1
|
Cornwell AB, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. GeroScience 2024; 46:4827-4854. [PMID: 38878153 PMCID: PMC11336136 DOI: 10.1007/s11357-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- MURTI Centre and Department of Biotechnology, School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, Andhra Pradesh, 530045, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd, Batavia, NY, 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
2
|
Akiki P, Delamotte P, Montagne J. Lipid Metabolism in Relation to Carbohydrate Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39192070 DOI: 10.1007/5584_2024_821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Carbohydrates and lipids integrate into a complex metabolic network that is essential to maintain homeostasis. In insects, as in most metazoans, dietary carbohydrates are taken up as monosaccharides whose excess is toxic, even at relatively low concentrations. To cope with this toxicity, monosaccharides are stored either as glycogen or neutral lipids, the latter constituting a quasi-unlimited energy store. Breakdown of these stores in response to energy demand depends on insect species and on several physiological parameters. In this chapter, we review the multiple metabolic pathways and strategies linking carbohydrates and lipids that insects utilize to respond to nutrient availability, food scarcity or physiological activities.
Collapse
Affiliation(s)
- Perla Akiki
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Pei X, Bai T, Luo Y, Zhang Z, Li S, Fan Y, Liu TX. Acetyl coenzyme A carboxylase modulates lipogenesis and sugar homeostasis in Blattella germanica. INSECT SCIENCE 2024; 31:387-404. [PMID: 37486126 DOI: 10.1111/1744-7917.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.
Collapse
Affiliation(s)
- Xiaojin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Tiantian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Zhanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Yongliang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Jiang S, Zhang G, Miao J, Wu D, Li X, Li J, Lu J, Gun S. Transcriptome and Metabolome Analyses Provide Insight into the Glucose-Induced Adipogenesis in Porcine Adipocytes. Curr Issues Mol Biol 2024; 46:2027-2042. [PMID: 38534747 DOI: 10.3390/cimb46030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Glucose is a major energy substrate for porcine adipocytes and also serves as a regulatory signal for adipogenesis and lipid metabolism. In this study, we combined transcriptome and metabolome analyses to reveal the underlying regulatory mechanisms of high glucose (HG) on adipogenesis by comparing differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) identified in porcine adipocytes. Results showed that HG (20 mmol/L) significantly increased fat accumulation in porcine adipocytes compared to low glucose (LG, 5 mmol/L). A total of 843 DEGs and 365 DAMs were identified. Functional enrichment analyses of DEGs found that multiple pathways were related to adipogenesis, lipid metabolism, and immune-inflammatory responses. PPARγ, C/EBPα, ChREBP, and FOS were identified as the key hub genes through module 3 analysis, and PPARγ acted as a central regulator by linking genes involved in lipid metabolism and immune-inflammatory responses. Gene-metabolite networks found that PPARγ-13-HODE was the most important interaction relationship. These results revealed that PPARγ could mediate the cross-talk between adipogenesis and the immune-inflammatory response during adipocyte maturation. This work provides a comprehensive view of the regulatory mechanisms of glucose on adipogenesis in porcine adipocytes.
Collapse
Affiliation(s)
- Susu Jiang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Guohua Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jian Miao
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Dianhu Wu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Ximei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jiawei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jianxiong Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Hu AJ, Li W, Dinh C, Zhang Y, Hu JK, Daniele SG, Hou X, Yang Z, Asara JM, Hu GF, Farmer SR, Hu MG. CDK6 inhibits de novo lipogenesis in white adipose tissues but not in the liver. Nat Commun 2024; 15:1091. [PMID: 38316780 PMCID: PMC10844593 DOI: 10.1038/s41467-024-45294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Increased de novo lipogenesis (DNL) in white adipose tissue is associated with insulin sensitivity. Under both Normal-Chow-Diet and High-Fat-Diet, mice expressing a kinase inactive Cyclin-dependent kinase 6 (Cdk6) allele (K43M) display an increase in DNL in visceral white adipose tissues (VAT) as compared to wild type mice (WT), accompanied by markedly increased lipogenic transcriptional factor Carbohydrate-responsive element-binding proteins (CHREBP) and lipogenic enzymes in VAT but not in the liver. Treatment of WT mice under HFD with a CDK6 inhibitor recapitulates the phenotypes observed in K43M mice. Mechanistically, CDK6 phosphorylates AMP-activated protein kinase, leading to phosphorylation and inactivation of acetyl-CoA carboxylase, a key enzyme in DNL. CDK6 also phosphorylates CHREBP thus preventing its entry into the nucleus. Ablation of runt related transcription factor 1 in K43M mature adipocytes reverses most of the phenotypes observed in K43M mice. These results demonstrate a role of CDK6 in DNL and a strategy to alleviate metabolic syndromes.
Collapse
Affiliation(s)
- Alexander J Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Wei Li
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Calvin Dinh
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Yongzhao Zhang
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Jamie K Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- University of Miami Miller School of Medicine, Dermatology. 1295 NW 14th St. University of Miami Hospital South Bldg. Suites K-M, Miami, FL, USA
| | - Stefano G Daniele
- Yale School of Medicine, MD-PhD program, 333 Cedar St, New Haven, CT, USA
| | - Xiaoli Hou
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Zhejiang Chinese Medical University, Center for Analysis and Testing, 548 Bin-Wen Road, Hangzhou, PR China
| | - Zixuan Yang
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- TUFTS University Friedman School of Nutrition Science and Policy, TUFTS University, 150 Harrison Avenue, MA, Boston, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Guo-Fu Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Stephen R Farmer
- Boston University School of Medicine, Department of Biochemistry, 72E Concord St, Boston, MA, USA
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
6
|
Bingham MA, Neijman K, Yang CR, Aponte A, Mak A, Kikuchi H, Jung HJ, Poll BG, Raghuram V, Park E, Chou CL, Chen L, Leipziger J, Knepper MA, Dona M. Circadian gene expression in mouse renal proximal tubule. Am J Physiol Renal Physiol 2023; 324:F301-F314. [PMID: 36727945 PMCID: PMC9988533 DOI: 10.1152/ajprenal.00231.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Circadian variability in kidney function is well recognized but is often ignored as a potential confounding variable in physiological experiments. Here, we have created a data resource consisting of expression levels for mRNA transcripts in microdissected proximal tubule segments from mice as a function of the time of day. Small-sample RNA sequencing was applied to microdissected S1 proximal convoluted tubules and S2 proximal straight tubules. After stringent filtering, the data were analyzed using JTK-Cycle to detect periodicity. The data set is provided as a user-friendly webpage at https://esbl.nhlbi.nih.gov/Databases/Circadian-Prox2/. In proximal convoluted tubules, 234 transcripts varied in a circadian manner (4.0% of the total). In proximal straight tubules, 334 transcripts varied in a circadian manner (5.3%). Transcripts previously known to be associated with corticosteroid action and with increased flow were found to be overrepresented among circadian transcripts peaking during the "dark" portion of the day [zeitgeber time (ZT)14-22], corresponding to peak levels of corticosterone and glomerular filtration rate in mice. To ask whether there is a time-of-day dependence of protein abundances in the kidney, we carried out LC-MS/MS-based proteomics in whole mouse kidneys at ZT12 and ZT0. The full data set (n = 6,546 proteins) is available at https://esbl.nhlbi.nih.gov/Databases/Circadian-Proteome/. Overall, 293 proteins were differentially expressed between ZT12 and ZT0 (197 proteins greater at ZT12 and 96 proteins greater at ZT0). Among the regulated proteins, only nine proteins were found to be periodic in the RNA-sequencing analysis, suggesting a high level of posttranscriptional regulation of protein abundances.NEW & NOTEWORTHY Circadian variation in gene expression can be an important determinant in the regulation of kidney function. The authors used RNA-sequencing transcriptomics and LC-MS/MS-based proteomics to identify gene products expressed in a periodic manner. The data were used to construct user-friendly web resources.
Collapse
Affiliation(s)
- Molly A Bingham
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kim Neijman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chin-Rang Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angel Aponte
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angela Mak
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hiroaki Kikuchi
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Brian G Poll
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Euijung Park
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lihe Chen
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mark A Knepper
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Margo Dona
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Ratnaparkhi A, Sudhakaran J. Neural pathways in nutrient sensing and insulin signaling. Front Physiol 2022; 13:1002183. [PMID: 36439265 PMCID: PMC9691681 DOI: 10.3389/fphys.2022.1002183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/18/2022] [Indexed: 10/29/2023] Open
Abstract
Nutrient sensing and metabolic homeostasis play an important role in the proper growth and development of an organism, and also in the energy intensive process of reproduction. Signals in response to nutritional and metabolic status is received and integrated by the brain to ensure homeostasis. In Drosophila, the fat body is one of the key organs involved in energy and nutrient sensing, storage and utilization. It also relays the nutritional status of the animal to the brain, activating specific circuits which modulate the synthesis and release of insulin-like peptides to regulate metabolism. Here, we review the molecular and cellular mechanisms involved in nutrient sensing with an emphasis on the neural pathways that modulate this process and discuss some of the open questions that need to be addressed.
Collapse
Affiliation(s)
- Anuradha Ratnaparkhi
- Department of Developmental Biology, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Jyothish Sudhakaran
- Department of Developmental Biology, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
8
|
Malita A, Kubrak O, Koyama T, Ahrentløv N, Texada MJ, Nagy S, Halberg KV, Rewitz K. A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat Metab 2022; 4:1532-1550. [PMID: 36344765 PMCID: PMC9684077 DOI: 10.1038/s42255-022-00672-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones. Gut-derived NPF acts on glucagon-like adipokinetic hormone (AKH) signalling to induce sugar satiety and increase consumption of protein-rich food, and on adipose tissue to promote storage of ingested nutrients. Suppression of NPF-mediated gut signalling leads to overconsumption of dietary sugar while simultaneously decreasing intake of protein-rich yeast. Furthermore, gut-derived NPF has a female-specific function in promoting consumption of protein-containing food in mated females. Together, our findings suggest that gut NPF-to-AKH signalling modulates specific appetites and regulates food choice to ensure homeostatic consumption of nutrients, providing insight into the hormonal mechanisms that underlie nutrient-specific hungers.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olga Kubrak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadja Ahrentløv
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Havula E, Ghazanfar S, Lamichane N, Francis D, Hasygar K, Liu Y, Alton LA, Johnstone J, Needham EJ, Pulpitel T, Clark T, Niranjan HN, Shang V, Tong V, Jiwnani N, Audia G, Alves AN, Sylow L, Mirth C, Neely GG, Yang J, Hietakangas V, Simpson SJ, Senior AM. Genetic variation of macronutrient tolerance in Drosophila melanogaster. Nat Commun 2022; 13:1637. [PMID: 35347148 PMCID: PMC8960806 DOI: 10.1038/s41467-022-29183-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Carbohydrates, proteins and lipids are essential nutrients to all animals; however, closely related species, populations, and individuals can display dramatic variation in diet. Here we explore the variation in macronutrient tolerance in Drosophila melanogaster using the Drosophila genetic reference panel, a collection of ~200 strains derived from a single natural population. Our study demonstrates that D. melanogaster, often considered a "dietary generalist", displays marked genetic variation in survival on different diets, notably on high-sugar diet. Our genetic analysis and functional validation identify several regulators of macronutrient tolerance, including CG10960/GLUT8, Pkn and Eip75B. We also demonstrate a role for the JNK pathway in sugar tolerance and de novo lipogenesis. Finally, we report a role for tailless, a conserved orphan nuclear hormone receptor, in regulating sugar metabolism via insulin-like peptide secretion and sugar-responsive CCHamide-2 expression. Our study provides support for the use of nutrigenomics in the development of personalized nutrition.
Collapse
Affiliation(s)
- E Havula
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - S Ghazanfar
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - N Lamichane
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - D Francis
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - K Hasygar
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Y Liu
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - L A Alton
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - J Johnstone
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - E J Needham
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Pulpitel
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Clark
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - H N Niranjan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Shang
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Tong
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - N Jiwnani
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - G Audia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - A N Alves
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - L Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - C Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - G G Neely
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - J Yang
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - S J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - A M Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
10
|
Millington JW, Biswas P, Chao C, Xia YH, Wat LW, Brownrigg GP, Sun Z, Basner-Collins PJ, Klein Geltink RI, Rideout EJ. A low-sugar diet enhances Drosophila body size in males and females via sex-specific mechanisms. Development 2022; 149:dev200491. [PMID: 35195254 PMCID: PMC10656461 DOI: 10.1242/dev.200491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
In Drosophila, changes to dietary protein elicit different body size responses between the sexes. Whether these differential body size effects extend to other macronutrients remains unclear. Here, we show that lowering dietary sugar (0S diet) enhanced body size in male and female larvae. Despite an equivalent phenotypic effect between the sexes, we detected sex-specific changes to signalling pathways, transcription and whole-body glycogen and protein. In males, the low-sugar diet augmented insulin/insulin-like growth factor signalling pathway (IIS) activity by increasing insulin sensitivity, where increased IIS was required for male metabolic and body size responses in 0S. In females reared on low sugar, IIS activity and insulin sensitivity were unaffected, and IIS function did not fully account for metabolic and body size responses. Instead, we identified a female-biased requirement for the Target of rapamycin pathway in regulating metabolic and body size responses. Together, our data suggest the mechanisms underlying the low-sugar-induced increase in body size are not fully shared between the sexes, highlighting the importance of including males and females in larval studies even when similar phenotypic outcomes are observed.
Collapse
Affiliation(s)
- Jason W. Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Lianna W. Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - George P. Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Paige J. Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ramon I. Klein Geltink
- Department of Pathology and Laboratory Medicine, British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada
| | - Elizabeth J. Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
11
|
Wang H, Lu J, Alencastro F, Roberts A, Fiedor J, Carroll P, Eisenman RN, Ranganathan S, Torbenson M, Duncan AW, Prochownik EV. Coordinated Cross-Talk Between the Myc and Mlx Networks in Liver Regeneration and Neoplasia. Cell Mol Gastroenterol Hepatol 2022; 13:1785-1804. [PMID: 35259493 PMCID: PMC9046243 DOI: 10.1016/j.jcmgh.2022.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS The c-Myc (Myc) Basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factor is deregulated in most cancers. In association with Max, Myc controls target genes that supervise metabolism, ribosome biogenesis, translation, and proliferation. This Myc network crosstalks with the Mlx network, which consists of the Myc-like proteins MondoA and ChREBP, and Max-like Mlx. Together, this extended Myc network regulates both common and distinct gene targets. Here, we studied the consequence of Myc and/or Mlx ablation in the liver, particularly those pertaining to hepatocyte proliferation, metabolism, and spontaneous tumorigenesis. METHODS We examined the ability of hepatocytes lacking Mlx (MlxKO) or Myc+Mlx (double KO [DKO]) to repopulate the liver over an extended period of time in a murine model of type I tyrosinemia. We also compared this and other relevant behaviors, phenotypes, and transcriptomes of the livers with those from previously characterized MycKO, ChrebpKO, and MycKO × ChrebpKO mice. RESULTS Hepatocyte regenerative potential deteriorated as the Extended Myc Network was progressively dismantled. Genes and pathways dysregulated in MlxKO and DKO hepatocytes included those pertaining to translation, mitochondrial function, and hepatic steatosis resembling nonalcoholic fatty liver disease. The Myc and Mlx Networks were shown to crosstalk, with the latter playing a disproportionate role in target gene regulation. All cohorts also developed steatosis and molecular evidence of early steatohepatitis. Finally, MlxKO and DKO mice showed extensive hepatic adenomatosis. CONCLUSIONS In addition to showing cooperation between the Myc and Mlx Networks, this study showed the latter to be more important in maintaining proliferative, metabolic, and translational homeostasis, while concurrently serving as a suppressor of benign tumorigenesis. GEO accession numbers: GSE181371, GSE130178, and GSE114634.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jie Lu
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Frances Alencastro
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alexander Roberts
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Julia Fiedor
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patrick Carroll
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Michael Torbenson
- Department of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, Minnesota
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
12
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
13
|
Mierziak J, Kostyn K, Boba A, Czemplik M, Kulma A, Wojtasik W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021; 13:3673. [PMID: 34835928 PMCID: PMC8619229 DOI: 10.3390/nu13113673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of food constituents, which can transfer information from the external environment and influence gene expression in the cell and thus the function of the whole organism. It is crucial to regard food not only as the source of energy and basic nutriments, crucial for living and organism development, but also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical pathways. Bioactive components of the diet regulate gene expression through changes in the chromatin structure (including DNA methylation and histone modification), non-coding RNA, activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear receptors. Analysis of interactions between diet components and human genome structure and gene activity is a modern approach that will help to better understand these relations and will allow designing dietary guidances, which can help maintain good health.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Kamil Kostyn
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wroclaw, Poland;
| | - Aleksandra Boba
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Magdalena Czemplik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Anna Kulma
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| |
Collapse
|
14
|
Kokki K, Lamichane N, Nieminen AI, Ruhanen H, Morikka J, Robciuc M, Rovenko BM, Havula E, Käkelä R, Hietakangas V. Metabolic gene regulation by Drosophila GATA transcription factor Grain. PLoS Genet 2021; 17:e1009855. [PMID: 34634038 PMCID: PMC8530363 DOI: 10.1371/journal.pgen.1009855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/21/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nutrient-dependent gene regulation critically contributes to homeostatic control of animal physiology in changing nutrient landscape. In Drosophila, dietary sugars activate transcription factors (TFs), such as Mondo-Mlx, Sugarbabe and Cabut, which control metabolic gene expression to mediate physiological adaptation to high sugar diet. TFs that correspondingly control sugar responsive metabolic genes under conditions of low dietary sugar remain, however, poorly understood. Here we identify a role for Drosophila GATA TF Grain in metabolic gene regulation under both low and high sugar conditions. De novo motif prediction uncovered a significant over-representation of GATA-like motifs on the promoters of sugar-activated genes in Drosophila larvae, which are regulated by Grain, the fly ortholog of GATA1/2/3 subfamily. grain expression is activated by sugar in Mondo-Mlx-dependent manner and it contributes to sugar-responsive gene expression in the fat body. On the other hand, grain displays strong constitutive expression in the anterior midgut, where it drives lipogenic gene expression also under low sugar conditions. Consistently with these differential tissue-specific roles, Grain deficient larvae display delayed development on high sugar diet, while showing deregulated central carbon and lipid metabolism primarily on low sugar diet. Collectively, our study provides evidence for the role of a metazoan GATA transcription factor in nutrient-responsive metabolic gene regulation in vivo.
Collapse
Affiliation(s)
- Krista Kokki
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicole Lamichane
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Anni I. Nieminen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Jack Morikka
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marius Robciuc
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Bohdana M. Rovenko
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Essi Havula
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Zou XP, Lin YG, Cen YJ, Ma K, Qiu BB, Feng QL, Zheng SC. Analyses of microRNAs and transcriptomes in the midgut of Spodoptera litura feeding on Brassica juncea. INSECT SCIENCE 2021; 28:533-547. [PMID: 32166878 DOI: 10.1111/1744-7917.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Spodoptera litura is a destructive agricultural pest in tropical and subtropical areas. Understanding the molecular mechanisms of S. litura adaptation to its preferred host plants may help identify target genes useful for pest control. We used high-throughput sequencing to characterize the expression patterns of messenger RNAs (mRNAs) and microRNAs (miRNAs) in the midgut of S. litura fed on Brassica juncea for 6 h and 48 h. A total of 108 known and 134 novel miRNAs were identified, 29 miRNAs and 237 mRNAs were differentially expressed at 6 h of B. juncea feeding, 26 miRNAs and 433 mRNAs were differentially expressed at 48 h. For the mRNAs, the up-regulated genes were mostly enriched in detoxification enzymes (cytochrome P450, esterase, glutathione S-transferase, uridine diphosphate-glucuronosyl transferase), while the down-regulated genes were mostly enriched in proteinases and immune-related genes. Furthermore, most detoxification enzymes begin to up-regulate at 6 h, while most digestion and immune-related genes begin to up- or down-regulate at 48 h. Eighteen and 37 differently expressed transcription factors were identified at 6 h and 48 h, which may regulate the functional genes. We acquired 136 and 41 miRNA versus mRNA pairs at 6 h and 48 h, respectively. Some down-regulated and up-regulated miRNAs were predicted to target detoxification enzymes and proteinases, respectively. Real-time quantitative polymerase chain reaction of nine randomly selected miRNAs and 28 genes confirmed the results of RNA-seq. This analyses of miRNA and mRNA transcriptomes provides useful information about the molecular mechanisms of S. litura response to B. juncea.
Collapse
Affiliation(s)
- Xiao-Peng Zou
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi-Guang Lin
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-Jie Cen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kang Ma
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin-Bin Qiu
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Velázquez-Villegas L, Noriega LG, López-Barradas AM, Tobon-Cornejo S, Méndez-García AL, Tovar AR, Torres N, Ortiz-Ortega VM. ChREBP downregulates SNAT2 amino acid transporter expression through interactions with SMRT in response to a high-carbohydrate diet. Am J Physiol Endocrinol Metab 2021; 320:E102-E112. [PMID: 33225719 DOI: 10.1152/ajpendo.00326.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbohydrate responsive element-binding protein (ChREBP) has been identified as a primary transcription factor that maintains energy homeostasis through transcriptional regulation of glycolytic, lipogenic, and gluconeogenic enzymes in response to a high-carbohydrate diet. Amino acids are important substrates for gluconeogenesis, but nevertheless, knowledge is lacking about whether this transcription factor regulates genes involved in the transport or use of these metabolites. Here, we demonstrate that ChREBP represses the expression of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) in response to a high-sucrose diet in rats by binding to a carbohydrate response element (ChoRE) site located -160 bp upstream of the transcriptional start site in the SNAT2 promoter region. Additionally, immunoprecipitation assays revealed that ChREBP and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) interact with each other, as part of the complex that repress SNAT2 expression. The interaction between these proteins was confirmed by an in vivo chromatin immunoprecipitation assay. These findings suggest that glucogenic amino acid uptake by the liver is controlled by ChREBP through the repression of SNAT2 expression in rats consuming a high-carbohydrate diet.NEW & NOTEWORTHY This study highlights the key role of carbohydrate responsive element-binding protein (ChREBP) in the fine-tuned regulation between glucose and amino acid metabolism in the liver via regulation of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) expression after the consumption of a high-carbohydrate diet. ChREBP binds to a carbohydrate response element (ChoRE) site in the SNAT2 promoter region and recruits silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor to reduce SNAT2 transcription. This study revealed that ChREBP prevents the uptake of glucogenic amino acids upon the consumption of a high-carbohydrate diet.
Collapse
Affiliation(s)
- Laura Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Adriana M López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Sandra Tobon-Cornejo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Ana Luisa Méndez-García
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Victor M Ortiz-Ortega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| |
Collapse
|
17
|
Weger M, Weger BD, Schink A, Takamiya M, Stegmaier J, Gobet C, Parisi A, Kobitski AY, Mertes J, Krone N, Strähle U, Nienhaus GU, Mikut R, Gachon F, Gut P, Dickmeis T. MondoA regulates gene expression in cholesterol biosynthesis-associated pathways required for zebrafish epiboly. eLife 2020; 9:e57068. [PMID: 32969791 PMCID: PMC7515633 DOI: 10.7554/elife.57068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
The glucose-sensing Mondo pathway regulates expression of metabolic genes in mammals. Here, we characterized its function in the zebrafish and revealed an unexpected role of this pathway in vertebrate embryonic development. We showed that knockdown of mondoa impaired the early morphogenetic movement of epiboly in zebrafish embryos and caused microtubule defects. Expression of genes in the terpenoid backbone and sterol biosynthesis pathways upstream of pregnenolone synthesis was coordinately downregulated in these embryos, including the most downregulated gene nsdhl. Loss of Nsdhl function likewise impaired epiboly, similar to MondoA loss of function. Both epiboly and microtubule defects were partially restored by pregnenolone treatment. Maternal-zygotic mutants of mondoa showed perturbed epiboly with low penetrance and compensatory changes in the expression of terpenoid/sterol/steroid metabolism genes. Collectively, our results show a novel role for MondoA in the regulation of early vertebrate development, connecting glucose, cholesterol and steroid hormone metabolism with early embryonic cell movements.
Collapse
Affiliation(s)
- Meltem Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Benjamin D Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrea Schink
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Cédric Gobet
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Alice Parisi
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrei Yu Kobitski
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Jonas Mertes
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Nils Krone
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Uwe Strähle
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
- Department of Physics, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Institute of Nanotechnology, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Philipp Gut
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| |
Collapse
|
18
|
Metabolic Deregulation of the Blood-Outer Retinal Barrier in Retinitis Pigmentosa. Cell Rep 2020; 28:1323-1334.e4. [PMID: 31365873 PMCID: PMC6693665 DOI: 10.1016/j.celrep.2019.06.093] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/31/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Retinitis pigmentosa (RP) initiates with diminished rod photoreceptor function, causing peripheral and nighttime vision loss. However, subsequent loss of cone function and high-resolution daylight and color vision is most debilitating. Visual pigment-rich photoreceptor outer segments (OS) undergo phagocytosis by the retinal pigment epithelium (RPE), and the RPE also acts as a blood-outer retinal barrier transporting nutrients, including glucose, to photoreceptors. We provide evidence that contact between externalized phosphatidylserine (PS) on OS tips and apical RPE receptors activates Akt, linking phagocytosis with glucose transport to photoreceptors for new OS synthesis. As abundant mutant rod OS tips shorten in RP, Akt activation is lost, and onset of glucose metabolism in the RPE and diminished glucose transport combine to cause photoreceptor starvation and accompanying retinal metabolome changes. Subretinal injection of OS tip mimetics displaying PS restores Akt activation, glucose transport, and cone function in end-stage RP after rods are lost. Wang et al. show that onset of glucose metabolism in the retinal pigment epithelium (RPE), which acts as the blood-outer retinal barrier, and inhibition of RPE glucose transport to photoreceptors combine to cause photoreceptor starvation and vision loss in retinitis pigmentosa.
Collapse
|
19
|
Ceder MM, Lekholm E, Klaesson A, Tripathi R, Schweizer N, Weldai L, Patil S, Fredriksson R. Glucose Availability Alters Gene and Protein Expression of Several Newly Classified and Putative Solute Carriers in Mice Cortex Cell Culture and D. melanogaster. Front Cell Dev Biol 2020; 8:579. [PMID: 32733888 PMCID: PMC7358622 DOI: 10.3389/fcell.2020.00579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Many newly identified solute carriers (SLCs) and putative transporters have the possibility to be intricately involved in glucose metabolism. Here we show that many transporters of this type display a high degree of regulation at both mRNA and protein level following no or low glucose availability in mouse cortex cultures. We show that this is also the case in Drosophila melanogaster subjected to starvation or diets with different sugar content. Interestingly, re-introduction of glucose to media, or refeeding flies, normalized the gene expression of a number of the targets, indicating a fast and highly dynamic control. Our findings demonstrate high conservation of these transporters and how dependent both cell cultures and organisms are on gene and protein regulation during metabolic fluctuations. Several transporter genes were regulated simultaneously maybe to initiate alternative metabolic pathways as a response to low glucose levels, both in the cell cultures and in D. melanogaster. Our results display that newly identified SLCs of Major Facilitator Superfamily type, as well as the putative transporters included in our study, are regulated by glucose availability and could be involved in several cellular aspects dependent of glucose and/or its metabolites. Recently, a correlation between dysregulation of glucose in the central nervous system and numerous diseases such as obesity, type 2 diabetes mellitus as well as neurological disease such as Alzheimer’s and Parkinson’s diseases indicate a complex regulation and fine tuning of glucose levels in the brain. The fact that almost one third of transporters and transporter-related proteins remain orphans with unknown or contradictive substrate profile, location and function, pinpoint the need for further research about them to fully understand their mechanistic role and their impact on cellular metabolism.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Emilia Lekholm
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Axel Klaesson
- Pharmaceutical Cell Biology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Rekha Tripathi
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Nadine Schweizer
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Lydia Weldai
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sourabh Patil
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
A Screen for Gene Paralogies Delineating Evolutionary Branching Order of Early Metazoa. G3-GENES GENOMES GENETICS 2020; 10:811-826. [PMID: 31879283 PMCID: PMC7003098 DOI: 10.1534/g3.119.400951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The evolutionary diversification of animals is one of Earth’s greatest marvels, yet its earliest steps are shrouded in mystery. Animals, the monophyletic clade known as Metazoa, evolved wildly divergent multicellular life strategies featuring ciliated sensory epithelia. In many lineages epithelial sensoria became coupled to increasingly complex nervous systems. Currently, different phylogenetic analyses of single-copy genes support mutually-exclusive possibilities that either Porifera or Ctenophora is sister to all other animals. Resolving this dilemma would advance the ecological and evolutionary understanding of the first animals and the evolution of nervous systems. Here we describe a comparative phylogenetic approach based on gene duplications. We computationally identify and analyze gene families with early metazoan duplications using an approach that mitigates apparent gene loss resulting from the miscalling of paralogs. In the transmembrane channel-like (TMC) family of mechano-transducing channels, we find ancient duplications that define separate clades for Eumetazoa (Placozoa + Cnidaria + Bilateria) vs. Ctenophora, and one duplication that is shared only by Eumetazoa and Porifera. In the Max-like protein X (MLX and MLXIP) family of bHLH-ZIP regulators of metabolism, we find that all major lineages from Eumetazoa and Porifera (sponges) share a duplicated gene pair that is sister to the single-copy gene maintained in Ctenophora. These results suggest a new avenue for deducing deep phylogeny by choosing rather than avoiding ancient gene paralogies.
Collapse
|
21
|
Chen K, Lang H, Wang L, Liu K, Zhou Y, Mi M. S-Equol ameliorates insulin secretion failure through Chrebp/Txnip signaling via modulating PKA/PP2A activities. Nutr Metab (Lond) 2020; 17:7. [PMID: 31956333 PMCID: PMC6961363 DOI: 10.1186/s12986-020-0426-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
Background S-Equol, produced from daidzein by gut microbiota, has been suggested as an potential anti-diabetic agent, but the underlying mechanisms remain unclear. Recent evidences demonstrated that carbohydrate response element-binding protein (Chrebp)/Thioredoxin-interacting protein (Txnip) signaling played central roles on diabetes progression, particularly in relation to the function maintenance and apoptosis of pancreatic β-cell. Here, we investigated the effects of S-Equol on β-cell function and Chrebp/Txnip signaling. Methods Zucker diabetic fatty rats were treated with racemic Equol (120 mg/kg.BW.d) for 6 weeks. The glucose and lipid metabolism were monitored during the supplementation, and the Chrebp and Txnip expression were measured by using Western blotting. INS-1 cells were incubated with high glucose (26.2 mM) with or without S-Equol (0.1 μM, 1 μM, 10 μM) for 48 h. Glucose-stimulated insulin secretion (GSIS) was evaluated by radioimmunoassay, and the apoptosis of INS-1 cells was analyzed using Annexin V-FITC/PI and TUNEL assay. The dual luciferase reporter assay, chromatin immunoprecipitation assay and Western-blotting followed by Chrebp small interfering RNAs were utilized to clarify the mechanism of transcriptional regulation of S-Equol on Chrebp/Txnip signaling and the activities of protein kinase A (PKA) and protein phophatase (PP2A) were also detected. Results In vivo, Equol supplementation delayed the onset of the hyperglycemia and hyperlipemia, ameliorated insulin secretion failure, enhanced GSIS in isolated islets, and significantly reduced Chrebp and Txnip expression in islets. In vitro, S-Equol treatment enhanced GSIS of high glucose cultured INS-1 cell, and reduced apoptosis of INS-1 cells were also observed. Moreover, S-Equol dramatically suppressed Txnip transcription, as evident by the reduction of Txnip protein and mRNA levels and decrease in the Txnip promoter-driven luciferase activity. Meanwhile, S-Equol significantly inhibited Chrebp/Mlx expression and decreased occupancy of Chrebp on the Txnip promoter, and combined with siChrebp, we confirmed that S-Equol improvement of insulin secretion was partially through the Chrebp/Txnip pathway. Furthermore, S-Equol significantly decrease nuclear translocation of Chrebp, which was related with the decrease activity of protein kinase A (PKA) and the increase activity of protein phophatase (PP2A). Conclusions S-Equol could ameliorate insulin secretion failure, which was dependent on the suppression of Chrebp/Txnip signaling via modulating PKA/PP2A activities.
Collapse
Affiliation(s)
- Ka Chen
- 1Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Hedong Lang
- 1Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Li Wang
- 1Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Kai Liu
- 1Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Yong Zhou
- 1Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038 People's Republic of China.,Department of Clinic Nutrition, People's Hospital of Chongqing Banan District, Chongqing, 401320 People's Republic of China
| | - Mantian Mi
- 1Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038 People's Republic of China
| |
Collapse
|
22
|
Song Z, Yang H, Zhou L, Yang F. Glucose-Sensing Transcription Factor MondoA/ChREBP as Targets for Type 2 Diabetes: Opportunities and Challenges. Int J Mol Sci 2019; 20:E5132. [PMID: 31623194 PMCID: PMC6829382 DOI: 10.3390/ijms20205132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
The worldwide increase in type 2 diabetes (T2D) is becoming a major health concern, thus searching for novel preventive and therapeutic strategies has become urgent. In last decade, the paralogous transcription factors MondoA and carbohydrate response element-binding protein (ChREBP) have been revealed to be central mediators of glucose sensing in multiple metabolic organs. Under normal nutrient conditions, MondoA/ChREBP plays vital roles in maintaining glucose homeostasis. However, under chronic nutrient overload, the dysregulation of MondoA/ChREBP contributes to metabolic disorders, such as insulin resistance (IR) and T2D. In this review, we aim to provide an overview of recent advances in the understanding of MondoA/ChREBP and its roles in T2D development. Specifically, we will briefly summarize the functional similarities and differences between MondoA and ChREBP. Then, we will update the roles of MondoA/ChREBP in four T2D-associated metabolic organs (i.e., the skeletal muscle, liver, adipose tissue, and pancreas) in physiological and pathological conditions. Finally, we will discuss the opportunities and challenges of MondoA/ChREBP as drug targets for anti-diabetes. By doing so, we highlight the potential use of therapies targeting MondoA/ChREBP to counteract T2D and its complications.
Collapse
Affiliation(s)
- Ziyi Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Hao Yang
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada.
| | - Lei Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Fajun Yang
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
23
|
Li H, Rai M, Buddika K, Sterrett MC, Luhur A, Mahmoudzadeh NH, Julick CR, Pletcher RC, Chawla G, Gosney CJ, Burton AK, Karty JA, Montooth KL, Sokol NS, Tennessen JM. Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during Drosophila melanogaster larval development. Development 2019; 146:dev175315. [PMID: 31399469 PMCID: PMC6765128 DOI: 10.1242/dev.175315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (LDH) activity. The resulting metabolic program is ideally suited for synthesis of macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila LDH in promoting biosynthesis, we examined how Ldh mutations influence larval development. Our studies unexpectedly found that Ldh mutants grow at a normal rate, indicating that LDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that Ldh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both LDH and G3P dehydrogenase (GPDH1) exhibit growth defects, synthetic lethality and decreased glycolytic flux. Considering that human cells also generate G3P upon inhibition of lactate dehydrogenase A (LDHA), our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness to growing animal tissues.
Collapse
Affiliation(s)
- Hongde Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Arthur Luhur
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Cole R Julick
- RNA Biology Laboratory, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Rose C Pletcher
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Geetanjali Chawla
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Chelsea J Gosney
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Anna K Burton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kristi L Montooth
- RNA Biology Laboratory, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
24
|
Nutritional Regulation of Gene Expression: Carbohydrate-, Fat- and Amino Acid-Dependent Modulation of Transcriptional Activity. Int J Mol Sci 2019; 20:ijms20061386. [PMID: 30893897 PMCID: PMC6470599 DOI: 10.3390/ijms20061386] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to detect changes in nutrient levels and generate an adequate response to these changes is essential for the proper functioning of living organisms. Adaptation to the high degree of variability in nutrient intake requires precise control of metabolic pathways. Mammals have developed different mechanisms to detect the abundance of nutrients such as sugars, lipids and amino acids and provide an integrated response. These mechanisms include the control of gene expression (from transcription to translation). This review reports the main molecular mechanisms that connect nutrients’ levels, gene expression and metabolism in health. The manuscript is focused on sugars’ signaling through the carbohydrate-responsive element binding protein (ChREBP), the role of peroxisome proliferator-activated receptors (PPARs) in the response to fat and GCN2/activating transcription factor 4 (ATF4) and mTORC1 pathways that sense amino acid concentrations. Frequently, alterations in these pathways underlie the onset of several metabolic pathologies such as obesity, insulin resistance, type 2 diabetes, cardiovascular diseases or cancer. In this context, the complete understanding of these mechanisms may improve our knowledge of metabolic diseases and may offer new therapeutic approaches based on nutritional interventions and individual genetic makeup.
Collapse
|
25
|
Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling. mBio 2019; 10:mBio.02323-18. [PMID: 30755508 PMCID: PMC6372795 DOI: 10.1128/mbio.02323-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncogenic HPV types are major human carcinogens. Under hypoxia, HPV-positive cancer cells can repress the viral E6/E7 oncogenes and induce a reversible growth arrest. This response could contribute to therapy resistance, immune evasion, and tumor recurrence upon reoxygenation. Here, we uncover evidence that HPV oncogene repression is mediated by hypoxia-induced activation of canonical PI3K/mTORC2/AKT signaling. AKT-dependent downregulation of E6/E7 is only observed under hypoxia and occurs, at least in part, at the transcriptional level. Quantitative proteome analyses identify additional factors as candidates to be involved in AKT-dependent E6/E7 repression and/or hypoxic PI3K/mTORC2/AKT activation. These results connect PI3K/mTORC2/AKT signaling with HPV oncogene regulation, providing new mechanistic insights into the cross talk between oncogenic HPVs and their host cells. Hypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia. We show that E6/E7 downregulation is mediated by hypoxia-induced stimulation of AKT signaling. Ablating AKT function in hypoxic HPV-positive cancer cells by using chemical inhibitors efficiently counteracts E6/E7 repression. Isoform-specific activation or downregulation of AKT1 and AKT2 reveals that both AKT isoforms contribute to hypoxic E6/E7 repression and act in a functionally redundant manner. Hypoxic AKT activation and consecutive E6/E7 repression is dependent on the activities of the canonical upstream AKT regulators phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR) complex 2 (mTORC2). Hypoxic downregulation of E6/E7 occurs, at least in part, at the transcriptional level. Modulation of E6/E7 expression by the PI3K/mTORC2/AKT cascade is hypoxia specific and not observed in normoxic HPV-positive cancer cells. Quantitative proteome analyses identify additional factors as candidates to be involved in hypoxia-induced activation of the PI3K/mTORC2/AKT signaling cascade and in the AKT-dependent repression of the E6/E7 oncogenes under hypoxia. Collectively, these data uncover a functional key role of the PI3K/mTORC2/AKT signaling cascade for viral oncogene repression in hypoxic HPV-positive cancer cells and provide new insights into the poorly understood cross talk between oncogenic HPVs and their host cells under hypoxia.
Collapse
|
26
|
AMPK-Mediated Regulation of Alpha-Arrestins and Protein Trafficking. Int J Mol Sci 2019; 20:ijms20030515. [PMID: 30691068 PMCID: PMC6387238 DOI: 10.3390/ijms20030515] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) plays a central role in the regulation of cellular metabolism. Recent studies reveal a novel role for AMPK in the regulation of glucose and other carbohydrates flux by controlling the endocytosis of transporters. The first step in glucose metabolism is glucose uptake, a process mediated by members of the GLUT/SLC2A (glucose transporters) or HXT (hexose transporters) family of twelve-transmembrane domain glucose transporters in mammals and yeast, respectively. These proteins are conserved from yeast to humans, and multiple transporters—each with distinct kinetic properties—compete for plasma membrane occupancy in order to enhance or limit the rate of glucose uptake. During growth in the presence of alternative carbon sources, glucose transporters are removed and replaced with the appropriate transporter to help support growth in response to this environment. New insights into the regulated protein trafficking of these transporters reveal the requirement for specific α-arrestins, a little-studied class of protein trafficking adaptor. A defining feature of the α-arrestins is that each contains PY-motifs, which can bind to the ubiquitin ligases from the NEDD4/Rsp5 (Neural precursor cell Expressed, Developmentally Down-regulated 4 and Reverses Spt- Phenotype 5, respectively) family. Specific association of α-arrestins with glucose and carbohydrate transporters is thought to bring the ubiquitin ligase in close proximity to its membrane substrate, and thereby allows the membrane cargo to become ubiquitinated. This ubiquitination in turn serves as a mark to stimulate endocytosis. Recent results show that AMPK phosphorylation of the α-arrestins impacts their abundance and/or ability to stimulate carbohydrate transporter endocytosis. Indeed, AMPK or glucose limitation also controls α-arrestin gene expression, adding an additional layer of complexity to this regulation. Here, we review the recent studies that have expanded the role of AMPK in cellular metabolism to include regulation of α-arrestin-mediated trafficking of transporters and show that this mechanism of regulation is conserved over the ~150 million years of evolution that separate yeast from man.
Collapse
|
27
|
Jiao Y, Zhao J, Zhang Z, Li M, Yu X, Yang Y, Liu J, Liao S, Li D, Wang Y, Zhang D, Chen Y, Shi G, Liu B, Lu Y, Li X. SRY-Box Containing Gene 4 Promotes Liver Steatosis by Upregulation of SREBP-1c. Diabetes 2018; 67:2227-2238. [PMID: 30181160 DOI: 10.2337/db18-0184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022]
Abstract
Obesity is usually associated with an increased risk of nonalcoholic fatty liver disease that is characterized by accumulation of excessive triglyceride (TG) in hepatocytes. However, the factors involved in the obesity-induced hepatosteatosis are poorly defined. Here, we report that SRY-box containing gene 4 (Sox4), a transcription factor that regulates cell proliferation and differentiation, plays an important role in hepatic TG metabolism. Sox4 expression levels are markedly upregulated in livers of obese rodents and humans. Adenovirus-medicated overexpression of Sox4 in the livers of lean mice promotes liver steatosis, whereas liver-specific knockdown of Sox4 ameliorates TG accumulation and improves insulin resistance in obese mice. At the molecular level, we show that Sox4 could directly control the transcription of SREBP-1c gene through binding to its proximal promoter region. Thus, we have identified Sox4 as an important component of hepatic TG metabolism.
Collapse
Affiliation(s)
- Yang Jiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanying Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Shengjie Liao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Duanzhuo Li
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Yuxing Wang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Die Zhang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Yulu Chen
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Guojun Shi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Bin Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Wang H, Dolezal JM, Kulkarni S, Lu J, Mandel J, Jackson LE, Alencastro F, Duncan AW, Prochownik EV. Myc and ChREBP transcription factors cooperatively regulate normal and neoplastic hepatocyte proliferation in mice. J Biol Chem 2018; 293:14740-14757. [PMID: 30087120 DOI: 10.1074/jbc.ra118.004099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Analogous to the c-Myc (Myc)/Max family of bHLH-ZIP transcription factors, there exists a parallel regulatory network of structurally and functionally related proteins with Myc-like functions. Two related Myc-like paralogs, termed MondoA and MondoB/carbohydrate response element-binding protein (ChREBP), up-regulate gene expression in heterodimeric association with the bHLH-ZIP Max-like factor Mlx. Myc is necessary to support liver cancer growth, but not for normal hepatocyte proliferation. Here, we investigated ChREBP's role in these processes and its relationship to Myc. Unlike Myc loss, ChREBP loss conferred a proliferative disadvantage to normal murine hepatocytes, as did the combined loss of ChREBP and Myc. Moreover, hepatoblastomas (HBs) originating in myc-/-, chrebp-/-, or myc-/-/chrebp-/- backgrounds grew significantly more slowly. Metabolic studies on livers and HBs in all three genetic backgrounds revealed marked differences in oxidative phosphorylation, fatty acid β-oxidation (FAO), and pyruvate dehydrogenase activity. RNA-Seq of livers and HBs suggested seven distinct mechanisms of Myc-ChREBP target gene regulation. Gene ontology analysis indicated that many transcripts deregulated in the chrebp-/- background encode enzymes functioning in glycolysis, the TCA cycle, and β- and ω-FAO, whereas those dysregulated in the myc-/- background encode enzymes functioning in glycolysis, glutaminolysis, and sterol biosynthesis. In the myc-/-/chrebp-/- background, additional deregulated transcripts included those involved in peroxisomal β- and α-FAO. Finally, we observed that Myc and ChREBP cooperatively up-regulated virtually all ribosomal protein genes. Our findings define the individual and cooperative proliferative, metabolic, and transcriptional roles for the "Extended Myc Network" under both normal and neoplastic conditions.
Collapse
Affiliation(s)
- Huabo Wang
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - James M Dolezal
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Sucheta Kulkarni
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Jie Lu
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Jordan Mandel
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Laura E Jackson
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | | | | | - Edward V Prochownik
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, .,the Pittsburgh Liver Center.,the Hillman Cancer Center of UPMC, and.,the Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224
| |
Collapse
|