1
|
Miao H, Qin Y, Shao D, Chen Q, Pan Y, Lei M, Wu R, Ye X, Wang X, Zhu Y. Discovery of SZJK-0421: A Novel Potent, Low Toxicity, Selective Second Generation of CRM1 Inhibitor for the Treatment of Both Hematological and Solid Tumors. J Med Chem 2024. [PMID: 39509481 DOI: 10.1021/acs.jmedchem.4c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Nuclear export factor chromosome region maintenance 1 (CRM1) mediated the transport of various growth-regulatory proteins and was frequently overexpressed in many hematologic and solid tumors. Selinexor (KPT-330) was the only approved CRM1 inhibitor, but the severe gastrointestinal and central nervous system toxicities limited its clinical application. In this manuscript, a series of novel second-generation CRM1 inhibitors were designed, in which SZJK-0421 was a more reversible inhibitor than KPT-330. The treatment of various tumor cells with SZJK-0421 significantly inhibited the function of CRM1. SZJK-0421 displayed good liver microsome stabilities and pharmacokinetic properties. Most importantly, SZJK-0421 reduced the direct damage to the gastrointestinal mucosa, and the brain plasma distribution ratio of SZJK-0421 was very low in Sprague-Dawley (SD) rats (3%), which avoided gastrointestinal reactions such as central nausea and vomiting caused by large permeability of blood-brain barrier. In addition, SZJK-0421 exhibited strong anticancer efficacy in xenograft models of both solid and hematological tumors.
Collapse
Affiliation(s)
- Hang Miao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Yanru Qin
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - DingLu Shao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Qinghua Chen
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Yupeng Pan
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Meng Lei
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P. R. China
| | - Ruokun Wu
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xinran Ye
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| |
Collapse
|
2
|
Han F, Fan X, Hu M, Wen J, Wang J, Zhang D, Wang S, Ding Y, Ye Y, Jiao H. Nup210 promotes colorectal cancer progression by regulating nuclear plasma transport. J Transl Med 2024:102149. [PMID: 39393532 DOI: 10.1016/j.labinv.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
The nuclear pore complex (NPC) regulates nucleoplasmic transport, transcription and genomic integrity in eukaryotic cells. However, little is known about how NPC works in cancer. In this study, we investigated the role of the nuclear pore protein 210 (Nucleoporin 210, Nup210) in colorectal cancer (CRC). Bioinformatics analysis revealed that the expression of Nup210 was increased in CRC and was associated with poor patient prognosis, but it was not a statistically significant independent prognostic factor. Moreover, knockdown of Nup210 in CRC cells inhibited the proliferation, invasion and metastasis of CRC cells in vivo and in vitro. Additionally, nuclear size and nuclear plasma material transport capacity decreased along with the number and density of NPCs on the surface of CRC cells when Nup210 expression was inhibited. Furthermore, Nup210 required nuclear localization sequences (NLS) to localize to the nuclear membrane surface and interact with importin α/β, which in turn affected the transit of nuclear plasma material. Importazole, a small molecule inhibitor of importin, along with therapy that targets the Nup210 protein is anticipated to be a novel strategy for CRC treatment. Their combination may be able to more effectively lower CRC tumor load. In conclusion, Nup210 modulates cellular nucleoplasmic transport capability and cell surface NPC density via NLS, thus promoting CRC progression. This discovery validates the molecular function of NPC in the development of CRC and provides a theoretical foundation for NPC-regulated nuclear import targeting as a therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Fangyi Han
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou 510515, China
| | - Xingdi Fan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minxuan Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrao Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaping Ye
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Hongli Jiao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Izutsu R, Osaki M, Seong H, Ogata S, Sato R, Hamada JI, Okada F. AMIGO2 enhances the invasive potential of colorectal cancer by inducing EMT. Cancer Gene Ther 2024:10.1038/s41417-024-00842-z. [PMID: 39379686 DOI: 10.1038/s41417-024-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In our previous studies, we identified amphoterin-inducible gene and open reading frame 2 (AMIGO2) as a driver gene for liver metastasis and found that AMIGO2 expression in cancer cells worsens the prognosis of patients with colorectal cancer (CRC). Epithelial-mesenchymal transition (EMT) is a trigger for CRC to acquire a malignant phenotype, such as invasive potential, leading to metastasis. However, the role of AMIGO2 expression in the invasive potential of CRC cells remains unclear. Thus, this study aimed to examine AMIGO2 expression and elucidate the mechanisms by which it induces EMT and promotes CRC invasion. Activation of the TGFβ/Smad signaling pathway was found involved in AMIGO2-induced EMT, and treatment with the TGFβ receptor inhibitor LY2109761 suppressed AMIGO2-induced EMT. Studies using CRC samples showed that AMIGO2 expression was highly upregulated in the invasive front, where AMIGO2 expression was localized to the nucleus and associated with EMT marker expression. These results suggest that the nuclear translocation of AMIGO2 induces EMT to promote CRC invasion by activating the TGFβ/Smad signaling pathway. Thus, AMIGO2 is an attractive therapeutic target for inhibiting EMT and metastatic CRC progression.
Collapse
Affiliation(s)
- Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan.
| | - HeeKyung Seong
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Sanami Ogata
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Reo Sato
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Jun-Ichi Hamada
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
- School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
4
|
Park SJ, Son SM, Barbosa AD, Wrobel L, Stamatakou E, Squitieri F, Balmus G, Rubinsztein DC. Nuclear proteasomes buffer cytoplasmic proteins during autophagy compromise. Nat Cell Biol 2024; 26:1691-1699. [PMID: 39209961 PMCID: PMC11469956 DOI: 10.1038/s41556-024-01488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Autophagy is a conserved pathway where cytoplasmic contents are engulfed by autophagosomes, which then fuse with lysosomes enabling their degradation. Mutations in core autophagy genes cause neurological conditions, and autophagy defects are seen in neurodegenerative diseases such as Parkinson's disease and Huntington's disease. Thus, we have sought to understand the cellular pathway perturbations that autophagy-perturbed cells are vulnerable to by seeking negative genetic interactions such as synthetic lethality in autophagy-null human cells using available data from yeast screens. These revealed that loss of proteasome and nuclear pore complex components cause synergistic viability changes akin to synthetic fitness loss in autophagy-null cells. This can be attributed to the cytoplasm-to-nuclear transport of proteins during autophagy deficiency and subsequent degradation of these erstwhile cytoplasmic proteins by nuclear proteasomes. As both autophagy and cytoplasm-to-nuclear transport are defective in Huntington's disease, such cells are more vulnerable to perturbations of proteostasis due to these synthetic interactions.
Collapse
Affiliation(s)
- So Jung Park
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Sung Min Son
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Antonio Daniel Barbosa
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Lidia Wrobel
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - David C Rubinsztein
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Ng CSC, Liu A, Cui B, Banik SM. Targeted protein relocalization via protein transport coupling. Nature 2024; 633:941-951. [PMID: 39294374 DOI: 10.1038/s41586-024-07950-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/14/2024] [Indexed: 09/20/2024]
Abstract
Subcellular protein localization regulates protein function and can be corrupted in cancers1 and neurodegenerative diseases2,3. The rewiring of localization to address disease-driving phenotypes would be an attractive targeted therapeutic approach. Molecules that harness the trafficking of a shuttle protein to control the subcellular localization of a target protein could enforce targeted protein relocalization and rewire the interactome. Here we identify a collection of shuttle proteins with potent ligands amenable to incorporation into targeted relocalization-activating molecules (TRAMs), and use these to relocalize endogenous proteins. Using a custom imaging analysis pipeline, we show that protein steady-state localization can be modulated through molecular coupling to shuttle proteins containing sufficiently strong localization sequences and expressed in the necessary abundance. We analyse the TRAM-induced relocalization of different proteins and then use nuclear hormone receptors as shuttles to redistribute disease-driving mutant proteins such as SMARCB1Q318X, TDP43ΔNLS and FUSR495X. TRAM-mediated relocalization of FUSR495X to the nucleus from the cytoplasm correlated with a reduction in the number of stress granules in a model of cellular stress. With methionyl aminopeptidase 2 and poly(ADP-ribose) polymerase 1 as endogenous cytoplasmic and nuclear shuttles, respectively, we demonstrate relocalization of endogenous PRMT9, SOS1 and FKBP12. Small-molecule-mediated redistribution of nicotinamide nucleotide adenylyltransferase 1 from nuclei to axons in primary neurons was able to slow axonal degeneration and pharmacologically mimic the genetic WldS gain-of-function phenotype in mice resistant to certain types of neurodegeneration4. The concept of targeted protein relocalization could therefore inspire approaches for treating disease through interactome rewiring.
Collapse
Affiliation(s)
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Vanhee C, Jacobs B, Kamugisha A, Canfyn M, Van Der Meersch H, Ceyssens B, Deconinck E, Van Hoorde K, Willocx M. Substandard and falsified ivermectin tablets obtained for self-medication during the COVID-19 pandemic as a source of potential harm. Drug Test Anal 2024; 16:957-967. [PMID: 38043940 DOI: 10.1002/dta.3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
In 2019, a global viral pandemic, due to the SARS-CoV-2 virus, broke out. Soon after, the search for a vaccine and/or antiviral medicine began. One of the candidate antiviral medicines tested was ivermectin. Although several health authorities warned the public against the use of this medicine outside clinical trials, the drug was widely used at the end of 2020 and in 2021. Simultaneously, several reports started to emerge demonstrating serious adverse effects after self-medicating with ivermectin. It stands to reason that the self-administration of substandard or falsified (SF) medicines bearing harmful quality deficiencies have contributed to this phenomenon. In order to have a better view on the nature of these harmful quality deficiencies, SF ivermectin samples, intercepted in large quantities by the Belgian regulatory agencies during the period 2021-2022, were analyzed in our official medicines control laboratory. None of the samples (n = 19) were compliant to the quality criteria applicable to medicinal products. These SF products either suffered from a systematic underdosing of the active pharmaceutical ingredient or were severely contaminated with bacteria, two of which were contaminated with known pathogens that cause gastrointestinal illness upon oral intake. In addition to the direct risks of self-medicating with such a product, the improper usage and dosage of ivermectin medication might also facilitate ivermectin tolerance or resistance in parasites. This may have detrimental consequences on a global scale, certainly as the number of newly developed active pharmaceutical ingredients that can safely be used to combat parasites is rather scarce.
Collapse
Affiliation(s)
- Celine Vanhee
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Bram Jacobs
- Service of Foodborne Pathogen, Scientific Direction of Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Angélique Kamugisha
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Michael Canfyn
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | | | - Bart Ceyssens
- Federal Agency for Medicine and Health Care Products, Brussels, Belgium
| | - Eric Deconinck
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Koenraad Van Hoorde
- Service of Foodborne Pathogen, Scientific Direction of Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Marie Willocx
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| |
Collapse
|
7
|
Gao X, Xuan Y, Zhou Z, Chen C, Wen Wang D, Wen Z. Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65. Int Immunopharmacol 2024; 133:112073. [PMID: 38636372 DOI: 10.1016/j.intimp.2024.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Myocarditis is an important clinical issue which lacks specific treatment by now. Ivermectin (IVM) is an inhibitor of importin α/β-mediated nuclear translocation. This study aimed to explore the therapeutic effects of IVM on acute myocarditis. METHODS Mouse models of coxsackie B3 virus (CVB3) infection-induced myocarditis and experimental autoimmune myocarditis (EAM) were established to evaluate the effects of IVM. Cardiac functions were evaluated by echocardiography and Millar catheter. Cardiac inflammatory infiltration was assessed by histological staining. Cytometric bead array and quantitative real-time PCR were used to detect the levels of pro-inflammatory cytokines. The macrophages and their M1/M2 polarization were analyzed via flow cytometry. Protein expression and binding were detected by co-immunoprecipitation, Western blotting and histological staining. The underlying mechanism was verified in vitro using CVB3-infected RAW264.7 macrophages. Cyclic polypeptide (cTN50) was synthesized to selectively inhibit the nuclear translocation of NF-κB/p65, and CVB3-infected RAW264.7 cells were treated with cTN50. RESULTS Increased expression of importin β was observed in both models. IVM treatment improved cardiac functions and reduced the cardiac inflammation associated with CVB3-myocarditis and EAM. Furthermore, the pro-inflammatory cytokine (IL-1β/IL-6/TNF-α) levels were downregulated via the inhibition of the nuclear translocation of NF-κB/p65 in macrophages. IVM and cTN50 treatment also inhibited the nuclear translocation of NF-κB/p65 and downregulated the expression of pro-inflammatory cytokines in RAW264.7 macrophages. CONCLUSIONS Ivermectin inhibits the nuclear translocation of NF-κB/p65 and the expression of major pro-inflammatory cytokines in myocarditis. The therapeutic effects of IVM on viral and non-viral myocarditis models suggest its potential application in the treatment of acute myocarditis.
Collapse
Affiliation(s)
- Xu Gao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Yunling Xuan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China.
| |
Collapse
|
8
|
Wu F, Sun G, Nai Y, Shi X, Ma Y, Cao H. NUP43 promotes PD-L1/nPD-L1/PD-L1 feedback loop via TM4SF1/JAK/STAT3 pathway in colorectal cancer progression and metastatsis. Cell Death Discov 2024; 10:241. [PMID: 38762481 PMCID: PMC11102480 DOI: 10.1038/s41420-024-02025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Programmed cell death-ligand 1 (PD-L1) has a significant role in tumor progression and metastasis, facilitating tumor cell evasion from immune surveillance. PD-L1 can be detected in the tumor cell nucleus and exert an oncogenic effect by nuclear translocation. Colorectal cancer (CRC) progression and liver metastasis (CCLM) are among the most lethal diseases worldwide, but the mechanism of PD-L1 nuclear translocation in CRC and CCLM remains to be fully understood. In this study, using CRISPR-Cas9-based genome-wide screening combined with RNA-seq, we found that the oncogenic factor NUP43 impacted the process of PD-L1 nuclear translocation by regulating the expression level of the PD-L1 chaperone protein IPO5. Subsequent investigation revealed that this process could stimulate the expression of tumor-promoting factor TM4SF1 and further activate the JAK/STAT3 signaling pathway, which ultimately enhanced the transcription of PD-L1, thus establishing a PD-L1-nPD-L1-PD-L1 feedback loop that ultimately promoted CRC progression and CCLM. In conclusion, our study reveals a novel role for nPD-L1 in CRC, identifies the PD-L1-nPD-L1-PD-L1 feedback loop in CRC, and provides a therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoqiang Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yongjun Nai
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuesong Shi
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yong Ma
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Neeman-Egozi S, Livneh I, Dolgopyat I, Nussinovitch U, Milman H, Cohen N, Eisen B, Ciechanover A, Binah O. Stress-Induced Proteasome Sub-Cellular Translocation in Cardiomyocytes Causes Altered Intracellular Calcium Handling and Arrhythmias. Int J Mol Sci 2024; 25:4932. [PMID: 38732146 PMCID: PMC11084437 DOI: 10.3390/ijms25094932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.
Collapse
Affiliation(s)
- Shunit Neeman-Egozi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Ido Livneh
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Irit Dolgopyat
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Udi Nussinovitch
- Department of Cardiology, Edith Wolfson Medical Center, Holon 5822012, Israel
- The Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Nadav Cohen
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Aaron Ciechanover
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| |
Collapse
|
10
|
Wang ZQ, Wu ZX, Wang ZP, Bao JX, Wu HD, Xu DY, Li HF, Xu YY, Wu RX, Dai XX. Pan-cancer analysis of NUP155 and validation of its role in breast cancer cell proliferation, migration, and apoptosis. BMC Cancer 2024; 24:353. [PMID: 38504158 PMCID: PMC10953186 DOI: 10.1186/s12885-024-12039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.
Collapse
Affiliation(s)
- Zi-Qiong Wang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhi-Xuan Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zong-Pan Wang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
| | - Jing-Xia Bao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hao-Dong Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Di-Yan Xu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hong-Feng Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi-Yin Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
| | - Rong-Xing Wu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China.
| | - Xuan-Xuan Dai
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China.
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
11
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
12
|
Tang G, Huang S, Luo J, Wu Y, Zheng S, Tong R, Zhong L, Shi J. Advances in research on potential inhibitors of multiple myeloma. Eur J Med Chem 2023; 262:115875. [PMID: 37879169 DOI: 10.1016/j.ejmech.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Multiple myeloma (MM) is a common hematological malignancy. Although recent clinical applications of immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies have significantly improved the outcome of MM patient with increased survival, the incidence of drug resistance and severe treatment-related complications is gradually on the rise. This review article summarizes the characteristics and clinical investigations of several MM drugs in clinical trials, including their structures, mechanisms of action, structure-activity relationships, and clinical study progress. Furthermore, the application potentials of the drugs that have not yet entered clinical trials are also reviewed. The review also outlines the future directions of MM drug development.
Collapse
Affiliation(s)
- Guoyuan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Ji Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yingmiao Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Shuai Zheng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Rongsheng Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610044, China.
| | - Jianyou Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
13
|
Andrade-Salas A, Canela-Pérez I, Cevallos AM, López-Villaseñor I, Hernández R. Trypanosoma cruzi Fibrillarins: Two paralogous proteins with non-identical signals for nuclear transport. Biochem Biophys Res Commun 2023; 682:274-280. [PMID: 37832384 DOI: 10.1016/j.bbrc.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Trypanosoma cruzi is a parasitic protozoa causative of Chagas disease. As part of our interest in studying the basic biology of this microorganism, this work reports our observations related to the characterization of motifs and structural domains present in two fibrillarin isoforms (TcFib1 and TcFib2) that were found to be necessary for the nuclear targeting of these nucleolar proteins. Previous characterization of these proteins indicated that they share 68.67% of identical amino acids and are both expressed as nucleolar proteins in T. cruzi epimastigotes. Using an approach based on the transfection of recombinant genes encoding fluorescent fibrillarin-EGFP fusion proteins, this study found evidence for the presence of 4 motifs or protein domains that help target these proteins to the nucleus: The GAR domain and carboxyl terminus in both TcFibs, as well as two lysines and a computationally predicted cNLS in TcFib1. As a distinctive feature, the GAR domain of TcFib2 proved to be essential for the nuclear localization of this protein paralog. Such a difference between TcFib1 and Tcfib2 nuclear localization signals can be explained as the presence of two partially related nuclear import pathways for the two fibrillarin homologues in this organism.
Collapse
Affiliation(s)
- Arturo Andrade-Salas
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico
| | - Israel Canela-Pérez
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico.
| |
Collapse
|
14
|
Haidar R, Shabo R, Moeser M, Luch A, Kugler J. The nuclear entry of the aryl hydrocarbon receptor (AHR) relies on the first nuclear localization signal and can be negatively regulated through IMPα/β specific inhibitors. Sci Rep 2023; 13:19668. [PMID: 37951956 PMCID: PMC10640566 DOI: 10.1038/s41598-023-47066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
The human aryl hydrocarbon receptor (AHR) undergoes continuous shuttling between nucleus and cytoplasm. Binding to exogenous or endogenous ligands promotes its rapid nuclear import. The proposed mechanism for the ligand-dependent import is based on exposing the bipartite nuclear localisation signal (NLS) to members of the importin (IMP) superfamily. Among this, the molecular interactions involved in the basal import still need to be clarified. Utilizing fluorescently fused AHR variants, we recapitulated and characterized AHR localization and nucleo-cytoplasmic shuttling in living cells. Analysis of AHR variants carrying NLS point mutations demonstrated a mandatory role of first (13RKRRK17) and second (37KR-R40) NLS segments on the basal import of AHR. Further experiments indicated that ligand-induced import is mainly regulated through the first NLS, while the second NLS is supportive but not essential. Additionally, applying IMPα/β specific inhibitors, ivermectin (IVM) and importazole (IPZ), slowed down the ligand-induced import and, correspondingly, decreased the basal nuclear accumulation of the receptor. In conclusion, our data show that ligand-induced and basal nuclear entry of AHR rely on the same mechanism but are controlled uniquely by the two NLS components.
Collapse
Affiliation(s)
- Rashad Haidar
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Reneh Shabo
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Marie Moeser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Josephine Kugler
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
15
|
Kofler M, Kapus A. Nuclear Import and Export of YAP and TAZ. Cancers (Basel) 2023; 15:4956. [PMID: 37894323 PMCID: PMC10605228 DOI: 10.3390/cancers15204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
16
|
Duan Z, Zhang Q, Liu M, Hu Z. Multifunctionality of matrix protein in the replication and pathogenesis of Newcastle disease virus: A review. Int J Biol Macromol 2023; 249:126089. [PMID: 37532184 DOI: 10.1016/j.ijbiomac.2023.126089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
As an important structural protein in virion morphogenesis, the matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to be a nuclear-cytoplasmic trafficking protein and plays essential roles in viral assembly and budding. In recent years, increasing lines of evidence have indicated that the M protein has obvious influence on the pathotypes of NDV, and the interaction of M protein with cellular proteins is also closely associated with the replication and pathogenicity of NDV. Although substantial progress has been made in the past 40 years towards understanding the structure and function of NDV M protein, the available information is scattered. Therefore, this review article summarizes and updates the research progress on the structural feature, virulence and pathotype correlation, and nucleocytoplasmic transport mechanism of NDV M protein, as well as the functions of M protein and cellular protein interactions in M's intracellular localization, viral RNA synthesis and transcription, viral protein synthesis, viral immune evasion, and viral budding and release, which will provide an in-depth understanding of the biological functions of M protein in the replication and pathogenesis of NDV, and also contribute to the development of effective antiviral strategies aiming at blocking the early or late steps of NDV lifecycles.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Qianyong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Menglan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Jian L, Zscherp R, Beutling U, Shen X, Xu S, Zhang X, Brönstrup M, Klahn P, Sun Q. Discovery of Aminoratjadone Derivatives as Potent Noncovalent CRM1 Inhibitors. J Med Chem 2023; 66:11940-11950. [PMID: 37595020 DOI: 10.1021/acs.jmedchem.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Cancer cells frequently utilize elevated nuclear export to escape tumor suppression and gain proliferative advantage. Chromosome Region Maintenance 1 (CRM1/XPO1) mediates macromolecule nuclear export and plays an important role in tumorigenesis and progression. The clinical approval of its covalent inhibitor KPT-330 (Selinexor) validates the feasibility of targeting CRM1 to treat cancers. Here, we synthesized four aminoratjadone derivatives and found that two of them, KL1 and KL2, are noncovalent CRM1 inhibitors. The two compounds underwent spontaneous hydrolysis in aqueous buffers, and the resulting products were more active against CRM1. High-resolution crystal structures revealed the CRM1-binding mode of these compounds and explained the observed structure-activity relationships. In cells, KL1 and KL2 localized CRM1 in the nuclear periphery and led to depletion of nuclear CRM1, thereby inhibiting the nuclear export and growth of colorectal cancer cells at submicromolar concentrations. This work lays the foundation for further development of aminoratjadone-based noncovalent CRM1 inhibitors.
Collapse
Affiliation(s)
- Lunan Jian
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Robert Zscherp
- NaconLabs─A Technology Transfer Center of iTUBS mbH, Wilhelmsgarten 3, Braunschweig 38100, Germany
| | - Ulrike Beutling
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Shiyang Xu
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Xia Zhang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Philipp Klahn
- NaconLabs─A Technology Transfer Center of iTUBS mbH, Wilhelmsgarten 3, Braunschweig 38100, Germany
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, Göteborg 412 96, Sweden
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610056, China
| |
Collapse
|
18
|
Liashkovich I, Stefanello ST, Vidyadharan R, Haufe G, Erofeev A, Gorelkin PV, Kolmogorov V, Mizdal CR, Dulebo A, Bulk E, Kouzel IU, Shahin V. Pitstop-2 and its novel derivative RVD-127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases. Bioeng Transl Med 2023; 8:e10425. [PMID: 37476059 PMCID: PMC10354767 DOI: 10.1002/btm2.10425] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop-2 as a potent CME inhibitor, we and others have reported on substantial clathrin-independent inhibitory effects. Herein, we developed and experimentally validated a novel fluorescent derivative of Pitstop-2, termed RVD-127, to clarify Pitstop-2 diverse effects. Using RVD-127, we were able to trace additional protein targets of Pitstop-2. Besides inhibiting CME, Pitstop-2 and RVD-127 proved to directly and reversibly bind to at least two members of the small GTPase superfamily Ran and Rac1 with particularly high efficacy. Binding locks the GTPases in a guanosine diphosphate (GDP)-like conformation disabling their interaction with their downstream effectors. Consequently, overall cell motility, mechanics and nucleocytoplasmic transport integrity are rapidly disrupted at inhibitor concentrations well below those required to significantly reduce CME. We conclude that Pitstop-2 is a highly potent, reversible inhibitor of small GTPases. The inhibition of these molecular switches of diverse crucial signaling pathways, including nucleocytoplasmic transport and overall cell dynamics and motility, clarifies the diversity of Pitstop-2 activities. Moreover, considering the fundamental importance and broad implications of small GTPases in physiology, pathophysiology and drug development, Pitstop-2 and RVD-127 open up novel avenues.
Collapse
Affiliation(s)
| | | | | | - Günter Haufe
- Organic Chemistry Institute, University of MünsterMünsterGermany
| | - Alexander Erofeev
- National University of Science and Technology «MISiS»MoscowRussia
- Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
| | | | | | | | | | - Etmar Bulk
- Institute of Physiology II, University of MünsterMünsterGermany
| | | | - Victor Shahin
- Institute of Physiology II, University of MünsterMünsterGermany
| |
Collapse
|
19
|
Tu WJ, Melino M, Dunn J, McCuaig RD, Bielefeldt-Ohmann H, Tsimbalyuk S, Forwood JK, Ahuja T, Vandermeide J, Tan X, Tran M, Nguyen Q, Zhang L, Nam A, Pan L, Liang Y, Smith C, Lineburg K, Nguyen TH, Sng JDJ, Tong ZWM, Chew KY, Short KR, Le Grand R, Seddiki N, Rao S. In vivo inhibition of nuclear ACE2 translocation protects against SARS-CoV-2 replication and lung damage through epigenetic imprinting. Nat Commun 2023; 14:3680. [PMID: 37369668 DOI: 10.1038/s41467-023-39341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In vitro, ACE2 translocates to the nucleus to induce SARS-CoV-2 replication. Here, using digital spatial profiling of lung tissues from SARS-CoV-2-infected golden Syrian hamsters, we show that a specific and selective peptide inhibitor of nuclear ACE2 (NACE2i) inhibits viral replication two days after SARS-CoV-2 infection. Moreover, the peptide also prevents inflammation and macrophage infiltration, and increases NK cell infiltration in bronchioles. NACE2i treatment increases the levels of the active histone mark, H3K27ac, restores host translation in infected hamster bronchiolar cells, and leads to an enrichment in methylated ACE2 in hamster bronchioles and lung macrophages, a signature associated with virus protection. In addition, ACE2 methylation is increased in myeloid cells from vaccinated patients and associated with reduced SARS-CoV-2 spike protein expression in monocytes from individuals who have recovered from infection. This protective epigenetic scarring of ACE2 is associated with a reduced latent viral reservoir in monocytes/macrophages and enhanced immune protection against SARS-CoV-2. Nuclear ACE2 may represent a therapeutic target independent of the variant and strain of viruses that use the ACE2 receptor for host cell entry.
Collapse
Affiliation(s)
- Wen Juan Tu
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michelle Melino
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jenny Dunn
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert D McCuaig
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Sofiya Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Taniya Ahuja
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - John Vandermeide
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiao Tan
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Minh Tran
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Quan Nguyen
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Liang Zhang
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Andy Nam
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Yan Liang
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Corey Smith
- Translational and Human Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Katie Lineburg
- Translational and Human Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tam H Nguyen
- Flow and Imaging Facility, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Roger Le Grand
- Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nabila Seddiki
- Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
20
|
Corzo-López A, Leyva-Leyva M, Castillo-Viveros V, Fernández-Gallardo M, Muñoz-Herrera D, Sandoval A, González-Ramírez R, Felix R. Molecular mechanisms of nuclear transport of the neuronal voltage-gated Ca 2+ channel β 3 auxiliary subunit. Neuroscience 2023:S0306-4522(23)00181-1. [PMID: 37169165 DOI: 10.1016/j.neuroscience.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Previous studies have shown that in addition to its role within the voltage-gated calcium channel complex in the plasma membrane, the neuronal CaVβ subunit can translocate to the cell nucleus. However, little is known regarding the role this protein could play in the nucleus, nor the molecular mechanism used by CaVβ to enter this cell compartment. This report shows evidence that CaVβ3 has nuclear localization signals (NLS) that are not functional, suggesting that the protein does not use a classical nuclear import pathway. Instead, its entry into the nucleus could be associated with another protein that would function as a carrier, using a mechanism known as a piggyback. Mass spectrometry assays and bioinformatic analysis allowed the identification of proteins that could be participating in the entry of CaVβ3 into the nucleus. Likewise, through proximity ligation assays (PLA), it was found that members of the heterogeneous nuclear ribonucleoproteins (hnRNPs) and B56δ, a regulatory subunit of the protein phosphatase 2A (PP2A), could function as proteins that regulate this piggyback mechanism. On the other hand, bioinformatics and site-directed mutagenesis assays allowed the identification of a functional nuclear export signal (NES) that controls the exit of CaVβ3 from the nucleus, which would allow the completion of the nuclear transport cycle of the protein. These results reveal a novel mechanism for the nuclear transport cycle of the neuronal CaVβ3 subunit.
Collapse
Affiliation(s)
- Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Valeria Castillo-Viveros
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico; Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| |
Collapse
|
21
|
The Oxindole GW-5074 Inhibits JC Polyomavirus Infection and Spread by Antagonizing the MAPK-ERK Signaling Pathway. mBio 2023; 14:e0358322. [PMID: 36786589 PMCID: PMC10127638 DOI: 10.1128/mbio.03583-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
JC polyomavirus (JCPyV) is a ubiquitous, double-stranded DNA virus that causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in immunocompromised patients. Current treatments for PML are limited to immune reconstitution, and no effective antivirals exist. In this report, we show that the oxindole GW-5074 (3-(3,5-dibromo-4-hydroxybenzylidene)-5-iodoindolin-2-one) reduces JCPyV infection in primary and immortalized cells. This compound potently inhibits virus spread, which suggests that it could control infection in PML patients. We demonstrate that GW-5074 inhibits endogenous ERK phosphorylation, and that JCPyV infection in GW-5074-treated cells cannot be rescued with ERK agonists, which indicates that the antiviral mechanism may involve its antagonistic effects on MAPK-ERK signaling. Importantly, GW-5074 exceeds thresholds of common pharmacological parameters that identify promising compounds for further development. This MAPK-ERK antagonist warrants further investigation as a potential treatment for PML. IMPORTANCE Human polyomaviruses, such as JCPyV and BKPyV, cause significant morbidity and mortality in immunocompromised or immunomodulated patients. There are no treatments for polyomavirus-induced diseases other than restoration of immune function. We discovered that the oxindole GW-5074 potently inhibits infection by both JCPyV and BKPyV. Further optimization of this compound could result in the development of antiviral therapies for polyomavirus-induced diseases.
Collapse
|
22
|
Nuclear export inhibitor Selinexor targeting XPO1 enhances coronavirus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527884. [PMID: 36824761 PMCID: PMC9948980 DOI: 10.1101/2023.02.09.527884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nucleocytoplasmic transport of proteins using XPO1 (exportin 1) plays a vital role in cell proliferation and survival. Many viruses also exploit this pathway to promote infection and replication. Thus, inhibiting XPO1-mediated nuclear export with selective inhibitors activates multiple antiviral and anti-inflammatory pathways. The XPO1 inhibitor, Selinexor, is an FDA-approved anticancer drug predicted to have antiviral function against many viruses, including SARS-CoV-2. Unexpectedly, we observed that pretreatment of cultured human cells with Selinexor actually enhanced protein expression and replication of coronaviruses, including SARS-CoV-2. Knockdown of cellular XPO1 protein expression significantly enhanced the replication of coronaviruses in human cells. We further demonstrate that Selinexor treatment reduced the formation of unique cytoplasmic antiviral granules that include RNA helicase DHX9 in the virus-infected cells. These results, for the first time, show that the anti-cancer drug Selinexor enhances the replication of coronaviruses in human cells in vitro and thus should be further explored in vivo for the potential impact on the dual use for anticancer and antiviral therapy.
Collapse
|
23
|
Morgan KJ, Doggett K, Geng F, Mieruszynski S, Whitehead L, Smith KA, Hogan BM, Simons C, Baillie GJ, Molania R, Papenfuss AT, Hall TE, Ober EA, Stainier DYR, Gong Z, Heath JK. ahctf1 and kras mutations combine to amplify oncogenic stress and restrict liver overgrowth in a zebrafish model of hepatocellular carcinoma. eLife 2023; 12:73407. [PMID: 36648336 PMCID: PMC9897728 DOI: 10.7554/elife.73407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
The nucleoporin (NUP) ELYS, encoded by AHCTF1, is a large multifunctional protein with essential roles in nuclear pore assembly and mitosis. Using both larval and adult zebrafish models of hepatocellular carcinoma (HCC), in which the expression of an inducible mutant kras transgene (krasG12V) drives hepatocyte-specific hyperplasia and liver enlargement, we show that reducing ahctf1 gene dosage by 50% markedly decreases liver volume, while non-hyperplastic tissues are unaffected. We demonstrate that in the context of cancer, ahctf1 heterozygosity impairs nuclear pore formation, mitotic spindle assembly, and chromosome segregation, leading to DNA damage and activation of a Tp53-dependent transcriptional programme that induces cell death and cell cycle arrest. Heterozygous expression of both ahctf1 and ranbp2 (encoding a second nucleoporin), or treatment of heterozygous ahctf1 larvae with the nucleocytoplasmic transport inhibitor, Selinexor, completely blocks krasG12V-driven hepatocyte hyperplasia. Gene expression analysis of patient samples in the liver hepatocellular carcinoma (LIHC) dataset in The Cancer Genome Atlas shows that high expression of one or more of the transcripts encoding the 10 components of the NUP107-160 subcomplex, which includes AHCTF1, is positively correlated with worse overall survival. These results provide a strong and feasible rationale for the development of novel cancer therapeutics that target ELYS function and suggest potential avenues for effective combinatorial treatments.
Collapse
Affiliation(s)
- Kimberly J Morgan
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Karen Doggett
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Fansuo Geng
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Stephen Mieruszynski
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Lachlan Whitehead
- Department of Medical Biology, University of MelbourneParkvilleAustralia
- Centre for Dynamic Imaging, Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Kelly A Smith
- Department of Physiology, University of MelbourneParkvilleAustralia
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
| | - Benjamin M Hogan
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
- Peter MacCallum Cancer CentreMelbourneAustralia
| | - Cas Simons
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
- Murdoch Children's Research InstituteParkvilleAustralia
| | - Gregory J Baillie
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
| | - Ramyar Molania
- Department of Medical Biology, University of MelbourneParkvilleAustralia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Anthony T Papenfuss
- Department of Medical Biology, University of MelbourneParkvilleAustralia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Thomas E Hall
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
| | - Elke A Ober
- Danish Stem Cell Center, University of CopenhagenCopenhagenDenmark
| | - Didier YR Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Zhiyuan Gong
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Joan K Heath
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| |
Collapse
|
24
|
Dubey AK, Kumar P, Mandal D, Ravichandiran V, Singh SK. An introduction to dynamic nucleoporins in Leishmania species: Novel targets for tropical-therapeutics. J Parasit Dis 2022; 46:1176-1191. [PMID: 36457769 PMCID: PMC9606170 DOI: 10.1007/s12639-022-01515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
As an ailment, leishmaniasis is still an incessant challenge in neglected tropical diseases and neglected infections of poverty worldwide. At present, the diagnosis and treatment to combat Leishmania tropical infections are not substantial remedies and require advanced & specific research. Therefore, there is a need for a potential novel target to overcome established medicament modalities' limitations in pathogenicity. In this review, we proposed a few ab initio findings in nucleoporins of nuclear pore complex in Leishmania sp. concerning other infectious protists. So, through structural analysis and dynamics studies, we hypothesize the nuclear pore molecular machinery & functionality. The gatekeepers Nups, export of mRNA, mitotic spindle formation are salient features in cellular mechanics and this is regulated by dynamic nucleoporins. Here, diverse studies suggest that Nup93/NIC96, Nup155/Nup144, Mlp1/Mlp2/Tpr of Leishmania Species can be a picked out marker for diagnostic, immune-modulation, and novel drug targets. In silico prediction of nucleoporin-functional interactors such as NUP54/57, RNA helicase, Ubiquitin-protein ligase, Exportin 1, putative T-lymphocyte triggering factor, and 9 uncharacterized proteins suggest few more noble targets. The novel drug targeting to importins/exportins of Leishmania sp. and defining mechanism of Leptomycin-B, SINE compounds, Curcumins, Selinexor can be an arc-light in therapeutics. The essence of the review in Leishmania's nucleoporins is to refocus our research on noble molecular targets for tropical therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-022-01515-0.
Collapse
Affiliation(s)
- Amit Kumar Dubey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - V. Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Shubhankar Kumar Singh
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| |
Collapse
|
25
|
Sarkar R, Banerjee S, Halder P, Koley H, Komoto S, Chawla-Sarkar M. Suppression of classical nuclear import pathway by importazole and ivermectin inhibits rotavirus replication. J Antimicrob Chemother 2022; 77:3443-3455. [PMID: 36210599 DOI: 10.1093/jac/dkac339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rotavirus is the foremost cause of acute gastroenteritis among infants in resource-poor countries, causing severe morbidity and mortality. The currently available rotavirus vaccines are effective in reducing severity of the disease but not the infection rates, thus antivirals as an adjunct therapy are needed to reduce the morbidity in children. Viruses rely on host cellular machinery for nearly every step of the replication cycle. Therefore, targeting host factors that are indispensable for virus replication could be a promising strategy. OBJECTIVES To assess the therapeutic potential of ivermectin and importazole against rotaviruses. METHODS Antirotaviral activity of importazole and ivermectin was measured against various rotavirus strains (RV-SA11, RV-Wa, RV-A5-13, RV-EW) in vitro and in vivo by quantifying viral protein expression by western blot, analysing viroplasm formation by confocal microscopy, and measuring virus yield by plaque assay. RESULTS Importin-β1 and Ran were found to be induced during rotavirus infection. Knocking down importin-β1 severely impaired rotavirus replication, suggesting a critical role for importin-β1 in the rotavirus life cycle. In vitro studies revealed that treatment of ivermectin and importazole resulted in reduced synthesis of viral proteins, diminished production of infectious virus particles, and decrease in viroplasm-positive cells. Mechanistic study proved that both drugs perform antirotavirus activity by inhibiting the function of importin-β1. In vivo investigations in mice also confirmed the antirotavirus potential of importazole and ivermectin at non-toxic doses. Treatments of rotavirus-infected mice with either drug resulted in diminished shedding of viral particles in the stool sample, reduced expression of viral protein in the small intestine and restoration of damaged intestinal villi comapared to untreated infected mice. CONCLUSIONS The study highlights the potential of importazole and ivermectin as antirotavirus therapeutics.
Collapse
Affiliation(s)
- Rakesh Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Shreya Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Walunj SB, Wang C, Wagstaff KM, Patankar S, Jans DA. Conservation of Importin α Function in Apicomplexans: Ivermectin and GW5074 Target Plasmodium falciparum Importin α and Inhibit Parasite Growth in Culture. Int J Mol Sci 2022; 23:ijms232213899. [PMID: 36430384 PMCID: PMC9695642 DOI: 10.3390/ijms232213899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily of nuclear transporters is critical to the eukaryotic function and a point of therapeutic intervention with the potential to limit disease progression and pathogenic outcomes. Although the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii both retain unique IMPα genes that are essential, a detailed analysis of their properties has not been performed. As a first step to validate apicomplexan IMPα as a target, we set out to compare the properties of P. falciparum and T. gondii IMPα (PfIMPα and TgIMPα, respectively) to those of mammalian IMPα, as exemplified by Mus musculus IMPα (MmIMPα). Close similarities were evident, with all three showing high-affinity binding to modular nuclear localisation signals (NLSs) from apicomplexans as well as Simian virus SV40 large tumour antigen (T-ag). PfIMPα and TgIMPα were also capable of binding to mammalian IMPβ1 (MmIMPβ1) with high affinity; strikingly, NLS binding by PfIMPα and TgIMPα could be inhibited by the mammalian IMPα targeting small molecules ivermectin and GW5074 through direct binding to PfIMPα and TgIMPα to perturb the α-helical structure. Importantly, GW5074 could be shown for the first time to resemble ivermectin in being able to limit growth of P. falciparum. The results confirm apicomplexan IMPα as a viable target for the development of therapeutics, with agents targeting it worthy of further consideration as an antimalarial.
Collapse
Affiliation(s)
- Sujata B. Walunj
- Molecular Parasitology Lab., Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia
| | - Chunxiao Wang
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia
| | - Kylie M. Wagstaff
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia
| | - Swati Patankar
- Molecular Parasitology Lab., Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A. Jans
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
27
|
Nuclear translocation of Gasdermin D sensitizes colorectal cancer to chemotherapy in a pyroptosis-independent manner. Oncogene 2022; 41:5092-5106. [PMID: 36245058 DOI: 10.1038/s41388-022-02503-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
Gasdermin D (GSDMD) has recently been identified as a cytoplasmic effector protein that plays a central role in pyroptosis of immune cells. However, GSDMD is a universally expressed protein, and its function beyond pyroptosis, especially in cancer cells, has not been well characterized. Here, we report that predominant localization of GSDMD in the nucleoplasm in vivo indicates favorable clinical outcomes in colorectal cancer, while a lack of nuclear localization of GSDMD is associated with poor outcomes. Nuclear GSDMD, rather than cytoplasmic GSDMD, inhibits cell growth and promotes apoptosis in colorectal cancer. Hypoxia in the tumor microenvironment accounts for mild or moderate nuclear translocation of GSDMD in vivo. Under the stimulation of chemotherapy drugs, nuclear GSDMD promotes apoptosis via regulation of its subcellular distribution rather than pyroptosis-related cleavage. After nuclear translocation, GSDMD interacts with PARP-1 to dramatically inhibit its DNA damage repair-related function by functioning like the PARP inhibitor olaparib, thus forming a "hypoxia/chemotherapy-GSDMD nuclear translocation-PARP-1 blockade-DNA damage and apoptosis" axis. This study redefines the pyroptosis-independent function of GSDMD and suggests that the subcellular localization of GSDMD may serve as a molecular indicator of clinical outcomes and a promising therapeutic target in colorectal cancer.
Collapse
|
28
|
Huang Z, Liu S, Lu N, Xu L, Shen Q, Huang Z, Huang Z, Saw PE, Xu X. Nucleus-specific RNAi nanoplatform for targeted regulation of nuclear lncRNA function and effective cancer therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20220013. [PMID: 37325502 PMCID: PMC10191018 DOI: 10.1002/exp.20220013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/15/2022] [Indexed: 06/17/2023]
Abstract
In the context of cancer therapy, a recently identified therapeutic target is represented by the essential subtype of RNA transcripts - the long noncoding RNAs (lncRNA). While this is the case, it is especially difficult to successfully regulate the expression of this subtype in vivo, particularly due to the protection granted by the nuclear envelope of nuclear lncRNAs. This study documents the development of a nucleus-specific RNA interference (RNAi) nanoparticle (NP) platform for the targeted regulation of the nuclear lncRNA function, in order to effectuate successful cancer therapy. An NTPA (nucleus-targeting peptide amphiphile) and an endosomal pH-responsive polymer make up the novel RNAi nanoplatform in development, which is capable of complexing siRNA. The nanoplatform is capable of accumulating greatly in the tumor tissues and being internalized by tumor cells, following intravenous administration. The exposed complexes of the NTPA/siRNA may conveniently escape from the endosome with the pH-triggered NP disassociation, following which it can target the nucleus by specifically interacting with the importin α/β heterodimer. In orthotopic and subcutaneous xenograft tumor models, this would result in a notable suppression of the expression of nuclear lncNEAT2 as well as greatly impede the growth of tumors in liver cancer.
Collapse
Affiliation(s)
- Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Shaomin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- School of MedicineSun Yat‐sen UniversityShenzhenP. R. China
| | - Nan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Qian Shen
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| | - Zhuoshan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| |
Collapse
|
29
|
Elshafie AH, Elsawah HK, Hammad M, Sweed EM, Seif AS, Abdel Ghaffar MM, Goda FM, Mosalam EM, Abdallah MS. Ivermectin role in COVID-19 treatment (IRICT): single-center, adaptive, randomized, double-blind, placebo-controlled, clinical trial. Expert Rev Anti Infect Ther 2022; 20:1341-1350. [PMID: 35788169 DOI: 10.1080/14787210.2022.2098113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/17/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND To investigate the efficacy and safety of ivermectin compared to hydroxychloroquine and placebo in hospitalized moderate to severe COVID-19 patients. RESEARCH DESIGN AND METHODS The study was an adaptive, randomized, double-blinded, controlled, single-center trial. The study was a series of 3-arm comparisons between two different investigational therapeutic agents (ivermectin and hydroxychloroquine) and a placebo. There was interim monitoring to allow early stopping for futility, efficacy, or safety. RESULTS Ivermectin decreased survival time from 29 to 18.3 days (HR, 9.8, 95%CI, 3.7-26.2), while it did not shorten the recovery time (HR, 1.02, 95%CI, 0.69-1.5). Subgroup analysis showed an association between ivermectin-related mortality and baseline oxygen saturation level. Moreover, stratified groups showed higher risk among patients on high flow O2. Hydroxychloroquine delayed recovery from 10.1 to 12.5 days (HR, 0.62, 95%CI, 0.4-0.95) and non-significantly decreased survival time from 29 to 26.8 days (HR, 1.47, 95%CI, 0.73-2.9). However, 3 months mortality rates were increased with hydroxychloroquine (RR, 2.05, 95%CI, 1.33-3.16). Neither ivermectin nor hydroxychloroquine increased adverse events and demonstrated safety profile compared to placebo. CONCLUSIONS The study recommends against using either ivermectin or hydroxychloroquine for treatment of COVID-19 in hospitalized patients with any degree of severity. Clinical trial registration: www.clinicaltrials.gov identifier is: NCT04746365.
Collapse
Affiliation(s)
- Ahmed Hanei Elshafie
- Neurology and Psychiatry Department, Shebin Elkom Teaching Hospital, Menoufia University, Shebin Elkom, Egypt
| | - Hozaifa Khalil Elsawah
- Department of Biostatistics, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Mohamed Hammad
- Neurology and Psychiatry Department, Shebin Elkom Teaching Hospital, Menoufia University, Shebin Elkom, Egypt
| | - Eman Mohamed Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Ahmed Salah Seif
- Gastrohepatology and Endemic Medicine Department, Shebin Elkom Teaching Hospital, Menoufia University, Shebin Elkom, Egypt
| | | | - Feisal Mahmoud Goda
- General Surgery Department, Shebin Elkom Teaching Hospital, Menoufia University, Shebin Elkom, Egypt
| | - Esraa M Mosalam
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shebin El-Kom, Egypt
| | - Mahmoud S Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City, Egypt
| |
Collapse
|
30
|
Qureshi U, Mir S, Naz S, Nur-e-Alam M, Ahmed S, Ul-Haq Z. Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications. J Biomol Struct Dyn 2022; 40:8100-8111. [PMID: 33950784 PMCID: PMC8108190 DOI: 10.1080/07391102.2021.1906750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
The novel corona virus (Covid-19) has become a great challenge worldwide since 2019, as no drug has been reported yet. Different clinical trials are still under way. Among them is Ivermectin (IVM), an FDA approved drug which was recently reported as a successful candidate to reduce SARS-CoV-2 viral load by inhibiting Importin-α1 (IMP-α1) protein which subsequently affects nuclear transport of viral proteins but its basic binding mode and inhibitory mechanism is unknown. Therefore, we aimed to explore the inhibitory mechanism and binding mode of IVM with IMP-α1 via different computational methods. Initially, comparative docking of IVM was performed against two different binding sites (Nuclear Localization Signal (NLS) major and minor sites) of IMP-α1 to predict the probable binding mode of IVM. Then, classical MD simulation was performed (IVM/NLS-Major site and IVM/NLS-Minor site), to predict its comparative stability dynamics and probable inhibitory mechanism. The stability dynamics and biophysical analysis of both sites highlighted the stable binding of IVM within NLS-Minor site by establishing and maintaining more hydrophobic contacts with crucial residues, required for IMP-α1 inhibition which were not observed in NLS-major site. Altogether, these results recommended the worth of IVM as a possible drug to limit the SARS-CoV-2 viral load and consequently reduces its progression.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Urooj Qureshi
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | - Sonia Mir
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | - Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| | - Mohammad Nur-e-Alam
- Department of Pharmacognosy, King Saud University College of Pharmacy, Riyadh, Kingdom of Saudi Arabia
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, King Saud University College of Pharmacy, Riyadh, Kingdom of Saudi Arabia
| | - Zaheer Ul-Haq
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| |
Collapse
|
31
|
Inferences of actinobacterial metabolites to combat Corona virus. ADVANCES IN TRADITIONAL MEDICINE 2022. [PMCID: PMC9469815 DOI: 10.1007/s13596-022-00661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The entire globe is reeling under the magnitude of the current corona virus pandemic. This menace has proposed severe health and economic threats for all, thereby challenging our human existence itself. Since its outbreak, it has raised the concern and imperative need of developing novel and effective agents to combat viral diseases and now its variants as well. Despite the sincere and concerted efforts of scientists and pharma giants all over the world, there seems to be no ideal recourse found till date. Natural products are rich sources of novel compounds used in the treatment of infectious and non-infectious diseases. There are reports on natural products from microbes, plants and marine organisms that are active against viral targets. Actinobacteria, the largest phylum under the bacterial kingdom, is known for its secondary metabolite production with diverse bioactive potentials. Nearly 65% of antibiotics used in medicine are contributed by Actinobacteria. Compared to antibacterial and antifungal agents, antiviral compounds from Actinobacteria are less studied. In recent years Actinobacteria from under studied/extreme ecosystems are explored for their antiviral properties. Ivermectin and teicoplanin are examples of Actinobacteria-derived antiviral drugs available for commercial use. This review highlights the importance of actinobacteria as future sources of antiviral drug discovery.
Collapse
|
32
|
Sun W, Xu J, Wang L, Jiang Y, Cui J, Su X, Yang F, Tian L, Si Z, Xing Y. Non-coding RNAs in cancer therapy-induced cardiotoxicity: Mechanisms, biomarkers, and treatments. Front Cardiovasc Med 2022; 9:946137. [PMID: 36082126 PMCID: PMC9445363 DOI: 10.3389/fcvm.2022.946137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of ongoing breakthroughs in cancer therapy, cancer patients' survival rates have grown considerably. However, cardiotoxicity has emerged as the most dangerous toxic side effect of cancer treatment, negatively impacting cancer patients' prognosis. In recent years, the link between non-coding RNAs (ncRNAs) and cancer therapy-induced cardiotoxicity has received much attention and investigation. NcRNAs are non-protein-coding RNAs that impact gene expression post-transcriptionally. They include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In several cancer treatments, such as chemotherapy, radiotherapy, and targeted therapy-induced cardiotoxicity, ncRNAs play a significant role in the onset and progression of cardiotoxicity. This review focuses on the mechanisms of ncRNAs in cancer therapy-induced cardiotoxicity, including apoptosis, mitochondrial damage, oxidative stress, DNA damage, inflammation, autophagy, aging, calcium homeostasis, vascular homeostasis, and fibrosis. In addition, this review explores potential ncRNAs-based biomarkers and therapeutic strategies, which may help to convert ncRNAs research into clinical practice in the future for early detection and improvement of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wanli Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juping Xu
- The Second People's Hospital of Jiaozuo, Jiaozuo, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, China
| | - Yuchen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingrun Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Si
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Taiyuan, China
- Zeyu Si
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanwei Xing
| |
Collapse
|
33
|
Gupta A, Ahmad R, Siddiqui S, Yadav K, Srivastava A, Trivedi A, Ahmad B, Khan MA, Shrivastava AK, Singh GK. Flavonol morin targets host ACE2, IMP-α, PARP-1 and viral proteins of SARS-CoV-2, SARS-CoV and MERS-CoV critical for infection and survival: a computational analysis. J Biomol Struct Dyn 2022; 40:5515-5546. [PMID: 33526003 PMCID: PMC7869441 DOI: 10.1080/07391102.2021.1871863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022]
Abstract
A sudden outbreak of a novel coronavirus SARS-CoV-2 in 2019 has now emerged as a pandemic threatening to efface the existence of mankind. In absence of any valid and appropriate vaccines to combat this newly evolved agent, there is need of novel resource molecules for treatment and prophylaxis. To this effect, flavonol morin which is found in fruits, vegetables and various medicinal herbs has been evaluated for its antiviral potential in the present study. PASS analysis of morin versus reference antiviral drugs baricitinib, remdesivir and hydroxychloroquine revealed that morin displayed no violations of Lipinski's rule of five and other druglikeness filters. Morin also displayed no tumorigenic, reproductive or irritant effects and exhibited good absorption and permeation through GI (clogP <5). In principal component analysis, morin appeared closest to baricitinib in 3D space. Morin displayed potent binding to spike glycoprotein, main protease 3CLPro and papain-like protease PLPro of SARS-CoV-2, SARS-CoV and MERS-CoV using molecular docking and significant binding to three viral-specific host proteins viz. human ACE2, importin-α and poly (ADP-ribose) polymerase (PARP)-1, further lending support to its antiviral efficacy. Additionally, morin displayed potent binding to pro-inflammatory cytokines IL-6, 8 and 10 also supporting its anti-inflammatory activity. MD simulation of morin with SARS-CoV-2 3CLPro and PLPro displayed strong stability at 300 K. Both complexes exhibited constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In conclusion, morin might hold considerable therapeutic potential for the treatment and management of not only COVID-19, but also SARS and MERS if studied further. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Anchal Trivedi
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Bilal Ahmad
- Research Cell, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | | | - Amit Kumar Shrivastava
- Department of Pharmacology, Universal College of Medical Sciences & Hospital, Ranigaon, Bhairahawa, Rupandehi, Nepal
| | - Girish Kumar Singh
- Department of Orthopedics, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| |
Collapse
|
34
|
de Souza RB, Guimarães JR. Effects of Avermectins on the Environment Based on Its Toxicity to Plants and Soil Invertebrates-a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:259. [PMID: 35789787 PMCID: PMC9243718 DOI: 10.1007/s11270-022-05744-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Avermectins are pharmaceutical drugs widely used mainly in livestock to combat both ectoparasites and endoparasites. Drugs belonging to this family include ivermectin, abamectin, doramectin, selamectin, eprinomectin, and emamectin benzoate, and they share similar chemical characteristics. When administered to livestock, between 80 and 98% of the drug is estimated to leave the body without being metabolized in feces, thus reaching the soil. For this reason, concern for avermectin contamination in soil is increasing, and researchers are focused on estimating the effects on non-target organisms, such as plants and soil invertebrates. This review aimed to compile and discuss updated data of avermectin toxicity on non-target organisms to better comprehend its effect on the environment. Effects on plants are scarcely studied, since they were not believed to absorb these drugs. However, recent studies suggest that plants can be negatively affected. Regarding soil invertebrates, negative effects such as increased mortality and reduced reproduction are best known to dung-beetles. Recently, some studies have also suggested that earthworms, springtails, and enchytraeids can be adversely affected by avermectin exposure. Since ivermectin was the first avermectin marketed, most of the data refers to this product. According to new data on scientific literature, avermectins can now be considered harmful to non-target organisms, and its prudent use is recommended in order to reduce negative effects on the environment. For future investigations, inclusion of avermectins other than ivermectin, as well as field and "omics" studies is suggested.
Collapse
Affiliation(s)
- Raphael B. de Souza
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| | - José Roberto Guimarães
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| |
Collapse
|
35
|
Yip AJW, Low ZY, Chow VTK, Lal SK. Repurposing Molnupiravir for COVID-19: The Mechanisms of Antiviral Activity. Viruses 2022; 14:v14061345. [PMID: 35746815 PMCID: PMC9228778 DOI: 10.3390/v14061345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Molnupiravir is a β-d-N4-hydroxycytidine-5'-isopropyl ester (NHC) compound that exerts antiviral activity against various RNA viruses such as influenza, SARS, and Ebola viruses. Thus, the repurposing of Molnupiravir has gained significant attention for combatting infection with SARS-CoV-2, the etiological agent of COVID-19. Recently, Molnupiravir was granted authorization for the treatment of mild-to-moderate COVID-19 in adults. Findings from in vitro experiments, in vivo studies and clinical trials reveal that Molnupiravir is effective against SARS-CoV-2 by inducing viral RNA mutagenesis, thereby giving rise to mutated complementary RNA strands that generate non-functional viruses. To date, the data collectively suggest that Molnupiravir possesses promising antiviral activity as well as favorable prophylactic efficacy, attributed to its effective mutagenic property of disrupting viral replication. This review discusses the mechanisms of action of Molnupiravir and highlights its clinical utility by disabling SARS-CoV-2 replication, thereby ameliorating COVID-19 severity. Despite relatively few short-term adverse effects thus far, further detailed clinical studies and long-term pharmacovigilance are needed in view of its mutagenic effects.
Collapse
Affiliation(s)
- Ashley Jia Wen Yip
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (A.J.W.Y.); (Z.Y.L.)
| | - Zheng Yao Low
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (A.J.W.Y.); (Z.Y.L.)
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Sunil K. Lal
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (A.J.W.Y.); (Z.Y.L.)
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
- Correspondence:
| |
Collapse
|
36
|
Dai J, Wang J, Yang X, Xu Z, Ruan G. Examining the Cellular Transport Pathway of Fusogenic Quantum Dots Conjugated With Tat Peptide. Front Bioeng Biotechnol 2022; 10:831379. [PMID: 35694230 PMCID: PMC9184739 DOI: 10.3389/fbioe.2022.831379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the underlying transport mechanism of biological delivery is important for developing delivery technologies for pharmaceuticals, imaging agents, and nanomaterials. Recently reported by our group, SDots are a novel class of nanoparticle delivery systems with distinct biointerface features and excellent fusogenic capabilities (i.e., strong ability to interact with the hydrophobic portions of biomembranes). In this study, we investigate the cellular transport mechanism of SDots conjugated with Tat peptide (SDots-Tat) by live-cell spinning-disk confocal microscopy combined with molecular biology methods. Mechanistic studies were conducted on the following stages of cellular transport of SDots-Tat in HeLa cells: cellular entry, endosomal escape, nucleus entry, and intranuclear transport. A key finding is that, after escaping endosomes, SDots-Tat enter the cell nucleus via an importin β-independent pathway, bypassing the usual nucleus entry mechanism used by Tat. This finding implies a new approach to overcome the nucleus membrane barrier for designing biological delivery technologies.
Collapse
Affiliation(s)
- Jie Dai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Jun Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Xuan Yang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Nanobiotechnology and Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Zixing Xu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Gang Ruan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.,Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Nanobiotechnology and Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Shenzhen Research Institute of Nanjing University, Nanjing, China.,Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
37
|
Ho WS, Zhang R, Tan YL, Chai CLL. COVID-19 and the promise of small molecule therapeutics: Are there lessons to be learnt? Pharmacol Res 2022; 179:106201. [PMID: 35367622 PMCID: PMC8970615 DOI: 10.1016/j.phrs.2022.106201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic had grounded the world to a standstill. As the disease continues to rage two years on, it is apparent that effective therapeutics are critical for a successful endemic living with COVID-19. A dearth in suitable antivirals has prompted researchers and healthcare professionals to investigate existing and developmental drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some of these drugs initially appeared to be promising for the treatment of COVID-19, they were ultimately found to be ineffective. In this review, we provide a retrospective analysis on the merits and limitations of some of these drugs that were tested against SARS-CoV-2 as well as those used for adjuvant therapy. While many of these drugs are no longer part of our arsenal for the treatment of COVID-19, important lessons can be learnt. The recent inclusion of molnupiravir and Paxlovid™ as treatment options for COVID-19 represent our best hope to date for endemic living with COVID-19. Our viewpoints on these two drugs and their prospects as current and future antiviral agents will also be provided.
Collapse
Affiliation(s)
- Wei Shen Ho
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Ruirui Zhang
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Yeong Lan Tan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Christina Li Lin Chai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
38
|
Delandre O, Gendrot M, Jardot P, Le Bideau M, Boxberger M, Boschi C, Fonta I, Mosnier J, Hutter S, Levasseur A, La Scola B, Pradines B. Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants. Pharmaceuticals (Basel) 2022; 15:445. [PMID: 35455442 PMCID: PMC9024598 DOI: 10.3390/ph15040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past two years, several variants of SARS-CoV-2 have emerged and spread all over the world. However, infectivity, clinical severity, re-infection, virulence, transmissibility, vaccine responses and escape, and epidemiological aspects have differed between SARS-CoV-2 variants. Currently, very few treatments are recommended against SARS-CoV-2. Identification of effective drugs among repurposing FDA-approved drugs is a rapid, efficient and low-cost strategy against SARS-CoV-2. One of those drugs is ivermectin. Ivermectin is an antihelminthic agent that previously showed in vitro effects against a SARS-CoV-2 isolate (Australia/VI01/2020 isolate) with an IC50 of around 2 µM. We evaluated the in vitro activity of ivermectin on Vero E6 cells infected with 30 clinically isolated SARS-CoV-2 strains belonging to 14 different variants, and particularly 17 strains belonging to six variants of concern (VOC) (variants related to Wuhan, alpha, beta, gamma, delta and omicron). The in vitro activity of ivermectin was compared to those of chloroquine and remdesivir. Unlike chloroquine (EC50 from 4.3 ± 2.5 to 29.3 ± 5.2 µM) or remdesivir (EC50 from 0.4 ± 0.3 to 25.2 ± 9.4 µM), ivermectin showed a relatively homogeneous in vitro activity against SARS-CoV-2 regardless of the strains or variants (EC50 from 5.1 ± 0.5 to 6.7 ± 0.4 µM), except for one omicron strain (EC50 = 1.3 ± 0.5 µM). Ivermectin (No. EC50 = 219, mean EC50 = 5.7 ± 1.0 µM) was, overall, more potent in vitro than chloroquine (No. EC50 = 214, mean EC50 = 16.1 ± 9.0 µM) (p = 1.3 × 10-34) and remdesivir (No. EC50 = 201, mean EC50 = 11.9 ± 10.0 µM) (p = 1.6 × 10-13). These results should be interpreted with caution regarding the potential use of ivermectin in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results into actual clinical treatment in patients.
Collapse
Affiliation(s)
- Océane Delandre
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Priscilla Jardot
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Céline Boschi
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Sébastien Hutter
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Anthony Levasseur
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| |
Collapse
|
39
|
High-Throughput Screening to Identify Inhibitors of Plasmodium falciparum Importin α. Cells 2022; 11:cells11071201. [PMID: 35406765 PMCID: PMC8997399 DOI: 10.3390/cells11071201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The global burden of malaria and toxoplasmosis has been limited by the use of efficacious anti-parasitic agents, however, emerging resistance in Plasmodium species and Toxoplasma gondii threatens disease control worldwide, implying that new agents/therapeutic targets are urgently needed. Nuclear localization signal (NLS)-dependent transport into the nucleus, mediated by members of the importin (IMP) superfamily of nuclear transporters, has shown potential as a target for intervention to limit viral infection. Here, we show for the first time that IMPα from P. falciparum and T. gondii have promise as targets for small molecule inhibitors. We use high-throughput screening to identify agents able to inhibit P. falciparum IMPα binding to a P. falciparum NLS, identifying a number of compounds that inhibit binding in the µM-nM range, through direct binding to P. falciparum IMPα, as shown in thermostability assays. Of these, BAY 11-7085 is shown to be a specific inhibitor of P. falciparum IMPα-NLS recognition. Importantly, a number of the inhibitors limited growth by both P. falciparum and T. gondii. The results strengthen the hypothesis that apicomplexan IMPα proteins have potential as therapeutic targets to aid in identifying novel agents for two important, yet neglected, parasitic diseases.
Collapse
|
40
|
Dicks LMT, Deane SM, Grobbelaar MJ. Could the COVID-19-Driven Increased Use of Ivermectin Lead to Incidents of Imbalanced Gut Microbiota and Dysbiosis? Probiotics Antimicrob Proteins 2022; 14:217-223. [PMID: 35218001 PMCID: PMC8881049 DOI: 10.1007/s12602-022-09925-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
The microfilaricidal anthelmintic drug ivermectin (IVM) has been used since 1988 for treatment of parasitic infections in animals and humans. The discovery of IVM’s ability to inactivate the eukaryotic importin α/β1 heterodimer (IMPα/β1), used by some viruses to enter the nucleus of susceptible hosts, led to the suggestion of using the drug to combat SARS-CoV-2 infection. Since IVM has antibacterial properties, prolonged use may affect commensal gut microbiota. In this review, we investigate the antimicrobial properties of IVM, possible mode of activity, and the concern that treatment of individuals diagnosed with COVID-19 may lead to dysbiosis.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Shelly M Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Matthew J Grobbelaar
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
41
|
Preferential Involvement of BRCA1/BARD1, Not Tip60/Fe65, in DNA Double-Strand Break Repair in Presenilin-1 P117L Alzheimer Models. Neural Plast 2022; 2022:3172861. [PMID: 35237315 PMCID: PMC8885292 DOI: 10.1155/2022/3172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Recently, we showed that DNA double-strand breaks (DSBs) are increased by the Aβ42-amyloid peptide and decreased by all-trans retinoic acid (RA) in SH-SY5Y cells and C57BL/6J mice. The present work was aimed at investigating DSBs in cells and murine models of Alzheimer's disease carrying the preseniline-1 (PS1) P117L mutation. We observed that DSBs could hardly decrease following RA treatment in the mutated cells compared to the wild-type cells. The activation of the amyloidogenic pathway is proposed in the former case as Aβ42- and RA-dependent DSBs changes were reproduced by an α-secretase and a γ-secretase inhibitions, respectively. Unexpectedly, the PS1 P117L cells showed lower DSB levels than the controls. As the DSB repair proteins Tip60 and Fe65 were less expressed in the mutated cell nuclei, they do not appear to contribute to this difference. On the contrary, full-length BRCA1 and BARD1 proteins were significantly increased in the chromatin compartment of the mutated cells, suggesting that they decrease DSBs in the pathological situation. These Western blot data were corroborated by in situ proximity ligation assays: the numbers of BRCA1-BARD1, not of Fe65-Tip60 heterodimers, were increased only in the mutated cell nuclei. RA also enhanced the expression of BARD1 and of the 90 kDa BRCA1 isoform. The increased BRCA1 expression in the mutated cells can be related to the enhanced difficulty to inhibit this pathway by BRCA1 siRNA in these cells. Overall, our study suggests that at earlier stages of the disease, similarly to PS1 P117L cells, a compensatory mechanism exists that decreases DSB levels via an activation of the BRCA1/BARD1 pathway. This supports the importance of this pathway in neuroprotection against Alzheimer's disease.
Collapse
|
42
|
Nachmias B, Khan DH, Voisin V, Mer AS, Thomas GE, Segev N, St-Germain J, Hurren R, Gronda M, Botham A, Wang X, Maclean N, Seneviratne AK, Duong N, Xu C, Arruda A, Orouji E, Algouneh A, Hakem R, Shlush L, Minden MD, Raught B, Bader GD, Schimmer AD. IPO11 regulates the nuclear import of BZW1/2 and is necessary for AML cells and stem cells. Leukemia 2022; 36:1283-1295. [PMID: 35152270 PMCID: PMC9061300 DOI: 10.1038/s41375-022-01513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
AML cells are arranged in a hierarchy with stem/progenitor cells giving rise to more differentiated bulk cells. Despite the importance of stem/progenitors in the pathogenesis of AML, the determinants of the AML stem/progenitor state are not fully understood. Through a comparison of genes that are significant for growth and viability of AML cells by way of a CRISPR screen, with genes that are differentially expressed in leukemia stem cells (LSC), we identified importin 11 (IPO11) as a novel target in AML. Importin 11 (IPO11) is a member of the importin β family of proteins that mediate transport of proteins across the nuclear membrane. In AML, knockdown of IPO11 decreased growth, reduced engraftment potential of LSC, and induced differentiation. Mechanistically, we identified the transcription factors BZW1 and BZW2 as novel cargo of IPO11. We further show that BZW1/2 mediate a transcriptional signature that promotes stemness and survival of LSC. Thus, we demonstrate for the first time how specific cytoplasmic-nuclear regulation supports stem-like transcriptional signature in relapsed AML.
Collapse
|
43
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
44
|
Salvi A, Young AN, Huntsman AC, Pergande MR, Korkmaz MA, Rathnayake RA, Mize BK, Kinghorn AD, Zhang X, Ratia K, Schirle M, Thomas JR, Brittain SM, Shelton C, Aldrich LN, Cologna SM, Fuchs JR, Burdette JE. PHY34 inhibits autophagy through V-ATPase V0A2 subunit inhibition and CAS/CSE1L nuclear cargo trafficking in high grade serous ovarian cancer. Cell Death Dis 2022; 13:45. [PMID: 35013112 PMCID: PMC8748433 DOI: 10.1038/s41419-021-04495-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
Abstract
PHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.
Collapse
Affiliation(s)
- Amrita Salvi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Alexandria N Young
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Melissa A Korkmaz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Brittney K Mize
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Kiira Ratia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jason R Thomas
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Scott M Brittain
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Claude Shelton
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Leslie N Aldrich
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
45
|
Lee A, Bogoyevitch MA, Jans DA. Bimolecular Fluorescence Complementation: Quantitative Analysis of In Cell Interaction of Nuclear Transporter Importin α with Cargo Proteins. Methods Mol Biol 2022; 2502:215-233. [PMID: 35412241 DOI: 10.1007/978-1-0716-2337-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimolecular fluorescence complementation utilizes the ability of two complementary nonfluorescent fragments to reconstitute and emit fluorescence when brought together through specific interaction of attached protein fragments of interest. It has been used in several different contexts to study protein-protein interaction. Here we apply the method for the first time to study interaction of the nuclear transporter importin α and its cargoes in a cellular context. By using image analysis to quantify the extent of nuclear complexation, it is possible to gain insight into the strength of interaction in cells.
Collapse
Affiliation(s)
- Alexander Lee
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - David A Jans
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
46
|
Sun J, Wang R, Chao T, Wang C. Long Noncoding RNAs Involved in Cardiomyocyte Apoptosis Triggered by Different Stressors. J Cardiovasc Transl Res 2021; 15:588-603. [PMID: 34855148 DOI: 10.1007/s12265-021-10186-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022]
Abstract
Cardiomyocytes are essential to maintain the normal cardiac function. Ischemia, hypoxia, and drug stimulation can induce pathological apoptosis of cardiomyocytes which eventually leads to heart failure, arrhythmia, and other cardiovascular diseases. Understanding the molecular mechanisms that regulate cardiomyocyte apoptosis is of great significance for the prevention and treatment of cardiovascular diseases. In recent years, more and more evidences reveal that long noncoding RNAs (lncRNAs) play important regulatory roles in myocardial cell apoptosis. They can modulate the expression of apoptosis-related genes at post-transcriptional level by altering the translation efficacy of target mRNAs or functioning as a precursor for miRNAs or competing for miRNA-mediated inhibition. Moreover, reversing the abnormal expression of lncRNAs can attenuate and even reverse the pathological apoptosis of cardiomyocytes. Therefore, apoptosis-related lncRNAs may become a potential new field for studying cardiomyocyte apoptosis and provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ru Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
47
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
48
|
Inhibition of XPO-1 Mediated Nuclear Export through the Michael-Acceptor Character of Chalcones. Pharmaceuticals (Basel) 2021; 14:ph14111131. [PMID: 34832913 PMCID: PMC8621101 DOI: 10.3390/ph14111131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
The nuclear export receptor exportin-1 (XPO1, CRM1) mediates the nuclear export of proteins that contain a leucine-rich nuclear export signal (NES) towards the cytoplasm. XPO1 is considered a relevant target in different human diseases, particularly in hematological malignancies, tumor resistance, inflammation, neurodegeneration and viral infections. Thus, its pharmacological inhibition is of significant therapeutic interest. The best inhibitors described so far (leptomycin B and SINE compounds) interact with XPO1 through a covalent interaction with Cys528 located in the NES-binding cleft of XPO1. Based on the well-established feature of chalcone derivatives to react with thiol groups via hetero-Michael addition reactions, we have synthesized two series of chalcones. Their capacity to react with thiol groups was tested by incubation with GSH to afford the hetero-Michael adducts that evolved backwards to the initial chalcone through a retro-Michael reaction, supporting that the covalent interaction with thiols could be reversible. The chalcone derivatives were evaluated in antiproliferative assays against a panel of cancer cell lines and as XPO1 inhibitors, and a good correlation was observed with the results obtained in both assays. Moreover, no inhibition of the cargo export was observed when the two prototype chalcones 9 and 10 were tested against a XPO1-mutated Jurkat cell line (XPO1C528S), highlighting the importance of the Cys at the NES-binding cleft for inhibition. Finally, their interaction at the molecular level at the NES-binding cleft was studied by applying the computational tool CovDock.
Collapse
|
49
|
Low ZY, Yip AJW, Lal SK. Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166294. [PMID: 34687900 PMCID: PMC8526435 DOI: 10.1016/j.bbadis.2021.166294] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/02/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Ivermectin (IVM) is an FDA approved macrocyclic lactone compound traditionally used to treat parasitic infestations and has shown to have antiviral potential from previous in-vitro studies. Currently, IVM is commercially available as a veterinary drug but have also been applied in humans to treat onchocerciasis (river blindness - a parasitic worm infection) and strongyloidiasis (a roundworm/nematode infection). In light of the recent pandemic, the repurposing of IVM to combat SARS-CoV-2 has acquired significant attention. Recently, IVM has been proven effective in numerous in-silico and molecular biology experiments against the infection in mammalian cells and human cohort studies. One promising study had reported a marked reduction of 93% of released virion and 99.98% unreleased virion levels upon administration of IVM to Vero-hSLAM cells. IVM's mode of action centres around the inhibition of the cytoplasmic-nuclear shuttling of viral proteins by disrupting the Importin heterodimer complex (IMPα/β1) and downregulating STAT3, thereby effectively reducing the cytokine storm. Furthermore, the ability of IVM to block the active sites of viral 3CLpro and S protein, disrupts important machinery such as viral replication and attachment. This review compiles all the molecular evidence to date, in review of the antiviral characteristics exhibited by IVM. Thereafter, we discuss IVM's mechanism and highlight the clinical advantages that could potentially contribute towards disabling the viral replication of SARS-CoV-2. In summary, the collective review of recent efforts suggests that IVM has a prophylactic effect and would be a strong candidate for clinical trials to treat SARS-CoV-2.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Sunil K Lal
- School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia; Tropical Medicine and Biology Platform, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia.
| |
Collapse
|
50
|
Abd‐Elsalam S, Noor RA, Badawi R, Khalaf M, Esmail ES, Soliman S, Abd El Ghafar MS, Elbahnasawy M, Moustafa EF, Hassany SM, Medhat MA, Ramadan HK, Eldeen MAS, Alboraie M, Cordie A, Esmat G. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. J Med Virol 2021; 93:5833-5838. [PMID: 34076901 PMCID: PMC8242425 DOI: 10.1002/jmv.27122] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022]
Abstract
Researchers around the world are working at record speed to find the best ways to treat and prevent coronavirus disease 2019 (COVID-19). This study aimed to evaluate the efficacy of ivermectin for the treatment of hospitalized mild to moderate COVID-19 infected patients. This was a randomized open-label controlled study that included 164 patients with COVID-19. Patients were randomized into two groups where Group 1 (Ivermectin group) included patients who received ivermectin 12 mg once daily for 3 days with standard care and Group 2 (control group) included patients who received standard protocol of treatment alone for 14 days. The main outcomes were mortality, the length of hospital stay, and the need for mechanical ventilation. All patients were followed up for 1 month. Overall, 82 individuals were randomized to receive ivermectin plus standard of care and 82 to receive standard of care alone. Patients in the ivermectin group had a shorter length of hospital stay (8.82 ± 4.94 days) than the control group (10.97 ± 5.28 days), but this was not statistically significant (p = 0.085). Three patients (3.7%) in each group required mechanical ventilation (p = 1.00). The death rate was three patients in the ivermectin group (3.7%) versus four patients (4.9%) in the control group without any significant difference between the two groups (p = 1.00). Although there was no statistically significant difference in any endpoints by ivermectin doses (12 mg/day for 3 days); there was an observed trend to reducing hospital stay in the ivermectin-treated group.
Collapse
Affiliation(s)
- Sherief Abd‐Elsalam
- Department of Tropical Medicine and Infectious diseases, Faculty of MedicineTanta UniversityTantaEgypt
| | - Rasha A. Noor
- Department of Internal Medicine, Faculty of MedicineTanta UniversityTantaEgypt
| | - Rehab Badawi
- Department of Tropical Medicine and Infectious diseases, Faculty of MedicineTanta UniversityTantaEgypt
| | - Mai Khalaf
- Department of Tropical Medicine and Infectious diseases, Faculty of MedicineTanta UniversityTantaEgypt
| | - Eslam S. Esmail
- Department of Tropical Medicine and Infectious diseases, Faculty of MedicineTanta UniversityTantaEgypt
| | - Shaimaa Soliman
- Department of Public health and Community Medicine, Faculty of MedicineMenoufia UniversityMenoufiaEgypt
| | - Mohamed S. Abd El Ghafar
- Department of Anesthesia, Surgical Intensive Care, and Pain Medicine, Faculty of MedicineTanta UniversityTantaEgypt
| | - Mohamed Elbahnasawy
- Department of Emergency Medicine and traumatology, Faculty of MedicineTanta UniversityTantaEgypt
| | - Ehab F. Moustafa
- Department of Tropical Medicine and Gastroenterology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Sahar M. Hassany
- Department of Tropical Medicine and Gastroenterology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Mohammed A. Medhat
- Department of Tropical Medicine and Gastroenterology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Haidi Karam‐Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | | | | | - Ahmed Cordie
- Department of Endemic Medicine, Kasr Alainy School of MedicineCairo UniversityCairoEgypt
| | - Gamal Esmat
- Department of Endemic Medicine, Kasr Alainy School of MedicineCairo UniversityCairoEgypt
| |
Collapse
|