1
|
Yao G, Parris MR, Kuo WC, Pörzgen P, Castillo B, Mason ES, Chinchilla A, Huang J, Suzuki S, Ross R, Akana E, Vander Schuit S, Miller SP, Penner R, Sun HS, Feng ZP, Hull KG, Romo D, Fleig A, Horgen FD. Transient Receptor Potential Melastatin 7 (TRPM7) Ion Channel Inhibitors: Preliminary SAR and Conformational Studies of Xenicane Diterpenoids from the Hawaiian Soft Coral Sarcothelia edmondsoni. JOURNAL OF NATURAL PRODUCTS 2024; 87:783-797. [PMID: 38537009 DOI: 10.1021/acs.jnatprod.3c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Waixenicin A, a xenicane diterpene from the octocoral Sarcothelia edmondsoni, is a selective, potent inhibitor of the TRPM7 ion channel. To study the structure-activity relationship (SAR) of waixenicin A, we isolated and assayed related diterpenes from S. edmondsoni. In addition to known waixenicins A (1) and B (2), we purified six xenicane diterpenes, 7S,8S-epoxywaixenicins A (3) and B (4), 12-deacetylwaixenicin A (5), waixenicin E (6), waixenicin F (7), and 20-acetoxyxeniafaraunol B (8). We elucidated the structures of 3-8 by NMR and MS analyses. Compounds 1, 2, 3, 4, and 6 inhibited TRPM7 activity in a cell-based assay, while 5, 7, and 8 were inactive. A preliminary SAR emerged showing that alterations to the nine-membered ring of 1 did not reduce activity, while the 12-acetoxy group, in combination with the dihydropyran, appears to be necessary for TRPM7 inhibition. The bioactive compounds are proposed to be latent electrophiles by formation of a conjugated oxocarbenium ion intermediate. Whole-cell patch-clamp experiments demonstrated that waixenicin A inhibition is irreversible, consistent with a covalent inhibitor, and showed nanomolar potency for waixenicin B (2). Conformational analysis (DFT) of 1, 3, 7, and 8 revealed insights into the conformation of waixenicin A and congeners and provided information regarding the stabilization of the proposed pharmacophore.
Collapse
Affiliation(s)
- Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Chemistry and Biochemistry, Hawaii Pacific University, Kaneohe, Hawaii 96744, United States
| | - Matthew R Parris
- Department of Chemistry & Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
| | - W Cedric Kuo
- Chemistry and Biochemistry, Hawaii Pacific University, Kaneohe, Hawaii 96744, United States
| | - Peter Pörzgen
- Chemistry and Biochemistry, Hawaii Pacific University, Kaneohe, Hawaii 96744, United States
| | - Brandi Castillo
- Chemistry and Biochemistry, Hawaii Pacific University, Kaneohe, Hawaii 96744, United States
| | - Evan S Mason
- Department of Chemistry & Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
| | - Andres Chinchilla
- Department of Chemistry & Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
| | - Junhao Huang
- Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center, Honolulu, Hawaii 96813, United States
| | - Sayuri Suzuki
- Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center, Honolulu, Hawaii 96813, United States
| | - Rylee Ross
- Chemistry and Biochemistry, Hawaii Pacific University, Kaneohe, Hawaii 96744, United States
| | - Ellis Akana
- Chemistry and Biochemistry, Hawaii Pacific University, Kaneohe, Hawaii 96744, United States
| | - Savana Vander Schuit
- Chemistry and Biochemistry, Hawaii Pacific University, Kaneohe, Hawaii 96744, United States
| | - Steven P Miller
- Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada
| | - Reinhold Penner
- Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center, Honolulu, Hawaii 96813, United States
| | | | | | - Kenneth G Hull
- Department of Chemistry & Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
- The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76798, United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
| | - Andrea Fleig
- Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center, Honolulu, Hawaii 96813, United States
| | - F David Horgen
- Chemistry and Biochemistry, Hawaii Pacific University, Kaneohe, Hawaii 96744, United States
| |
Collapse
|
2
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
3
|
Otero-Sobrino Á, Blanco-Carlón P, Navarro-Aguadero MÁ, Gallardo M, Martínez-López J, Velasco-Estévez M. Mechanosensitive Ion Channels: Their Physiological Importance and Potential Key Role in Cancer. Int J Mol Sci 2023; 24:13710. [PMID: 37762011 PMCID: PMC10530364 DOI: 10.3390/ijms241813710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanosensitive ion channels comprise a broad group of proteins that sense mechanical extracellular and intracellular changes, translating them into cation influx to adapt and respond to these physical cues. All cells in the organism are mechanosensitive, and these physical cues have proven to have an important role in regulating proliferation, cell fate and differentiation, migration and cellular stress, among other processes. Indeed, the mechanical properties of the extracellular matrix in cancer change drastically due to high cell proliferation and modification of extracellular protein secretion, suggesting an important contribution to tumor cell regulation. In this review, we describe the physiological significance of mechanosensitive ion channels, emphasizing their role in cancer and immunity, and providing compelling proof of the importance of continuing to explore their potential as new therapeutic targets in cancer research.
Collapse
Affiliation(s)
- Álvaro Otero-Sobrino
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Pablo Blanco-Carlón
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Ángel Navarro-Aguadero
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Joaquín Martínez-López
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - María Velasco-Estévez
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
4
|
Hammad AS, Yu F, Al-Hamaq J, Horgen FD, Machaca K. STIM1 signals through NFAT1 independently of Orai1 and SOCE to regulate breast cancer cell migration. Cell Calcium 2023; 114:102779. [PMID: 37399784 DOI: 10.1016/j.ceca.2023.102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Store-operated calcium entry (SOCE) contributes to several physiological and pathological conditions including transcription, secretion, immunodeficiencies, and cancer. SOCE has been shown to be important for breast cancer cell migration where knockdown of SOCE components (STIM1 or Orai1) decreases cancer metastasis. Here we show unexpectedly that complete knockout of STIM1 (STIM1-KO) using gene editing in metastatic MDA-MB-231 breast cancer cells results in faster migration and enhanced invasion capacity. In contrast, Orai1-KO cells, which have similar levels of SOCE inhibition as STIM1-KO, migrate slower than the parental cell line. This shows that the enhanced migration phenotype of STIM1-KO cells is not due to the loss of Ca2+ entry through SOCE, rather it involves transcriptional remodeling as elucidated by RNA-seq analyses. Interestingly, NFAT1 is significantly downregulated in STIM1-KO cells and overexpression of NFAT1 reversed the enhanced migration of STIM1-KO cells. STIM1 knockout in other breast cancer cells, independent of their metastatic potential, also enhanced cell migration while reducing NFAT1 expression. These data argue that in breast cancer cells STIM1 modulates NFAT1 expression and cell migration independently of its role in SOCE.
Collapse
Affiliation(s)
- Ayat S Hammad
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar; Calcium Signaling Group, Research Department, Weill Cornell Medicine, Doha, Qatar
| | - Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Jawaher Al-Hamaq
- Calcium Signaling Group, Research Department, Weill Cornell Medicine, Doha, Qatar
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, Hawaii, United States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
5
|
Khalil A, Shekh‐Ahmad T, Kovac S, Wykes RC, Horgen FD, Fleig A, Walker MC. Drugs acting at TRPM7 channels inhibit seizure-like activity. Epilepsia Open 2023; 8:1169-1174. [PMID: 37328275 PMCID: PMC10472385 DOI: 10.1002/epi4.12773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Transient receptor potential cation subfamily M7 (TRPM7) channels are ion channels permeable to divalent cations. They are abundantly expressed with particularly high expression in the brain. Previous studies have highlighted the importance of TRPM7 channels in brain diseases such as stroke and traumatic brain injury, yet evidence for a role in seizures and epilepsy is lacking. Here, we show that carvacrol, a food additive that inhibits TRPM7 channels, and waixenicin A, a novel selective and potent TRPM7 inhibitor, completely suppressed seizure-like activity in rodent hippocampal-entorhinal brain slices exposed to pentylenetetrazole or low magnesium. These findings support inhibition of TRPM7 channels as a novel target for antiseizure medications.
Collapse
Affiliation(s)
- Aytakin Khalil
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Tawfeeq Shekh‐Ahmad
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- The Institute for Drug Research, The School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Stjepana Kovac
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Department of NeurologyUniversity of MünsterMünsterGermany
| | - Robert C. Wykes
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Nanomedicine Lab, Division of NeuroscienceUniversity of ManchesterManchesterUK
| | - F. David Horgen
- Department of Natural SciencesHawaii Pacific UniversityKaneoheHawaiiUSA
| | - Andrea Fleig
- The Queen's Medical Center and John A. Burns School of Medicine and Cancer CenterUniversity of HawaiiHonoluluHawaiiUSA
| | - Matthew C. Walker
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
6
|
Mahbub L, Kozlov G, Zong P, Lee EL, Tetteh S, Nethramangalath T, Knorn C, Jiang J, Shahsavan A, Yue L, Runnels L, Gehring K. Structural insights into regulation of CNNM-TRPM7 divalent cation uptake by the small GTPase ARL15. eLife 2023; 12:e86129. [PMID: 37449820 PMCID: PMC10348743 DOI: 10.7554/elife.86129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
Cystathionine-β-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg2+ ions on their own and influx of divalent cations when expressed with the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM-binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP and CNNM-binding protein and demonstrate that ARL15 also inhibits CNNM2 Mg2+ efflux. The crystal structure of a complex between ARL15 and CNNM2 CBS-pair domain reveals the molecular basis for binding and allowed the identification of mutations that specifically block binding. A binding deficient ARL15 mutant, R95A, failed to inhibit CNNM and TRPM7 transport of Mg2+ and Zn2+ ions. Structural analysis and binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) showed that ARL15 and PRLs compete for binding CNNM to coordinate regulation of ion transport by CNNM and TRPM7.
Collapse
Affiliation(s)
- Luba Mahbub
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Guennadi Kozlov
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Pengyu Zong
- Department of Cell Biology, UCONN Health CenterFarmingtonUnited States
| | - Emma L Lee
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Sandra Tetteh
- Rutgers-Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | | | - Caroline Knorn
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Jianning Jiang
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Ashkan Shahsavan
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Lixia Yue
- Department of Cell Biology, UCONN Health CenterFarmingtonUnited States
| | - Loren Runnels
- Rutgers-Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Kalle Gehring
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| |
Collapse
|
7
|
Liu H, Dilger JP, Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol Ther 2022; 240:108302. [PMID: 36332746 DOI: 10.1016/j.pharmthera.2022.108302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
TRPM7, a divalent cation-selective channel with kinase domains, has been widely reported to potentially affect cancers. In this study, we conducted multiple bioinformatic analyses based on open databases and reviewed articles that provided evidence for the effects of TRPM7 on cancers. The purposes of this paper are 1) to provide a pan-cancer overview of TRPM7 in cancers; 2) to summarize evidence of TRPM7 effects on cancers; 3) to identify potential future studies of TRPM7 in cancer. Bioinformatics analysis revealed that no cancer-related TRPM7 mutation was found. TRPM7 is aberrantly expressed in most cancer types but the cancer-noncancer expression pattern varies across cancer types. TRPM7 was not associated with survival, TMB, or cancer stemness in most cancer types. TRPM7 affected drug sensitivity and tumor immunity in some cancer types. The in vitro evidence, preclinical in vivo evidence, and clinical evidence for TRPM7 effects on cancers as well as TRPM7 kinase substrate and TRPM7-targeting drugs associated with cancers were summarized to facilitate comparison. We matched the bioinformatics evidence to literature evidence, thereby unveiling potential avenues for future investigation of TRPM7 in cancers. We believe that this paper will help orient research toward important and relevant aspects of the role of TRPM7 in cancers.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - James P Dilger
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
Pandey P, Khan F, Qari HA, Upadhyay TK, Alkhateeb AF, Oves M. Evidence of Metallic and Polyether Ionophores as Potent Therapeutic Drug Candidate in Cancer Management. Molecules 2022; 27:4708. [PMID: 35897885 PMCID: PMC9329979 DOI: 10.3390/molecules27154708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most crucial human malignancies with a higher mortality rate globally, and is predicted to escalate soon. Dysregulated ion homeostasis in cancerous cells prompted the researchers to investigate further ion homeostasis impeding agents as potent anticancerous agents. Reutilization of FDA-approved non-cancerous drugs has emerged as a practical approach to developing potent, cost-effective drugs for cancer treatment. Across the globe, most nations are incapable of fulfilling the medical demands of cancer patients due to costlier cancerous drugs. Therefore, we have inclined our review towards emphasizing recent advancements in cancer therapies involving ionophores utilization in exploring potent anticancer drugs. Numerous research reports have established the significant anticancerous potential of ionophores in several pre-clinical reports via modulating aberrant cell signaling pathways and enhancing antitumor immunity in immune cells. This review has mainly summarized the most significant ion homeostasis impeding agents, including copper, zinc, calcium, and polyether, that presented remarkable potential in cancer therapeutics via enhanced antitumor immunity and apoptosis induction. Altogether, this study could provide a robust future perspective for developing cost-effective anticancerous drugs rapidly and cost-effectively, thereby combating the limitations of currently available drugs used in cancer treatment.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Huda A. Qari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India;
| | - Abdulhameed F. Alkhateeb
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
9
|
Bai Z, Feng J, Franken GAC, Al’Saadi N, Cai N, Yu AS, Lou L, Komiya Y, Hoenderop JGJ, de Baaij JHF, Yue L, Runnels LW. CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biol 2021; 19:e3001496. [PMID: 34928937 PMCID: PMC8726484 DOI: 10.1371/journal.pbio.3001496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/04/2022] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel’s pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs’ control of cellular Mg2+ homeostasis. Magnesium is essential for cellular life, but how is it homeostatically controlled? This study shows that proteins of the CNNM family bind to the TRPM7 channel to stimulate divalent cation entry into cells, independent of their function in regulating magnesium ion efflux.
Collapse
Affiliation(s)
- Zhiyong Bai
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jianlin Feng
- UCONN Health Center, Farmington, New Mexico, United States of America
| | | | - Namariq Al’Saadi
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- University of Misan, Amarah, Iraq
| | - Na Cai
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Albert S. Yu
- UCONN Health Center, Farmington, New Mexico, United States of America
| | - Liping Lou
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yuko Komiya
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | | | | | - Lixia Yue
- UCONN Health Center, Farmington, New Mexico, United States of America
| | - Loren W. Runnels
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ji D, Fleig A, Horgen FD, Feng ZP, Sun HS. Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium 2021; 101:102521. [PMID: 34953296 DOI: 10.1016/j.ceca.2021.102521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, Hawaii 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
11
|
TRPM7 Ion Channel: Oncogenic Roles and Therapeutic Potential in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246322. [PMID: 34944940 PMCID: PMC8699295 DOI: 10.3390/cancers13246322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Breast cancer is the most frequently diagnosed malignant tumor and the second leading cause of cancer death in women worldwide. The risk of developing breast cancer is 12.8%, i.e., 1 in 8 people, and a woman’s risk of dying is approximately 1 in 39. Calcium signals play an important role in various cancers and transport calcium ions may have altered expression in breast cancer, such as the TRPM7 calcium permeant ion channel, where overexpression may be associated with a poor prognosis. This review focuses on the TRPM7 channel, and the oncogenic roles studied so far in breast cancer. The TRPM7 ion channel is suggested as a potential and prospective target in the diagnosis and treatment of breast cancer. Abstract The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer. Breast cancer is the second leading cause of cancer death in women with an incidence rate increase of around 0.5% per year since 2004. The overexpression of TRPM7 may be associated with a poor prognosis in breast cancer patients, so more efforts are needed to research a new therapeutic target. TRPM7 regulates the levels of Ca2+, which can alter the signaling pathways involved in survival, cell cycle progression, proliferation, growth, migration, invasion, epithelial-mesenchymal transition and thus determines cell behavior, promoting tumor development. This work provides a complete overview of the TRPM7 ion channel and its main involvements in breast cancer. Special consideration is given to the modulation of the channel as a potential target in breast cancer treatment by inhibition of proliferation, migration and invasion. Taken together, these data suggest the potential exploitation of TRPM7 channel-kinase as a therapeutic target and a diagnostic biomarker.
Collapse
|
12
|
Rodat-Despoix L, Chamlali M, Ouadid-Ahidouch H. Ion channels as key partners of cytoskeleton in cancer disease. Biochim Biophys Acta Rev Cancer 2021; 1876:188627. [PMID: 34520803 DOI: 10.1016/j.bbcan.2021.188627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Several processes occur during tumor development including changes in cell morphology, a reorganization of the expression and distribution of the cytoskeleton proteins as well as ion channels. If cytoskeleton proteins and ion channels have been widely investigated in understanding cancer mechanisms, the interaction between these two elements and the identification of the associated signaling pathways are only beginning to emerge. In this review, we summarize the work published over the past 15 years relating to the roles played by ion channels in these mechanisms of reorganization of the cellular morphology, essential to metastatic dissemination, both through the physical interactions with elements of the cytoskeleton and by intracellular signaling pathways involved.
Collapse
Affiliation(s)
- Lise Rodat-Despoix
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France.
| | - Mohamed Chamlali
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| |
Collapse
|
13
|
Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front Oncol 2021; 11:621614. [PMID: 34178620 PMCID: PMC8222984 DOI: 10.3389/fonc.2021.621614] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein–protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.
Collapse
Affiliation(s)
- María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Camila Torres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
14
|
Store Operated Calcium Entry in Cell Migration and Cancer Metastasis. Cells 2021; 10:cells10051246. [PMID: 34069353 PMCID: PMC8158756 DOI: 10.3390/cells10051246] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Ca2+ signaling is ubiquitous in eukaryotic cells and modulates many cellular events including cell migration. Directional cell migration requires the polarization of both signaling and structural elements. This polarization is reflected in various Ca2+ signaling pathways that impinge on cell movement. In particular, store-operated Ca2+ entry (SOCE) plays important roles in regulating cell movement at both the front and rear of migrating cells. SOCE represents a predominant Ca2+ influx pathway in non-excitable cells, which are the primary migrating cells in multicellular organisms. In this review, we summarize the role of Ca2+ signaling in cell migration with a focus on SOCE and its diverse functions in migrating cells and cancer metastasis. SOCE has been implicated in regulating focal adhesion turnover in a polarized fashion and the mechanisms involved are beginning to be elucidated. However, SOCE is also involved is other aspects of cell migration with a less well-defined mechanistic understanding. Therefore, much remains to be learned regarding the role and regulation of SOCE in migrating cells.
Collapse
|
15
|
Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead. Acta Pharmacol Sin 2020; 41:1519-1524. [PMID: 32994545 DOI: 10.1038/s41401-020-00512-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Ion channels are the third largest class of targets for therapeutic drugs. The pharmacology of ion channels is an important research area for identifying new treatment options for human diseases. The past decade or so has seen increasing interest in an ion channel protein belonging to the transient receptor potential (TRP) family, namely the melastatin subfamily member 7 (TRPM7), as an emerging drug target. TRPM7 is a bifunctional protein with a magnesium and calcium-conducting divalent ion channel fused with an active kinase domain. TRPM7 is ubiquitously expressed in human tissues, including the brain, and regulates various cell biology processes such as magnesium and calcium homeostasis, cell growth and proliferation, and embryonic development. TRPM7 provides a link between cellular metabolic status and intracellular calcium homeostasis in neurons due to TRPM7's unique sensitivity to fluctuating intracellular Mg·ATP levels. Thus, the protein plays a key role in ischemic and hypoxic neuronal cell death and brain injury, and is one of the key nonglutamate mechanisms in cerebral ischemia and stroke. Currently, the most potent and specific TRPM7 inhibitor is waixenicin A, a xenicane diterpenoid from the Hawaiian soft coral Sarcothelia edmondsoni. Using waixenicin A as a pharmacological tool, we demonstrated that TRPM7 is involved in promoting neurite outgrowth in vitro. Most recently, we found that waixenicin A reduced hypoxic-ischemic brain injury and preserved long-term behavioral outcomes in mouse neonates. We here suggest that TRPM7 is an emerging drug target for CNS diseases and disorders, and waixenicin A is a viable drug lead for these disorders.
Collapse
|
16
|
Kärki T, Rajakylä EK, Acheva A, Tojkander S. TRPV6 calcium channel directs homeostasis of the mammary epithelial sheets and controls epithelial mesenchymal transition. Sci Rep 2020; 10:14683. [PMID: 32895467 PMCID: PMC7477193 DOI: 10.1038/s41598-020-71645-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelial integrity is lost upon cancer progression as cancer cells detach from the primary tumor site and start to invade to the surrounding tissues. Invasive cancers of epithelial origin often express altered levels of TRP-family cation channels. Upregulation of TRPV6 Ca2+-channel has been associated with a number of human malignancies and its high expression in breast cancer has been linked to both proliferation and invasive disease. The mechanisms behind the potential of TRPV6 to induce invasive progression have, however, not been well elucidated. Here we show that TRPV6 is connected to both E-cadherin-based adherens junctions and intracellular cytoskeletal structures. Loss of TRPV6 from normal mammary epithelial cells led to disruption of epithelial integrity and abnormal 3D-mammo sphere morphology. Furthermore, expression level of TRPV6 was tightly linked to the levels of common EMT markers, suggesting that TRPV6 may have a role in the mesenchymal invasion of breast cancer cells. Thus, either too low or too high TRPV6 levels compromise homeostasis of the mammary epithelial sheets and may promote the progression of pathophysiological conditions.
Collapse
Affiliation(s)
- Tytti Kärki
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150, Espoo, Finland
| | - Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland
| | - Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland.
| |
Collapse
|
17
|
Runnels LW, Komiya Y. TRPM6 and TRPM7: Novel players in cell intercalation during vertebrate embryonic development. Dev Dyn 2020; 249:912-923. [PMID: 32315468 DOI: 10.1002/dvdy.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022] Open
Abstract
A common theme in organogenesis is how the final structure of organs emerge from epithelial tube structures, with the formation of the neural tube being one of the best examples. Two types of cell movements co-occur during neural tube closure involving the migration of cells toward the midline of the embryo (mediolateral intercalation or convergent extension) as well as the deep movement of cells from inside the embryo to the outside of the lateral side of the neural plate (radial intercalation). Failure of either type of cell movement will prevent neural tube closure, which can produce a range of neural tube defects (NTDs), a common congenital disease in humans. Numerous studies have identified signaling pathways that regulate mediolateral intercalation during neural tube closure. Less understood are the pathways that govern radial intercalation. Using the Xenopus laevis system, our group reported the identification of transient receptor potential (TRP) channels, TRPM6 and TRPM7, and the Mg2+ ion they conduct, as novel and key factors regulating both mediolateral and radial intercalation during neural tube closure. Here we broadly discuss tubulogenesis and cell intercalation from the perspective of neural tube closure and the respective roles of TRPM7 and TRPM6 in this critical embryonic process.
Collapse
Affiliation(s)
- Loren W Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Yuko Komiya
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Faculty of Industrial Science and Technology, Tokyo University of Science, Yamakoshi-gun, Hokkaido, Japan
| |
Collapse
|
18
|
Lefebvre T, Rybarczyk P, Bretaudeau C, Vanlaeys A, Cousin R, Brassart-Pasco S, Chatelain D, Dhennin-Duthille I, Ouadid-Ahidouch H, Brassart B, Gautier M. TRPM7/RPSA Complex Regulates Pancreatic Cancer Cell Migration. Front Cell Dev Biol 2020; 8:549. [PMID: 32733880 PMCID: PMC7360683 DOI: 10.3389/fcell.2020.00549] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a very poor prognosis due to highly metastatic profile. Cell migration is an essential step of the metastatic cascade allowing cancer cells to spread toward target tissues. Recent studies strongly suggest that bioactive elastin peptides, also named elastokines or elastin-derived peptides (EDPs), are released in the extracellular microenvironment during tumoral remodeling of the stroma. EDPs stimulate cancer cell migration by interacting with their membrane receptor, ribosomal protein SA (RPSA). Others membrane proteins like ion channels are also involved in cancer cell migration. It has been recently shown that the transient receptor potential melastatin-related 7 (TRPM7) channel regulates PDAC cell migration and invasion. The objective of this work was to study the effect of EDPs on TRPM7 channel in human pancreatic cancer cells. We showed that EDPs promote MIA PaCa-2 cell migration using Boyden chamber assay. Cells transfected with a siRNA targeting TRPM7 were not able to migrate in response to EDPs indicating that TRPM7 regulated cell migration induced by these peptides. Moreover, EDPs were able to stimulate TRPM7 currents recorded by Patch-Clamp. Finally, we showed that TRPM7 channels and RPSA receptors are colocalized at the plasma membrane of human pancreatic cancer cells. Taken together, our data suggest that TRPM7/RPSA complex regulated human pancreatic cancer cell migration. This complex may be a promising therapeutic target in PDAC.
Collapse
Affiliation(s)
- Thibaut Lefebvre
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), Amiens, France
| | - Pierre Rybarczyk
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), Amiens, France.,Service d'Anatomie et Cytologie Pathologiques, CHU Amiens-Picardie, Amiens, France
| | - Clara Bretaudeau
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Alison Vanlaeys
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), Amiens, France
| | - Rémi Cousin
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Sylvie Brassart-Pasco
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Denis Chatelain
- Service d'Anatomie et Cytologie Pathologiques, CHU Amiens-Picardie, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), Amiens, France
| | - Bertrand Brassart
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
19
|
Leverrier-Penna S, Destaing O, Penna A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020; 90:102251. [PMID: 32683175 DOI: 10.1016/j.ceca.2020.102251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.
Collapse
Affiliation(s)
| | - Olivier Destaing
- Institute for Advanced BioSciences, CNRS UMR 5309, INSERM U1209, Institut Albert Bonniot, University Grenoble Alpes, 38700 Grenoble, France.
| | - Aubin Penna
- STIM, CNRS ERL7003, University of Poitiers, 86000 Poitiers, France.
| |
Collapse
|
20
|
Vanlaeys A, Fouquet G, Kischel P, Hague F, Pasco-Brassart S, Lefebvre T, Rybarczyk P, Dhennin-Duthille I, Brassart B, Ouadid-Ahidouch H, Gautier M. Cadmium exposure enhances cell migration and invasion through modulated TRPM7 channel expression. Arch Toxicol 2020; 94:735-747. [PMID: 32080757 DOI: 10.1007/s00204-020-02674-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Cadmium is a xenobiotic involved in neoplastic transformation. Cadmium enters the cells through divalent cation transporters including the Transient Receptor Potential Melastatin-related 7 (TRPM7) which is known to be involved in cancer cell fate. This work aimed to study the role of TRPM7 in neoplastic transformation induced by cadmium exposure in non-cancer epithelial cells. Non-cancer epithelial cells were chronically exposed to low-dose of cadmium. TRPM7 expression and function were studied by Western-Blot, Patch-Clamp and calcium and magnesium imaging. Finally, cell migration and invasion were studied by Boyden chamber assays. Chronic cadmium exposure induced TRPM7 overexpression and increased the membrane currents (P < 0.001). Cells exposed to cadmium had higher intracellular calcium and magnesium levels (P < 0.05). TRPM7 silencing restored calcium levels but strongly decreased intracellular magnesium concentration (P < 0.001). Moreover, cadmium exposure enhanced both cell migration and invasion, but TRPM7 silencing strongly decreased these features (P < 0.001). Furthermore, mammary epithelial cells exposed to cadmium became rounded and had less cell-to-cell junctions. Cadmium exposure decreased epithelial markers while the mesenchymal ones were increased. Importantly, TRPM7 silencing was able to reverse these phenotypic modifications (P < 0.05). To summarize, our data show that chronic cadmium exposure enhanced TRPM7 expression and activity in non-cancer epithelial cells. TRPM7 overexpression induced intracellular magnesium increase and stimulated cell migration and invasion. These neoplastic properties could be linked to a TRPM7-dependent epithelial-to-mesenchymal transition reprogramming in cell exposed to cadmium. These findings provide new insights into the regulation of cell fates by cadmium exposure.
Collapse
Affiliation(s)
- Alison Vanlaeys
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Grégory Fouquet
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Philippe Kischel
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Frédéric Hague
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Sylvie Pasco-Brassart
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51095, Amiens, France
| | - Thibaut Lefebvre
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Pierre Rybarczyk
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
- Anatomie et Cytologie Pathologiques, CHU Amiens-Picardie, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Bertrand Brassart
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51095, Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France.
| |
Collapse
|
21
|
Trapani V, Wolf FI. Dysregulation of Mg2+ homeostasis contributes to acquisition of cancer hallmarks. Cell Calcium 2019; 83:102078. [DOI: 10.1016/j.ceca.2019.102078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
|
22
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
23
|
Calcium signaling regulates fundamental processes involved in Neuroblastoma progression. Cell Calcium 2019; 82:102052. [DOI: 10.1016/j.ceca.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
|
24
|
Singh J, Hussain Y, Luqman S, Meena A. Targeting Ca 2+ signalling through phytomolecules to combat cancer. Pharmacol Res 2019; 146:104282. [PMID: 31129179 DOI: 10.1016/j.phrs.2019.104282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Cancer is amongst the life-threatening public health issue worldwide, hence responsible for millions of death every year. It is affecting human health regardless of their gender, age, eating habits, and ecological location. Many drugs and therapies are available for its cure still the need for effective targeted drugs and therapies are of paramount importance. In the recent past, Ca2+ signalling (including channels/transporters/pumps) are being studied as a plausible target for combating the cancer menace. Many evidence has shown that the intracellular Ca2+ homeostasis is altered in cancer cells and the remodelling is linked with tumor instigation, angiogenesis, progression, and metastasis. Focusing on these altered Ca2+ signalling tool kit for cancer treatment is a cross-cutting and emerging area of research. In addition, there are numerous phytomolecules which can be exploited as a potential Ca2+ (channels/transporters/ pumps) modulators in the context of targeting Ca2+ signalling in the cancer cell. In the present review, a list of plant-based potential Ca2+ (channel/transporters/pumps) modulators has been reported which could have application in the framework of repurposing the potential drugs to target Ca2+ signalling pathways in cancer cells. This review also aims to gain attention in and support for prospective research in this field.
Collapse
Affiliation(s)
- Jyoti Singh
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Jawaharlal Nehru University, New Delhi, 110067, India
| | - Yusuf Hussain
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
25
|
Taylor J, Bebawy M. Proteins Regulating Microvesicle Biogenesis and Multidrug Resistance in Cancer. Proteomics 2019; 19:e1800165. [PMID: 30520565 DOI: 10.1002/pmic.201800165] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/02/2018] [Indexed: 01/01/2023]
Abstract
Microvesicles (MV) are emerging as important mediators of intercellular communication. While MVs are important signaling vectors for many physiological processes, they are also implicated in cancer pathology and progression. Cellular activation is perhaps the most widely reported initiator of MV biogenesis, however, the precise mechanism remains undefined. Uncovering the proteins involved in regulating MV biogenesis is of interest given their role in the dissemination of deleterious cancer traits. MVs shed from drug-resistant cancer cells transfer multidrug resistance (MDR) proteins to drug-sensitive cells and confer the MDR phenotype in a matter of hours. MDR is attributed to the overexpression of ABC transporters, primarily P-glycoprotein and MRP1. Their expression and functionality is dependent on a number of proteins. In particular, FERM domain proteins have been implicated in supporting the functionality of efflux transporters in drug-resistant cells and in recipient cells during intercellular transfer by vesicles. Herein, the most recent research on the proteins involved in MV biogenesis and in the dissemination of MV-mediated MDR are discussed. Attention is drawn to unanswered questions in the literature that may prove to be of benefit in ongoing efforts to improve clinical response to chemotherapy and circumventing MDR.
Collapse
Affiliation(s)
- Jack Taylor
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, Australia
| |
Collapse
|
26
|
Broertjes J, Klarenbeek J, Habani Y, Langeslag M, Jalink K. TRPM7 residue S1269 mediates cAMP dependence of Ca2+ influx. PLoS One 2019; 14:e0209563. [PMID: 30615643 PMCID: PMC6322742 DOI: 10.1371/journal.pone.0209563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
The nonspecific divalent cation channel TRPM7 (transient receptor potential-melastatin-like 7) is involved in many Ca2+ and Mg2+-dependent cellular processes, including survival, proliferation and migration. TRPM7 expression predicts metastasis and recurrence in breast cancer and several other cancers. In cultured cells, it can induce an invasive phenotype by promoting Ca2+-mediated epithelial-mesenchymal transition. We previously showed that in neuroblastoma cells that overexpress TRPM7 moderately, stimulation with Ca2+-mobilizing agonists leads to a characteristic sustained influx of Ca2+. Here we report that sustained influx through TRPM7 is abruptly abrogated by elevating intracellular levels of cyclic adenosine monophosphate (cAMP). Using pharmacological inhibitors and overexpression studies we show that this blockage is mediated by the cAMP effector Protein Kinase A (PKA). Mutational analysis demonstrates that the Serine residue S1269, which is present proximal to the coiled-coil domain within the protein c-terminus, is responsible for sensitivity to cAMP.
Collapse
Affiliation(s)
- Jorrit Broertjes
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeffrey Klarenbeek
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yasmin Habani
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiel Langeslag
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Kamermans A, Planting KE, Jalink K, van Horssen J, de Vries HE. Reactive astrocytes in multiple sclerosis impair neuronal outgrowth through TRPM7-mediated chondroitin sulfate proteoglycan production. Glia 2018; 67:68-77. [PMID: 30453391 PMCID: PMC6587975 DOI: 10.1002/glia.23526] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS), characterized by inflammation‐mediated demyelination, axonal injury and neurodegeneration. The mechanisms underlying impaired neuronal function are not fully understood, but evidence is accumulating that the presence of the gliotic scar produced by reactive astrocytes play a critical role in these detrimental processes. Here, we identified astrocytic Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7), a Ca2+‐permeable nonselective cation channel, as a novel player in the formation of a gliotic scar. TRPM7 was found to be highly expressed in reactive astrocytes within well‐characterized MS lesions and upregulated in primary astrocytes under chronic inflammatory conditions. TRPM7 overexpressing astrocytes impaired neuronal outgrowth in vitro by increasing the production of chondroitin sulfate proteoglycans, a key component of the gliotic scar. These findings indicate that astrocytic TRPM7 is a critical regulator of the formation of a gliotic scar and provide a novel mechanism by which reactive astrocytes affect neuronal outgrowth.
Collapse
Affiliation(s)
- Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kirsten E Planting
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kees Jalink
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Ecsédi P, Billington N, Pálfy G, Gógl G, Kiss B, Bulyáki É, Bodor A, Sellers JR, Nyitray L. Multiple S100 protein isoforms and C-terminal phosphorylation contribute to the paralog-selective regulation of nonmuscle myosin 2 filaments. J Biol Chem 2018; 293:14850-14867. [PMID: 30087119 PMCID: PMC6153290 DOI: 10.1074/jbc.ra118.004277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Nonmuscle myosin 2 (NM2) has three paralogs in mammals, NM2A, NM2B, and NM2C, which have both unique and overlapping functions in cell migration, formation of cell-cell adhesions, and cell polarity. Their assembly into homo- and heterotypic bipolar filaments in living cells is primarily regulated by phosphorylation of the N-terminally bound regulatory light chain. Here, we present evidence that the equilibrium between these filaments and single NM2A and NM2B molecules can be controlled via S100 calcium-binding protein interactions and phosphorylation at the C-terminal end of the heavy chains. Furthermore, we show that in addition to S100A4, other members of the S100 family can also mediate disassembly of homotypic NM2A filaments. Importantly, these proteins can selectively remove NM2A molecules from heterotypic filaments. We also found that tail phosphorylation (at Ser-1956 and Ser-1975) of NM2B by casein kinase 2, as well as phosphomimetic substitutions at sites targeted by protein kinase C (PKC) and transient receptor potential cation channel subfamily M member 7 (TRPM7), down-regulates filament assembly in an additive fashion. Tail phosphorylation of NM2A had a comparatively minor effect on filament stability. S100 binding and tail phosphorylation therefore preferentially disassemble NM2A and NM2B, respectively. These two distinct mechanisms are likely to contribute to the temporal and spatial sorting of the two NM2 paralogs within heterotypic filaments. The existence of multiple NM2A-depolymerizing S100 paralogs offers the potential for diverse regulatory inputs modulating NM2A filament disassembly in cells and provides functional redundancy under both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Neil Billington
- the Laboratory of Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Gyula Pálfy
- the Laboratory of Structural Chemistry and Biology, Institute of Chemistry, and
| | | | | | - Éva Bulyáki
- From the Department of Biochemistry
- the ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, 1117 Budapest, Hungary and
| | - Andrea Bodor
- the Laboratory of Structural Chemistry and Biology, Institute of Chemistry, and
| | - James R Sellers
- the Laboratory of Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
29
|
Thuringer D, Chanteloup G, Winckler P, Garrido C. The vesicular transfer of CLIC1 from glioblastoma to microvascular endothelial cells requires TRPM7. Oncotarget 2018; 9:33302-33311. [PMID: 30279961 PMCID: PMC6161795 DOI: 10.18632/oncotarget.26048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is highly expressed and secreted by human glioblastoma cells and cell lines such as U87, initiating cell migration and tumor growth. Here, we examined whether CLIC1 could be transferred to human primary microvascular endothelial cells (HMEC). We previously reported that the oncogenic microRNA, miR-5096, increased the release of extracellular vesicles (EVs) by which it increased its own transfer from U87 to surrounding cells. Thus, we also examined its effect on the CLIC1 transfer. In homotypic cultures, miR-5096 did not increase the expression of CLIC1 in U87 nor in HMEC. However, the endothelial CLIC1 level increased after exposure to EVs released by U87, and even more by miR-5096-loaded U87. The EVs-transferred CLIC1 was active in HMEC, promoting endothelial sprouting in matrigel. Cell exposure to EVs induced cytosolic Ca2+ spikes which were dependent on the transient receptor potential melastatin member 7 (TRPM7). TRPM7 silencing prevented Ca2+ spikes and the subsequent CLIC1 delivery into HMEC. Our data suggest that the vesicular transfer of CLIC1 between cells requires TRMP7 expression in recipient endothelial cells. How the vesicular transfer of CLIC1 is modulated in cancer therapy is a future challenge.
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Gaetan Chanteloup
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Pascale Winckler
- AgroSup Dijon, PAM UMR, DImaCell Imaging Facility, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Carmen Garrido
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France.,Centre Georges François Leclerc (CGFL), 21000 Dijon, France
| |
Collapse
|
30
|
Huang Y, Leng TD, Inoue K, Yang T, Liu M, Horgen FD, Fleig A, Li J, Xiong ZG. TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J Biol Chem 2018; 293:14393-14406. [PMID: 30076216 DOI: 10.1074/jbc.ra117.001032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
High-glucose (HG) levels and hyperglycemia associated with diabetes are known to cause neuronal damage. The detailed molecular mechanisms, however, remain to be elucidated. Here, we investigated the role of transient receptor potential melastatin 7 (TRPM7) channels in HG-mediated endoplasmic reticulum stress (ERS) and injury of NS20Y neuronal cells. The cells were incubated in the absence or presence of HG for 48 h. We found that mRNA and protein levels of TRPM7 and of ERS-associated proteins, such as C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and inducible nitric-oxide synthase (iNOS), increased in HG-treated cells, along with significantly increased TRPM7-associated currents in these cells. Similar results were obtained in cerebral cortical tissue from an insulin-deficiency model of diabetic mice. Moreover, HG treatment of cells activated ERS-associated proapoptotic caspase activity and induced cellular injury. Interestingly, a NOS inhibitor, l-NAME, suppressed the HG-induced increase of TRPM7 expression and cellular injury. siRNA-mediated TRPM7 knockdown or chemical inhibition of TRPM7 activity also suppressed HG-induced ERS and decreased cleaved caspase-12/caspase-3 levels and cell injury. Of note, TRPM7 overexpression increased ERS and cell injury independently of its kinase activity. Taken together, our findings suggest that TRPM7 channel activities play a key role in HG-associated ERS and cytotoxicity through an apoptosis-inducing signaling cascade involving HG, iNOS, TRPM7, ERS proteins, and caspases.
Collapse
Affiliation(s)
- Yan Huang
- From the School of Pharmacy, Anhui Medical University, Hefei 230032, China.,the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - Tian-Dong Leng
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310,
| | - Koichi Inoue
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310.,the Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tao Yang
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - Mingli Liu
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - F David Horgen
- the Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, and
| | - Andrea Fleig
- the Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and University of Hawaii John A. Burns School of Medicine and Cancer Center, Honolulu, Hawaii 96813
| | - Jun Li
- From the School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhi-Gang Xiong
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310,
| |
Collapse
|
31
|
TRPM7 controls mesenchymal features of breast cancer cells by tensional regulation of SOX4. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2409-2419. [DOI: 10.1016/j.bbadis.2018.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 01/04/2023]
|
32
|
Xing F, Zhang P, Jiang P, Chen Z, Yang J, Hu F, Drevenšek-Olenik I, Zhang X, Pan L, Xu J. Spatiotemporal Characteristics of Intercellular Calcium Wave Communication in Micropatterned Assemblies of Single Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2937-2945. [PMID: 29283550 DOI: 10.1021/acsami.7b15759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Micropatterned substrates offer a unique possibility to define and control spatial organization of biological cells at the microscale, which greatly facilitates investigations of the cell-to-cell communication in vitro. Here, we developed a simple micropatterning strategy to resolve various spatiotemporal characteristics of intercellular calcium wave (ICW) communication among isolated BV-2 microglial cells. By using a single-ring assembly, we found that the direction of the initial transmitter secretion was strongly correlated with the site of the cell at which the mechanical stimulus triggering the ICWs was imposed. By using multiring assemblies, we observed that the response ratio of the same outmost cells 160 μm away from the center increased from 0% in the single-ring assembly to 9.6% in the four-ring assembly. This revealed that cells located in the interring acted as regenerative amplifiers for the ICWs generated by the central cell. By using a special oval-type micropattern, we found that calcium mobilization in lamellipodia of a fusiform BV-2 microglia cell occurred 2.9 times faster than that in the middle part of the cell, demonstrating a higher region-specific sensitivity of lamellipodia to the transmitter. Taken together, our micropatterning strategy opened up new experimental prospects to study ICWs and revealed novel spatiotemporal characteristics of ICW communication including stimulation site-dependent secretion, regenerative propagation, and region-specific cell sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, and J. Stefan Institute , Ljubljana SI1000, Slovenia
| | | | | | - Jingjun Xu
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi 030006, China
| |
Collapse
|
33
|
Dulyaninova NG, Ruiz PD, Gamble MJ, Backer JM, Bresnick AR. S100A4 regulates macrophage invasion by distinct myosin-dependent and myosin-independent mechanisms. Mol Biol Cell 2017; 29:632-642. [PMID: 29282275 PMCID: PMC6004585 DOI: 10.1091/mbc.e17-07-0460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/27/2017] [Accepted: 12/22/2017] [Indexed: 01/27/2023] Open
Abstract
S100A4, a member of the S100 family of Ca2+-binding proteins, is a key regulator of cell migration and invasion. Our previous studies showed that bone marrow–derived macrophages from S100A4−/− mice exhibit defects in directional motility and chemotaxis in vitro and reduced recruitment to sites of inflammation in vivo. We now show that the loss of S100A4 produces two mechanistically distinct phenotypes with regard to macrophage invasion: a defect in matrix degradation, due to a disruption of podosome rosettes caused by myosin-IIA overassembly, and a myosin-independent increase in microtubule acetylation, which increases podosome rosette stability and is sufficient to inhibit macrophage invasion. Our studies point to S100A4 as a critical regulator of matrix degradation, whose actions converge on the dynamics and degradative functions of podosome rosettes.
Collapse
Affiliation(s)
| | - Penelope D Ruiz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
34
|
Assessment of TRPM7 functions by drug-like small molecules. Cell Calcium 2017; 67:166-173. [DOI: 10.1016/j.ceca.2017.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/28/2022]
|
35
|
Ferioli S, Zierler S, Zaißerer J, Schredelseker J, Gudermann T, Chubanov V. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg 2+ and Mg·ATP. Sci Rep 2017; 7:8806. [PMID: 28821869 PMCID: PMC5562840 DOI: 10.1038/s41598-017-08144-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/05/2017] [Indexed: 02/04/2023] Open
Abstract
TRPM6 and its homologue TRPM7 are α-kinase-coupled divalent cation-selective channels activated upon reduction of cytosolic levels of Mg2+ and Mg·ATP. TRPM6 is vital for organismal Mg2+ balance. However, mechanistically the cellular role and functional nonredundancy of TRPM6 remain incompletely understood. Comparative analysis of native currents in primary cells from TRPM6- versus TRPM7-deficient mice supported the concept that native TRPM6 primarily functions as a constituent of heteromeric TRPM6/7 channels. However, heterologous expression of the human TRPM6 protein engendered controversial results with respect to channel characteristics including its regulation by Mg2+ and Mg·ATP. To resolve this issue, we cloned the mouse TRPM6 (mTRPM6) cDNA and compared its functional characteristics to mouse TRPM7 (mTRPM7) after heterologous expression. Notably, we observed that mTRPM6 and mTRPM7 differentially regulate properties of heteromeric mTRPM6/7 channels: In the presence of mTRPM7, the extreme sensitivity of functionally expressed homomeric mTRPM6 to Mg2+ is tuned to higher concentrations, whereas mTRPM6 relieves mTRPM7 from the tight inhibition by Mg·ATP. Consequently, the association of mTRPM6 with mTRPM7 allows for high constitutive activity of mTRPM6/7 in the presence of physiological levels of Mg2+ and Mg·ATP, thus laying the mechanistic foundation for constant vectorial Mg2+ transport specifically into epithelial cells.
Collapse
Affiliation(s)
- Silvia Ferioli
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Joanna Zaißerer
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany. .,German Center for Lung Research, Munich, Germany. .,German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany.
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
36
|
Abstract
Calcium signals control a plethora of essential cellular functions ranging from secretion and contraction to gene expression and sensory signaling cascades. An essential part of intracellular calcium signals originates from the transmembrane flux of calcium ions, which is mainly mediated through different calcium-permeable cation channels with variable calcium selectivity. Opening of individual calcium permeable channels induces a local cytosolic calcium rise that can be highly restricted in time and space. Here, we provide a short overview of the current knowledge about calcium permeation and localized calcium signals in transient receptor potential (TRP) channels. We also present a brief survey of some fundamental theoretical aspects of the local calcium signals generated upon opening of single calcium-permeable channels, and compare theoretical predictions with published experimental data on TRP channel-mediated local calcium signals.
Collapse
|
37
|
Proteoglycans, ion channels and cell-matrix adhesion. Biochem J 2017; 474:1965-1979. [PMID: 28546458 DOI: 10.1042/bcj20160747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Cell surface proteoglycans comprise a transmembrane or membrane-associated core protein to which one or more glycosaminoglycan chains are covalently attached. They are ubiquitous receptors on nearly all animal cell surfaces. In mammals, the cell surface proteoglycans include the six glypicans, CD44, NG2 (CSPG4), neuropilin-1 and four syndecans. A single syndecan is present in invertebrates such as nematodes and insects. Uniquely, syndecans are receptors for many classes of proteins that can bind to the heparan sulphate chains present on syndecan core proteins. These range from cytokines, chemokines, growth factors and morphogens to enzymes and extracellular matrix (ECM) glycoproteins and collagens. Extracellular interactions with other receptors, such as some integrins, are mediated by the core protein. This places syndecans at the nexus of many cellular responses to extracellular cues in development, maintenance, repair and disease. The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins. All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration. Recent data now suggest that syndecans can regulate stretch-activated ion channels. The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion. This area sheds new light on the syndecans, not least since evidence suggests that this is an evolutionarily conserved relationship that is also potentially important in the progression of some common diseases where syndecans are implicated.
Collapse
|
38
|
Mignen O, Constantin B, Potier-Cartereau M, Penna A, Gautier M, Guéguinou M, Renaudineau Y, Shoji KF, Félix R, Bayet E, Buscaglia P, Debant M, Chantôme A, Vandier C. Constitutive calcium entry and cancer: updated views and insights. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:395-413. [PMID: 28516266 DOI: 10.1007/s00249-017-1216-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/10/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
Abstract
Tight control of basal cytosolic Ca2+ concentration is essential for cell survival and to fine-tune Ca2+-dependent cell functions. A way to control this basal cytosolic Ca2+ concentration is to regulate membrane Ca2+ channels including store-operated Ca2+ channels and secondary messenger-operated channels linked to G-protein-coupled or tyrosine kinase receptor activation. Orai, with or without its reticular STIM partner and Transient Receptor Potential (TRP) proteins, were considered to be the main Ca2+ channels involved. It is well accepted that, in response to cell stimulation, opening of these Ca2+ channels contributes to Ca2+ entry and the transient increase in cytosolic Ca2+ concentration involved in intracellular signaling. However, in various experimental conditions, Ca2+ entry and/or Ca2+ currents can be recorded at rest, without application of any experimental stimulation. This led to the proposition that some plasma membrane Ca2+ channels are already open/activated in basal condition, contributing therefore to constitutive Ca2+ entry. This article focuses on direct and indirect observations supporting constitutive activity of channels belonging to the Orai and TRP families and on the mechanisms underlying their basal/constitutive activities.
Collapse
Affiliation(s)
- Olivier Mignen
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Bruno Constantin
- STIM, ERL 7368 CNRS Université de Poitiers, Poitiers, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Marie Potier-Cartereau
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Aubin Penna
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Mathieu Gautier
- EA4667, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Maxime Guéguinou
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Yves Renaudineau
- EA 2216, Inserm ESPRI, ERI 29, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Kenji F Shoji
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Romain Félix
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Elsa Bayet
- STIM, ERL 7368 CNRS Université de Poitiers, Poitiers, France
- IRSET, Inserm U1085, University of Rennes 1, 36043, Rennes, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Paul Buscaglia
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Marjolaine Debant
- Inserm UMR 1078 IFR148 Université de Bretagne Occidentale, Brest, France
- EA 2216, Inserm ESPRI, ERI 29, Brest, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Aurélie Chantôme
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France
| | - Christophe Vandier
- Inserm/University of Tours U1069, Nutrition-Croissance et Cancer (N2C), 37032, Tours, France.
- Network "Ion Channels and Cancer-Canceropôle Grand Ouest", (IC-CGO), Grand Ouest, France.
| |
Collapse
|
39
|
Yee NS. Role of TRPM7 in Cancer: Potential as Molecular Biomarker and Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:E39. [PMID: 28379203 PMCID: PMC5490396 DOI: 10.3390/ph10020039] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed ion channel with intrinsic kinase activity. Molecular and electrophysiological analyses of the structure and activity of TRPM7 have revealed functional coupling of its channel and kinase activity. Studies have indicated the important roles of TRPM7 channel-kinase in fundamental cellular processes, physiological responses, and embryonic development. Accumulating evidence has shown that TRPM7 is aberrantly expressed and/or activated in human diseases including cancer. TRPM7 plays a variety of functional roles in cancer cells including survival, cell cycle progression, proliferation, growth, migration, invasion, and epithelial-mesenchymal transition (EMT). Data from a study using mouse xenograft of human cancer show that TRPM7 is required for tumor growth and metastasis. The aberrant expression of TRPM7 and its genetic mutations/polymorphisms have been identified in various types of carcinoma. Chemical modulators of TRPM7 channel produced inhibition of proliferation, growth, migration, invasion, invadosome formation, and markers of EMT in cancer cells. Taken together, these studies suggest the potential value of exploiting TRPM7 channel-kinase as a molecular biomarker and therapeutic target in human malignancies.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, PennState Health Milton S. Hershey Medical Center, Program of Experimental Therapeutics, PennState Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
40
|
Rybarczyk P, Vanlaeys A, Brassart B, Dhennin-Duthille I, Chatelain D, Sevestre H, Ouadid-Ahidouch H, Gautier M. The Transient Receptor Potential Melastatin 7 Channel Regulates Pancreatic Cancer Cell Invasion through the Hsp90α/uPA/MMP2 pathway. Neoplasia 2017; 19:288-300. [PMID: 28284058 PMCID: PMC5345960 DOI: 10.1016/j.neo.2017.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a very poor prognosis. There is an urgent need to better understand the molecular mechanisms that regulate PDAC cell aggressiveness. The transient receptor potential melastatin 7 (TRPM7) is a nonselective cationic channel that mainly conducts Ca2+ and Mg2+. TRPM7 is overexpressed in numerous malignancies including PDAC. In the present study, we used the PANC-1 and MIA PaCa-2 cell lines to specifically assess the role of TRPM7 in cell invasion and matrix metalloproteinase secretion. We show that TRPM7 regulates Mg2+ homeostasis and constitutive cation entry in both PDAC cell lines. Moreover, cell invasion is strongly reduced by TRPM7 silencing without affecting the cell viability. Conditioned media were further studied, by gel zymography, to detect matrix metalloproteinase (MMP) secretion in PDAC cells. Our results show that MMP-2, urokinase plasminogen activator (uPA), and heat-shock protein 90α (Hsp90α) secretions are significantly decreased in TRPM7-deficient PDAC cells. Moreover, TRPM7 expression in human PDAC lymph node metastasis is correlated to the channel expression in primary tumor. Taken together, our results show that TRPM7 is involved in PDAC cell invasion through regulation of Hsp90α/uPA/MMP-2 proteolytic axis, confirming that this channel could be a promising biomarker and possibly a target for PDAC metastasis therapy.
Collapse
Affiliation(s)
- Pierre Rybarczyk
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Alison Vanlaeys
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Bertrand Brassart
- SFR CAP-Santé (FED 4231); UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), F-51095 Reims, France
| | - Isabelle Dhennin-Duthille
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Denis Chatelain
- Service d'anatomie pathologique, CHU d'Amiens, Université de Picardie Jules Verne, F-80000 Amiens, France, France
| | - Henri Sevestre
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231); Service d'anatomie pathologique, CHU d'Amiens, Université de Picardie Jules Verne, F-80000 Amiens, France, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231).
| |
Collapse
|
41
|
The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur J Cell Biol 2016; 95:465-474. [DOI: 10.1016/j.ejcb.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/27/2023] Open
|
42
|
Huguet F, Calvez ML, Benz N, Le Hir S, Mignen O, Buscaglia P, Horgen FD, Férec C, Kerbiriou M, Trouvé P. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR. Cell Mol Life Sci 2016; 73:3351-73. [PMID: 26874684 PMCID: PMC11108291 DOI: 10.1007/s00018-016-2149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.
Collapse
Affiliation(s)
- F Huguet
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - M L Calvez
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
- Association G. Saleun, Brest, 29218, France
| | - N Benz
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Association G. Saleun, Brest, 29218, France
| | - S Le Hir
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France
| | - O Mignen
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Buscaglia
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - F D Horgen
- Laboratory of Marine Biological Chemistry, Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - C Férec
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France.
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France.
- Etablissement Français du Sang - Bretagne, Brest, 29200, France.
| | - M Kerbiriou
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Trouvé
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
| |
Collapse
|
43
|
Chen WL, Barszczyk A, Turlova E, Deurloo M, Liu B, Yang BB, Rutka JT, Feng ZP, Sun HS. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget 2016; 6:16321-40. [PMID: 25965832 PMCID: PMC4599272 DOI: 10.18632/oncotarget.3872] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/02/2015] [Indexed: 01/27/2023] Open
Abstract
Glioblastomas are progressive brain tumors with devastating proliferative and invasive characteristics. Ion channels are the second largest target class for drug development. In this study, we investigated the effects of the TRPM7 inhibitor carvacrol on the viability, resistance to apoptosis, migration, and invasiveness of the human U87 glioblastoma cell line. The expression levels of TRPM7 mRNA and protein in U87 cells were detected by RT-PCR, western blotting and immunofluorescence. TRPM7 currents were recorded using whole-cell patch-clamp techniques. An MTT assay was used to assess cell viability and proliferation. Wound healing and transwell experiments were used to evaluate cell migration and invasion. Protein levels of p-Akt/t-Akt, p-ERK1/2/t-ERK1/2, cleaved caspase-3, MMP-2 and phosphorylated cofilin were also detected. TRPM7 mRNA and protein expression in U87 cells is higher than in normal human astrocytes. Whole-cell patch-clamp recording showed that carvacrol blocks recombinant TRPM7 current in HEK293 cells and endogenous TRPM7-like current in U87 cells. Carvacrol treatment reduced the viability, migration and invasion of U87 cells. Carvacrol also decreased MMP-2 protein expression and promoted the phosphorylation of cofilin. Furthermore, carvacrol inhibited the Ras/MEK/MAPK and PI3K/Akt signaling pathways. Therefore, carvacrol may have therapeutic potential for the treatment of glioblastomas through its inhibition of TRPM7 channels.
Collapse
Affiliation(s)
- Wen-Liang Chen
- Department of Surgery, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Andrew Barszczyk
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Ekaterina Turlova
- Department of Surgery, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Marielle Deurloo
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Baosong Liu
- Department of Surgery, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Burton B Yang
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - James T Rutka
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Department of Pharmacology, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Shapovalov G, Ritaine A, Skryma R, Prevarskaya N. Role of TRP ion channels in cancer and tumorigenesis. Semin Immunopathol 2016; 38:357-69. [PMID: 26842901 DOI: 10.1007/s00281-015-0525-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca(2+) distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca(2+) homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues.
Collapse
Affiliation(s)
- George Shapovalov
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Abigael Ritaine
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France. .,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France.
| |
Collapse
|
45
|
Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA. Functional and physiopathological implications of TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1772-82. [DOI: 10.1016/j.bbamcr.2015.04.016] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
46
|
Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion. PLoS One 2015; 10:e0126440. [PMID: 25946314 PMCID: PMC4422584 DOI: 10.1371/journal.pone.0126440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/01/2015] [Indexed: 01/16/2023] Open
Abstract
A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.
Collapse
|
47
|
Natural and Synthetic Modulators of the TRPM7 Channel. Cells 2014; 3:1089-101. [PMID: 25437439 PMCID: PMC4276914 DOI: 10.3390/cells3041089] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/16/2022] Open
Abstract
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a bi-functional protein comprising a TRP ion channel segment linked to an α-type protein kinase domain. Genetic inactivation of TRPM7 revealed its central role in magnesium metabolism, cell motility, proliferation and differentiation. TRPM7 is associated with anoxic neuronal death, cardiac fibrosis and tumor progression highlighting TRPM7 as a new drug target. Recently, several laboratories have independently identified pharmacological compounds inhibiting or activating the TRPM7 channel. The recently found TRPM7 modulators were used as new experimental tools to unravel cellular functions of the TRPM7 channel. Here, we provide a concise overview of this emerging field.
Collapse
|
48
|
Lange I, Koomoa DLT. MycN promotes TRPM7 expression and cell migration in neuroblastoma through a process that involves polyamines. FEBS Open Bio 2014; 4:966-75. [PMID: 25426416 PMCID: PMC4241534 DOI: 10.1016/j.fob.2014.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022] Open
Abstract
MycN expression correlates with TRPM7 expression in neuroblastoma (NB) tumors. Expression of the transmembrane protein TRPM7 correlates with lower overall survival in NB tumors. MycN promotes TRPM7 mRNA and protein expression and increases TRPM7 channel activity. TRPM7 regulates NB cell migration. Polyamines regulate TRPM7 expression.
Neuroblastoma is an extra-cranial solid cancer in children. MYCN gene amplification is a prognostic indicator of poor outcome in neuroblastoma. Recent studies have shown that the multiple steps involved in cell migration are dependent on the availability of intracellular calcium (Ca2+). Although significant advances have been made in understanding the role of Ca2+ during migration, little has been achieved towards understanding its impact on the progression of diseases such as cancer. Interestingly, previous studies showed that cancer cell migration is regulated by TRPM7, a calcium-permeable ion channel. The objective of the current study was to elucidate the mechanism by which MycN promotes NB cell migration and the mechanism regulating TRPM7 expression. The results showed that MycN increased TRPM7 expression, induced TRPM7 channel activity, increased intracellular Ca2+ signaling, and promoted cell migration in NB cells. The results also showed that inhibition or down-regulation of ornithine decarboxylase (ODC) inhibited TRPM7 expression, a process that was reversed by spermidine. Overall, this study provides evidence that MycN promotes TRPM7 expression and cell migration through a mechanism that involves ODC synthesis of polyamines.
Collapse
Affiliation(s)
- Ingo Lange
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| | - Dana-Lynn T Koomoa
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| |
Collapse
|
49
|
Visser D, Middelbeek J, van Leeuwen FN, Jalink K. Function and regulation of the channel-kinase TRPM7 in health and disease. Eur J Cell Biol 2014; 93:455-65. [DOI: 10.1016/j.ejcb.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022] Open
|
50
|
Siddiqui T, Lively S, Ferreira R, Wong R, Schlichter LC. Expression and contributions of TRPM7 and KCa2.3/SK3 channels to the increased migration and invasion of microglia in anti-inflammatory activation states. PLoS One 2014; 9:e106087. [PMID: 25148577 PMCID: PMC4141841 DOI: 10.1371/journal.pone.0106087] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/31/2014] [Indexed: 01/17/2023] Open
Abstract
Microglia rapidly respond to CNS injury and disease and can assume a spectrum of activation states. While changes in gene expression and production of inflammatory mediators have been extensively described after classical (LPS-induced) and alternative (IL4-induced) microglial activation, less is known about acquired de-activation in response to IL10. It is important to understand how microglial activation states affect their migration and invasion; crucial functions after injury and in the developing CNS. We reported that LPS-treated rat microglia migrate very poorly, while IL4-treated cells migrate and invade much better. Having discovered that the lamellum of migrating microglia contains a large ring of podosomes – microscopic structures that are thought to mediate adhesion, migration and invasion – we hypothesized that IL4 and IL10 would differentially affect podosome expression, gene induction, migration and invasion. Further, based on the enrichment of the KCa2.3/SK3 Ca2+-activated potassium channel in microglial podosomes, we predicted that it regulates migration and invasion. We found both similarities and differences in gene induction by IL4 and IL10 and, while both cytokines increased migration and invasion, only IL10 affected podosome expression. KCa2.3 currents were recorded in microglia under all three activation conditions and KCNN3 (KCa2.3) expression was similar. Surprisingly then, of three KCa2.3 inhibitors (apamin, tamapin, NS8593), only NS8593 abrogated the increased migration and invasion of IL4 and IL10-treated microglia (and invasion of unstimulated microglia). This discrepancy was explained by the observed block of TRPM7 currents in microglia by NS8593, which occurred under all three activation conditions. A similar inhibition of both migration and invasion was seen with a TRPM7 inhibitor (AA-861) that does not block KCa2.3 channels. Thus, we conclude that TRPM7 (not KCa2.3) contributes to the enhanced ability of microglia to migrate and invade when in anti-inflammatory states. This will be an important consideration in developing TRPM7 inhibitors for treating CNS injury.
Collapse
Affiliation(s)
- Tamjeed Siddiqui
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Starlee Lively
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
| | - Roger Ferreira
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Raymond Wong
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lyanne C. Schlichter
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|