stress exposure. Sex differences in placental O-linked N-acetylglucosamine transferase (OGT) activity mediate the effects of prenatal stress on neurodevelopmental programming. Here authors provide evidence that OGT confers variation in vulnerability to prenatal insults by establishing sex-specific trophoblast gene expression via regulation of H3K27me3.
Collapse
|
25
|
Repression of Cell Differentiation by a cis-Acting lincRNA in Fission Yeast. Curr Biol 2018; 28:383-391.e3. [PMID: 29395921 DOI: 10.1016/j.cub.2017.12.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022]
Abstract
The cell fate decision leading to gametogenesis requires the convergence of multiple signals on the promoter of a master regulator. In fission yeast, starvation-induced signaling leads to the transcriptional induction of the ste11 gene, which encodes the central inducer of mating and gametogenesis, known as sporulation. We find that the long intergenic non-coding (linc) RNA rse1 is transcribed divergently upstream of the ste11 gene. During vegetative growth, rse1 directly recruits a Mug187-Lid2-Set1 complex that mediates cis repression at the ste11 promoter through SET3C-dependent histone deacetylation. The absence of rse1 bypasses the starvation-induced signaling and induces gametogenesis in the presence of nutrients. Our data reveal that the remodeling of chromatin through ncRNA scaffolding of repressive complexes that is observed in higher eukaryotes is a conserved, likely very ancient mechanism for tight control of cell differentiation.
Collapse
|
26
|
Ratnu VS, Emami MR, Bredy TW. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J Neurosci Res 2017; 95:301-310. [PMID: 27870402 DOI: 10.1002/jnr.23886] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
There are inherent biological differences between males and females that contribute to sex differences in brain function and to many sex-specific illnesses and disorders. Traditionally, it has been thought that such differences are due largely to hormonal regulation; however, there are also genetic and epigenetic effects caused by the inheritance and unequal dosage of genes located on the X and Y chromosomes. Here we discuss the evidence in favor of a genetic and epigenetic basis for sexually dimorphic behavior, as a consequence of underlying differences in the regulation of genes that drive brain function. A better understanding of sex-specific molecular processes in the brain will provide further insight for the development of novel therapeutic approaches for the treatment of neuropsychiatric disorders characterized by sex differences. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vikram S Ratnu
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael R Emami
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Timothy W Bredy
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Department of Neurobiology and Behavior, University of California, Irvine, California
| |
Collapse
|
27
|
Lyu C, Shen J, Zhang J, Xue F, Liu X, Liu W, Fu R, Zhang L, Li H, Zhang D, Zhang X, Cheng T, Yang R, Zhang L. The State of Skewed X Chromosome Inactivation is Retained in the Induced Pluripotent Stem Cells from a Female with Hemophilia B. Stem Cells Dev 2017; 26:1003-1011. [PMID: 28401797 DOI: 10.1089/scd.2016.0323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Skewed X chromosome inactivation (XCI) is a rare reason for hemophilia B in females. It is indefinite whether X chromosome reactivation (XCR) would occur when cells of hemophilia B patients with skewed XCI were reprogrammed into induced pluripotent stem cells (iPSCs). In this study, we investigated a female hemophilia B patient with a known F9 gene mutation: c.676C>T, p.Arg226Trp. We demonstrated that skewed XCI was the pathogenesis of the patient, and we successfully generated numerous iPSC colonies of the patient from peripheral blood mononuclear cells (PBMNCs), which was the first time for generating hemophilia-specific iPSCs from PBMNCs. Then we detected the XCI state of these iPSCs. Ninety-two iPSC lines were picked for XCI analysis. All of them retained an inactive X chromosome, which could be proved by amplification of the androgen receptor gene and XIST (X inactivation-specific transcript), expression of H3K27me3, and existence of XIST clouds in XIST RNA fluorescence in situ hybridization (FISH) analysis. We attempted to obtain iPSC lines with the wild-type F9 gene on the active X chromosome for further disease treatment. But it turned out that the patient's iPSCs were still skewed such as the somatic cells with 92 iPSC lines having mutant F9 on the active X chromosome. In conclusion, skewed XCI is one reason for hemophilia in females. PBMNCs are excellent somatic cell resources for hemophilia patients to do reprogramming. More attentions should be paid to generate naive iPSCs with two active X chromosomes for further clinical disease treatment. The state of skewed XCI is retained in the iPSCs from a female with hemophilia B.
Collapse
Affiliation(s)
- Cuicui Lyu
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China .,2 Department of Hematology, The First Central Hospital of Tianjin , Tianjin, China
| | - Jun Shen
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianping Zhang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feng Xue
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaofan Liu
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wei Liu
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rongfeng Fu
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liyan Zhang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiyuan Li
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Donglei Zhang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaobing Zhang
- 3 Division of Regenerative Medicine MC1528B, Department of Medicine, Loma Linda University , Loma Linda, California
| | - Tao Cheng
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
28
|
Liu B, Cui X, Zheng S, Dong K, Dong R. Aberrant KLK4 gene promoter hypomethylation in pediatric hepatoblastomas. Oncol Lett 2017; 13:1360-1364. [PMID: 28454262 DOI: 10.3892/ol.2017.5558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/24/2016] [Indexed: 12/20/2022] Open
Abstract
DNA methylation has a crucial role in cancer biology and has been recognized as an activator of oncogenes and inactivator of tumor suppressor genes, both of which are mechanisms for tumorigenesis. Kallikrein-related peptidase 4 (KLK4), has been suggested to be an oncogene in various types of cancer. The aim of the present study was to assess the DNA methylation patterns of the KLK4 gene in cancerous samples harvested from patients with hepatoblastoma (HB). KLK4 mRNA expression levels were detected using reverse transcription-quantitative polymerase chain reaction and assessed its DNA methylation patterns using high-throughput mass spectrometry on a matrix-assisted laser desorption/ionization time-of-flight mass array. A total of 10 HB and 10 normal liver tissue samples were obtained from patients with HB. The results of the present study showed that a significantly higher level of KLK4 mRNA expression levels were detected in HB tissues, as compared with the matched controls. Furthermore, the KLK4 gene promoter region was distinctively less methylated in the HB samples compared with the controls and negatively correlated with KLK4 mRNA expression levels. These findings indicate that aberrant methylation of KLK4 may contribute to its upregulated mRNA expression in HB.
Collapse
Affiliation(s)
- Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Ximao Cui
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| |
Collapse
|
29
|
Wei T, Jia W, Qian Z, Zhao L, Yu Y, Li L, Wang C, Zhang W, Liu Q, Yang D, Wang G, Wang Z, Wang K, Duan T, Kang J. Folic Acid Supports Pluripotency and Reprogramming by Regulating LIF/STAT3 and MAPK/ERK Signaling. Stem Cells Dev 2016; 26:49-59. [PMID: 27676194 DOI: 10.1089/scd.2016.0091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells act as an excellent cell source for disease therapy because of its specific characteristics of self-renewal and differentiation. Pluripotent stem cells are heterogeneous, consisting of naive stem cells as well as primed epiblast stem cells. However, the strategies and mechanisms of maintaining naive pluripotent stem cells remain unclear. In this study, we found that folic acid (FA) sustained mouse embryonic stem cell (ESC) pluripotency and enabled long-term maintenance of the naive state of ESCs under CHIR99021 conditions. Mechanistic experiments showed that STAT3 pathway partially mediated the effect of FA after which the interaction between STAT3 and importin α5 was enhanced. Meanwhile, MEK/ERK signaling also acted downstream of FA in maintaining ESC pluripotency. Furthermore, FA significantly promoted mouse somatic cell reprogramming. Overall, our study identified an effective chemical condition for maintaining homogeneous ESCs and highlighted the important roles of LIF/STAT3 and MEK/ERK signaling in naive ESC pluripotency.
Collapse
Affiliation(s)
- Tingyi Wei
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenwen Jia
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhen Qian
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Liangyuan Zhao
- 2 School of Pharmaceutical Science, Shanxi Medical University , Taiyuan, China
| | - Yangyang Yu
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lian Li
- 2 School of Pharmaceutical Science, Shanxi Medical University , Taiyuan, China
| | - Chenxin Wang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wei Zhang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Qi Liu
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Dandan Yang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Guiying Wang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zikang Wang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Kai Wang
- 3 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai, China
| | - Tao Duan
- 3 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai, China
| | - Jiuhong Kang
- 1 Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Sudden infant death syndrome: exposure to cigarette smoke leads to hypomethylation upstream of the growth factor independent 1 (GFI1) gene promoter. Forensic Sci Med Pathol 2016; 12:399-406. [PMID: 27677632 DOI: 10.1007/s12024-016-9812-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE Smoking during pregnancy has long been known as an important risk factor for sudden infant death syndrome (SIDS). However, the precise relationship between the smoking behavior of the mother and SIDS still remains unclear. In this study, the influence of prenatal smoking exposure on the childrens' DNA methylation state of a CpG island located upstream of the promoter of the growth factor independent 1 (GFI1) gene was analyzed. METHODS Blood samples of well-defined SIDS cases with non-smoking mothers (n = 11), SIDS cases with smoking mothers during pregnancy (n = 11), and non-SIDS cases (n = 6) were obtained from a previous study and methylation states were determined by bisulfite sequencing. RESULTS Significant hypomethylation was observed in this CpG island in SIDS cases with cigarette smoke exposure compared to non-exposed cases. The strongest effect in this CpG island was observed for 49 CpG sites located within a transcription factor binding site. Coding for a transcriptional repressor, GFI1 plays an important role in various developmental processes. Alterations in the GFI1 expression might be linked to various conditions that are known to be associated with SIDS, such as dysregulated hematopoiesis and excessive inflammatory response. CONCLUSION Data obtained in this study show that analysis of methylation states in cases of sudden infant death syndrome might provide a further important piece of knowledge toward understanding SIDS, and should be investigated in further studies.
Collapse
|
31
|
Corbel C, Heard E. Transcriptional Analysis by Nascent RNA FISH of In Vivo Trophoblast Giant Cells or In Vitro Short-term Cultures of Ectoplacental Cone Explants. J Vis Exp 2016:54386. [PMID: 27685354 PMCID: PMC5091979 DOI: 10.3791/54386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The placenta derives from one extra-embryonic lineage, the trophectoderm. In the peri-implantation murine blastocyst, mural trophectoderm cells differentiate into primary trophoblast giant cells (TGCs) while the polar trophectoderm overlying the inner cell mass continues to proliferate later differentiating into secondary TGCs. TGCs play a key role in developing placenta and are essential for a successful pregnancy. Investigation of transcriptional regulation of specific genes during post-implantation development can give insights into TGCs development. Cells of the ectoplacental cone (EPC) from embryos at 7-7.5 days of gestation (E7-7.5), derived from the polar trophectoderm, differentiate into secondary TGCs1. TGCs can be studied in situ, on cryostat sections of embryos at E7 although the number of TGCs is very low at this stage. An alternative means of analyzing secondary TGCs is to use short-term cultures of individual EPCs from E7 embryos. We propose a technique to investigate the transcriptional status of genes of interest both in vivo and in vitro at the single-cell level using fluorescent in situ hybridization (RNA FISH) to visualize nascent transcripts. This technique provides a direct readout of gene expression and enables assessment of the chromosomal status of TGCs, which are large endoreplicating cells. Indeed, a key feature of terminal differentiation of TGCs is that they exit the cell cycle and undergo multiple rounds of endoreplication.This approach can be applied to detect expression of any gene expressed from autosomes and/or sex chromosomes and can provide important information into developmental mechanisms as well as placental diseases.
Collapse
Affiliation(s)
- Catherine Corbel
- Unité de Génétique et Biologie du Développement, Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934;
| | - Edith Heard
- Unité de Génétique et Biologie du Développement, Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934
| |
Collapse
|
32
|
The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun Rev 2016; 15:684-9. [DOI: 10.1016/j.autrev.2016.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 01/21/2023]
|
33
|
Cui X, Liu B, Zheng S, Dong K, Dong R. Genome-wide analysis of DNA methylation in hepatoblastoma tissues. Oncol Lett 2016; 12:1529-1534. [PMID: 27446465 DOI: 10.3892/ol.2016.4789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
DNA methylation has a crucial role in cancer biology. In the present study, a genome-wide analysis of DNA methylation in hepatoblastoma (HB) tissues was performed to verify differential methylation levels between HB and normal tissues. As alpha-fetoprotein (AFP) has a critical role in HB, AFP methylation levels were also detected using pyrosequencing. Normal and HB liver tissue samples (frozen tissue) were obtained from patients with HB. Genome-wide analysis of DNA methylation in these tissues was performed using an Infinium HumanMethylation450 BeadChip, and the results were confirmed with reverse transcription-quantitative polymerase chain reaction. The Infinium HumanMethylation450 BeadChip demonstrated distinctively less methylation in HB tissues than in non-tumor tissues. In addition, methylation enrichment was observed in positions near the transcription start site of AFP, which exhibited lower methylation levels in HB tissues than in non-tumor liver tissues. Lastly, a significant negative correlation was observed between AFP messenger RNA expression and DNA methylation percentage, using linear Pearson's R correlation coefficients. The present results demonstrate differential methylation levels between HB and normal tissues, and imply that aberrant methylation of AFP in HB could reflect HB development. Expansion of these findings could provide useful insight into HB biology.
Collapse
Affiliation(s)
- Ximao Cui
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai 201102, P.R. China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai 201102, P.R. China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai 201102, P.R. China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai 201102, P.R. China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects and Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai 201102, P.R. China
| |
Collapse
|
34
|
Lowdon RF, Jang HS, Wang T. Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends Genet 2016; 32:269-283. [PMID: 27080453 PMCID: PMC4842087 DOI: 10.1016/j.tig.2016.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022]
Abstract
Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single-cell eukaryotes to human, comparative analyses are still relatively few and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. We review here the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site (TFBS) turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution.
Collapse
Affiliation(s)
- Rebecca F Lowdon
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Hyo Sik Jang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proc Natl Acad Sci U S A 2016; 113:3197-202. [PMID: 26951653 DOI: 10.1073/pnas.1523538113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications.
Collapse
|
36
|
Abstract
X-inactive specific transcript (Xist) long noncoding RNA (lncRNA) is thought to catalyze silencing of X-linked genes in cis during X-chromosome inactivation, which equalizes X-linked gene dosage between male and female mammals. To test the impact of Xist RNA on X-linked gene silencing, we ectopically induced endogenous Xist by ablating the antisense repressor Tsix in mice. We find that ectopic Xist RNA induction and subsequent X-linked gene silencing is sex specific in embryos and in differentiating embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). A higher frequency of X(ΔTsix)Y male cells displayed ectopic Xist RNA coating compared with X(ΔTsix)X female cells. This increase reflected the inability of X(ΔTsix)Y cells to efficiently silence X-linked genes compared with X(ΔTsix)X cells, despite equivalent Xist RNA induction and coating. Silencing of genes on both Xs resulted in significantly reduced proliferation and increased cell death in X(ΔTsix)X female cells relative to X(ΔTsix)Y male cells. Thus, whereas Xist RNA can inactivate the X chromosome in females it may not do so in males. We further found comparable silencing in differentiating X(ΔTsix)Y and 39,X(ΔTsix) (X(ΔTsix)O) ESCs, excluding the Y chromosome and instead implicating the X-chromosome dose as the source of the sex-specific differences. Because X(ΔTsix)X female embryonic epiblast cells and EpiSCs harbor an inactivated X chromosome prior to ectopic inactivation of the active X(ΔTsix) X chromosome, we propose that the increased expression of one or more X-inactivation escapees activates Xist and, separately, helps trigger X-linked gene silencing.
Collapse
|
37
|
Pasque V, Plath K. X chromosome reactivation in reprogramming and in development. Curr Opin Cell Biol 2015; 37:75-83. [PMID: 26540406 DOI: 10.1016/j.ceb.2015.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022]
Abstract
Dramatic epigenetic changes take place during mammalian differentiation from the naïve pluripotent state including the silencing of one of the two X chromosomes in female cells through X chromosome inactivation. Conversely, reprogramming of somatic cells to naive pluripotency is coupled to X chromosome reactivation (XCR). Recent studies in the mouse system have shed light on the mechanisms of XCR by uncovering the timing and steps of XCR during reprogramming to induced pluripotent stem cells (iPSCs), allowing the generation of testable hypotheses during embryogenesis. In contrast, analyses of the X chromosome in human iPSCs have revealed important differences between mouse and human reprogramming processes that can partially be explained by the establishment of distinct pluripotent states and impact disease modeling and the application of human pluripotent stem cells. Here, we review recent literature on XCR as a readout and determinant of reprogramming to pluripotency.
Collapse
Affiliation(s)
- Vincent Pasque
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Kelsey AD, Yang C, Leung D, Minks J, Dixon-McDougall T, Baldry SEL, Bogutz AB, Lefebvre L, Brown CJ. Impact of flanking chromosomal sequences on localization and silencing by the human non-coding RNA XIST. Genome Biol 2015; 16:208. [PMID: 26429547 PMCID: PMC4591629 DOI: 10.1186/s13059-015-0774-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/10/2015] [Indexed: 01/07/2023] Open
Abstract
Background X-chromosome inactivation is a striking example of epigenetic silencing in which expression of the long non-coding RNA XIST initiates the heterochromatinization and silencing of one of the pair of X chromosomes in mammalian females. To understand how the RNA can establish silencing across millions of basepairs of DNA we have modelled the process by inducing expression of XIST from nine different locations in human HT1080 cells. Results Localization of XIST, depletion of Cot-1 RNA, perinuclear localization, and ubiquitination of H2A occurs at all sites examined, while recruitment of H3K9me3 was not observed. Recruitment of the heterochromatic features SMCHD1, macroH2A, H3K27me3, and H4K20me1 occurs independently of each other in an integration site-dependent manner. Silencing of flanking reporter genes occurs at all sites, but the spread of silencing to flanking endogenous human genes is variable in extent of silencing as well as extent of spread, with silencing able to skip regions. The spread of H3K27me3 and loss of H3K27ac correlates with the pre-existing levels of the modifications, and overall the extent of silencing correlates with the ability to recruit additional heterochromatic features. Conclusions The non-coding RNA XIST functions as a cis-acting silencer when expressed from nine different locations throughout the genome. A hierarchy among the features of heterochromatin reveals the importance of interaction with the local chromatin neighborhood for optimal spread of silencing, as well as the independent yet cooperative nature of the establishment of heterochromatin by the non-coding XIST RNA. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0774-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela D Kelsey
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Christine Yang
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Danny Leung
- Ludwig Institute for Cancer Research, University of California at San Diego School of Medicine, La Jolla, CA, USA. .,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Jakub Minks
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Thomas Dixon-McDougall
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Sarah E L Baldry
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Aaron B Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
39
|
Mattout A, Cabianca DS, Gasser SM. Chromatin states and nuclear organization in development--a view from the nuclear lamina. Genome Biol 2015; 16:174. [PMID: 26303512 PMCID: PMC4549078 DOI: 10.1186/s13059-015-0747-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The spatial distribution of chromatin domains in interphase nuclei changes dramatically during development in multicellular organisms. A crucial question is whether nuclear organization is a cause or a result of differentiation. Genetic perturbation of lamina–heterochromatin interactions is helping to reveal the cross-talk between chromatin states and nuclear organization.
Collapse
Affiliation(s)
- Anna Mattout
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | - Daphne S Cabianca
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland. .,University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
40
|
Yue M, Charles Richard JL, Ogawa Y. Dynamic interplay and function of multiple noncoding genes governing X chromosome inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:112-20. [PMID: 26260844 DOI: 10.1016/j.bbagrm.2015.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/07/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
Abstract
There is increasing evidence for the emergence of long noncoding RNAs (lncRNAs) as important components, especially in the regulation of gene expression. In the event of X chromosome inactivation, robust epigenetic marks are established in a long noncoding Xist RNA-dependent manner, giving rise to a distinct epigenetic landscape on the inactive X chromosome (Xi). The X inactivation center (Xic) is essential for induction of X chromosome inactivation and harbors two topologically associated domains (TADs) to regulate monoallelic Xist expression: one at the noncoding Xist gene and its upstream region, and the other at the antisense Tsix and its upstream region. The monoallelic expression of Xist is tightly regulated by these two functionally distinct TADs as well as their constituting lncRNAs and proteins. In this review, we summarize recent updates in our knowledge of lncRNAs found at the Xic and discuss their overall mechanisms of action. We also discuss our current understanding of the molecular mechanism behind Xist RNA-mediated induction of the repressive epigenetic landscape at the Xi. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Minghui Yue
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - John Lalith Charles Richard
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yuya Ogawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
41
|
Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P, Khimulya G, Kasukawa T, Drabløs F. EpiFactors: a comprehensive database of human epigenetic factors and complexes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav067. [PMID: 26153137 PMCID: PMC4494013 DOI: 10.1093/database/bav067] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022]
Abstract
Epigenetics refers to stable and long-term alterations of cellular traits that are
not caused by changes in the DNA sequence per se. Rather, covalent
modifications of DNA and histones affect gene expression and genome stability
via proteins that recognize and act upon such modifications. Many
enzymes that catalyse epigenetic modifications or are critical for enzymatic
complexes have been discovered, and this is encouraging investigators to study the
role of these proteins in diverse normal and pathological processes. Rapidly growing
knowledge in the area has resulted in the need for a resource that compiles,
organizes and presents curated information to the researchers in an easily accessible
and user-friendly form. Here we present EpiFactors, a manually curated database
providing information about epigenetic regulators, their complexes, targets and
products. EpiFactors contains information on 815 proteins, including 95 histones and
protamines. For 789 of these genes, we include expressions values across several
samples, in particular a collection of 458 human primary cell samples (for
approximately 200 cell types, in many cases from three individual donors), covering
most mammalian cell steady states, 255 different cancer cell lines (representing
approximately 150 cancer subtypes) and 134 human postmortem tissues. Expression
values were obtained by the FANTOM5 consortium using Cap Analysis of Gene Expression
technique. EpiFactors also contains information on 69 protein complexes that are
involved in epigenetic regulation. The resource is practical for a wide range of
users, including biologists, pharmacologists and clinicians. Database URL: http://epifactors.autosome.ru
Collapse
Affiliation(s)
- Yulia A Medvedeva
- Institute of Personal and Predictive Medicine of Cancer, 08916 Badalona, Spain, Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia,
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rezvan Ehsani
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | - Ivan V Kulakovskiy
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ilya E Vorontsov
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pouda Panahandeh
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | - Grigory Khimulya
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Takeya Kasukawa
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama 230-0045, Kanagawa, Japan
| | | | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway,
| |
Collapse
|
42
|
Affiliation(s)
- Dong Zhao
- Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Dai Long
- Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Eriksson A, Lennartsson A, Lehmann S. Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis. Exp Hematol 2015; 43:609-24. [PMID: 26118500 DOI: 10.1016/j.exphem.2015.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/23/2015] [Indexed: 12/17/2022]
Abstract
As a result of the introduction of new sequencing technologies, the molecular landscape of acute myeloid leukemia (AML) is rapidly evolving. From karyotyping, which detects only large genomic aberrations of metaphase chromosomes, we have moved into an era when sequencing of each base pair allows us to define the AML genome at highest resolution. This has revealed a new complex landscape of genetic aberrations where addition of mutations in epigenetic regulators has been one of the most important contributions to the understanding of the pathogenesis of AML. These findings, together with new insights into epigenetic mechanisms, have placed dysregulated epigenetic mechanisms at the forefront of AML development. Not only have several new mutations in genes directly involved in epigenetic regulatory mechanisms been discovered, but also previously well-known gene fusions have been found to exert aberrant effects through epigenetic mechanisms. In addition, mutations in epigenetic regulators such as DNMT3A, TET2, and ASXL1 have recently been found to be the earliest known events during AML evolution and to be present as preleukemic lesions before the onset of AML. In this article, we review epigenetic changes in AML also in relation to what is known about their mechanism of action and their prognostic role.
Collapse
Affiliation(s)
- Anna Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Centre of Hematology, HERM, Department of Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden.
| |
Collapse
|
44
|
A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data. Sci Rep 2015; 5:10576. [PMID: 26015273 PMCID: PMC4444969 DOI: 10.1038/srep10576] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/20/2015] [Indexed: 12/16/2022] Open
Abstract
Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu
Collapse
|
45
|
Wu H, Zhao M, Chang C, Lu Q. The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation. Int J Mol Sci 2015; 16:11013-33. [PMID: 25988383 PMCID: PMC4463688 DOI: 10.3390/ijms160511013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 02/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| |
Collapse
|
46
|
Keller CI, Akhtar A. The MSL complex: juggling RNA-protein interactions for dosage compensation and beyond. Curr Opin Genet Dev 2015; 31:1-11. [PMID: 25900149 DOI: 10.1016/j.gde.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/17/2015] [Indexed: 12/27/2022]
Abstract
The Male Specific Lethal (MSL) complex provides an exquisite example of an epigenetic modulator that is involved in chromosome-wide as well as individual gene regulation in flies and mammals. In this review, we discuss the recent advances in biochemical and structural understanding of the MSL complex modules and how they function in X chromosome regulation in flies. Moreover, we describe possible conserved and dosage compensation-independent functions of the MSL complex with a particular focus on mammalian systems.
Collapse
Affiliation(s)
- Claudia Isabelle Keller
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg im Breisgau, Germany.
| |
Collapse
|
47
|
Sneppen K, Dodd IB. Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae. Epigenetics 2015; 10:293-302. [PMID: 25830651 PMCID: PMC4622568 DOI: 10.1080/15592294.2015.1017200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
How alternative chromatin-based regulatory states can be made stable and heritable in order to provide robust epigenetic memory is poorly understood. Here, we develop a stochastic model of the silencing system in Saccharomyces cerevisiae that incorporates cooperative binding of the repressive SIR complex and antisilencing histone modifications, in addition to positive feedback in Sir2 recruitment. The model was able to reproduce key features of SIR regulation of an HM locus, including heritable bistability, dependence on the silencer elements, and sensitivity to SIR dosage. We found that antisilencing methylation of H3K79 by Dot1 was not needed to generate these features, but acted to reduce spreading of SIR binding, consistent with its proposed role in containment of silencing. In contrast, cooperative inter-nucleosome interactions mediated by the SIR complex were critical for concentrating SIR binding around the silencers in the absence of barriers, and for providing bistability in SIR binding. SIR-SIR interactions magnify the cooperativity in the Sir2-histone deacetylation positive feedback reaction and complete a double-negative feedback circuit involving antisilencing modifications. Thus, our modeling underscores the potential importance of cooperative interactions between nucleosome-bound complexes both in the SIR system and in other chromatin-based complexes in epigenetic regulation.
Collapse
Affiliation(s)
- Kim Sneppen
- a Centre for Models of Life; Niels Bohr Institute; University of Copenhagen; Copenhagen , Denmark
| | | |
Collapse
|
48
|
Frege T, Uversky VN. Intrinsically disordered proteins in the nucleus of human cells. Biochem Biophys Rep 2015; 1:33-51. [PMID: 29124132 PMCID: PMC5668563 DOI: 10.1016/j.bbrep.2015.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered proteins are known to perform a variety of important functions such as macromolecular recognition, promiscuous binding, and signaling. They are crucial players in various cellular pathway and processes, where they often have key regulatory roles. Among vital cellular processes intimately linked to the intrinsically disordered proteins is transcription, an intricate biological performance predominantly developing inside the cell nucleus. With this work, we gathered information about proteins that exist in various compartments and sub-nuclear bodies of the nucleus of the human cells, with the goal of identifying which ones are highly disordered and which functions are ascribed to the disordered nuclear proteins.
Collapse
Affiliation(s)
- Telma Frege
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- GenomeNext LLC, 175 South 3rd Street, Suite 200, Columbus OH 43215, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer׳s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Correspondence to: Department of Molecular, Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA. Tel.: +1 813 974 5816; fax: +1 813 974 7357.
| |
Collapse
|
49
|
Pasque V, Tchieu J, Karnik R, Uyeda M, Sadhu Dimashkie A, Case D, Papp B, Bonora G, Patel S, Ho R, Schmidt R, McKee R, Sado T, Tada T, Meissner A, Plath K. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell 2015; 159:1681-97. [PMID: 25525883 DOI: 10.1016/j.cell.2014.11.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/30/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022]
Abstract
Reprogramming to iPSCs resets the epigenome of somatic cells, including the reversal of X chromosome inactivation. We sought to gain insight into the steps underlying the reprogramming process by examining the means by which reprogramming leads to X chromosome reactivation (XCR). Analyzing single cells in situ, we found that hallmarks of the inactive X (Xi) change sequentially, providing a direct readout of reprogramming progression. Several epigenetic changes on the Xi occur in the inverse order of developmental X inactivation, whereas others are uncoupled from this sequence. Among the latter, DNA methylation has an extraordinary long persistence on the Xi during reprogramming, and, like Xist expression, is erased only after pluripotency genes are activated. Mechanistically, XCR requires both DNA demethylation and Xist silencing, ensuring that only cells undergoing faithful reprogramming initiate XCR. Our study defines the epigenetic state of multiple sequential reprogramming intermediates and establishes a paradigm for studying cell fate transitions during reprogramming.
Collapse
Affiliation(s)
- Vincent Pasque
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Tchieu
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rahul Karnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Molly Uyeda
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anupama Sadhu Dimashkie
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dana Case
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernadett Papp
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Giancarlo Bonora
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanjeet Patel
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ritchie Ho
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan Schmidt
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Robin McKee
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Takashi Tada
- Department of Stem Cell Engineering, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J, Zhao Z, Zhou X, Li J, Li H, Zheng Y, Chen S, Cai T, Gao S, Zhu B. Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 2015; 29:379-93. [PMID: 25637356 PMCID: PMC4335294 DOI: 10.1101/gad.254425.114] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
GLP and G9a are major H3K9 dimethylases essential for mouse early embryonic development. Here, Liu et al. report that the histone methyltransferase activities of GLP and G9a are stimulated by neighboring nucleosomes that are premethylated at H3K9. In mouse embryonic stem cells harboring a mutant GLP that lacks H3K9me1-binding activity, critical pluripotent genes displayed inefficient establishment of H3K9me2 and delayed gene silencing during differentiation. Mice carrying the H3K9me1-binding mutant form of GLP displayed embryonic growth retardation and defects in calvaria bone formation. GLP and G9a are major H3K9 dimethylases and are essential for mouse early embryonic development. GLP and G9a both harbor ankyrin repeat domains that are capable of binding H3K9 methylation. However, the functional significance of their recognition of H3K9 methylation is unknown. Here, we report that the histone methyltransferase activities of GLP and G9a are stimulated by neighboring nucleosomes that are premethylated at H3K9. These stimulation events function in cis and are dependent on the H3K9 methylation binding activities of ankyrin repeat domains of GLP and G9a. Disruption of the H3K9 methylation-binding activity of GLP in mice causes growth retardation of embryos, ossification defects of calvaria, and postnatal lethality due to starvation of the pups. In mouse embryonic stem cells (ESCs) harboring a mutant GLP that lacks H3K9me1-binding activity, critical pluripotent genes, including Oct4 and Nanog, display inefficient establishment of H3K9me2 and delayed gene silencing during differentiation. Collectively, our study reveals a new activation mechanism for GLP and G9a that plays an important role in ESC differentiation and mouse viability.
Collapse
Affiliation(s)
- Nan Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province 130012, China;
| | - Yonghua Jiang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lingjun Meng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jun Xiong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zuodong Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaohua Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jia Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hong Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong Zheng
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bing Zhu
- National Institute of Biological Sciences, Beijing 102206, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|