1
|
Korsak S, Banecki K, Plewczynski D. Multiscale molecular modeling of chromatin with MultiMM: From nucleosomes to the whole genome. Comput Struct Biotechnol J 2024; 23:3537-3548. [PMID: 39435339 PMCID: PMC11492436 DOI: 10.1016/j.csbj.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Motivation: We present a user-friendly 3D chromatin simulation model for the human genome based on OpenMM, addressing the challenges posed by existing models with use-specific implementations. Our approach employs a multi-scale energy minimization strategy, capturing chromatin's hierarchical structure. Initiating with a Hilbert curve-based structure, users can input files specifying nucleosome positioning, loops, compartments, or subcompartments. Results: The model utilizes an energy minimization approach with a large choice of numerical integrators, providing the entire genome's structure within minutes. Output files include the generated structures for each chromosome, offering a versatile and accessible tool for chromatin simulation in bioinformatics studies. Furthermore, MultiMM is capable of producing nucleosome-resolution structures by making simplistic geometric assumptions about the structure and the density of nucleosomes on the DNA. Code availability: Open-source software and the manual are freely available on https://github.com/SFGLab/MultiMM or via pip https://pypi.org/project/MultiMM/.
Collapse
Affiliation(s)
- Sevastianos Korsak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Banecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Bhide S, Chandran S, Rajasekaran NS, Melkani GC. Genetic and Pathophysiological Basis of Cardiac and Skeletal Muscle Laminopathies. Genes (Basel) 2024; 15:1095. [PMID: 39202453 PMCID: PMC11354015 DOI: 10.3390/genes15081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Nuclear lamins, a type V intermediate filament, are crucial components of the nuclear envelope's inner layer, maintaining nuclear integrity and mediating interactions between the nucleus and cytoplasm. Research on human iPSC-derived cells and animal models has demonstrated the importance of lamins in cardiac and skeletal muscle development and function. Mutations in lamins result in laminopathies, a group of diseases including muscular dystrophies, Hutchison-Gilford progeria syndrome, and cardiomyopathies with conduction defects. These conditions have been linked to disrupted autophagy, mTOR, Nrf2-Keap, and proteostasis signaling pathways, indicating complex interactions between the nucleus and cytoplasm. Despite progress in understanding these pathways, many questions remain about the mechanisms driving lamin-induced pathologies, leading to limited therapeutic options. This review examines the current literature on dysregulated pathways in cardiac and skeletal muscle laminopathies and explores potential therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Shruti Bhide
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
| | - Sahaana Chandran
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
| | - Namakkal S. Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| | - Girish C. Melkani
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| |
Collapse
|
3
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
4
|
Kiseleva AA, Cheng YC, Smith CL, Katz RA, Poleshko A. PRR14 organizes H3K9me3-modified heterochromatin at the nuclear lamina. Nucleus 2023; 14:2165602. [PMID: 36633363 PMCID: PMC9839372 DOI: 10.1080/19491034.2023.2165602] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The eukaryotic genome is organized in three dimensions within the nucleus. Transcriptionally active chromatin is spatially separated from silent heterochromatin, a large fraction of which is located at the nuclear periphery. However, the mechanisms by which chromatin is localized at the nuclear periphery remain poorly understood. Here we demonstrate that Proline Rich 14 (PRR14) protein organizes H3K9me3-modified heterochromatin at the nuclear lamina. We show that PRR14 dynamically associates with both the nuclear lamina and heterochromatin, and is able to reorganize heterochromatin in the nucleus of interphase cells independent of mitosis. We characterize two functional HP1-binding sites within PRR14 that contribute to its association with heterochromatin. We also demonstrate that PPR14 forms an anchoring surface for heterochromatin at the nuclear lamina where it interacts dynamically with HP1-associated chromatin. Our study proposes a model of dynamic heterochromatin organization at the nuclear lamina via the PRR14 tethering protein.
Collapse
Affiliation(s)
- Anna A. Kiseleva
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu-Chia Cheng
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cheryl L. Smith
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A. Katz
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Andrey Poleshko Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, SCTR 09-188, 3400 Civic Center Blvd. Philadelphia, PA19104
| |
Collapse
|
5
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [PMID: 37974978 PMCID: PMC10643749 DOI: 10.1007/s12551-023-01136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Nuclear cytoplasmic transport is mediated by many receptors that recognize specific nuclear localization signals on proteins and RNA and transport these substrates through nuclear pore complexes. Facilitated diffusion through nuclear pore complexes requires the attachment of transport receptors. Despite the relatively large tunnel diameter, some even small proteins (less than 20-30 kDa), such as histones, pass through the nuclear pore complex only with transport receptors. Over several decades, considerable material has been accumulated on the structure, architecture, and amino acid composition of the proteins included in this complex and the sequence of many receptors. We consider the data available in the literature on the structure of the nuclear pore complex and possible mechanisms of nuclear-cytoplasmic transport, applying the theory of electrostatic interactions in the context of our data on changes in the electrokinetic potential of nuclei and our previously proposed physical model of the mechanism of facilitated diffusion through the nuclear pore complex (NPC). According to our data, the main contribution to the charge of the nuclear membrane is made by anionic phospholipids, which are part of both the nuclear membrane and the nuclear matrix, which creates a potential difference between them. The nuclear membrane is a four-layer phospholipid dielectric, so the potential vector can only pass through the NPC, creating an electrostatic funnel that "pulls in" the positively charged load-NLS-NTR trigger complexes. Considering the newly obtained data, an improved model of the previously proposed physical model of the mechanism of nuclear-cytoplasmic transport is proposed. This model considers the contribution of electrostatic fields to the transportation speed when changing the membrane's thickness in the NPC basket at a higher load.
Collapse
Affiliation(s)
- Liya A. Minasbekyan
- Scientific Research Institute of Biology, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| | - Hamlet G. Badalyan
- Chair of General Physics, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| |
Collapse
|
7
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [DOI: https:/doi.org/10.1007/s12551-023-01136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 02/27/2024] Open
|
8
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
9
|
Stiekema M, Houben F, Verheyen F, Borgers M, Menzel J, Meschkat M, van Zandvoort MAMJ, Ramaekers FCS, Broers JLV. The Role of Lamins in the Nucleoplasmic Reticulum, a Pleiomorphic Organelle That Enhances Nucleo-Cytoplasmic Interplay. Front Cell Dev Biol 2022; 10:914286. [PMID: 35784476 PMCID: PMC9243388 DOI: 10.3389/fcell.2022.914286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Invaginations of the nuclear membrane occur in different shapes, sizes, and compositions. Part of these pleiomorphic invaginations make up the nucleoplasmic reticulum (NR), while others are merely nuclear folds. We define the NR as tubular invaginations consisting of either both the inner and outer nuclear membrane, or only the inner nuclear membrane. Specifically, invaginations of both the inner and outer nuclear membrane are also called type II NR, while those of only the inner nuclear membrane are defined as type I NR. The formation and structure of the NR is determined by proteins associated to the nuclear membrane, which induce a high membrane curvature leading to tubular invaginations. Here we review and discuss the current knowledge of nuclear invaginations and the NR in particular. An increase in tubular invaginations of the nuclear envelope is associated with several pathologies, such as laminopathies, cancer, (reversible) heart failure, and Alzheimer’s disease. Furthermore, viruses can induce both type I and II NR. In laminopathies, the amount of A-type lamins throughout the nucleus is generally decreased or the organization of lamins or lamin-associated proteins is disturbed. Also, lamin overexpression or modulation of lamin farnesylation status impacts NR formation, confirming the importance of lamin processing in NR formation. Virus infections reorganize the nuclear lamina via (de)phosphorylation of lamins, leading to an uneven thickness of the nuclear lamina and in turn lobulation of the nuclear membrane and the formation of invaginations of the inner nuclear membrane. Since most studies on the NR have been performed with cell cultures, we present additional proof for the existence of these structures in vivo, focusing on a variety of differentiated cardiovascular and hematopoietic cells. Furthermore, we substantiate the knowledge of the lamin composition of the NR by super-resolution images of the lamin A/C and B1 organization. Finally, we further highlight the essential role of lamins in NR formation by demonstrating that (over)expression of lamins can induce aberrant NR structures.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Frederik Houben
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Healthcare, PXL University College, Hasselt, Belgium
| | - Fons Verheyen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marcel Borgers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | | | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Aachen, Germany
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- *Correspondence: Jos L. V. Broers,
| |
Collapse
|
10
|
Nazer E. To be or not be (in the LAD): emerging roles of lamin proteins in transcriptional regulation. Biochem Soc Trans 2022; 50:1035-1044. [PMID: 35437578 PMCID: PMC9162450 DOI: 10.1042/bst20210858] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
Abstract
Lamins are components of the nuclear lamina, a protein meshwork that underlies the nuclear membrane. Lamins interact with chromatin in transcriptionally silent regions defined as lamina-associated-domains (LADs). However, recent studies have shown that lamins regulate active transcription inside LADs. In addition, ChIP-seq analysis has shown that lamins interact with lamin-dependent promoters and enhancers located in the interior of the nucleus. Moreover, functional studies suggest that lamins regulate transcription at associated-promoters and long-range chromatin interactions of key developmental gene programs. This review will discuss emerging, non-canonical functions of lamins in controlling non-silent genes located both inside and outside of LADs, focusing on transcriptional regulation and chromatin organization in Drosophila and mammals as metazoan model organisms.
Collapse
Affiliation(s)
- Ezequiel Nazer
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
11
|
Caruso LB, Guo R, Keith K, Madzo J, Maestri D, Boyle S, Wasserman J, Kossenkov A, Gewurz BE, Tempera I. The nuclear lamina binds the EBV genome during latency and regulates viral gene expression. PLoS Pathog 2022; 18:e1010400. [PMID: 35421198 PMCID: PMC9009669 DOI: 10.1371/journal.ppat.1010400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/30/2022] Open
Abstract
The Epstein Barr virus (EBV) infects almost 95% of the population worldwide. While typically asymptomatic, EBV latent infection is associated with several malignancies of epithelial and lymphoid origin in immunocompromised individuals. In latently infected cells, the EBV genome persists as a chromatinized episome that expresses a limited set of viral genes in different patterns, referred to as latency types, which coincide with varying stages of infection and various malignancies. We have previously demonstrated that latency types correlate with differences in the composition and structure of the EBV episome. Several cellular factors, including the nuclear lamina, regulate chromatin composition and architecture. While the interaction of the viral genome with the nuclear lamina has been studied in the context of EBV lytic reactivation, the role of the nuclear lamina in controlling EBV latency has not been investigated. Here, we report that the nuclear lamina is an essential epigenetic regulator of the EBV episome. We observed that in B cells, EBV infection affects the composition of the nuclear lamina by inducing the expression of lamin A/C, but only in EBV+ cells expressing the Type III latency program. Using ChIP-Seq, we determined that lamin B1 and lamin A/C bind the EBV genome, and their binding correlates with deposition of the histone repressive mark H3K9me2. By RNA-Seq, we observed that knock-out of lamin A/C in B cells alters EBV gene expression. Our data indicate that the interaction between lamins and the EBV episome contributes to the epigenetic control of viral gene expression during latency, suggesting a restrictive function of the nuclear lamina as part of the host response against viral DNA entry into the nucleus. Epstein-Barr virus (EBV) is a common herpesvirus that establishes a lifelong latent infection in a small fraction of B cells of the infected individuals. In most cases, EBV infection is asymptomatic; however, especially in the context of immune suppression, EBV latent infection is associated with several malignancies. In EBV+ cancer cells, latent viral gene expression plays an essential role in sustaining the cancer phenotype. We and others have established that epigenetic modifications of the viral genome are critical to regulating EBV gene expression during latency. Understanding how the EBV genome is epigenetically regulated during latent infection may help identify new specific therapeutic targets for treating EBV+ malignancies. The nuclear lamina is involved in regulating the composition and structure of the cellular chromatin. In the present study, we determined that the nuclear lamina binds the EBV genome during latency, influencing viral gene expression. Depleting one component of the nuclear lamina, lamin A/C, increased the expression of latent EBV genes associated with cellular proliferation, indicating that the binding of the nuclear lamina with the viral genome is essential to control viral gene expression in infected cells. Our data show for the first time that the nuclear lamina may be involved in the cellular response against EBV infection by restricting viral gene expression.
Collapse
Affiliation(s)
| | - Rui Guo
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, United States of America.,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Kelsey Keith
- The Coriell Institute for Medical Research, Camden, New Jersey, United States of America
| | - Jozef Madzo
- The Coriell Institute for Medical Research, Camden, New Jersey, United States of America
| | - Davide Maestri
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Sarah Boyle
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Jason Wasserman
- The Fels Cancer Institute for Personalized Medicine, School of Medicine Temple University, Philadelphia, Pennsylvania, United States of America
| | - Andrew Kossenkov
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, United States of America.,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Bridger JM, Pereira RT, Pina C, Tosi S, Lewis A. Alterations to Genome Organisation in Stem Cells, Their Differentiation and Associated Diseases. Results Probl Cell Differ 2022; 70:71-102. [PMID: 36348105 DOI: 10.1007/978-3-031-06573-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The organisation of the genome in its home, the cell nucleus, is reliant on a number of different aspects to establish, maintain and alter its functional non-random positioning. The genome is dispersed throughout a cell nucleus in specific chromosome territories which are further divided into topologically associated domains (TADs), where regions of the genome from different and the same chromosomes come together. This organisation is both controlled by DNA and chromatin epigenetic modification and the association of the genome with nuclear structures such as the nuclear lamina, the nucleolus and nuclear bodies and speckles. Indeed, sequences that are associated with the first two structures mentioned are termed lamina-associated domains (LADs) and nucleolar-associated domains (NADs), respectively. The modifications and nuclear structures that regulate genome function are altered through a cell's life from stem cell to differentiated cell through to reversible quiescence and irreversible senescence, and hence impacting on genome organisation, altering it to silence specific genes and permit others to be expressed in a controlled way in different cell types and cell cycle statuses. The structures and enzymes and thus the organisation of the genome can also be deleteriously affected, leading to disease and/or premature ageing.
Collapse
Affiliation(s)
- Joanna M Bridger
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Rita Torres Pereira
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Cristina Pina
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Sabrina Tosi
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Annabelle Lewis
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
13
|
Popova LV, Nagarajan P, Lovejoy CM, Sunkel B, Gardner M, Wang M, Freitas M, Stanton B, Parthun M. Epigenetic regulation of nuclear lamina-associated heterochromatin by HAT1 and the acetylation of newly synthesized histones. Nucleic Acids Res 2021; 49:12136-12151. [PMID: 34788845 PMCID: PMC8643632 DOI: 10.1093/nar/gkab1044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
A central component of the epigenome is the pattern of histone post-translational modifications that play a critical role in the formation of specific chromatin states. Following DNA replication, nascent chromatin is a 1:1 mixture of parental and newly synthesized histones and the transfer of modification patterns from parental histones to new histones is a fundamental step in epigenetic inheritance. Here we report that loss of HAT1, which acetylates lysines 5 and 12 of newly synthesized histone H4 during replication-coupled chromatin assembly, results in the loss of accessibility of large domains of heterochromatin, termed HAT1-dependent Accessibility Domains (HADs). HADs are mega base-scale domains that comprise ∼10% of the mouse genome. HAT1 globally represses H3 K9 me3 levels and HADs correspond to the regions of the genome that display HAT1-dependent increases in H3 K9me3 peak density. HADs display a high degree of overlap with a subset of Lamin-Associated Domains (LADs). HAT1 is required to maintain nuclear structure and integrity. These results indicate that HAT1 and the acetylation of newly synthesized histones may be critical regulators of the epigenetic inheritance of heterochromatin and suggest a new mechanism for the epigenetic regulation of nuclear lamina-heterochromatin interactions.
Collapse
Affiliation(s)
- Liudmila V Popova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Callie M Lovejoy
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin D Sunkel
- Abigail Wexner Research Institute at Nationwide Children's, Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| | - Miranda L Gardner
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Meng Wang
- Abigail Wexner Research Institute at Nationwide Children's, Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Z Stanton
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Abigail Wexner Research Institute at Nationwide Children's, Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Tang Y, Dong Q, Wang T, Gong L, Gu Y. PNET2 is a component of the plant nuclear lamina and is required for proper genome organization and activity. Dev Cell 2021; 57:19-31.e6. [PMID: 34822788 DOI: 10.1016/j.devcel.2021.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023]
Abstract
The interaction between chromatin and the nuclear lamina (NL) is intrinsically important to the establishment of three-dimensional chromatin architecture and spatiotemporal regulation of gene expression. However, critical regulators involved in this process are poorly understood in plants. Here, we report that Arabidopsis PNET2 and its two homologs are bona fide inner nuclear membrane proteins and integral components of the NL. PNET2s physically interact with the plant nucleoskeleton and engage nucleosome-enriched chromatin at the nuclear periphery. Loss of all three PNET2s leads to severely disrupted growth and development, concomitant activation of abiotic and biotic stress responses, and ultimate lethality in Arabidopsis. The pent2 triple mutant also displays drastic transcriptome changes accompanied by a globally altered chromatin architecture revealed by HiC analysis. Our study identified PNET2 as an inner nuclear membrane (INM) component of the NL, which associates with chromatin and play a critical role in orchestrating gene expression and chromatin organization in plants.
Collapse
Affiliation(s)
- Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
15
|
Pavani G, Amendola M. Targeted Gene Delivery: Where to Land. Front Genome Ed 2021; 2:609650. [PMID: 34713234 PMCID: PMC8525409 DOI: 10.3389/fgeed.2020.609650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-editing technologies have the potential to correct most genetic defects involved in blood disorders. In contrast to mutation-specific editing, targeted gene insertion can correct most of the mutations affecting the same gene with a single therapeutic strategy (gene replacement) or provide novel functions to edited cells (gene addition). Targeting a selected genomic harbor can reduce insertional mutagenesis risk, while enabling the exploitation of endogenous promoters, or selected chromatin contexts, to achieve specific transgene expression levels/patterns and the modulation of disease-modifier genes. In this review, we will discuss targeted gene insertion and the advantages and limitations of different genomic harbors currently under investigation for various gene therapy applications.
Collapse
Affiliation(s)
- Giulia Pavani
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| | - Mario Amendola
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| |
Collapse
|
16
|
Smith CL, Lan Y, Jain R, Epstein JA, Poleshko A. Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. SCIENCE ADVANCES 2021; 7:eabj3035. [PMID: 34559565 PMCID: PMC8462898 DOI: 10.1126/sciadv.abj3035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The nuclear architecture of rod photoreceptor cells in nocturnal mammals is unlike that of other animal cells. Murine rod cells have an “inverted” chromatin organization with euchromatin at the nuclear periphery and heterochromatin packed in the center of the nucleus. In conventional nuclear architecture, euchromatin is mostly in the interior, and heterochromatin is largely at the nuclear periphery. We demonstrate that inverted nuclear architecture is achieved through global relabeling of the rod cell epigenome. During rod cell maturation, H3K9me2-labeled nuclear peripheral heterochromatin is relabeled with H3K9me3 and repositioned to the nuclear center, while transcriptionally active euchromatin is labeled with H3K9me2 and positioned at the nuclear periphery. Global chromatin relabeling is correlated with spatial rearrangement, suggesting a critical role for histone modifications, specifically H3K9 methylation, in nuclear architecture. These results reveal a dramatic example of genome-wide epigenetic relabeling of chromatin that accompanies altered nuclear architecture in a postnatal, postmitotic cell.
Collapse
Affiliation(s)
- Cheryl L. Smith
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Penn Cardiovascular Institute, and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Penn Cardiovascular Institute, and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Bishop J, Swan H, Valente F, Nützmann HW. The Plant Nuclear Envelope and Its Role in Gene Transcription. FRONTIERS IN PLANT SCIENCE 2021; 12:674209. [PMID: 33995467 PMCID: PMC8119737 DOI: 10.3389/fpls.2021.674209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/25/2021] [Indexed: 05/12/2023]
Abstract
Chromosomes are dynamic entities in the eukaryotic nucleus. During cell development and in response to biotic and abiotic change, individual sections as well as entire chromosomes re-organise and reposition within the nuclear space. A focal point for these processes is the nuclear envelope (NE) providing both barrier and anchor for chromosomal movement. In plants, positioning of chromosome regions and individual genes at the nuclear envelope has been shown to be associated with distinct transcriptional patterns. Here, we will review recent findings on the interplay between transcriptional activity and gene positioning at the nuclear periphery (NP). We will discuss potential mechanisms of transcriptional regulation at the nuclear envelope and outline future perspectives in this research area.
Collapse
|
18
|
Mirza AN, Gonzalez F, Ha SK, Oro AE. The Sky's the LEMit: New insights into nuclear structure regulation of transcription factor activity. Curr Opin Cell Biol 2020; 68:173-180. [PMID: 33227657 DOI: 10.1016/j.ceb.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
The nucleoskeleton has been associated with partitioning the genome into active and inactive compartments that dictate local transcription factor (TF) activity. However, recent data indicate that the nucleoskeleton and TFs reciprocally influence each other in dynamic TF trafficking pathways through the functions of LEM proteins. While the conserved peripheral recruitment of TFs by LEM proteins has been viewed as a mechanism of repressing transcription, a diversity of release mechanisms from the lamina suggest this compartment serves as a refuge for nuclear TF accumulation for rapid mobilization and signal stability. Detailed mechanisms suggest that TFs toggle between nuclear lamina refuge and nuclear matrix lamin-LEM protein complexes at sites of active transcription. In this review we will highlight emerging LEM functions acting at the interface of chromatin and nucleoskeleton to create TF trafficking networks.
Collapse
Affiliation(s)
- Amar N Mirza
- Program in Epithelial Biology, Stanford University School of Medicine Stanford, CA, 94305, USA
| | - Fernanda Gonzalez
- Program in Epithelial Biology, Stanford University School of Medicine Stanford, CA, 94305, USA
| | - Sierra K Ha
- Program in Epithelial Biology, Stanford University School of Medicine Stanford, CA, 94305, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Das P, Shen T, McCord RP. Inferring chromosome radial organization from Hi-C data. BMC Bioinformatics 2020; 21:511. [PMID: 33167851 PMCID: PMC7654587 DOI: 10.1186/s12859-020-03841-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The nonrandom radial organization of eukaryotic chromosome territories (CTs) inside the nucleus plays an important role in nuclear functional compartmentalization. Increasingly, chromosome conformation capture (Hi-C) based approaches are being used to characterize the genome structure of many cell types and conditions. Computational methods to extract 3D arrangements of CTs from this type of pairwise contact data will thus increase our ability to analyze CT organization in a wider variety of biological situations. RESULTS A number of full-scale polymer models have successfully reconstructed the 3D structure of chromosome territories from Hi-C. To supplement such methods, we explore alternative, direct, and less computationally intensive approaches to capture radial CT organization from Hi-C data. We show that we can infer relative chromosome ordering using PCA on a thresholded inter-chromosomal contact matrix. We simulate an ensemble of possible CT arrangements using a force-directed network layout algorithm and propose an approach to integrate additional chromosome properties into our predictions. Our CT radial organization predictions have a high correlation with microscopy imaging data for various cell nucleus geometries (lymphoblastoid, skin fibroblast, and breast epithelial cells), and we can capture previously documented changes in senescent and progeria cells. CONCLUSIONS Our analysis approaches provide rapid and modular approaches to screen for alterations in CT organization across widely available Hi-C data. We demonstrate which stages of the approach can extract meaningful information, and also describe limitations of pairwise contacts alone to predict absolute 3D positions.
Collapse
Affiliation(s)
- Priyojit Das
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| | - Rachel Patton McCord
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
20
|
Sunny DE, Hammer E, Strempel S, Joseph C, Manchanda H, Ittermann T, Hübner S, Weiss FU, Völker U, Heckmann M. Nup133 and ERα mediate the differential effects of hyperoxia-induced damage in male and female OPCs. Mol Cell Pediatr 2020; 7:10. [PMID: 32844334 PMCID: PMC7447710 DOI: 10.1186/s40348-020-00102-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hyperoxia is a well-known cause of cerebral white matter injury in preterm infants with male sex being an independent and critical risk factor for poor neurodevelopmental outcome. Sex is therefore being widely considered as one of the major decisive factors for prognosis and treatment of these infants. But unfortunately, we still lack a clear view of the molecular mechanisms that lead to such a profound difference. Hence, using mouse-derived primary oligodendrocyte progenitor cells (OPCs), we investigated the molecular factors and underlying mechanisms behind the differential response of male and female cells towards oxidative stress. Results We demonstrate that oxidative stress severely affects cellular functions related to energy metabolism, stress response, and maturation in the male-derived OPCs, whereas the female cells remain largely unaffected. CNPase protein level was found to decline following hyperoxia in male but not in female cells. This impairment of maturation was accompanied by the downregulation of nucleoporin and nuclear lamina proteins in the male cells. We identify Nup133 as a novel target protein affected by hyperoxia, whose inverse regulation may mediate this differential response in the male and female cells. Nup133 protein level declined following hyperoxia in male but not in female cells. We show that nuclear respiratory factor 1 (Nrf1) is a direct downstream target of Nup133 and that Nrf1 mRNA declines following hyperoxia in male but not in female cells. The female cells may be rendered resistant due to synergistic protection via the estrogen receptor alpha (ERα) which was upregulated following hyperoxia in female but not in male cells. Both Nup133 and ERα regulate mitochondrial function and oxidative stress response by transcriptional regulation of Nrf1. Conclusions These findings from a basic cell culture model establish prominent sex-based differences and suggest a novel mechanism involved in the differential response of OPCs towards oxidative stress. It conveys a strong message supporting the need to study how complex cellular processes are regulated differently in male and female brains during development and for a better understanding of how the brain copes up with different forms of stress after preterm birth.
Collapse
Affiliation(s)
- Donna Elizabeth Sunny
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, Ferdinand-Sauerbruchstrasse, 17475, Greifswald, Germany.
| | - Elke Hammer
- Department of Functional Genomics, University of Medicine Greifswald, Greifswald, Germany
| | | | - Christy Joseph
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Himanshu Manchanda
- Department of Bioinformatics, University of Medicine Greifswald, Greifswald, Germany
| | - Till Ittermann
- Institute for Community Medicine, University of Medicine Greifswald, Greifswald, Germany
| | - Stephanie Hübner
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, Ferdinand-Sauerbruchstrasse, 17475, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Internal Medicine A, University of Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University of Medicine Greifswald, Greifswald, Germany
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, Ferdinand-Sauerbruchstrasse, 17475, Greifswald, Germany
| |
Collapse
|
21
|
Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 2020; 9:25. [PMID: 32616075 PMCID: PMC7333321 DOI: 10.1186/s40035-020-00205-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
22
|
Gozalo A, Duke A, Lan Y, Pascual-Garcia P, Talamas JA, Nguyen SC, Shah PP, Jain R, Joyce EF, Capelson M. Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb Repression. Mol Cell 2019; 77:67-81.e7. [PMID: 31784359 DOI: 10.1016/j.molcel.2019.10.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/04/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Interactions between the genome and the nuclear pore complex (NPC) have been implicated in multiple gene regulatory processes, but the underlying logic of these interactions remains poorly defined. Here, we report high-resolution chromatin binding maps of two core components of the NPC, Nup107 and Nup93, in Drosophila cells. Our investigation uncovered differential binding of these NPC subunits, where Nup107 preferentially targets active genes while Nup93 associates primarily with Polycomb-silenced regions. Comparison to Lamin-associated domains (LADs) revealed that NPC binding sites can be found within LADs, demonstrating a linear binding of the genome along the nuclear envelope. Importantly, we identified a functional role of Nup93 in silencing of Polycomb target genes and in spatial folding of Polycomb domains. Our findings lend to a model where different nuclear pores bind different types of chromatin via interactions with specific NPC sub-complexes, and a subset of Polycomb domains is stabilized by interactions with Nup93.
Collapse
Affiliation(s)
- Alejandro Gozalo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Duke
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Talamas
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Son C Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parisha P Shah
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Bergqvist C, Niss F, Figueroa RA, Beckman M, Maksel D, Jafferali MH, Kulyté A, Ström AL, Hallberg E. Monitoring of chromatin organization in live cells by FRIC. Effects of the inner nuclear membrane protein Samp1. Nucleic Acids Res 2019; 47:e49. [PMID: 30793190 PMCID: PMC6511872 DOI: 10.1093/nar/gkz123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
In most cells, transcriptionally inactive heterochromatin is preferentially localized in the nuclear periphery and transcriptionally active euchromatin is localized in the nuclear interior. Different cell types display characteristic chromatin distribution patterns, which change dramatically during cell differentiation, proliferation, senescence and different pathological conditions. Chromatin organization has been extensively studied on a cell population level, but there is a need to understand dynamic reorganization of chromatin at the single cell level, especially in live cells. We have developed a novel image analysis tool that we term Fluorescence Ratiometric Imaging of Chromatin (FRIC) to quantitatively monitor dynamic spatiotemporal distribution of euchromatin and total chromatin in live cells. A vector (pTandemH) assures stoichiometrically constant expression of the histone variants Histone 3.3 and Histone 2B, fused to EGFP and mCherry, respectively. Quantitative ratiometric (H3.3/H2B) imaging displayed a concentrated distribution of heterochromatin in the periphery of U2OS cell nuclei. As proof of concept, peripheral heterochromatin responded to experimental manipulation of histone acetylation. We also found that peripheral heterochromatin depended on the levels of the inner nuclear membrane protein Samp1, suggesting an important role in promoting peripheral heterochromatin. Taken together, FRIC is a powerful and robust new tool to study dynamic chromatin redistribution in live cells.
Collapse
Affiliation(s)
- Cecilia Bergqvist
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Frida Niss
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Ricardo A Figueroa
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Marie Beckman
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet SE-171 77 Sweden
| | - Danuta Maksel
- Monash Molecular Crystallisation Facility (MMCF), Monash University, VIC 3800, Australia
| | - Mohammed H Jafferali
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Agné Kulyté
- Lipid laboratory, Department of Medicine, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | - Anna-Lena Ström
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Einar Hallberg
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Poleshko A, Smith CL, Nguyen SC, Sivaramakrishnan P, Wong KG, Murray JI, Lakadamyali M, Joyce EF, Jain R, Epstein JA. H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. eLife 2019; 8:49278. [PMID: 31573510 PMCID: PMC6795522 DOI: 10.7554/elife.49278] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cell-type-specific 3D organization of the genome is unrecognizable during mitosis. It remains unclear how essential positional information is transmitted through cell division such that a daughter cell recapitulates the spatial genome organization of the parent. Lamina-associated domains (LADs) are regions of repressive heterochromatin positioned at the nuclear periphery that vary by cell type and contribute to cell-specific gene expression and identity. Here we show that histone 3 lysine 9 dimethylation (H3K9me2) is an evolutionarily conserved, specific mark of nuclear peripheral heterochromatin and that it is retained through mitosis. During mitosis, phosphorylation of histone 3 serine 10 temporarily shields the H3K9me2 mark allowing for dissociation of chromatin from the nuclear lamina. Using high-resolution 3D immuno-oligoFISH, we demonstrate that H3K9me2-enriched genomic regions, which are positioned at the nuclear lamina in interphase cells prior to mitosis, re-associate with the forming nuclear lamina before mitotic exit. The H3K9me2 modification of peripheral heterochromatin ensures that positional information is safeguarded through cell division such that individual LADs are re-established at the nuclear periphery in daughter nuclei. Thus, H3K9me2 acts as a 3D architectural mitotic guidepost. Our data establish a mechanism for epigenetic memory and inheritance of spatial organization of the genome.
Collapse
Affiliation(s)
- Andrey Poleshko
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Cheryl L Smith
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Priya Sivaramakrishnan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Karen G Wong
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Rajan Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
25
|
Erenpreisa J, Krigerts J, Salmina K, Selga T, Sorokins H, Freivalds T. Differential staining of peripheral nuclear chromatin with Acridine orange implies an A-form epichromatin conformation of the DNA. Nucleus 2019; 9:171-181. [PMID: 29363398 PMCID: PMC5973139 DOI: 10.1080/19491034.2018.1431081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The chromatin observed by conventional electron microscopy under the nuclear envelope constitutes a single layer of dense 30–35 nm granules, while ∼30 nm fibrils laterally attached to them, form large patches of lamin-associated domains (LADs). This particular surface “epichromatin” can be discerned by specific (H2A+H2B+DNA) conformational antibody at the inner nuclear envelope and around mitotic chromosomes. In order to differentiate the DNA conformation of the peripheral chromatin we applied an Acridine orange (AO) DNA structural test involving RNAse treatment and the addition of AO after acid pre-treatment. MCF-7 cells treated in this way revealed yellow/red patches of LADs attached to a thin green nuclear rim and with mitotic chromosomes outlined in green, topologically corresponding to epichromatin epitope staining by immunofluorescence. Differentially from LADs, the epichromatin was unable to provide metachromatic staining by AO, unless thermally denatured at 94oC. DNA enrichment in GC stretches has been recently reported for immunoprecipitated ∼ 1Kb epichromatin domains. Together these data suggest that certain epichromatin segments assume the relatively hydrophobic DNA A-conformation at the nuclear envelope and surface of mitotic chromosomes, preventing AO side dimerisation. We hypothesize that epichromatin domains form nucleosome superbeads. Hydrophobic interactions stack these superbeads and align them at the nuclear envelope, while repulsing the hydrophilic LADs. The hydrophobicity of epichromatin explains its location at the surface of mitotic chromosomes and its function in mediating chromosome attachment to the restituting nuclear envelope during telophase.
Collapse
Affiliation(s)
| | - Jekabs Krigerts
- a Latvian Biomedical Research & Study Centre , Ratsupites 1, Riga , Latvia.,b Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University , Kalku iela 1, Riga , Latvia
| | - Kristine Salmina
- a Latvian Biomedical Research & Study Centre , Ratsupites 1, Riga , Latvia
| | - Turs Selga
- c Faculty of Biology, University of Latvia , Raina bulvaris 19, Riga , Latvia
| | - Hermanis Sorokins
- b Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University , Kalku iela 1, Riga , Latvia
| | - Talivaldis Freivalds
- d Institute of Kardiology and Regenerative Medicine, University of Latvia , Raina bulvaris 19, Riga , Latvia
| |
Collapse
|
26
|
Abstract
Nuclear pore complexes (NPCs), the channels connecting the nucleus with the cytoplasm, are the largest protein structures of the nuclear envelope. In addition to their role in regulating nucleocytoplasmic transport, increasing evidence shows that these multiprotein structures play central roles in the regulation of gene activity. In light of recent discoveries, NPCs are emerging as scaffolds that mediate the regulation of specific gene sets at the nuclear periphery. The function of NPCs as genome organizers and hubs for transcriptional regulation provides additional evidence that the compartmentalization of genes and transcriptional regulators within the nuclear space is an important mechanism of gene expression regulation.
Collapse
Affiliation(s)
- Maximiliano A D'Angelo
- a Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, NCI-Designated Cancer Center , 10901 N. Torrey Pines Road, La Jolla , CA , United States
| |
Collapse
|
27
|
Genome Organization in and around the Nucleolus. Cells 2019; 8:cells8060579. [PMID: 31212844 PMCID: PMC6628108 DOI: 10.3390/cells8060579] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
The nucleolus is the largest substructure in the nucleus, where ribosome biogenesis takes place, and forms around the nucleolar organizer regions (NORs) that comprise ribosomal RNA (rRNA) genes. Each cell contains hundreds of rRNA genes, which are organized in three distinct chromatin and transcriptional states—silent, inactive and active. Increasing evidence indicates that the role of the nucleolus and rRNA genes goes beyond the control of ribosome biogenesis. Recent results highlighted the nucleolus as a compartment for the location and regulation of repressive genomic domains and, together with the nuclear lamina, represents the hub for the organization of the inactive heterochromatin. In this review, we aim to describe the crosstalk between the nucleolus and the rest of the genome and how distinct rRNA gene chromatin states affect nucleolus structure and are implicated in genome stability, genome architecture, and cell fate decision.
Collapse
|
28
|
Wang Y, Wang H, Zhang Y, Du Z, Si W, Fan S, Qin D, Wang M, Duan Y, Li L, Jiao Y, Li Y, Wang Q, Shi Q, Wu X, Xie W. Reprogramming of Meiotic Chromatin Architecture during Spermatogenesis. Mol Cell 2019; 73:547-561.e6. [PMID: 30735655 DOI: 10.1016/j.molcel.2018.11.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/17/2018] [Accepted: 11/15/2018] [Indexed: 02/05/2023]
Abstract
Chromatin organization undergoes drastic reconfiguration during gametogenesis. However, the molecular reprogramming of three-dimensional chromatin structure in this process remains poorly understood for mammals, including primates. Here, we examined three-dimensional chromatin architecture during spermatogenesis in rhesus monkey using low-input Hi-C. Interestingly, we found that topologically associating domains (TADs) undergo dissolution and reestablishment in spermatogenesis. Strikingly, pachytene spermatocytes, where synapsis occurs, are strongly depleted for TADs despite their active transcription state but uniquely show highly refined local compartments that alternate between transcribing and non-transcribing regions (refined-A/B). Importantly, such chromatin organization is conserved in mouse, where it remains largely intact upon transcription inhibition. Instead, it is attenuated in mutant spermatocytes, where the synaptonemal complex failed to be established. Intriguingly, this is accompanied by the restoration of TADs, suggesting that the synaptonemal complex may restrict TADs and promote local compartments. Thus, these data revealed extensive reprogramming of higher-order meiotic chromatin architecture during mammalian gametogenesis.
Collapse
Affiliation(s)
- Yao Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Suixing Fan
- The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mei Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yanchao Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuying Jiao
- The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Yuanyuan Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Qinghua Shi
- The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Messner M, Ghadge SK, Schuetz T, Seiringer H, Pölzl G, Zaruba MM. High Body Mass Index is Associated with Elevated Blood Levels of Progerin mRNA. Int J Mol Sci 2019; 20:ijms20081976. [PMID: 31018503 PMCID: PMC6515652 DOI: 10.3390/ijms20081976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/06/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is a well-described risk factor resulting in premature aging of the cardiovascular system ultimately limiting longevity. Premature cardiac death and aging is the hallmark of Hutchinson-Gilford syndrome (HGPS), a disease caused by defined mutations in the lamin A gene leading to a shortened prelamin A protein known as progerin. Since small amounts of progerin are expressed in healthy individuals we aimed to investigate the association of Body-Mass-Index (BMI) with respect to expression of progerin mRNA in blood samples of patient with known cardiovascular disease. In this cross-sectional retrospective analysis, 111 patients were consecutively included of which 46 were normal (BMI < 25 kg/m2) and 65 overweight (BMI ≥ 25.0 kg/m2). Blood samples were analyzed for quantitative expression of progerin mRNA. Progerin as well as high-sensitive C-Reactive Protein (hs-CRP) levels were significantly upregulated in the overweight group. Linear regression analyses showed a significant positive correlation of BMI and progerin mRNA (n = 111; r = 0.265, p = 0.005), as well as for hs-CRP (n = 110; r = 0.300, p = 0.001) and for Hb1Ac (n = 110; r = 0.336, p = 0.0003). Our data suggest that BMI strongly correlates with progerin mRNA expression and inflammation. Progerin might contribute to well described accelerated biologic aging in obese individuals.
Collapse
Affiliation(s)
- Moritz Messner
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Santhosh Kumar Ghadge
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Thomas Schuetz
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Herbert Seiringer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Marc-Michael Zaruba
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
30
|
Perepelina K, Klauzen P, Kostareva A, Malashicheva A. Tissue-Specific Influence of Lamin A Mutations on Notch Signaling and Osteogenic Phenotype of Primary Human Mesenchymal Cells. Cells 2019; 8:cells8030266. [PMID: 30901896 PMCID: PMC6468400 DOI: 10.3390/cells8030266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Lamin A is involved in many cellular functions due to its ability to bind chromatin and transcription factors and affect their properties. Mutations of LMNA gene encoding lamin A affect the differentiation capacity of stem cells, but the mechanisms of this influence remain largely unclear. We and others have reported recently an interaction of lamin A with Notch pathway, which is among the main developmental regulators of cellular identity. The aim of this study was to explore the influence of LMNA mutations on the proosteogenic response of human cells of mesenchymal origin and to further explore the interaction of LMNA with Notch pathway. Mutations R527C and R471C in LMNA are associated with mandibuloacral dysplasia type A, a highly penetrant disease with a variety of abnormalities involving bone development. We used lentiviral constructs bearing mutations R527C and R471C and explored its influence on proosteogenic phenotype expression and Notch pathway activity in four types of human cells: umbilical vein endothelial cells (HUVEC), cardiac mesenchymal cells (HCMC), aortic smooth muscle cells (HASMC), and aortic valve interstitial cells (HAVIC). The proosteogenic response of the cells was induced by the addition of either LPS or specific effectors of osteogenic differentiation to the culture medium; phenotype was estimated by the expression of osteogenic markers by qPCR; activation of Notch was assessed by expression of Notch-related and Notch-responsive genes by qPCR and by activation of a luciferase CSL-reporter construct. Overall, we observed different reactivity of all four cell lineages to the stimulation with either LPS or osteogenic factors. R527C had a stronger influence on the proosteogenic phenotype. We observed the inhibiting action of LMNA R527C on osteogenic differentiation in HCMC in the presence of activated Notch signaling, while LMNA R527C caused the activation of osteogenic differentiation in HAVIC in the presence of activated Notch signaling. Our results suggest that the effect of a LMNA mutation is strongly dependent not only on a specific mutation itself, but also might be influenced by the intrinsic molecular context of a cell lineage.
Collapse
Affiliation(s)
- Kseniya Perepelina
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
- St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
| | - Polina Klauzen
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
- St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| | - Anna Kostareva
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
- St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
| | - Anna Malashicheva
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
- St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| |
Collapse
|
31
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
32
|
Cejas RB, Lorenz V, Garay YC, Irazoqui FJ. Biosynthesis of O-N-acetylgalactosamine glycans in the human cell nucleus. J Biol Chem 2019; 294:2997-3011. [PMID: 30591584 PMCID: PMC6398145 DOI: 10.1074/jbc.ra118.005524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Biological functions of nuclear proteins are regulated by post-translational modifications (PTMs) that modulate gene expression and cellular physiology. However, the role of O-linked glycosylation (O-GalNAc) as a PTM of nuclear proteins in the human cell has not been previously reported. Here, we examined in detail the initiation of O-GalNAc glycan biosynthesis, representing a novel PTM of nuclear proteins in the nucleus of human cells, with an emphasis on HeLa cells. Using soluble nuclear fractions from purified nuclei, enzymatic assays, fluorescence microscopy, affinity chromatography, MS, and FRET analyses, we identified all factors required for biosynthesis of O-GalNAc glycans in nuclei: the donor substrate (UDP-GalNAc), nuclear polypeptide GalNAc -transferase activity, and a GalNAc transferase (polypeptide GalNAc-T3). Moreover, we identified O-GalNAc glycosylated proteins in the nucleus and present solid evidence for O-GalNAc glycan synthesis in this organelle. The demonstration of O-GalNAc glycosylation of nuclear proteins in mammalian cells reported here has important implications for cell and chemical biology.
Collapse
Affiliation(s)
- Romina B Cejas
- From the Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Virginia Lorenz
- From the Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Yohana C Garay
- From the Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fernando J Irazoqui
- From the Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
33
|
Chandran S, Suggs JA, Wang BJ, Han A, Bhide S, Cryderman DE, Moore SA, Bernstein SI, Wallrath LL, Melkani GC. Suppression of myopathic lamin mutations by muscle-specific activation of AMPK and modulation of downstream signaling. Hum Mol Genet 2019; 28:351-371. [PMID: 30239736 PMCID: PMC6337691 DOI: 10.1093/hmg/ddy332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
Laminopathies are diseases caused by dominant mutations in the human LMNA gene encoding A-type lamins. Lamins are intermediate filaments that line the inner nuclear membrane, provide structural support for the nucleus and regulate gene expression. Drosophila melanogaster models of skeletal muscle laminopathies were developed to investigate the pathological defects caused by mutant lamins and identify potential therapeutic targets. Human disease-causing LMNA mutations were modeled in Drosophila Lamin C (LamC) and expressed in indirect flight muscle (IFM). IFM-specific expression of mutant, but not wild-type LamC, caused held-up wings indicative of myofibrillar defects. Analyses of the muscles revealed cytoplasmic aggregates of nuclear envelope (NE) proteins, nuclear and mitochondrial dysmorphology, myofibrillar disorganization and up-regulation of the autophagy cargo receptor p62. We hypothesized that the cytoplasmic aggregates of NE proteins trigger signaling pathways that alter cellular homeostasis, causing muscle dysfunction. In support of this hypothesis, transcriptomics data from human muscle biopsy tissue revealed misregulation of the AMP-activated protein kinase (AMPK)/4E-binding protein 1 (4E-BP1)/autophagy/proteostatic pathways. Ribosomal protein S6K (S6K) messenger RNA (mRNA) levels were increased and AMPKα and mRNAs encoding downstream targets were decreased in muscles expressing mutant LMNA relative controls. The Drosophila laminopathy models were used to determine if altering the levels of these factors modulated muscle pathology. Muscle-specific over-expression of AMPKα and down-stream targets 4E-BP, Forkhead box transcription factors O (Foxo) and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), as well as inhibition of S6K, suppressed the held-up wing phenotype, myofibrillar defects and LamC aggregation. These findings provide novel insights on mutant LMNA-based disease mechanisms and identify potential targets for drug therapy.
Collapse
Affiliation(s)
- Sahaana Chandran
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Jennifer A Suggs
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Bingyan J Wang
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Andrew Han
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Shruti Bhide
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Diane E Cryderman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Lori L Wallrath
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Girish C Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| |
Collapse
|
34
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
35
|
Maass KK, Rosing F, Ronchi P, Willmund KV, Devens F, Hergt M, Herrmann H, Lichter P, Ernst A. Altered nuclear envelope structure and proteasome function of micronuclei. Exp Cell Res 2018; 371:353-363. [PMID: 30149001 DOI: 10.1016/j.yexcr.2018.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022]
Abstract
Micronuclei are extra-nuclear bodies containing whole chromosomes that were not incorporated into the nucleus after cell division or damaged chromosome fragments. Even though the link between micronuclei and DNA damage is described for a long time, little is known about the functional organization of micronuclei and their contribution to tumorigenesis. We showed fusions between micronuclear membranes and lysosomes by electron microscopy and linked lysosome function to DNA damage levels in micronuclei. In addition, micronuclei drastically differ from primary nuclei in nuclear envelope composition, with a significant increase in the relative amount of nuclear envelope proteins LBR and emerin and a decrease in nuclear pore proteins. Strikingly, micronuclei lack active proteasomes, as the processing subunits and other factors of the ubiquitin proteasome system. Moreover, micronuclear chromatin shows a higher degree of compaction as compared to primary nuclei. The specific aberrations identified in micronuclei and the potential functional consequences of these defects may contribute to the role of micronuclei in catastrophic genomic rearrangements.
Collapse
Affiliation(s)
- Kendra K Maass
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Fabian Rosing
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paolo Ronchi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Karolin V Willmund
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frauke Devens
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michaela Hergt
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurélie Ernst
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Abstract
Pancreatic cancer is an aggressive and intractable malignancy with high mortality. This is due in part to a high resistance to chemotherapeutics and radiation treatment conferred by diverse regulatory mechanisms. Among these, constituents of the nuclear envelope play a significant role in regulating oncogenesis and pancreatic tumor biology, and this review focuses on three specific components and their roles in cancer. The LINC complex is a nuclear envelope component formed by proteins with SUN and KASH domains that interact in the periplasmic space of the nuclear envelope. These interactions functionally and structurally couple the cytoskeleton to chromatin and facilitates gene regulation informed by cytoplasmic activity. Furthermore, cancer cell invasiveness is impacted by LINC complex biology. The nuclear lamina is adjacent to the inner nuclear membrane of the nuclear envelope and can actively regulate chromatin in addition to providing structural integrity to the nucleus. A disrupted lamina can impart biophysical compromise to nuclear structure and function, as well as form dysfunctional micronuclei that may lead to genomic instability and chromothripsis. In close relationship to the nuclear lamina is the nuclear pore complex, a large megadalton structure that spans both outer and inner membranes of the nuclear envelope. The nuclear pore complex mediates bidirectional nucleocytoplasmic transport and is comprised of specialized proteins called nucleoporins that are overexpressed in many cancers and are diagnostic markers for oncogenesis. Furthermore, recent demonstration of gene regulatory functions for discrete nucleoporins independent of their nuclear trafficking function suggests that these proteins may contribute more to malignant phenotypes beyond serving as biomarkers. The nuclear envelope is thus a complex, intricate regulator of cell signaling, with roles in pancreatic tumorigenesis and general oncogenic transformation.
Collapse
Affiliation(s)
| | - Randolph S. Faustino
- Genetics and Genomics, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
37
|
Messner M, Ghadge SK, Goetsch V, Wimmer A, Dörler J, Pölzl G, Zaruba MM. Upregulation of the aging related LMNA splice variant progerin in dilated cardiomyopathy. PLoS One 2018; 13:e0196739. [PMID: 29702688 PMCID: PMC5922532 DOI: 10.1371/journal.pone.0196739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
Background Mutations in the LMNA gene are a common cause (6–8%) of dilated cardiomyopathy (DCM) leading to heart failure, a growing health care problem worldwide. The premature aging disease Hutchinson-Gilford syndrome (HGPS) is also caused by defined mutations in the LMNA gene resulting in activation of a cryptic splice donor site leading to a defective truncated prelamin A protein called progerin. Low levels of progerin are expressed in healthy individuals associated with ageing. Here, we aimed to address the role of progerin in dilated cardiomyopathy. Methods and results mRNA expression of progerin was analyzed in heart tissue of DCM (n = 15) and non-failing hearts (n = 10) as control and in blood samples from patients with DCM (n = 56) and healthy controls (n = 10). Sequencing confirmed the expression of progerin mRNA in the human heart. Progerin mRNA levels derived from DCM hearts were significantly upregulated compared to controls (1.27 ± 0.42 vs. 0.81 ± 0.24; p = 0.005). In contrast, progerin mRNA levels in whole blood cells were not significantly different in DCM patients compared to controls. Linear regression analyses revealed that progerin mRNA in the heart is significantly negatively correlated to ejection fraction (r = -0.567, p = 0.003) and positively correlated to left ventricular enddiastolic diameter (r = 0.551, p = 0.004) but not with age of the heart per se. Progerin mRNA levels were not influenced by inflammation in DCM hearts. Immunohistochemistry and Immunofluorescence analysis confirmed increased expression of progerin protein in cell nuclei of DCM hearts associated with increased TUNEL+ apoptotic cells. Conclusion Our data suggest that progerin is upregulated in human DCM hearts and strongly correlates with left ventricular remodeling. Progerin might be involved in progression of heart failure and myocardial aging.
Collapse
Affiliation(s)
- Moritz Messner
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Santhosh Kumar Ghadge
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Valentina Goetsch
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Andreas Wimmer
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Jakob Dörler
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Gerhard Pölzl
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Marc-Michael Zaruba
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
- * E-mail:
| |
Collapse
|
38
|
Wang S, Stoops E, Cp U, Markus B, Reuveny A, Ordan E, Volk T. Mechanotransduction via the LINC complex regulates DNA replication in myonuclei. J Cell Biol 2018; 217:2005-2018. [PMID: 29650775 PMCID: PMC5987719 DOI: 10.1083/jcb.201708137] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/08/2018] [Accepted: 03/27/2018] [Indexed: 12/26/2022] Open
Abstract
Nuclear mechanotransduction has been implicated in the control of chromatin organization and gene expression. Wang et al. show that, in Drosophila myofibers, the LINC complex is required for the regulation of DNA replication and synchronized cell-cycle progression in myonuclei. Nuclear mechanotransduction has been implicated in the control of chromatin organization; however, its impact on functional contractile myofibers is unclear. We found that deleting components of the linker of nucleoskeleton and cytoskeleton (LINC) complex in Drosophila melanogaster larval muscles abolishes the controlled and synchronized DNA endoreplication, typical of nuclei across myofibers, resulting in increased and variable DNA content in myonuclei of individual myofibers. Moreover, perturbation of LINC-independent mechanical input after knockdown of β-Integrin in larval muscles similarly led to increased DNA content in myonuclei. Genome-wide RNA-polymerase II occupancy analysis in myofibers of the LINC mutant klar indicated an altered binding profile, including a significant decrease in the chromatin regulator barrier-to-autointegration factor (BAF) and the contractile regulator Troponin C. Importantly, muscle-specific knockdown of BAF led to increased DNA content in myonuclei, phenocopying the LINC mutant phenotype. We propose that mechanical stimuli transmitted via the LINC complex act via BAF to regulate synchronized cell-cycle progression of myonuclei across single myofibers.
Collapse
Affiliation(s)
- Shuoshuo Wang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth Stoops
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Unnikannan Cp
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Barak Markus
- G-INCPM/Mantoux Institute for Bioinformatics, Weizmann Institute of Science, Rehovot, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
39
|
Otsuka S, Ellenberg J. Mechanisms of nuclear pore complex assembly - two different ways of building one molecular machine. FEBS Lett 2018; 592:475-488. [PMID: 29119545 PMCID: PMC6220763 DOI: 10.1002/1873-3468.12905] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
Abstract
The nuclear pore complex (NPC) mediates all macromolecular transport across the nuclear envelope. In higher eukaryotes that have an open mitosis, NPCs assemble at two points in the cell cycle: during nuclear assembly in late mitosis and during nuclear growth in interphase. How the NPC, the largest nonpolymeric protein complex in eukaryotic cells, self-assembles inside cells remained unclear. Recent studies have started to uncover the assembly process, and evidence has been accumulating that postmitotic and interphase NPC assembly use fundamentally different mechanisms; the duration, structural intermediates, and regulation by molecular players are different and different types of membrane deformation are involved. In this Review, we summarize the current understanding of these two modes of NPC assembly and discuss the structural and regulatory steps that might drive the assembly processes. We furthermore integrate understanding of NPC assembly with the mechanisms for rapid nuclear growth in embryos and, finally, speculate on the evolutionary origin of the NPC implied by the presence of two distinct assembly mechanisms.
Collapse
Affiliation(s)
- Shotaro Otsuka
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Jan Ellenberg
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
40
|
Zhao PA, Rivera-Mulia JC, Gilbert DM. Replication Domains: Genome Compartmentalization into Functional Replication Units. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:229-257. [DOI: 10.1007/978-981-10-6955-0_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Misale MS, Witek Janusek L, Tell D, Mathews HL. Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction. Brain Behav Immun 2018; 67:279-289. [PMID: 28911980 PMCID: PMC5696065 DOI: 10.1016/j.bbi.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022] Open
Abstract
It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells.
Collapse
Affiliation(s)
- Michael S Misale
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Linda Witek Janusek
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Dina Tell
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Herbert L Mathews
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States.
| |
Collapse
|
42
|
Szczesny SE, Mauck RL. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. J Biomech Eng 2017; 139:2592356. [PMID: 27918797 DOI: 10.1115/1.4035350] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104;Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
43
|
Abstract
Dynamic reshuffling of the chromatin landscape is a recurrent theme orchestrated in many, if not all, plant developmental transitions and adaptive responses. Spatiotemporal variations of the chromatin properties on regulatory genes and on structural genomic elements trigger the establishment of distinct transcriptional contexts, which in some instances can epigenetically be inherited. Studies on plant cell plasticity during the differentiation of stem cells, including gametogenesis, or the specialization of vegetative cells in various organs, as well as the investigation of allele-specific gene regulation have long been impaired by technical challenges in generating specific chromatin profiles in complex or hardly accessible cell populations. Recent advances in increasing the sensitivity of genome-enabled technologies and in the isolation of specific cell types have allowed for overcoming such limitations. These developments hint at multilevel regulatory events ranging from nucleosome accessibility and composition to higher order chromatin organization and genome topology. Uncovering the large extent to which chromatin dynamics and epigenetic processes influence gene expression is therefore not surprisingly revolutionizing current views on plant molecular genetics and (epi)genomics as well as their perspectives in eco-evolutionary biology. Here, we introduce current methodologies to probe genome-wide chromatin variations for which protocols are detailed in this book chapter, with an emphasis on the plant model species Arabidopsis.
Collapse
|
44
|
Perepelina K, Dmitrieva R, Ignatieva E, Borodkina A, Kostareva A, Malashicheva A. Lamin A/C mutation associated with lipodystrophy influences adipogenic differentiation of stem cells through interaction with Notch signaling. Biochem Cell Biol 2017; 96:342-348. [PMID: 29040816 DOI: 10.1139/bcb-2017-0210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lamins A and C are involved in many cellular functions, owing to its ability to bind chromatin and transcription factors and affect their properties. Mutations of the LMNA gene encoding lamin A/C affect differentiation capacity of stem cells. However, the signaling pathways involved in interactions with lamins during cellular differentiation remain unclear. Lipodystrophy associated with LMNA mutation R482L causes loss of fat tissue. In this study we investigated the role of LMNA mutation R482L in modulating Notch signaling activity in the adipogenic differentiation of mesenchymal stem cells. Notch was activated using lentiviral Notch intracellular domain. Activation of Notch was estimated through the expression of Notch-responsive genes by qPCR and by activation of a luciferase CSL-reporter construct. The effect of LMNA mutation on Notch activation and adipogenic differentiation was analyzed in cells bearing lentiviral LMNA WT or LMNA R482L. We show that, when Notch is activated, LMNA R482L contributes to down-regulation of Notch activation in undifferentiated and differentiated cells, and decreases adipogenic differentiation. Thus, lamin A/C interacts with Notch signaling, thereby influencing cellular differentiation, and point mutation in LMNA could halt this interaction.
Collapse
Affiliation(s)
- K Perepelina
- e Almazov National Medical Research Centre, 2 Akkuratova street, Saint-Petersburg 197341, Russia.,f Saint-Petersburg State University, 7/9, Universitetskaya nab., Saint-Petersburg, 199034, Russia
| | - R Dmitrieva
- a Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - E Ignatieva
- a Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A Borodkina
- c Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., Saint-Petersburg, 194064, Russia
| | - A Kostareva
- a Almazov National Medical Research Centre, Saint-Petersburg, Russia.,g ITMO University, Institute of Translational Medicine, 49 Kronverkskiy ave., Saint-Petersburg, 197101, Russia
| | - A Malashicheva
- a Almazov National Medical Research Centre, Saint-Petersburg, Russia.,b Saint-Petersburg State University, Saint-Petersburg, Russia.,d ITMO University, Institute of Translational Medicine, Saint-Petersburg, Russia
| |
Collapse
|
45
|
García-Nieto PE, Schwartz EK, King DA, Paulsen J, Collas P, Herrera RE, Morrison AJ. Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO J 2017; 36:2829-2843. [PMID: 28814448 PMCID: PMC5623849 DOI: 10.15252/embj.201796717] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
The development of many sporadic cancers is directly initiated by carcinogen exposure. Carcinogens induce malignancies by creating DNA lesions (i.e., adducts) that can result in mutations if left unrepaired. Despite this knowledge, there has been remarkably little investigation into the regulation of susceptibility to acquire DNA lesions. In this study, we present the first quantitative human genome-wide map of DNA lesions induced by ultraviolet (UV) radiation, the ubiquitous carcinogen in sunlight that causes skin cancer. Remarkably, the pattern of carcinogen susceptibility across the genome of primary cells significantly reflects mutation frequency in malignant melanoma. Surprisingly, DNase-accessible euchromatin is protected from UV, while lamina-associated heterochromatin at the nuclear periphery is vulnerable. Many cancer driver genes have an intrinsic increase in carcinogen susceptibility, including the BRAF oncogene that has the highest mutation frequency in melanoma. These findings provide a genome-wide snapshot of DNA injuries at the earliest stage of carcinogenesis. Furthermore, they identify carcinogen susceptibility as an origin of genome instability that is regulated by nuclear architecture and mirrors mutagenesis in cancer.
Collapse
Affiliation(s)
| | - Erin K Schwartz
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Devin A King
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jonas Paulsen
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
46
|
Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 2017; 18:643-658. [PMID: 28804139 DOI: 10.1038/nrg.2017.57] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chromatin, the template for epigenetic regulation, is a highly dynamic entity that is constantly reshaped during early development and differentiation. Epigenetic modification of chromatin provides the necessary plasticity for cells to respond to environmental and positional cues, and enables the maintenance of acquired information without changing the DNA sequence. The mechanisms involve, among others, chemical modifications of chromatin, changes in chromatin constituents and reconfiguration of chromatin interactions and 3D structure. New advances in genome-wide technologies have paved the way towards an integrative view of epigenome dynamics during cell state transitions, and recent findings in embryonic stem cells highlight how the interplay between different epigenetic layers reshapes the transcriptional landscape.
Collapse
Affiliation(s)
- Yaser Atlasi
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
47
|
Drozdz MM, Jiang H, Pytowski L, Grovenor C, Vaux DJ. Formation of a nucleoplasmic reticulum requires de novo assembly of nascent phospholipids and shows preferential incorporation of nascent lamins. Sci Rep 2017; 7:7454. [PMID: 28785031 PMCID: PMC5547041 DOI: 10.1038/s41598-017-07614-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/29/2017] [Indexed: 01/29/2023] Open
Abstract
Structure of interphase cell nuclei remains dynamic and can undergo various changes of shape and organisation, in health and disease. The double-membraned envelope that separates nuclear genetic material from the rest of the cell frequently includes deep, branching tubular invaginations that form a dynamic nucleoplasmic reticulum (NR). This study addresses mechanisms by which NR can form in interphase nuclei. We present a combination of Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) approach and light microscopy techniques to follow formation of NR by using pulse-chase experiments to examine protein and lipid delivery to nascent NR in cultured cells. Lamina protein incorporation was assessed using precursor accumulation (for lamin A) or a MAPLE3 photoconvertible tag (for lamin B1) and membrane phospholipid incorporation using stable isotope labelling with deuterated precursors followed by high resolution NanoSIMS. In all three cases, nascent molecules were selectively incorporated into newly forming NR tubules; thus strongly suggesting that NR formation is a regulated process involving a focal assembly machine, rather than simple physical perturbation of a pre-existing nuclear envelope.
Collapse
Affiliation(s)
- Marek M Drozdz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Lior Pytowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Chris Grovenor
- Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom
| | - David J Vaux
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
48
|
Abstract
Nuclear lamins are components of the peripheral lamina that define the mechanical properties of nuclei and tether heterochromatin to the periphery. A-type lamins localize also to the nuclear interior, but the regulation and specific functions of this nucleoplasmic lamin pool are poorly understood. In this Commentary, we summarize known pathways that are potentially involved in the localization and dynamic behavior of intranuclear lamins, including their post-translational modifications and interactions with nucleoplasmic proteins, such as lamina-associated polypeptide 2α (LAP2α; encoded by TMPO). In addition, new data suggest that lamins in the nuclear interior have an important role in chromatin regulation and gene expression through dynamic binding to both hetero- and euchromatic genomic regions and promoter subdomains, thereby affecting epigenetic pathways and chromatin accessibility. Nucleoplasmic lamins also have a role in spatial chromatin organization and may be involved in mechanosignaling. In view of this newly emerging concept, we propose that the previously reported cellular phenotypes in lamin-linked diseases are, at least in part, rooted in an impaired regulation and/or function of the nucleoplasmic lamin A/C pool.
Collapse
Affiliation(s)
- Nana Naetar
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Simona Ferraioli
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Roland Foisner
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| |
Collapse
|
49
|
Douet J, Corujo D, Malinverni R, Renauld J, Sansoni V, Posavec Marjanović M, Cantariño N, Valero V, Mongelard F, Bouvet P, Imhof A, Thiry M, Buschbeck M. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture. J Cell Sci 2017; 130:1570-1582. [PMID: 28283545 DOI: 10.1242/jcs.199216] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
Genetic loss-of-function studies on development, cancer and somatic cell reprogramming have suggested that the group of macroH2A histone variants might function through stabilizing the differentiated state by a yet unknown mechanism. Here, we present results demonstrating that macroH2A variants have a major function in maintaining nuclear organization and heterochromatin architecture. Specifically, we find that a substantial amount of macroH2A is associated with heterochromatic repeat sequences. We further identify macroH2A on sites of interstitial heterochromatin decorated by histone H3 trimethylated on K9 (H3K9me3). Loss of macroH2A leads to major defects in nuclear organization, including reduced nuclear circularity, disruption of nucleoli and a global loss of dense heterochromatin. Domains formed by DNA repeat sequences are disorganized, expanded and fragmented, and mildly re-expressed when depleted of macroH2A. At the molecular level, we find that macroH2A is required for the interaction of repeat sequences with the nucleostructural protein lamin B1. Taken together, our results argue that a major function of macroH2A histone variants is to link nucleosome composition to higher-order chromatin architecture.
Collapse
Affiliation(s)
- Julien Douet
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona 08916, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias and Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, Badalona 08916, Spain
| | - David Corujo
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona 08916, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias and Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, Badalona 08916, Spain
| | - Roberto Malinverni
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona 08916, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias and Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, Badalona 08916, Spain
| | - Justine Renauld
- Cell and tissue biology unit, GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | - Viola Sansoni
- BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Großhaderner Straße 9, Planegg-Martinsried 82152, Germany
| | - Melanija Posavec Marjanović
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona 08916, Spain
| | - Neus Cantariño
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona 08916, Spain
| | - Vanesa Valero
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona 08916, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias and Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, Badalona 08916, Spain
| | - Fabien Mongelard
- Université de Lyon, Ecole normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS5286, Centre Léon Bérard, 69008 Lyon, France
| | - Philippe Bouvet
- Université de Lyon, Ecole normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS5286, Centre Léon Bérard, 69008 Lyon, France
| | - Axel Imhof
- BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Großhaderner Straße 9, Planegg-Martinsried 82152, Germany
| | - Marc Thiry
- Cell and tissue biology unit, GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona 08916, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias and Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, Badalona 08916, Spain
| |
Collapse
|
50
|
Abstract
SUMMARYThe nucleoskeleton is an important structural feature of the metazoan nucleus and is involved in the regulation of genome expression and maintenance. The nuclear lamins are intermediate filament proteins that form a peripheral nucleoskeleton in concert with other lamin-associated proteins. Several other proteins normally found in the cytoskeleton have also been identified in the nucleus, but, as will be discussed here, their roles in forming a nucleoskeleton have not been elucidated. Nevertheless, mutations in lamins and lamin-associated proteins cause a spectrum of diseases, making them interesting targets for future research.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|