1
|
Zhang XH, Morad M. Ca 2+ signaling of human pluripotent stem cells-derived cardiomyocytes as compared to adult mammalian cardiomyocytes. Cell Calcium 2020; 90:102244. [PMID: 32585508 PMCID: PMC7483365 DOI: 10.1016/j.ceca.2020.102244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022]
Abstract
Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) have been extensively used for in vitro modeling of human cardiovascular disease, drug screening and pharmacotherapy, but little rigorous studies have been reported on their biophysical or Ca2+ signaling properties. There is also considerable concern as to the level of their maturity and whether they can serve as reliable models for adult human cardiac myocytes. Ultrastructural difference such as lack of t-tubular network, their polygonal shapes, disorganized sarcomeric myofilament, and their rhythmic automaticity, among others, have been cited as evidence for immaturity of hiPSC-CMs. In this review, we will deal with Ca2+ signaling, its regulation, and its stage of maturity as compared to the mammalian adult cardiomyocytes. We shall summarize the data on functional aspects of Ca2+signaling and its parameters that include: L-type calcium channel (Cav1.2), ICa-induced Ca2+release, CICR, and its parameters, cardiac Na/Ca exchanger (NCX1), the ryanodine receptors (RyR2), sarco-reticular Ca2+pump, SERCA2a/PLB, and the contribution of mitochondrial Ca2+ to hiPSC-CMs excitation-contraction (EC)-coupling as compared with adult mammalian cardiomyocytes. The comparative studies suggest that qualitatively hiPSC-CMs have similar Ca2+signaling properties as those of adult cardiomyocytes, but quantitative differences do exist. This review, we hope, will allow the readers to judge for themselves to what extent Ca2+signaling of hiPSC-CMs represents the adult form of this signaling pathway, and whether these cells can be used as good models of human cardiomyocytes.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston SC, United States
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston SC, United States.
| |
Collapse
|
2
|
Chu L, Yin H, Gao L, Gao L, Xia Y, Zhang C, Chen Y, Liu T, Huang J, Boheler KR, Zhou Y, Yang HT. Cardiac Na +-Ca 2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. SCIENCE CHINA-LIFE SCIENCES 2020; 64:255-268. [PMID: 32648190 DOI: 10.1007/s11427-019-1706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/22/2020] [Indexed: 10/23/2022]
Abstract
Ca2+ signaling is critical for heart development; however, the precise roles and regulatory pathways of Ca2+ transport proteins in cardiogenesis remain largely unknown. Sodium-calcium exchanger 1 (Ncx1) is responsible for Ca2+ efflux in cardiomyocytes. It is involved in cardiogenesis, while the mechanism is unclear. Here, using the forward genetic screening in zebrafish, we identified a novel mutation at a highly-conserved leucine residue in ncx1 gene (mutantLDD353/ncx1hL154P) that led to smaller hearts with reduced heart rate and weak contraction. Mechanistically, the number of ventricular but not atrial cardiomyocytes was reduced in ncx1hL154P zebrafish. These defects were mimicked by knockdown or knockout of ncx1h. Moreover, ncx1hL154P had cytosolic and mitochondrial Ca2+ overloading and Ca2+ transient suppression in cardiomyocytes. Furthermore, ncx1hL154P and ncx1h morphants downregulated cardiac transcription factors hand2 and gata4 in the cardiac regions, while overexpression of hand2 and gata4 partially rescued cardiac defects including the number of ventricular myocytes. These findings demonstrate an essential role of the novel 154th leucine residue in the maintenance of Ncx1 function in zebrafish, and reveal previous unrecognized critical roles of the 154th leucine residue and Ncx1 in the formation of ventricular cardiomyocytes by at least partially regulating the expression levels of gata4 and hand2.
Collapse
Affiliation(s)
- Liming Chu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Huimin Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Lei Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Li Gao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Chiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingxi Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Jijun Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Kenneth R Boheler
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| |
Collapse
|
3
|
Möhner DM, Bernhardt A, Bekhite MM, Schulze PC, Sauer H, Wartenberg M. Zoxazolamine-induced stimulation of cardiomyogenesis from embryonic stem cells is mediated by Ca 2+, nitric oxide and ATP release. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118796. [PMID: 32663504 DOI: 10.1016/j.bbamcr.2020.118796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Ca2+-activated potassium (KCa) channels of small and intermediate conductance influence proliferation, apoptosis, and cell metabolism. We analysed whether prolonged activation of KCa channels by zoxazolamine (ZOX) induces differentiation of mouse embryonic stem (ES) cells towards cardiomyocytes. ZOX treatment of ES cells dose-dependent increased the number and diameter of cardiac foci, the frequency of contractions as well as mRNA expression of the cardiac transcription factor Nkx-2.5, the cardiac markers cardiac troponin I (cTnI), α-myosin heavy chain (α-MHC), ventricular myosin light chain-2 (MLC2v), and the pacemaker hyperpolarization-activated, cyclic nucleotide-gated 4 channel (HCN4). ZOX induced hyperpolarization of membrane potential due to activation of IKCa, raised intracellular Ca2+ concentration ([Ca2+]i) and nitric oxide (NO) in a Ca2+-dependent manner. The Ca2+ response to ZOX was inhibited by chelation of Ca2+ with BAPTA-AM, release of Ca2+ from intracellular stores by thapsigargin and the phospholipase C (PLC) antagonist U73,122. Moreover, the ZOX-induced Ca2+ response was blunted by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) as well as the specific P2Y1 antagonist MRS 2,179, suggesting purinergic receptor-stimulated signal transduction. Consequently, ZOX initiated ATP release from differentiating ES cells, which was inhibited by the chloride channel inhibitor NPPB and the gap junction inhibitor carbenoxolone (CBX). The stimulation of cardiomyogenesis by ZOX was blunted by the nitric oxide synthase (NOS) inhibitor l-NAME, as well as CBX and NPPB. In summary, our data suggest that ZOX enhances cardiomyogenesis of ES cells by ATP release presumably through gap junctional hemichannels, purinergic receptor activation and intracellular Ca2+ response, thus promoting NO generation.
Collapse
Affiliation(s)
- Desirée M Möhner
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - Anne Bernhardt
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - Mohamed M Bekhite
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - P Christian Schulze
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Justus Liebig University Giessen, Department of Physiology, Giessen, Germany
| | - Maria Wartenberg
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany.
| |
Collapse
|
4
|
Tyser RCV, Srinivas S. The First Heartbeat-Origin of Cardiac Contractile Activity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037135. [PMID: 31767652 DOI: 10.1101/cshperspect.a037135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The amniote embryonic heart starts as a crescent of mesoderm that transitions through a midline linear heart tube in the course of developing into the four chambered heart. It is unusual in having to contract rhythmically while still undergoing extensive morphogenetic remodeling. Advances in imaging have allowed us to determine when during development this contractile activity starts. In the mouse, focal regions of contractions can be detected as early as the cardiac crescent stage. Calcium transients, required to trigger contraction, can be detected even earlier, prior to contraction. In this review, we outline what is currently known about how this early contractile function is initiated and the impact early contractile function has on cardiac development.
Collapse
Affiliation(s)
- Richard C V Tyser
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| |
Collapse
|
5
|
Woo LA, Tkachenko S, Ding M, Plowright AT, Engkvist O, Andersson H, Drowley L, Barrett I, Firth M, Akerblad P, Wolf MJ, Bekiranov S, Brautigan DL, Wang QD, Saucerman JJ. High-content phenotypic assay for proliferation of human iPSC-derived cardiomyocytes identifies L-type calcium channels as targets. J Mol Cell Cardiol 2019; 127:204-214. [PMID: 30597148 PMCID: PMC6524138 DOI: 10.1016/j.yjmcc.2018.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
Abstract
Over 5 million people in the United States suffer from heart failure, due to the limited ability to regenerate functional cardiac tissue. One potential therapeutic strategy is to enhance proliferation of resident cardiomyocytes. However, phenotypic screening for therapeutic agents is challenged by the limited ability of conventional markers to discriminate between cardiomyocyte proliferation and endoreplication (e.g. polyploidy and multinucleation). Here, we developed a novel assay that combines automated live-cell microscopy and image processing algorithms to discriminate between proliferation and endoreplication by quantifying changes in the number of nuclei, changes in the number of cells, binucleation, and nuclear DNA content. We applied this assay to further prioritize hits from a primary screen for DNA synthesis, identifying 30 compounds that enhance proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Among the most active compounds from the phenotypic screen are clinically approved L-type calcium channel blockers from multiple chemical classes whose activities were confirmed across different sources of human induced pluripotent stem cell-derived cardiomyocytes. Identification of compounds that stimulate human cardiomyocyte proliferation may provide new therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Laura A Woo
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, USA
| | - Svyatoslav Tkachenko
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, USA
| | - Mei Ding
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Ola Engkvist
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Henrik Andersson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Lauren Drowley
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Ian Barrett
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Cambridge, UK
| | - Mike Firth
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Cambridge, UK
| | - Peter Akerblad
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Matthew J Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, USA
| | - David L Brautigan
- Center for Cell Signaling, Department of Microbiology, Immunology & Cancer Biology, University of Virginia, USA
| | - Qing-Dong Wang
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, USA.
| |
Collapse
|
6
|
Wang X, Wang L, Wu Q, Bao F, Yang H, Qiu X, Chang J. Chitosan/Calcium Silicate Cardiac Patch Stimulates Cardiomyocyte Activity and Myocardial Performance after Infarction by Synergistic Effect of Bioactive Ions and Aligned Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1449-1468. [PMID: 30543278 DOI: 10.1021/acsami.8b17754] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cardiac tissue engineering (CTE) remains a great challenge to construct a cell-inductive scaffold that has positive effects on cardiac cell behaviors and cardiac tissue repair. In this study, we for the first time demonstrated that Si ions evidently stimulated the expression of cardiac-specific genes and proliferation of neonatal rat cardiomyocytes (NRCMs) at concentration ranges of 0.13-10.78 ppm. Accordingly, the optimized concentrations of calcium silicate (CS) were incorporated into the controllable aligned chitosan electrospun nanofibers, constructing the composite cardiac patch scaffolds. These scaffolds showed synergistic effect of bioactive chemical and structural signals on both cardiomyocytes and endothelial cells with aligned cell morphology and enhanced viability and function characterized by upregulated expressions of cardiac and angiogenic specific markers, improved myofilament structure, and better Ca2+ transients of NRCMs as compared to the scaffolds free of CS component or with disordered structures. The in vivo studies further demonstrated that the NRCM-seeded aligned CS/chitosan cardiac patch evidently improved cardiac function via limiting the scar area and promoting angiogenesis in postmyocardial infarction rats. Conclusively, our study highlights the potential application of bioactive ions and nanostructured biomaterials in CTE, and the CS/chitosan composite cardiac patch may be a promising scaffold for repair of infarcted myocardium.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences (CAS) , Shanghai 200050 , P. R. China
- University of Chinese Academy of Sciences (CAS) , Beijing 100049 , P. R. China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, School of Biomedical Engineering , Southern Medical University , Guangzhou 510515 , Guangdong , P. R. China
| | - Qiang Wu
- CAS Key Laboratory of Tissue Microenvironment & Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health , Shanghai Institutes for Biological Sciences, CAS , Shanghai 200031 , P. R. China
- University of Chinese Academy of Sciences (CAS) , Beijing 100049 , P. R. China
- Institute for Stem Cell and Regeneration , Chinese Academy of Sciences (CAS) , Beijing 100101 , P. R. China
| | - Feng Bao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences (CAS) , Shanghai 200050 , P. R. China
- University of Chinese Academy of Sciences (CAS) , Beijing 100049 , P. R. China
| | - Huangtian Yang
- CAS Key Laboratory of Tissue Microenvironment & Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health , Shanghai Institutes for Biological Sciences, CAS , Shanghai 200031 , P. R. China
- University of Chinese Academy of Sciences (CAS) , Beijing 100049 , P. R. China
- Institute for Stem Cell and Regeneration , Chinese Academy of Sciences (CAS) , Beijing 100101 , P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, School of Biomedical Engineering , Southern Medical University , Guangzhou 510515 , Guangdong , P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences (CAS) , Shanghai 200050 , P. R. China
- University of Chinese Academy of Sciences (CAS) , Beijing 100049 , P. R. China
- Institute for Stem Cell and Regeneration , Chinese Academy of Sciences (CAS) , Beijing 100101 , P. R. China
| |
Collapse
|
7
|
Mechanosensitive channels and their functions in stem cell differentiation. Exp Cell Res 2018; 374:259-265. [PMID: 30500393 DOI: 10.1016/j.yexcr.2018.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Stem cells continuously perceive and respond to various environmental signals during development, tissue homeostasis, and pathological conditions. Mechanical force, one of the fundamental signals in the physical world, plays a vital role in the regulation of multiple functions of stem cells. The importance of cell adhesion to the extracellular matrix (ECM), cell-cell junctions, and a mechanoresponsive cell cytoskeleton has been under intensive study in the fields of stem cell biology and mechanobiology. However, the involvement of mechanosensitive (MS) ion channels in the mechanical regulation of stem cell activity has just begun to be realized. Here, we review the diversity and importance of mechanosensitive channels (MSCs), and discuss recently discovered functions of MSCs in stem cell regulation, especially in the determination of cell fate.
Collapse
|
8
|
Baio J, Martinez AF, Silva I, Hoehn CV, Countryman S, Bailey L, Hasaniya N, Pecaut MJ, Kearns-Jonker M. Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. NPJ Microgravity 2018; 4:13. [PMID: 30062101 PMCID: PMC6062551 DOI: 10.1038/s41526-018-0048-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
The heart and its cellular components are profoundly altered by missions to space and injury on Earth. Further research, however, is needed to characterize and address the molecular substrates of such changes. For this reason, neonatal and adult human cardiovascular progenitor cells (CPCs) were cultured aboard the International Space Station. Upon return to Earth, we measured changes in the expression of microRNAs and of genes related to mechanotransduction, cardiogenesis, cell cycling, DNA repair, and paracrine signaling. We additionally assessed endothelial-like tube formation, cell cycling, and migratory capacity of CPCs. Changes in microRNA expression were predicted to target extracellular matrix interactions and Hippo signaling in both neonatal and adult CPCs. Genes related to mechanotransduction (YAP1, RHOA) were downregulated, while the expression of cytoskeletal genes (VIM, NES, DES, LMNB2, LMNA), non-canonical Wnt ligands (WNT5A, WNT9A), and Wnt/calcium signaling molecules (PLCG1, PRKCA) was significantly elevated in neonatal CPCs. Increased mesendodermal gene expression along with decreased expression of mesodermal derivative markers (TNNT2, VWF, and RUNX2), reduced readiness to form endothelial-like tubes, and elevated expression of Bmp and Tbx genes, were observed in neonatal CPCs. Both neonatal and adult CPCs exhibited increased expression of DNA repair genes and paracrine factors, which was supported by enhanced migration. While spaceflight affects cytoskeletal organization and migration in neonatal and adult CPCs, only neonatal CPCs experienced increased expression of early developmental markers and an enhanced proliferative potential. Efforts to recapitulate the effects of spaceflight on Earth by regulating processes described herein may be a promising avenue for cardiac repair.
Collapse
Affiliation(s)
- Jonathan Baio
- 1Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA USA
| | - Aida F Martinez
- 1Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA USA
| | - Ivan Silva
- 1Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA USA
| | - Carla V Hoehn
- 2BioServe Space Technologies, University of Colorado Boulder, Boulder, CO USA
| | | | - Leonard Bailey
- 3Department of Cardiovascular and Thoracic Surgery, Loma Linda University, Loma Linda, CA USA
| | - Nahidh Hasaniya
- 3Department of Cardiovascular and Thoracic Surgery, Loma Linda University, Loma Linda, CA USA
| | - Michael J Pecaut
- 4Division of Biomedical Engineering Sciences, Department of Basic Sciences, Loma Linda University, Loma Linda, CA USA
| | - Mary Kearns-Jonker
- 1Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA USA
| |
Collapse
|
9
|
Baio J, Martinez AF, Bailey L, Hasaniya N, Pecaut MJ, Kearns-Jonker M. Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells. Stem Cells Dev 2018; 27:805-818. [PMID: 29320953 DOI: 10.1089/scd.2017.0263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth may help refine the use of CPCs in stem cell-based therapies and highlight the molecular events of development.
Collapse
Affiliation(s)
- Jonathan Baio
- 1 Department of Pathology and Human Anatomy, Loma Linda University , Loma Linda, California
| | - Aida F Martinez
- 1 Department of Pathology and Human Anatomy, Loma Linda University , Loma Linda, California
| | - Leonard Bailey
- 2 Department of Cardiovascular and Thoracic Surgery, Loma Linda University , Loma Linda, California
| | - Nahidh Hasaniya
- 2 Department of Cardiovascular and Thoracic Surgery, Loma Linda University , Loma Linda, California
| | - Michael J Pecaut
- 3 Division of Biomedical Engineering Sciences, Department of Basic Sciences, Loma Linda University , Loma Linda, California
| | - Mary Kearns-Jonker
- 1 Department of Pathology and Human Anatomy, Loma Linda University , Loma Linda, California
| |
Collapse
|
10
|
Karimzadeh F, Opas M. Calreticulin Is Required for TGF-β-Induced Epithelial-to-Mesenchymal Transition during Cardiogenesis in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 8:1299-1311. [PMID: 28434939 PMCID: PMC5425659 DOI: 10.1016/j.stemcr.2017.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Calreticulin, a multifunctional endoplasmic reticulum resident protein, is required for TGF-β-induced epithelial-to-mesenchymal transition (EMT) and subsequent cardiomyogenesis. Using embryoid bodies (EBs) derived from calreticulin-null and wild-type (WT) embryonic stem cells (ESCs), we show that expression of EMT and cardiac differentiation markers is induced during differentiation of WT EBs. This induction is inhibited in the absence of calreticulin and can be mimicked by inhibiting TGF-β signaling in WT cells. The presence of calreticulin in WT cells permits TGF-β-mediated signaling via AKT/GSK3β and promotes repression of E-cadherin by SNAIL2/SLUG. This is paralleled by induction of N-cadherin in a process known as the cadherin switch. We show that regulated Ca2+ signaling between calreticulin and calcineurin is critical for the unabated TGF-β signaling that is necessary for the exit from pluripotency and the cadherin switch during EMT. Calreticulin is thus a key mediator of TGF-β-induced commencement of cardiomyogenesis in mouse ESCs.
Collapse
Affiliation(s)
- Fereshteh Karimzadeh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Chan HYS, Cheung MC, Gao Y, Miller AL, Webb SE. Expression and reconstitution of the bioluminescent Ca(2+) reporter aequorin in human embryonic stem cells, and exploration of the presence of functional IP3 and ryanodine receptors during the early stages of their differentiation into cardiomyocytes. SCIENCE CHINA-LIFE SCIENCES 2016; 59:811-24. [PMID: 27430888 DOI: 10.1007/s11427-016-5094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2016] [Indexed: 02/05/2023]
Abstract
In order to develop a novel method of visualizing possible Ca(2+) signaling during the early differentiation of hESCs into cardiomyocytes and avoid some of the inherent problems associated with using fluorescent reporters, we expressed the bioluminescent Ca(2+) reporter, apo-aequorin, in HES2 cells and then reconstituted active holo-aequorin by incubation with f-coelenterazine. The temporal nature of the Ca(2+) signals generated by the holo-f-aequorin-expressing HES2 cells during the earliest stages of differentiation into cardiomyocytes was then investigated. Our data show that no endogenous Ca(2+) transients (generated by release from intracellular stores) were detected in 1-12-day-old cardiospheres but transients were generated in cardiospheres following stimulation with KCl or CaCl2, indicating that holo-f-aequorin was functional in these cells. Furthermore, following the addition of exogenous ATP, an inositol trisphosphate receptor (IP3R) agonist, small Ca(2+) transients were generated from day 1 onward. That ATP was inducing Ca(2+) release from functional IP3Rs was demonstrated by treatment with 2-APB, a known IP3R antagonist. In contrast, following treatment with caffeine, a ryanodine receptor (RyR) agonist, a minimal Ca(2+) response was observed at day 8 of differentiation only. Thus, our data indicate that unlike RyRs, IP3Rs are present and continually functional at these early stages of cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Harvey Y S Chan
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Man Chun Cheung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi Gao
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
12
|
Kang HY, Choi YK, Jeung EB. Inhibitory effect of progesterone during early embryonic development: Suppression of myocardial differentiation and calcium-related transcriptome by progesterone in mESCs: Progesterone disturb cardiac differentiation of mESCs through lower cytosolic Ca(2.). Reprod Toxicol 2016; 64:169-79. [PMID: 27264040 DOI: 10.1016/j.reprotox.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/08/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022]
Abstract
Progesterone (PG) and its derivates are used in prevention of spontaneous miscarriage. However, some studies have reported that exposure to PG and its derivates during pregnancy can cause malformations and affect both blood pressure and the cardiovascular system. The effect of PG on cardiomyogenesis of mouse embryonic stem cells (mESCs) is not well known. Expression of Pgr mRNA showed an opposite pattern of beating-ratio during differentiation. PG treatment resulted in reduction of the beating ratio to 60.45±1.54% from 92.17±2.98% in normal differentiation, reduced transcripts of heart morphogenesis and Ca(2+) binding-related genes in the next generation sequencing data and significantly decreased expression levels of Ca(2+)/contraction-related genes including Ryr2, Calm2, Trpv2, and Mylk3, the intracellular Ca(2+) level, and the beating frequency. These results suggest that PG exerts inhibitory effects on differentiation of mESCs into functional cardiomyocytes.
Collapse
Affiliation(s)
- Hee Young Kang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Young-Kwon Choi
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
13
|
Zhang XH, Morad M. Calcium signaling in human stem cell-derived cardiomyocytes: Evidence from normal subjects and CPVT afflicted patients. Cell Calcium 2015; 59:98-107. [PMID: 26725479 DOI: 10.1016/j.ceca.2015.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Derivation of cardiomyocyte cell lines from human fibroblasts (induced pluripotent stem cells, iPSCs) has made it possible not only to investigate the electrophysiological and Ca(2+) signaling properties of these cells, but also to determine the altered electrophysiological and Ca(2+)-signaling profiles of such cells lines derived from patients expressing mutation-inducing pathologies. This approach has the potential of generating in vitro human models of cardiovascular diseases where cellular pathology can be investigated in detail and possibly specific pharmacotherapy developed. Although this approach has been applied to a number of mutations in channel proteins that cause arrhythmias, there are only few detailed reports addressing Ca(2+) signaling pathologies beyond measurements of Ca(2+) transients in intact non-voltage clamped cells. Unfortunately, full understanding of Ca(2+) signaling pathologies remains elusive, not only because of the plethora of Ca(2+) signaling proteins defects that cause arrhythmias and cardiomyopathies, but also because detailed functional properties of Ca(2+) signaling proteins are difficult to obtain. Catecholaminergic polymorphic ventricular tachycardia (CPVT1) is a malignant inherited arrhythmogenic disorder predominantly caused by mutations in the cardiac ryanodine receptor (RyR2). Thus far over 150 mutations in RyR2 have been identified that appear to cause this arrhythmia, a number of which have been expressed and studied in transgenic mice or cell-line models. The development of human iPSC-technology makes it possible to create human heart cell-lines carrying these mutations, making detailed identification of Ca(2+) signaling defects and its specific pharmacotherapy possible. In this review we shall first briefly summarize the essential characteristics of the mammalian cardiac Ca(2+) signaling, then compare them to Ca(2+) signaling phenotypes of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) and to those of rat neonatal cardiomyocytes, and categorize the possible variance in Ca(2+) signaling defects caused by different CPVT-inducing mutations as expressed in hiPSC-CMs.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Cardiac Signaling Center of USC, MUSC, & Clemson University, Charleston, SC 29425, USA
| | - Martin Morad
- Cardiac Signaling Center of USC, MUSC, & Clemson University, Charleston, SC 29425, USA.
| |
Collapse
|
14
|
Cardiomyogenesis of embryonic stem cells upon purinergic receptor activation by ADP and ATP. Purinergic Signal 2015; 11:491-506. [PMID: 26395809 DOI: 10.1007/s11302-015-9468-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/09/2015] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling may be involved in embryonic development of the heart. In the present study, the effects of purinergic receptor stimulation on cardiomyogenesis of mouse embryonic stem (ES) cells were investigated. ADP or ATP increased the number of cardiac clusters and cardiac cells, as well as beating frequency. Cardiac-specific genes showed enhanced expression of α-MHC, MLC2v, α-actinin, connexin 45 (Cx45), and HCN4, on both gene and protein levels upon ADP/ATP treatment, indicating increased cardiomyogenesis and pacemaker cell differentiation. Real-time RT-PCR analysis of purinergic receptor expression demonstrated presence of P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y4, and P2Y6 on differentiating ES cells. ATP and ADP as well as the P2X agonists β,γ-methylenadenosine 5'-triphosphate (β,γ-MetATP) and 8-bromoadenosine 5'-triphosphate (8-Br-ATP) but not UTP or UDP transiently increased the intracellular calcium concentration ([Ca(2+)](i)) as evaluated by the calcium indicator Fluo-4, whereas no changes in membrane potential were observed. [Ca(2+)](i) transients induced by ADP/ATP were abolished by the phospholipase C-β (PLC-β) inhibitor U-73122, suggesting involvement of metabotropic P2Y receptors. Furthermore, partial inhibition of [Ca(2+)](i) transients was achieved in presence of MRS2179, a selective P2Y1 receptor antagonist, whereas PPADS, a non-selective P2 receptor inhibitor, completely abolished the [Ca(2+)](i) response. Consequently, cardiomyocyte differentiation was decreased upon long term co-incubation of cells with ADP and P2 receptor antagonists. In summary, activation of purinoceptors and the subsequent [Ca(2+)](i) transients enhance the differentiation of ES cells toward cardiomyocytes. Purinergic receptor stimulation may be a promising strategy to drive the fate of pluripotent ES cells into a particular population of cardiomyocytes.
Collapse
|
15
|
Affiliation(s)
- Dennis Schade
- Department
of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse
6, 44227 Dortmund, Germany
| | - Alleyn T. Plowright
- Department
of Medicinal Chemistry, Cardiovascular and Metabolic Diseases Innovative
Medicines, AstraZeneca, Pepparedsleden 1, Mölndal, 43183, Sweden
| |
Collapse
|
16
|
Payne S, Burney MJ, McCue K, Popal N, Davidson SM, Anderson RH, Scambler PJ. A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Dev Biol 2015; 405:82-95. [PMID: 26102480 PMCID: PMC4534312 DOI: 10.1016/j.ydbio.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/19/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
CHARGE syndrome is caused by spontaneous loss-of-function mutations to the ATP-dependant chromatin remodeller chromodomain-helicase-DNA-binding protein 7 (CHD7). It is characterised by a distinct pattern of congenital anomalies, including cardiovascular malformations. Disruption to the neural crest lineage has previously been emphasised in the aetiology of this developmental disorder. We present evidence for an additional requirement for CHD7 activity in the Mesp1-expressing anterior mesoderm during heart development. Conditional ablation of Chd7 in this lineage results in major structural cardiovascular defects akin to those seen in CHARGE patients, as well as a striking loss of cardiac innervation and embryonic lethality. Genome-wide transcriptional analysis identified aberrant expression of key components of the Class 3 Semaphorin and Slit-Robo signalling pathways in Chd7(fl/fl);Mesp1-Cre mutant hearts. CHD7 localises at the Sema3c promoter in vivo, with alteration of the local chromatin structure seen following Chd7 ablation, suggestive of direct transcriptional regulation. Furthermore, we uncover a novel role for CHD7 activity upstream of critical calcium handling genes, and demonstrate an associated functional defect in the ability of cardiomyocytes to undergo excitation-contraction coupling. This work therefore reveals the importance of CHD7 in the cardiogenic mesoderm for multiple processes during cardiovascular development.
Collapse
Affiliation(s)
- Sophie Payne
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Matthew J Burney
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Karen McCue
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Nelo Popal
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Peter J Scambler
- Developmental Biology of Birth Defects Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
17
|
Qi Y, Qi Z, Li Z, Wong CK, So C, Lo IC, Huang Y, Yao X, Tsang SY. Role of TRPV1 in the Differentiation of Mouse Embryonic Stem Cells into Cardiomyocytes. PLoS One 2015. [PMID: 26208267 PMCID: PMC4514823 DOI: 10.1371/journal.pone.0133211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytosolic Ca2+ ([Ca2+]i) is an important signal that regulates cardiomyocyte differentiation during cardiogenesis. TRPV1 is a Ca2+-permeable channel that is expressed in cardiomyocytes. In the present study, we utilized mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) as a model to investigate the functional role of TRPV1 in cardiomyocyte differentiation. Induction of embryonic stem cells into cardiomyocytes was achieved using embryoid body (EB)-based differentiation method. Quantitative PCRs showed an increased TRPV1 expression during the differentiation process. In [Ca2+]i measurement study, application of TRPV1 agonists, capsaicin and camphor, elicited a [Ca2+]i rise in mESC-CMs, the effect of which was abolished by TRPV1-shRNA. In functional study, treatment of EBs with TRPV1 antagonists (capsazepine and SB366791) and TRPV1-shRNA reduced the size of the EBs and decreased the percentage of spontaneously beating EBs. TRPV1 antagonists and TRPV1-shRNA also suppressed the expression of cardiomyocyte marker genes, including cardiac actin, c-TnT, c-TnI, and α-MHC. Taken together, this study demonstrated an important functional role of TRPV1 channels in the differentiation of mESCs into cardiomyocytes.
Collapse
Affiliation(s)
- Yan Qi
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zenghua Qi
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhichao Li
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kit Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chun So
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Iek-Chi Lo
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SYT); (XY)
| | - Suk-Ying Tsang
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
- Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
- Centre of Novel Biomaterials, Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SYT); (XY)
| |
Collapse
|
18
|
Hotchkiss A, Feridooni T, Zhang F, Pasumarthi KBS. The effects of calcium channel blockade on proliferation and differentiation of cardiac progenitor cells. Cell Calcium 2014; 55:238-51. [PMID: 24680380 DOI: 10.1016/j.ceca.2014.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/16/2014] [Accepted: 02/26/2014] [Indexed: 12/20/2022]
Abstract
Cardiogenesis depends on a tightly regulated balance between proliferation and differentiation of cardiac progenitor cells (CPCs) and their cardiomyocyte descendants. While exposure of early mouse embryos to Ca(2+) channel antagonists has been associated with abnormal cardiac morphogenesis, less is known about the consequences of Ca(2+) channel blockade on proliferation and differentiation of CPCs at the cellular level. Here we showed that at embryonic day (E) 11.5, the murine ventricles express several L-type and T-type Ca(2+) channel isoforms, and that the dihydropyridine Ca(2+) channel antagonist, nifedipine, blunts isoproterenol induced increases in intracellular Ca(2+). Nifedipine mediated Ca(2+) channel blockade was associated with a reduction in cell cycle activity of E11.5 CPCs and impaired assembly of the cardiomyocyte contractile apparatus. Furthermore, in cell transplantation experiments, systemic administration of nifedipine to adult mice receiving transplanted E11.5 ventricular cells (containing CPCs and cardiomyocytes) was associated with smaller graft sizes compared to vehicle treated control animals. These data suggest that intracellular Ca(2+) is a critical regulator of the balance between CPC proliferation and differentiation and demonstrate that interactions between pharmacological drugs and transplanted cells could have a significant impact on the effectiveness of cell based therapies for myocardial repair.
Collapse
Affiliation(s)
- Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Feixiong Zhang
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
19
|
Kapoor N, Maxwell JT, Mignery GA, Will D, Blatter LA, Banach K. Spatially defined InsP3-mediated signaling in embryonic stem cell-derived cardiomyocytes. PLoS One 2014; 9:e83715. [PMID: 24409283 PMCID: PMC3883750 DOI: 10.1371/journal.pone.0083715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022] Open
Abstract
The functional role of inositol 1,4,5-trisphosphate (InsP3) signaling in cardiomyocytes is not entirely understood but it was linked to an increased propensity for triggered activity. The aim of this study was to determine how InsP3 receptors can translate Ca(2+) release into a depolarization of the plasma membrane and consequently arrhythmic activity. We used embryonic stem cell-derived cardiomyocytes (ESdCs) as a model system since their spontaneous electrical activity depends on InsP3-mediated Ca(2+) release. [InsP3]i was monitored with the FRET-based InsP3-biosensor FIRE-1 (Fluorescent InsP3 Responsive Element) and heterogeneity in sub-cellular [InsP3]i was achieved by targeted expression of FIRE-1 in the nucleus (FIRE-1nuc) or expression of InsP3 5-phosphatase (m43) localized to the plasma membrane. Spontaneous activity of ESdCs was monitored simultaneously as cytosolic Ca(2+) transients (Fluo-4/AM) and action potentials (current clamp). During diastole, the diastolic depolarization was paralleled by an increase of [Ca(2+)]i and spontaneous activity was modulated by [InsP3]i. A 3.7% and 1.7% increase of FIRE-1 FRET ratio and 3.0 and 1.5 fold increase in beating frequency was recorded upon stimulation with endothelin-1 (ET-1, 100 nmol/L) or phenylephrine (PE, 10 µmol/L), respectively. Buffering of InsP3 by FIRE-1nuc had no effect on the basal frequency while attenuation of InsP3 signaling throughout the cell (FIRE-1), or at the plasma membrane (m43) resulted in a 53.7% and 54.0% decrease in beating frequency. In m43 expressing cells the response to ET-1 was completely suppressed. Ca(2+) released from InsP3Rs is more effective than Ca(2+) released from RyRs to enhance INCX. The results support the hypothesis that in ESdCs InsP3Rs form a functional signaling domain with NCX that translates Ca(2+) release efficiently into a depolarization of the membrane potential.
Collapse
Affiliation(s)
- Nidhi Kapoor
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Joshua T. Maxwell
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Gregory A. Mignery
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - David Will
- Center for Cardiovascular Research, Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lothar A. Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Kathrin Banach
- Center for Cardiovascular Research, Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
20
|
Nguemo F, Fleischmann BK, Gupta MK, Šarić T, Malan D, Liang H, Pfannkuche K, Bloch W, Schunkert H, Hescheler J, Reppel M. The L-type Ca2+ channels blocker nifedipine represses mesodermal fate determination in murine embryonic stem cells. PLoS One 2013; 8:e53407. [PMID: 23320083 PMCID: PMC3539992 DOI: 10.1371/journal.pone.0053407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 11/28/2012] [Indexed: 01/20/2023] Open
Abstract
Dihydropyridines (DHP), which nifedipine is a member of, preferentially block Ca(2+) channels of different cell types. Moreover, influx of Ca(2+) through L-type Ca(2+) channels (LTCCs) activates Ca(2+) signaling pathways, which in turn contribute to numerous cellular processes. Although LTCCs are expressed in undifferentiated cells, very little is known about its contributions to the transcriptional regulation of mesodermal and cardiac genes. This study aimed to examine the contribution of LTCCs and the effect of nifedipine on the commitment of pluripotent stem cells toward the cardiac lineage in vitro. The murine embryonic stem (ES, cell line D3) and induced pluripotent stem (iPS, cell clone 09) cells were differentiated into enhanced green fluorescence protein (EGFP) expressing spontaneously beating cardiomyocytes (CMs). Early treatment of differentiating cells with 10 µM nifedipine led to a significant inhibition of the cardiac mesoderm formation and cardiac lineage commitment as revealed by gene regulation analysis. This was accompanied by the inhibition of spontaneously occurring Ca(2+) transient and reduction of LTCCs current density (I(CaL)) of differentiated CMs. In addition, nifedipine treatment instigated a pronounced delay of the spontaneous beating embryoid body (EB) and led to a poor surface localization of L-type Ca(2+) channel α(1C) (Ca(V)1.2) subunits. Contrary late incubation of pluripotent stem cells with nifedipine was without any impact on the differentiation process and did not affect the derived CMs function. Our data indicate that nifedipine blocks the determined path of pluripotent stem cells to cardiomyogenesis by inhibition of mesodermal commitment at early stages of differentiation, thus the proper upkeep Ca(2+) concentration and pathways are essentially required for cardiac gene expression, differentiation and function.
Collapse
Affiliation(s)
- Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Manoj K. Gupta
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Tomo Šarić
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Huamin Liang
- Department of Physiology, Huazhong University of Science and Technology, Tongji Medical College, Wuhan, China
| | - Kurt Pfannkuche
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University, Cologne, Germany
| | | | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Michael Reppel
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Department of Cardiology, Medical University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Yeh HY, Liu BH, Hsu SH. The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes. Biomaterials 2012; 33:8943-54. [PMID: 22985995 DOI: 10.1016/j.biomaterials.2012.08.069] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/30/2012] [Indexed: 11/19/2022]
Abstract
Mesenchymal stem cells (MSCs) were recently found to form three-dimensional (3D) multicellular spheroids on chitosan membranes. The exact mechanism of spheroid formation, however, remains unclear. In this study, the regulation of spheroid formation for adipose derived adult stem cells (ADAS) grown on chitosan membranes was examined. By varying the membrane thickness, calcium concentration in culture medium, and acetylation extent of chitosan, the physico-chemical characteristics of chitosan that modulated spheroid formation was elucidated. The capacity of cardiomyogenic differentiation was further evaluated. Results suggested that the calcium binding capacity of chitosan may affect the cell-substrate and cell-cell interactions and critically influence the dynamics of spheroid formation. The intracellular calcium level was elevated for ADAS spheroids on chitosan. Chitosan-bound calcium was observed to enter the cells. The expression of N-cadherin was upregulated for ADAS spheroids on chitosan, evidenced by quantitative RT-PCR and Western blot. After the induction by 5-aza, the expression levels of cardiac marker genes (Gata4, Nkx2.5, Tnnt2, and Myh6) were remarkably enhanced (about four-fold) for ADAS on chitosan vs. tissue culture polystyrene or polyvinyl alcohol. Immunofluorescence staining confirmed the expression of cardiac-associated tight junction protein ZO-1 for ADAS grown on chitosan membranes. The gene expression of Wnt11 was significantly upregulated for ADAS spheroids on chitosan at 3 days and 12 days. We suggested that Wnt11 may be involved in the spheroid formation and cardiomyogenic differentiation of MSCs on chitosan membranes. Spheroids formed on the acetylated chitosan or polyvinyl alcohol membranes failed to show such behavior. The properties of MSC spheroids were therefore determined by the culture substrate.
Collapse
Affiliation(s)
- Hsi-Yi Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
22
|
Chimenti I, Forte E, Angelini F, Messina E, Giacomello A. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells. Biochim Biophys Acta Gen Subj 2012; 1830:2459-69. [PMID: 22921810 DOI: 10.1016/j.bbagen.2012.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. SCOPE OF REVIEW In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. MAJOR CONCLUSIONS Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. GENERAL SIGNIFICANCE Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, Sapienza University, Italy
| | | | | | | | | |
Collapse
|
23
|
Wei WJ, Sun HY, Ting KY, Zhang LH, Lee HC, Li GR, Yue J. Inhibition of cardiomyocytes differentiation of mouse embryonic stem cells by CD38/cADPR/Ca2+ signaling pathway. J Biol Chem 2012; 287:35599-35611. [PMID: 22908234 PMCID: PMC3471724 DOI: 10.1074/jbc.m112.392530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells.
Collapse
Affiliation(s)
- Wen-Jie Wei
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Hai-Ying Sun
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Kai Yiu Ting
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hon-Cheung Lee
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Gui-Rong Li
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- Department of Physiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Verkhratsky A, Rodríguez JJ, Parpura V. Calcium signalling in astroglia. Mol Cell Endocrinol 2012; 353:45-56. [PMID: 21945602 DOI: 10.1016/j.mce.2011.08.039] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/28/2011] [Accepted: 08/31/2011] [Indexed: 12/15/2022]
Abstract
Astroglia possess excitability based on movements of Ca(2+) ions between intracellular compartments and plasmalemmal Ca(2+) fluxes. This "Ca(2+) excitability" is controlled by several families of proteins located in the plasma membrane, within the cytosol and in the intracellular organelles, most notably in the endoplasmic reticulum (ER) and mitochondria. Accumulation of cytosolic Ca(2+) can be caused by the entry of Ca(2+) from the extracellular space through ionotropic receptors and store-operated channels expressed in astrocytes. Plasmalemmal Ca(2+) ATP-ase and sodium-calcium exchanger extrude cytosolic Ca(2+) to the extracellular space; the exchanger can also operate in reverse, depending of the intercellular Na(+) concentration, to deliver Ca(2+) to the cytosol. The ER internal store possesses inositol 1,4,5-trisphosphate receptors which can be activated upon stimulation of astrocytes through a multiple plasma membrane metabotropic G-protein coupled receptors. This leads to release of Ca(2+) from the ER and its elevation in the cytosol, the level of which can be modulated by mitochondria. The mitochondrial uniporter takes up Ca(2+) into the matrix, while free Ca(2+) exits the matrix through the mitochondrial Na(+)/Ca(2+) exchanger as well as via transient openings of the mitochondrial permeability transition pore. One of the prominent consequences of astroglial Ca(2+) excitability is gliotransmission, a release of transmitters from astroglia which can lead to signalling to adjacent neurones.
Collapse
|
25
|
Tonelli FMP, Santos AK, Gomes DA, da Silva SL, Gomes KN, Ladeira LO, Resende RR. Stem cells and calcium signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:891-916. [PMID: 22453975 DOI: 10.1007/978-94-007-2888-2_40] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca(2+) concentration [Ca(2+)](i). Acting as an intracellular messenger, Ca(2+) has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca(2+)-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Nanomaterials Laboratory, Department of Physics, Insitute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Choi T, Maurya MR, Tartakovsky DM, Subramaniam S. Stochastic hybrid modeling of intracellular calcium dynamics. J Chem Phys 2011; 133:165101. [PMID: 21033822 DOI: 10.1063/1.3496996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deterministic models of biochemical processes at the subcellular level might become inadequate when a cascade of chemical reactions is induced by a few molecules. Inherent randomness of such phenomena calls for the use of stochastic simulations. However, being computationally intensive, such simulations become infeasible for large and complex reaction networks. To improve their computational efficiency in handling these networks, we present a hybrid approach, in which slow reactions and fluxes are handled through exact stochastic simulation and their fast counterparts are treated partially deterministically through chemical Langevin equation. The classification of reactions as fast or slow is accompanied by the assumption that in the time-scale of fast reactions, slow reactions do not occur and hence do not affect the probability of the state. Our new approach also handles reactions with complex rate expressions such as Michaelis-Menten kinetics. Fluxes which cannot be modeled explicitly through reactions, such as flux of Ca(2+) from endoplasmic reticulum to the cytosol through inositol 1,4,5-trisphosphate receptor channels, are handled deterministically. The proposed hybrid algorithm is used to model the regulation of the dynamics of cytosolic calcium ions in mouse macrophage RAW 264.7 cells. At relatively large number of molecules, the response characteristics obtained with the stochastic and deterministic simulations coincide, which validates our approach in the limit of large numbers. At low doses, the response characteristics of some key chemical species, such as levels of cytosolic calcium, predicted with stochastic simulations, differ quantitatively from their deterministic counterparts. These observations are ubiquitous throughout dose response, sensitivity, and gene-knockdown response analyses. While the relative differences between the peak-heights of the cytosolic [Ca(2+)] time-courses obtained from stochastic (mean of 16 realizations) and deterministic simulations are merely 1%-4% for most perturbations, it is specially sensitive to levels of G(βγ) (relative difference as large as 90% at very low G(βγ)).
Collapse
Affiliation(s)
- TaiJung Choi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | |
Collapse
|
27
|
Identification of small molecule inhibitors of telomerase activity through transcriptional regulation of hTERT and calcium induction pathway in human lung adenocarcinoma A549 cells. Bioorg Med Chem 2010; 18:6987-94. [PMID: 20813535 DOI: 10.1016/j.bmc.2010.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/27/2022]
Abstract
High telomerase activity (TA) is detected in most cancer cells; and thus, TA inhibition by drug or dietary food components is a new strategy for cancer prevention. In this report, we examined the effects of fourteen natural or synthetic compounds on TA in human lung adenocarcinoma A549 cells. The results demonstrated that some of the tested compounds inhibited TA, being 2'-hydroxy-2,3,4',6'-tetramethoxychalcone (HTMC) was the most potent among tested. In A549 cells, HTMC also inhibited the cell proliferation, decreased the expression of human telomerase reverse transcriptase (hTERT) and sequentially reduced the hTERT promoter. In soft agar assay HTMC treatment reduced the colony formation of A549 cells. Cellular fractionation and immunofluorescence assay demonstrated that there was no translocation of hTERT from nuclei to cytoplasm. Further studies revealed that the release of Ca(2+) was the underlying mechanism of suppressed TA and hTERT transcription in A549 cells exposed to HTMC. These in vitro data support the development of HTMC as a therapeutic agent for cancer complications.
Collapse
|
28
|
McMullen NM, Zhang F, Hotchkiss A, Bretzner F, Wilson JM, Ma H, Wafa K, Brownstone RM, Pasumarthi KBS. Functional characterization of cardiac progenitor cells and their derivatives in the embryonic heart post-chamber formation. Dev Dyn 2010; 238:2787-99. [PMID: 19842178 DOI: 10.1002/dvdy.22112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is scant information on the fate of cardiac progenitor cells (CPC) in the embryonic heart after chamber specification. Here we simultaneously tracked three lineage-specific markers (Nkx2.5, MLC2v, and ANF) and confirmed that CPCs with an Nkx2.5+MLC2v-ANF- phenotype are present in the embryonic (E) day 11.5 mouse ventricular myocardium. We demonstrated that these CPCs could give rise to working cardiomyocytes and conduction system cells. Using a two-photon imaging analysis, we found that the majority of CPCs are not capable of developing Ca2+ transients in response to beta-adrenergic receptor stimulation. In contrast, Nkx2.5+ cells expressing MLC2v but not ANF are capable of developing functional Ca2+ transients. We showed that Ca2+ transients could be invoked in Nkx2.5+MLC2v+ANF+ cells only upon inhibition of Gi, muscarinic receptors, or nitric oxide synthase (NOS) signaling pathways. Our data suggest that these inhibitory pathways may delay functional specification in a subset of developing ventricular cells.
Collapse
Affiliation(s)
- Nichole M McMullen
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rapila R, Korhonen T, Tavi P. Excitation-contraction coupling of the mouse embryonic cardiomyocyte. ACTA ACUST UNITED AC 2008; 132:397-405. [PMID: 18794377 PMCID: PMC2553387 DOI: 10.1085/jgp.200809960] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mammalian embryo, the primitive tubular heart starts beating during the first trimester of gestation. These early heartbeats originate from calcium-induced contractions of the developing heart muscle cells. To explain the initiation of this activity, two ideas have been presented. One hypothesis supports the role of spontaneously activated voltage-gated calcium channels, whereas the other emphasizes the role of Ca(2+) release from intracellular stores initiating spontaneous intracellular calcium oscillations. We show with experiments that both of these mechanisms coexist and operate in mouse cardiomyocytes during embryonic days 9-11. Further, we characterize how inositol-3-phosphate receptors regulate the frequency of the sarcoplasmic reticulum calcium oscillations and thus the heartbeats. This study provides a novel view of the regulation of embryonic cardiomyocyte activity, explaining the functional versatility of developing cardiomyocytes and the origin and regulation of the embryonic heartbeat.
Collapse
Affiliation(s)
- Risto Rapila
- Institute of Biomedicine, Department of Physiology and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | | | | |
Collapse
|
30
|
Kockskämper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 2008; 45:128-47. [PMID: 18603259 PMCID: PMC2654363 DOI: 10.1016/j.yjmcc.2008.05.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 01/19/2023]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a ubiquitous intracellular messenger regulating diverse functions in almost all mammalian cell types. It is generated by membrane receptors that couple to phospholipase C (PLC), an enzyme which liberates IP(3) from phosphatidylinositol 4,5-bisphosphate (PIP(2)). The major action of IP(3), which is hydrophilic and thus translocates from the membrane into the cytoplasm, is to induce Ca(2+) release from endogenous stores through IP(3) receptors (IP(3)Rs). Cardiac excitation-contraction coupling relies largely on ryanodine receptor (RyR)-induced Ca(2+) release from the sarcoplasmic reticulum. Myocytes express a significantly larger number of RyRs compared to IP(3)Rs (~100:1), and furthermore they experience substantial fluxes of Ca(2+) with each heartbeat. Therefore, the role of IP(3) and IP(3)-mediated Ca(2+) signaling in cardiac myocytes has long been enigmatic. Recent evidence, however, indicates that despite their paucity cardiac IP(3)Rs may play crucial roles in regulating diverse cardiac functions. Strategic localization of IP(3)Rs in cytoplasmic compartments and the nucleus enables them to participate in subsarcolemmal, bulk cytoplasmic and nuclear Ca(2+) signaling in embryonic stem cell-derived and neonatal cardiomyocytes, and in adult cardiac myocytes from the atria and ventricles. Intriguingly, expression of both IP(3)Rs and membrane receptors that couple to PLC/IP(3) signaling is altered in cardiac disease such as atrial fibrillation or heart failure, suggesting the involvement of IP(3) signaling in the pathology of these diseases. Thus, IP(3) exerts important physiological and pathological functions in the heart, ranging from the regulation of pacemaking, excitation-contraction and excitation-transcription coupling to the initiation and/or progression of arrhythmias, hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jens Kockskämper
- Division of Cardiology, Medical University of Graz,, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Aleksey V. Zima
- Department of Molecular Biophysics & Physiology, Rush University, 1750 W. Harrison St., Chicago, IL 60612, USA
| | - H. Llewelyn Roderick
- Laboratory of Molecular Signalling, Babraham Institute, Cambridge CB2 4AT, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1 PD, UK
| | - Burkert Pieske
- Division of Cardiology, Medical University of Graz,, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Lothar A. Blatter
- Department of Molecular Biophysics & Physiology, Rush University, 1750 W. Harrison St., Chicago, IL 60612, USA
| | - Martin D. Bootman
- Laboratory of Molecular Signalling, Babraham Institute, Cambridge CB2 4AT, UK
| |
Collapse
|
31
|
Szabo E, Qiu Y, Baksh S, Michalak M, Opas M. Calreticulin inhibits commitment to adipocyte differentiation. ACTA ACUST UNITED AC 2008; 182:103-16. [PMID: 18606846 PMCID: PMC2447897 DOI: 10.1083/jcb.200712078] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calreticulin, an endoplasmic reticulum (ER) resident protein, affects many critical cellular functions, including protein folding and calcium homeostasis. Using embryonic stem cells and 3T3-L1 preadipocytes, we show that calreticulin modulates adipogenesis. We find that calreticulin-deficient cells show increased potency for adipogenesis when compared with wild-type or calreticulin-overexpressing cells. In the highly adipogenic crt−/− cells, the ER lumenal calcium concentration was reduced. Increasing the ER lumenal calcium concentration led to a decrease in adipogenesis. In calreticulin-deficient cells, the calmodulin–Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway was up-regulated, and inhibition of CaMKII reduced adipogenesis. Calreticulin inhibits adipogenesis via a negative feedback mechanism whereby the expression of calreticulin is initially up-regulated by peroxisome proliferator–activated receptor γ (PPARγ). This abundance of calreticulin subsequently negatively regulates the expression of PPARγ, lipoprotein lipase, CCAAT enhancer–binding protein α, and aP2. Thus, calreticulin appears to function as a Ca2+-dependent molecular switch that regulates commitment to adipocyte differentiation by preventing the expression and transcriptional activation of critical proadipogenic transcription factors.
Collapse
Affiliation(s)
- Eva Szabo
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
32
|
A role for p38α mitogen-activated protein kinase in embryonic cardiac differentiation. FEBS Lett 2008; 582:1025-31. [DOI: 10.1016/j.febslet.2008.02.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/22/2008] [Accepted: 02/21/2008] [Indexed: 01/12/2023]
|
33
|
Maurya MR, Subramaniam S. A kinetic model for calcium dynamics in RAW 264.7 cells: 1. Mechanisms, parameters, and subpopulational variability. Biophys J 2007; 93:709-28. [PMID: 17483174 PMCID: PMC1913151 DOI: 10.1529/biophysj.106.097469] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Calcium (Ca(2+)) is an important second messenger and has been the subject of numerous experimental measurements and mechanistic studies in intracellular signaling. Calcium profile can also serve as a useful cellular phenotype. Kinetic models of calcium dynamics provide quantitative insights into the calcium signaling networks. We report here the development of a complex kinetic model for calcium dynamics in RAW 264.7 cells stimulated by the C5a ligand. The model is developed using the vast number of measurements of in vivo calcium dynamics carried out in the Alliance for Cellular Signaling (AfCS) Laboratories. Ligand binding, phospholipase C-beta (PLC-beta) activation, inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) dynamics, and calcium exchange with mitochondria and extracellular matrix have all been incorporated into the model. The experimental data include data from both native and knockdown cell lines. Subpopulational variability in measurements is addressed by allowing nonkinetic parameters to vary across datasets. The model predicts temporal response of Ca(2+) concentration for various doses of C5a under different initial conditions. The optimized parameters for IP(3)R dynamics are in agreement with the legacy data. Further, the half-maximal effect concentration of C5a and the predicted dose response are comparable to those seen in AfCS measurements. Sensitivity analysis shows that the model is robust to parametric perturbations.
Collapse
Affiliation(s)
- Mano Ram Maurya
- Department of Bioengineering, University of California, San Diego, California 92093-0412, USA
| | | |
Collapse
|
34
|
Kapur N, Banach K. Inositol-1,4,5-trisphosphate-mediated spontaneous activity in mouse embryonic stem cell-derived cardiomyocytes. J Physiol 2007; 581:1113-27. [PMID: 17379641 PMCID: PMC2170837 DOI: 10.1113/jphysiol.2006.125955] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Embryonic stem cell-derived cardiomyocytes (ESdCs) have been proposed as a source for cardiac cell-replacement therapy. The aim of this study was to determine the Ca2+-handling mechanisms that determine the frequency and duration of spontaneous Ca2+ transients in single ESdCs. With laser scanning confocal microscopy using the Ca2+-sensitive dye Fluo-4/AM, we determined that spontaneous Ca2+ transients in ESdCs at the onset of beating (day 9) depend on Ca2+ entry across the plasma membrane (50%) whereas Ca2+-induced Ca2+ release is the major contributor to Ca2+ transients in ESdCs after 16 days (72%). Likewise, Ca2+ extrusion in 9-day-old ESdCs depends on Na+-Ca2+ exchange (50.0+/-8%) whereas Ca2+ reuptake by the sarco(endo)plasmic Ca2+ ATPase (72+/-5%) dominates in further differentiated cells. Spontaneous Ca2+ transients were suppressed by the inositol-1,4,5-trisphosphate (IP3) receptor (IP3R) blocker 2-aminoethoxydiphenyl borate (2-APB) and the phospholipase C blocker U73122 but continued in the presence of caffeine. Stimulation of IP3 production by phenylephrine or endothelin-1 had a positive chronotropic effect that could be reversed by U73122 and 2-APB. The presence of Ca2+-free solution and block of L-type Ca2+ channels by nifedipine also resulted in a cessation of spontaneous activity. Overall, IP3R-mediated Ca2+ release in ESdCs is translated into a depolarization of the plasma membrane and a whole-cell Ca2+ transient is subsequently induced by voltage-dependent Ca2+ influx. Although ryanodine receptor-mediated Ca2+ release amplifies the IP3R-induced trigger for the Ca2+ transients and modulates its frequencies, it is not a prerequisite for spontaneous activity. The results of this study offer important insight into the role of IP3R-mediated Ca2+ release for pacemaker activity in differentiating cardiomyocytes.
Collapse
MESH Headings
- Action Potentials
- Aniline Compounds
- Animals
- Boron Compounds/pharmacology
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Cell Differentiation
- Cell Line
- Embryonic Stem Cells/drug effects
- Embryonic Stem Cells/metabolism
- Endothelin-1/metabolism
- Enzyme Inhibitors/pharmacology
- Estrenes/pharmacology
- Fluorescent Dyes
- Heart Rate/drug effects
- Heart Rate/physiology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mice
- Microscopy, Confocal
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Nifedipine/pharmacology
- Phenylephrine/metabolism
- Pyrrolidinones/pharmacology
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Sodium-Calcium Exchanger/metabolism
- Time Factors
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
- Xanthenes
Collapse
Affiliation(s)
- Nidhi Kapur
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
35
|
Li B, Dedman JR, Kaetzel MA. Nuclear Ca2+/calmodulin-dependent protein kinase II in the murine heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1275-81. [PMID: 17069901 DOI: 10.1016/j.bbamcr.2006.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 11/19/2022]
Abstract
Ca(2+) signaling through CaMKII is critical in regulating myocyte function with regard to excitation-contraction-relaxation cycles and excitation-transcription coupling. To investigate the role of nuclear CaMKII in cardiac function, transgenic mice were designed and generated to target the expression of a CaMKII inhibitory peptide, AIP (KKALRRQEAVDAL), to the nucleus. The transgenic construct consists of the murine alpha-myosin heavy chain promoter followed by the expression unit containing nucleotides encoding a four repeat concatemer of AIP (AIP(4)) and a nuclear localization signal (NLS). Western blot and immunohistochemical analyses demonstrate that AIP(4) is expressed only in the nucleus of cardiac myocytes of the transgenic mice (NLS-AIP(4)). The function of cytoplasmic CaMKII is not affected by the expression of AIP(4) in the nucleus. Inhibition of nuclear CaMKII activity resulted in reduced translocation of HDAC5 from nucleus to cytoplasm in NLS-AIP(4) mouse hearts. Loss of nuclear CaMKII activity causes NLS-AIP(4) mice to have smaller hearts than their nontransgenic littermates. Transcription factors including CREB and NFkappaB are not regulated by cardiac nuclear CaMKII. With physiological stresses such as pregnancy or aging (8 months), NLS-AIP(4) mice develop hypertrophy symptoms including enlarged atria, systemic edema, sedentariness, and morbidity. RT-PCR analyses revealed that the hypertrophic marker genes, such as ANF and beta-myosin heavy chain, were upregulated in pregnancy stressed mice. Our results suggest that absence of adequate Ca2+signaling through nuclear CaMKII regulated pathways leads to development of cardiac disease.
Collapse
Affiliation(s)
- Bailing Li
- Department of Genome Science, University of Cincinnati, Genome Research Institute, 2180 E. Galbraith Rd., Cincinnati, OH 45237-0505, USA
| | | | | |
Collapse
|
36
|
Dai W, Kloner RA. Myocardial regeneration by embryonic stem cell transplantation: present and future trends. Expert Rev Cardiovasc Ther 2006; 4:375-83. [PMID: 16716098 DOI: 10.1586/14779072.4.3.375] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic stem cells are a promising source for myocardial regeneration due to their pluripotency and plasticity. In theory, embryonic stem cells are capable of self-renewal in an unlimited fashion, and can differentiate into any cell type required for cell-based therapy, including cardiac myocytes. In recent years, embryonic stem cells have been transplanted for cardiac regeneration in animal models, and the results are encouraging. However, there are still many hurdles to be overcome for the clinical application of embryonic stem cells.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute, Good Samaritan Hospital, Division of Cardiovascular Medicine of the Keck School of Medicine at University of Southern California, Los Angeles, CA 90017-2395, USA.
| | | |
Collapse
|
37
|
Fu JD, Yu HM, Wang R, Liang J, Yang HT. Developmental regulation of intracellular calcium transients during cardiomyocyte differentiation of mouse embryonic stem cells. Acta Pharmacol Sin 2006; 27:901-10. [PMID: 16787575 DOI: 10.1111/j.1745-7254.2006.00380.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To investigate the developmental regulation of intracellular Ca2+ transients, an essential event in excitation-contraction coupling, during cardiomyocyte differentiation. METHODS Using the embryonic stem (ES) cell in vitro differentiation system and pharmacological intervention, we investigated the molecular and functional regulation of Ca2+ handling proteins on the Ca2+ transients at early, intermediate and later differentiation stages of ES cell-derived cardiomyocytes (ESCM). RESULTS Nifedipine, a selective antagonist of L-type Ca2+ channels, totally blocked Ca2+ transients even in the condition of field-electric stimulation in ESCM at three differentiation stages. The Ca2+ transients of ESCM were also inhibited by both ryanodine [an inhibitor of ryanodine receptors (RyRs)] and 2-aminoethoxydipheylborate [2-APB, an inhibitor of inositol-1,4,5-trisphosphate receptors (IP3Rs)]. The inhibitory effect of ryanodine increased with the time of differentiation, while the effect of 2-APB decreased with the differentiation. Thapsigargin, an inhibitor of SR Ca2+-pump ATPase, inhibited Ca2+ transients equally at three differentiation stages that matched the expression profile. Na+ free solution, which inhibits Na+-Ca2+ exchanger (NCX) to extrude Ca2+ from cytosol, did not affect the amplitude of Ca2+ transients of ESCM until the latter differentiation stage, but it significantly enhanced the basal Ca2+ concentration. CONCLUSION The Ca2+ transients in ESCM depend on both the sarcolemmal Ca2+ entry via L-type Ca2+ channels and the SR Ca2+ release from RyRs and IP3Rs even at the early differentiation stage; but NCX seems not to regulate the peak of Ca2+ transients until the latter differentiation stage.
Collapse
Affiliation(s)
- Ji-dong Fu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
38
|
Raddatz E, Gardier S, Sarre A. Physiopathology of the embryonic heart (with special emphasis on hypoxia and reoxygenation). Ann Cardiol Angeiol (Paris) 2006; 55:79-89. [PMID: 16708991 DOI: 10.1016/j.ancard.2006.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The adaptative response of the developing heart to adverse intrauterine environment such as reduced O2 delivery can result in alteration of gene expression with short- and long-term consequences including adult cardiovascular diseases. The tolerance of the developing heart of acute or chronic oxygen deprivation, its capacity to recover during reperfusion and the mechanisms involved in reoxygenation injury are still under debate. Indeed, the pattern of response of the immature myocardium to hypoxia-reoxygenation differs from that of the adult. This review deals with the structural and metabolic characteristics of the embryonic heart and the functional consequences of hypoxia and reoxygenation. The relative contribution of calcium and sodium overload, pH disturbances and oxidant stress to the hypoxia-induced cardiac dysfunction is examined, as well as various cellular signaling pathways (e.g. MAP kinases) involved in cell survival or death. In the context of the recent advances in developmental cardiology and fetal cardiac surgery, a better understanding of the physiopathology of the stressed developing heart is required.
Collapse
Affiliation(s)
- E Raddatz
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
39
|
Bettiol E, Clement S, Krause KH, Jaconi ME. Embryonic and adult stem cell-derived cardiomyocytes: lessons from in vitro models. Rev Physiol Biochem Pharmacol 2006; 157:1-30. [PMID: 17236648 DOI: 10.1007/112_0508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For years, research has focused on how to treat heart failure by sustaining the overloaded remaining cardiomyocytes. Recently, the concept of cell replacement therapy as a treatment of heart diseases has opened a new area of investigation. In vitro-generated cardiomyocytes could be injected into the heart to rescue the function of a damaged myocardium. Embryonic and/or adult stem cells could provide cardiac cells for this purpose. Knowledge of fundamental cardiac differentiation mechanisms unraveled by studies on animal models has been improved using in vitro models of cardiogenesis such as mouse embryonal carcinoma cells, mouse embryonic stem cells and, recently, human embryonic stem cells. On the other hand, studies suggesting the existence of cardiac stem cells and the potential of adult stem cells from bone marrow or skeletal muscle to differentiate toward unexpected phenotypes raise hope and questions about their potential use for cardiac cell therapy. In this review, we compare the specificities of embryonic vs adult stem cell populations regarding their cardiac differentiation potential, and we give an overview of what in vitro models have taught us about cardiogenesis.
Collapse
Affiliation(s)
- E Bettiol
- University of Geneva, Department of Pathology and Immunology, Faculty of Medicine, Switzerland
| | | | | | | |
Collapse
|