1
|
Goyani S, Shukla S, Jadiya P, Tomar D. Calcium signaling in mitochondrial intermembrane space. Biochem Soc Trans 2024; 52:2215-2229. [PMID: 39392359 PMCID: PMC11727339 DOI: 10.1042/bst20240319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The mitochondrial intermembrane space (IMS) is a highly protected compartment, second only to the matrix. It is a crucial bridge, coordinating mitochondrial activities with cellular processes such as metabolites, protein, lipid, and ion exchange. This regulation influences signaling pathways for metabolic activities and cellular homeostasis. The IMS harbors various proteins critical for initiating apoptotic cascades and regulating reactive oxygen species production by controlling the respiratory chain. Calcium (Ca2+), a key intracellular secondary messenger, enter the mitochondrial matrix via the IMS, regulating mitochondrial bioenergetics, ATP production, modulating cell death pathways. IMS acts as a regulatory site for Ca2+ entry due to the presence of different Ca2+ sensors such as MICUs, solute carriers (SLCs); ion exchangers (LETM1/SCaMCs); S100A1, mitochondrial glycerol-3-phosphate dehydrogenase, and EFHD1, each with unique Ca2+ binding motifs and spatial localizations. This review primarily emphasizes the role of these IMS-localized Ca2+ sensors concerning their spatial localization, mechanism, and molecular functions. Additionally, we discuss how these sensors contribute to the progression and pathogenesis of various human health conditions and diseases.
Collapse
Affiliation(s)
- Shanikumar Goyani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Shatakshi Shukla
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
2
|
Baronaitė I, Šulskis D, Kopu̅stas A, Tutkus M, Smirnovas V. Formation of Calprotectin Inhibits Amyloid Aggregation of S100A8 and S100A9 Proteins. ACS Chem Neurosci 2024; 15:1915-1925. [PMID: 38634811 PMCID: PMC11066842 DOI: 10.1021/acschemneuro.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Calcium-binding S100A8 and S100A9 proteins play a significant role in various disorders due to their pro-inflammatory functions. Substantially, they are also relevant in neurodegenerative disorders via the delivery of signals for the immune response. However, at the same time, they can aggregate and accelerate the progression of diseases. Natively, S100A8 and S100A9 exist as homo- and heterodimers, but upon aggregation, they form amyloid-like oligomers, fibrils, or amorphous aggregates. In this study, we aimed to elucidate the aggregation propensities of S100A8, S100A9, and their heterodimer calprotectin by investigating aggregation kinetics, secondary structures, and morphologies of the aggregates. For the first time, we followed the in vitro aggregation of S100A8, which formed spherical aggregates, unlike the fibrillar structures of S100A9 under the same conditions. The aggregates were sensitive to amyloid-specific ThT and ThS dyes and had a secondary structure composed of β-sheets. Similarly to S100A9, S100A8 protein was stabilized by calcium ions, resulting in aggregation inhibition. Finally, the formation of S100A8 and S100A9 heterodimers stabilized the proteins in the absence of calcium ions and prevented their aggregation.
Collapse
Affiliation(s)
- Ieva Baronaitė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Darius Šulskis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurimas Kopu̅stas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Zheng H, Gu C, Yang H. Identification of disease-specific bio-markers through network-based analysis of gene co-expression: A case study on Alzheimer's disease. Heliyon 2024; 10:e27070. [PMID: 38468964 PMCID: PMC10926071 DOI: 10.1016/j.heliyon.2024.e27070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Finding biomarker genes for complex diseases attracts persistent attention due to its application in clinics. In this paper, we propose a network-based method to obtain a set of biomarker genes. The key idea is to construct a gene co-expression network among sensitive genes and cluster the genes into different modules. For each module, we can identify its representative, i.e., the gene with the largest connectivity and the smallest average shortest path length to other genes within the module. We believe these representative genes could serve as a new set of potential biomarkers for diseases. As a typical example, we investigated Alzheimer's disease, obtaining a total of 16 potential representative genes, three of which belong to the non-transcriptome. A total of 11 out of these genes are found in literature from different perspectives and methods. The incipient groups were classified into two different subtypes using machine learning algorithms. We subjected the two subtypes to Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis with healthy groups and moderate groups, respectively. The two sub-type groups were involved in two different biological processes, demonstrating the validity of this approach. This method is disease-specific and independent; hence, it can be extended to classify other kinds of complex diseases.
Collapse
Affiliation(s)
- Hexiang Zheng
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Changgui Gu
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huijie Yang
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
4
|
Gladkikh BP, Danilov DV, D’yachenko VS, Butov GM. 1,3-Dichloroadamantyl-Containing Ureas as Potential Triple Inhibitors of Soluble Epoxide Hydrolase, p38 MAPK and c-Raf. Int J Mol Sci 2023; 25:338. [PMID: 38203510 PMCID: PMC10779153 DOI: 10.3390/ijms25010338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) is an enzyme involved in the metabolism of bioactive lipid signaling molecules. sEH converts epoxyeicosatrienoic acids (EET) to virtually inactive dihydroxyeicosatrienoic acids (DHET). The first acids are "medicinal" molecules, the second increase the inflammatory infiltration of cells. Mitogen-activated protein kinases (p38 MAPKs) are key protein kinases involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an important role in the regulation of cellular processes, especially inflammation. The proto-oncogenic serine/threonine protein kinase Raf (c-Raf) is a major component of the mitogen-activated protein kinase (MAPK) pathway: ERK1/2 signaling. Normal cellular Raf genes can also mutate and become oncogenes, overloading the activity of MEK1/2 and ERK1/2. The development of multitarget inhibitors is a promising strategy for the treatment of socially dangerous diseases. We synthesized 1,3-disubstituted ureas and diureas containing a dichloroadamantyl moiety. The results of computational methods show that soluble epoxide hydrolase inhibitors can act on two more targets in different signaling pathways of mitogen-activated protein kinases p38 MAPK and c-Raf. The two chlorine atoms in the adamantyl moiety may provide additional Cl-π interactions in the active site of human sEH. Molecular dynamics studies have shown that the stability of ligand-protein complexes largely depends on the "spacer effect." The compound containing a bridge between the chloroadamantyl fragment and the ureide group forms more stable ligand-protein complexes with sEH and p38 MAPK, which indicates a better conformational ability of the molecule in the active sites of these targets. In turn, a compound containing two chlorine atoms forms a more stable complex with c-Raf, probably due to the presence of additional halogen bonds of chlorine atoms with amino acid residues.
Collapse
Affiliation(s)
- Boris P. Gladkikh
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
| | - Dmitry V. Danilov
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
| | - Vladimir S. D’yachenko
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University (VSTU), Volzhsky 404121, Russia
| | - Gennady M. Butov
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University (VSTU), Volzhsky 404121, Russia
| |
Collapse
|
5
|
Chen KS, Noureldein MH, McGinley LM, Hayes JM, Rigan DM, Kwentus JF, Mason SN, Mendelson FE, Savelieff MG, Feldman EL. Human neural stem cells restore spatial memory in a transgenic Alzheimer's disease mouse model by an immunomodulating mechanism. Front Aging Neurosci 2023; 15:1306004. [PMID: 38155736 PMCID: PMC10753006 DOI: 10.3389/fnagi.2023.1306004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Stem cells are a promising therapeutic in Alzheimer's disease (AD) given the complex pathophysiologic pathways involved. However, the therapeutic mechanisms of stem cells remain unclear. Here, we used spatial transcriptomics to elucidate therapeutic mechanisms of human neural stem cells (hNSCs) in an animal model of AD. Methods hNSCs were transplanted into the fimbria fornix of the hippocampus using the 5XFAD mouse model. Spatial memory was assessed by Morris water maze. Amyloid plaque burden was quantified. Spatial transcriptomics was performed and differentially expressed genes (DEGs) identified both globally and within the hippocampus. Subsequent pathway enrichment and ligand-receptor network analysis was performed. Results hNSC transplantation restored learning curves of 5XFAD mice. However, there were no changes in amyloid plaque burden. Spatial transcriptomics showed 1,061 DEGs normalized in hippocampal subregions. Plaque induced genes in microglia, along with populations of stage 1 and stage 2 disease associated microglia (DAM), were normalized upon hNSC transplantation. Pathologic signaling between hippocampus and DAM was also restored. Discussion hNSCs normalized many dysregulated genes, although this was not mediated by a change in amyloid plaque levels. Rather, hNSCs appear to exert beneficial effects in part by modulating microglia-mediated neuroinflammation and signaling in AD.
Collapse
Affiliation(s)
- Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Mohamed H. Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Lisa M. McGinley
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Diana M. Rigan
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Jacquelin F. Kwentus
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Shayna N. Mason
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Masha G. Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Chen KS, Noureldein MH, McGinley LM, Hayes JM, Rigan DM, Kwentus JF, Mason SN, Mendelson FE, Savelieffd MG, Feldman EL. Human neural stem cells restore spatial memory in a transgenic Alzheimer's disease mouse model by an immunomodulating mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565161. [PMID: 37961246 PMCID: PMC10635057 DOI: 10.1101/2023.11.01.565161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Stem cells are a promising therapeutic in Alzheimer's disease (AD) given the complex pathophysiologic pathways involved. However, the therapeutic mechanisms of stem cells remain unclear. Here, we used spatial transcriptomics to elucidate therapeutic mechanisms of human neural stem cells (hNSCs) in an animal model of AD. METHODS hNSCs were transplanted into the fimbria fornix of the hippocampus using the 5XFAD mouse model. Spatial memory was assessed by Morris water maze. Amyloid plaque burden was quantified. Spatial transcriptomics was performed and differentially expressed genes (DEGs) identified both globally and within the hippocampus. Subsequent pathway enrichment and ligand-receptor network analysis was performed. RESULTS hNSC transplantation restored learning curves of 5XFAD mice. However, there were no changes in amyloid plaque burden. Spatial transcriptomics showed 1061 DEGs normalized in hippocampal subregions. Plaque induced genes in microglia, along with populations of stage 1 and stage 2 disease associated microglia (DAM), were normalized upon hNSC transplantation. Pathologic signaling between hippocampus and DAM was also restored. DISCUSSION hNSCs normalized many dysregulated genes, although this was not mediated by a change in amyloid plaque levels. Rather, hNSCs appear to exert beneficial effects in part by modulating microglia-mediated neuroinflammation and signaling in AD.
Collapse
|
7
|
Cerón JJ, Ortín-Bustillo A, López-Martínez MJ, Martínez-Subiela S, Eckersall PD, Tecles F, Tvarijonaviciute A, Muñoz-Prieto A. S-100 Proteins: Basics and Applications as Biomarkers in Animals with Special Focus on Calgranulins (S100A8, A9, and A12). BIOLOGY 2023; 12:881. [PMID: 37372165 DOI: 10.3390/biology12060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
S100 proteins are a group of calcium-binding proteins which received this name because of their solubility in a 100% saturated solution of ammonium sulphate. They have a similar molecular mass of 10-12 KDa and share 25-65% similarity in their amino acid sequence. They are expressed in many tissues, and to date 25 different types of S100 proteins have been identified. This review aims to provide updated information about S100 proteins and their use as biomarkers in veterinary science, with special emphasis on the family of calgranulins that includes S100A8 (calgranulin A; myeloid-related protein 8, MRP8), S100A9 (calgranulin B; MRP14), and S100A12 (calgranulin C). The proteins SA100A8 and S100A9 can be linked, forming a heterodimer which is known as calprotectin. Calgranulins are related to the activation of inflammation and the immune system and increase in gastrointestinal diseases, inflammation and sepsis, immunomediated diseases, and obesity and endocrine disorders in different animal species. This review reflects the current knowledge about calgranulins in veterinary science, which should increase in the future to clarify their role in different diseases and potential as biomarkers and therapeutic targets, as well as the practical use of their measurement in non-invasive samples such as saliva or feces.
Collapse
Affiliation(s)
- José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Peter David Eckersall
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| |
Collapse
|
8
|
Hong G, Li T, Zhao H, Zeng Z, Zhai J, Li X, Luo X. Diagnostic value and mechanism of plasma S100A1 protein in acute ischemic stroke: a prospective and observational study. PeerJ 2023; 11:e14440. [PMID: 36643631 PMCID: PMC9838205 DOI: 10.7717/peerj.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/01/2022] [Indexed: 01/12/2023] Open
Abstract
Background Plasma S100A1 protein is a novel inflammatory biomarker associated with acute myocardial infarction and neurodegenerative disease's pathophysiological mechanisms. This study aimed to determine the levels of this protein in patients with acute ischemic stroke early in the disease progression and to investigate its role in the pathogenesis of acute ischemic stroke. Methods A total of 192 participants from hospital stroke centers were collected for the study. Clinically pertinent data were recorded. The volume of the cerebral infarction was calculated according to the Pullicino formula. Multivariate logistic regression analysis was used to select independent influences. ROC curve was used to analyze the diagnostic value of AIS and TIA. The correlation between S100A1, NF-κB p65, and IL-6 levels and cerebral infarction volume was detected by Pearson correlation analysis. Results There were statistically significant differences in S100A1, NF-κB p65, and IL-6 among the AIS,TIA, and PE groups (S100A1, [230.96 ± 39.37] vs [185.85 ± 43.24] vs [181.47 ± 27.39], P < 0.001; NF-κB p65, [3.99 ± 0.65] vs [3.58 ± 0.74] vs [3.51 ± 0.99], P = 0.001; IL-6, [13.32 ± 1.57] vs [11.61 ± 1.67] vs [11.42 ± 2.34], P < 0.001). Multivariate logistic regression analysis showed that S100A1 might be an independent predictive factor for the diagnosis of disease (P < 0.001). The AUC of S100A1 for diagnosis of AIS was 0.818 (P < 0.001, 95% CI [0.749-0.887], cut off 181.03, Jmax 0.578, Se 95.0%, Sp 62.7%). The AUC of S100A1 for diagnosis of TIA was 0.720 (P = 0.001, 95% CI [0.592-0.848], cut off 150.14, Jmax 0.442, Se 50.0%, Sp 94.2%). There were statistically significant differences in S100A1, NF-κB p65, and IL-6 among the SCI,MCI, and LCI groups (S100A1, [223.98 ± 40.21] vs [225.42 ± 30.92] vs [254.25 ± 37.07], P = 0.001; NF-κB p65, [3.88 ± 0.66] vs [3.85 ± 0.64] vs [4.41 ± 0.45], P < 0.001; IL-6, [13.27 ± 1.65] vs [12.77 ± 1.31] vs [14.00 ± 1.40], P = 0.007). Plasma S100A1, NF-κB p65, and IL-6 were significantly different from cerebral infarction volume (S100A1, r = 0.259, P = 0.002; NF-κB p65, r = 0.316, P < 0.001; IL-6, r = 0.177, P = 0.036). There was a positive correlation between plasma S100A1 and IL-6 with statistical significance (R = 0.353, P < 0.001). There was no significant positive correlation between plasma S100A1 and NF-κB p65 (R < 0.3), but there was statistical significance (R = 0.290, P < 0.001). There was a positive correlation between IL-6 and NF-κB p65 with statistical significance (R = 0.313, P < 0.001). Conclusion S100A1 might have a better diagnostic efficacy for AIS and TIA. S100A1 was associated with infarct volume in AIS, and its level reflected the severity of acute cerebral infarction to a certain extent. There was a correlation between S100A1 and IL-6 and NF-κB p65, and it was reasonable to speculate that this protein might mediate the inflammatory response through the NF-κB pathway during the pathophysiology of AIS.
Collapse
Affiliation(s)
- Guo Hong
- Department of Neurology, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Tingting Li
- Department of Neurology, Yizheng People’s Hospital affiliated to Yangzhou University, Yangzhou, China
| | - Haina Zhao
- Department of Neurology, Institutes of Brain Science, Jiangsu Subei People’s Hospital affiliated to Yangzhou University, Yangzhou, China
| | - Zhaohao Zeng
- Department of Neurology, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Jinglei Zhai
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaobo Li
- Department of Neurology, Institutes of Brain Science, Jiangsu Subei People’s Hospital affiliated to Yangzhou University, Yangzhou, China
| | - Xiaoguang Luo
- Department of Neurology, Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
9
|
Bai Y, Guo N, Xu Z, Chen Y, Zhang W, Chen Q, Bi Z. S100A1 expression is increased in spinal cord injury and promotes inflammation, oxidative stress and apoptosis of PC12 cells induced by LPS via ERK signaling. Mol Med Rep 2022; 27:30. [PMID: 36524376 PMCID: PMC9827259 DOI: 10.3892/mmr.2022.12917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder and the molecular mechanisms leading to its poor prognosis remain to be elucidated. S100A1, a mediator of Ca2+ handling of sarcoplasmic reticulum and mitochondrial function, operates as an endogenous danger signal (alarmin) associated with inflammatory response and tissue injury. The aim of the present study was to investigate the expression and biological effects of S100A1 in SCI. A rat model of SCI and a PC12 cell model of lipopolysaccharide (LPS)‑induced inflammation were established to examine S100A1 expression at the mRNA and protein levels. The inflammation level, which was mediated by S100A1, was determined based on inflammatory factor (IL‑1β, IL‑6 and TNF‑α) and anti‑inflammatory factor (IL‑10) expression. The effects of S100A1 on cellular oxidation and anti‑oxidation levels were observed by detecting the levels of reactive oxygen species, superoxide dismutase, catalase activities and nuclear factor erythroid 2‑related factor 2 expression. The protein levels of Bax, Bcl2 and cleaved caspase‑3 were used for the evaluation of the effects of S100A1 on apoptosis. Phosphorylated (p‑)ERK1/2 expression was used to evaluate the effects of S100A1 on ERK signaling. The results revealed that S100A1 expression was significantly upregulated in vivo and in vitro in the PC12 cell model of LPS‑inflammation. The silencing and overexpression of S100A1 helped alleviate and aggravate LPS‑induced inflammation, oxidative stress and apoptosis levels, respectively. S100A1 was found to regulate the ERK signaling pathway positively. An inhibitor of ERK signaling (MK‑8353) partially abolished the promoting effects of the overexpression of S100A1 on inflammation, oxidative stress damage and apoptosis. In conclusion, S100A1 expression was elevated in model of SCI and in the PC12 cell model of LPS‑induced inflammation. Furthermore, the overexpression/silencing S100A1 aggravated/mitigated the inflammation, oxidative stress damage and the apoptosis of LPS‑stimulated PC12 cells via the ERK signaling pathway. The present study revealed the mechanism of S100A1 in SCI, which provided a new theoretic reference for future research on SCI.
Collapse
Affiliation(s)
- Ye Bai
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China,Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Ning Guo
- Department of Outpatient, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Zhanwu Xu
- Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Yuxi Chen
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wenjin Zhang
- Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Qinghe Chen
- Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Zhenggang Bi
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China,Correspondence to: Dr Zhenggang Bi, Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China, E-mail:
| |
Collapse
|
10
|
Tian Y, Li S, Dong K, Su X, Fu S, Lv X, Duan M, Yang T, Han Y, Hu G, Liu J, Sun Y, Yue H, Sun Y, Zhang H, Du Z, Miao Z, Tong M, Liu Y, Qin M, Gong P, Hou Y, Gao Z, Zhao Y. Discovery of benzamide derivatives containing urea moiety as soluble epoxide hydrolase inhibitors. Bioorg Chem 2022; 127:105898. [DOI: 10.1016/j.bioorg.2022.105898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
|
11
|
Mechanism of Zn 2+ and Ca 2+ Binding to Human S100A1. Biomolecules 2021; 11:biom11121823. [PMID: 34944467 PMCID: PMC8699212 DOI: 10.3390/biom11121823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
S100A1 is a member of the S100 family of small ubiquitous Ca2+-binding proteins, which participates in the regulation of cell differentiation, motility, and survival. It exists as homo- or heterodimers. S100A1 has also been shown to bind Zn2+, but the molecular mechanisms of this binding are not yet known. In this work, using ESI-MS and ITC, we demonstrate that S100A1 can coordinate 4 zinc ions per monomer, with two high affinity (KD~4 and 770 nm) and two low affinity sites. Using competitive binding experiments between Ca2+ and Zn2+ and QM/MM molecular modeling we conclude that Zn2+ high affinity sites are located in the EF-hand motifs of S100A1. In addition, two lower affinity sites can bind Zn2+ even when the EF-hands are saturated by Ca2+, resulting in a 2Ca2+:S100A1:2Zn2+ conformer. Finally, we show that, in contrast to calcium, an excess of Zn2+ produces a destabilizing effect on S100A1 structure and leads to its aggregation. We also determined a higher affinity to Ca2+ (KD~0.16 and 24 μm) than was previously reported for S100A1, which would allow this protein to function as a Ca2+/Zn2+-sensor both inside and outside cells, participating in diverse signaling pathways under normal and pathological conditions.
Collapse
|
12
|
Sun CP, Zhang XY, Morisseau C, Hwang SH, Zhang ZJ, Hammock BD, Ma XC. Discovery of Soluble Epoxide Hydrolase Inhibitors from Chemical Synthesis and Natural Products. J Med Chem 2020; 64:184-215. [PMID: 33369424 DOI: 10.1021/acs.jmedchem.0c01507] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soluble epoxide hydrolase (sEH) is an α/β hydrolase fold protein and widely distributed in numerous organs including the liver, kidney, and brain. The inhibition of sEH can effectively maintain endogenous epoxyeicosatrienoic acids (EETs) levels and reduce dihydroxyeicosatrienoic acids (DHETs) levels, resulting in therapeutic potentials for cardiovascular, central nervous system, and metabolic diseases. Therefore, since the beginning of this century, the development of sEH inhibitors is a hot research topic. A variety of potent sEH inhibitors have been developed by chemical synthesis or isolated from natural sources. In this review, we mainly summarized the interconnected aspects of sEH with cardiovascular, central nervous system, and metabolic diseases and then focus on representative inhibitors, which would provide some useful guidance for the future development of potential sEH inhibitors.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xin-Yue Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Zhan-Jun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
13
|
Sevindik M, Akgul H, Selamoglu Z, Braidy N. Antioxidant, antimicrobial and neuroprotective effects of Octaviania asterosperma in vitro. Mycology 2020; 12:128-138. [PMID: 34035978 PMCID: PMC8131004 DOI: 10.1080/21501203.2020.1816584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Octaviania asterosperma (hypogeous Basidiomycota) We investigated the phenolic composition, and antioxidant, antimicrobial and antigenotoxic effects of methanol extracts of fruiting bodies from Octaviania asterosperma. The total phenolic content (ppm) of O. asterosperma was found to be catechin (54.73 ± 4.68), epicatechin (123.90 ± 8.52), caffeic acid (4.23 ± 0.97), p-hydroxybenzoic acid (37.72 ± 3.84), cinnamic acid (58.07 ± 5.40), gallic acid (56.64 ± 6.39), clorogenic acid (80.76 ± 4.92) and coumaric acid (2.45 ± 0.15). The total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) were 3.410 ± 0.099 mmol/L, 7.548 ± 0.147 μmol/L and 0.221 ± 0.005 respectively. O. asterosperma showed some promising antimicrobial activity. The extract showed no genotoxic potential and attenuated hydrogen peroxide (H2O2)-induced oxidative DNA damage in neurons. Pre-treatment with O. asterosperma maintained mitochondrial function, reduced expression levels of cleaved-caspase-3 and apoptosis-inducing factor (AIF) when HT22 cells were exposed to pathophysiological concentrations of GLU (25 mM) and modulated protein kinase B (Akt), the mammalian target of rapamycin (mTOR), and the phosphotase and tensin homolog on chromosome ten (PTEN). O. asterosperma is an important food for the treatment or management of neurodegenerative disorders due to its phenolic content and potent antioxidant and anti-excitotoxic effects.
Collapse
Affiliation(s)
- Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, 80500, Osmaniye, Turkey
| | - Hasan Akgul
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
14
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
15
|
Hong G, Zeng P, Li N, Cai H, Guo Y, Li X, Li K, Li H. A Qualitative Analysis Based on Relative Expression Orderings Identifies Transcriptional Subgroups for Alzheimer’s Disease. Curr Alzheimer Res 2020; 16:1175-1182. [PMID: 31763973 DOI: 10.2174/1567205016666191122125035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
Abstract
Background:
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease. However, few studies have investigated the heterogeneous gene expression patterns in AD.
Objective and Methods:
We examined the gene expression patterns in four brain regions of AD based on the within-sample relative expression orderings (REOs). Gene pairs with significantly reversed REOs in AD samples compared to non-AD controls were identified for each brain region using Fisher’s exact test, and filtered according to their transcriptional differences between AD samples. Subgroups of AD were classified by cluster analysis.
Results:
REO-based gene expression profiling analyses revealed that transcriptional differences, as well as distinct disease subsets, existed within AD patients. For each brain region, two main subgroups were classified: one subgroup reported differentially expressed genes overlapped with the age-related genes, and the other might relate to neuroinflammation.
Conclusion:
AD transcriptional subgroups might help understand the underlying pathogenesis of AD, and lend support to a personalized approach to AD management.
Collapse
Affiliation(s)
- Guini Hong
- College of Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Pengming Zeng
- Department of Bioinformatics, Fujian Medical University, Fuzhou, 350108, China
| | - Na Li
- College of Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Hao Cai
- Medical Big Data and Bioinformatics Research Centre at First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - You Guo
- Medical Big Data and Bioinformatics Research Centre at First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaopeng Li
- College of Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Keshen Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hongdong Li
- College of Information Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
16
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
17
|
Cristóvão JS, Gomes CM. S100 Proteins in Alzheimer's Disease. Front Neurosci 2019; 13:463. [PMID: 31156365 PMCID: PMC6532343 DOI: 10.3389/fnins.2019.00463] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
S100 proteins are calcium-binding proteins that regulate several processes associated with Alzheimer's disease (AD) but whose contribution and direct involvement in disease pathophysiology remains to be fully established. Due to neuroinflammation in AD patients, the levels of several S100 proteins are increased in the brain and some S100s play roles related to the processing of the amyloid precursor protein, regulation of amyloid beta peptide (Aβ) levels and Tau phosphorylation. S100 proteins are found associated with protein inclusions, either within plaques or as isolated S100-positive puncta, which suggests an active role in the formation of amyloid aggregates. Indeed, interactions between S100 proteins and aggregating Aβ indicate regulatory roles over the aggregation process, which may either delay or aggravate aggregation, depending on disease stage and relative S100 and Aβ levels. Additionally, S100s are also known to influence AD-related signaling pathways and levels of other cytokines. Recent evidence also suggests that metal-ligation by S100 proteins influences trace metal homeostasis in the brain, particularly of zinc, which is also a major deregulated process in AD. Altogether, this evidence strongly suggests a role of S100 proteins as key players in several AD-linked physiopathological processes, which we discuss in this review.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
High-throughput epitope profiling of antibodies in the plasma of Alzheimer's disease patients using random peptide microarrays. Sci Rep 2019; 9:4587. [PMID: 30872784 PMCID: PMC6418098 DOI: 10.1038/s41598-019-40976-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
The symptoms of Alzheimer's disease (AD), a major cause of dementia in older adults, are linked directly with neuronal cell death, which is thought to be due to aberrant neuronal inflammation. Autoantibodies formed during neuronal inflammation show excellent stability in blood; therefore, they may be convenient blood-based diagnostic markers of AD. Here, we performed microarray analysis of 29,240 unbiased random peptides to be used for comprehensive screening of AD-specific IgG and IgM antibodies in the blood. The results showed that (1) sequence-specific and isotype-specific antibodies are regulated differentially in AD, and combinations of these antibodies showing high area under the receiver operating characteristic curve values (0.862-0.961) can be used to classify AD, (2) AD-specific IgG antibodies arise from IgM antibody-secreting cells that existed before disease onset and (3) target protein profiling of the antibodies identified some AD-related proteins, some of which are involved in AD-related signalling pathways. Therefore, we propose that these epitopes may facilitate the development of biomarkers for AD diagnosis and form the basis for a mechanistic study related to AD progression.
Collapse
|
19
|
S100A4 inhibits cell proliferation by interfering with the S100A1-RAGE V domain. PLoS One 2019; 14:e0212299. [PMID: 30779808 PMCID: PMC6380570 DOI: 10.1371/journal.pone.0212299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/30/2019] [Indexed: 01/28/2023] Open
Abstract
The Ca2+-dependent human S100A4 (Mts1) protein is part of the S100 family. Here, we studied the interactions of S100A4 with S100A1 using nuclear magnetic resonance (NMR) spectroscopy. We used the chemical shift perturbed residues from HSQC to model S100A4 and S100A1 complex with HADDOCK software. We observed that S100A1 and the RAGE V domain have an analogous binding area in S100A4. We discovered that S100A4 acts as an antagonist among the RAGE V domain and S100A1, which inhibits tumorigenesis and cell proliferation. We used a WST-1 assay to examine the bioactivity of S100A1 and S100A4. This study could possibly be beneficial for evaluating new proteins for the treatment of diseases.
Collapse
|
20
|
Fu SJ, Shen SL, Li SQ, Hua YP, Hu WJ, Guo B, Peng BG. Hornerin promotes tumor progression and is associated with poor prognosis in hepatocellular carcinoma. BMC Cancer 2018; 18:815. [PMID: 30103712 PMCID: PMC6090597 DOI: 10.1186/s12885-018-4719-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 08/02/2018] [Indexed: 01/24/2023] Open
Abstract
Background The function of hornerin (HRNR), a member of the S100 protein family, is poorly clarified in the development of human tumors. The role of HRNR in hepatocellular carcinoma (HCC) progression is investigated in the study. Methods The expression levels of HRNR were assessed in tumor samples from a cohort of 271 HCC patients. The effect of HRNR on proliferation, colony formation and invasion of tumor cells was examined. We further determined the role of HRNR in tumor growth in vivo by using xenograft HCC tumor models. The possible mechanism of the HRNR promotion of HCC progression was explored. Results We found that HRNR was overexpressed in HCC tissues. The high expression of HRNR in HCCs was significantly associated with vascular invasion, poor tumor differentiation, and advanced TNM stage. The disease-free survival (DFS) and overall survival (OS) of HCC patients with high HRNR expression were poorer than those in the low HRNR expression group. HRNR expression was an independent risk factor linked to both poor DFS (HR = 2.209, 95% CI = 1.627–2.998,P < 0.001) and OS (HR = 2.459,95% CI = 1.736–3.484, P < 0.001). In addition, the knockdown of HRNR by shRNAs significantly inhibited the proliferation, colony formation, migration and invasion of HCC tumor cells. HRNR silencing led to the decreased phosphorylation of AKT signaling. Notably, tumor growth was markedly inhibited by HRNR silencing in a xenograft model of HCC. Conclusions HRNR promotes tumor progression and is correlated with a poor HCC prognosis. HRNR may contribute to HCC progression via the regulation of the AKT pathway.
Collapse
Affiliation(s)
- Shun-Jun Fu
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shun-Li Shen
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao-Qiang Li
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yun-Peng Hua
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Hu
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - BeiChu Guo
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, USA.
| | - Bao-Gang Peng
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Khan MI, Su YK, Zou J, Yang LW, Chou RH, Yu C. S100B as an antagonist to block the interaction between S100A1 and the RAGE V domain. PLoS One 2018; 13:e0190545. [PMID: 29444082 PMCID: PMC5812564 DOI: 10.1371/journal.pone.0190545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022] Open
Abstract
Ca2+-binding human S100A1 protein is a type of S100 protein. S100A1 is a significant mediator during inflammation when Ca2+ binds to its EF-hand motifs. Receptors for advanced glycation end products (RAGE) correspond to 5 domains: the cytoplasmic, transmembrane, C2, C1, and V domains. The V domain of RAGE is one of the most important target proteins for S100A1. It binds to the hydrophobic surface and triggers signaling transduction cascades that induce cell growth, cell proliferation, and tumorigenesis. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction between S100A1 and the RAGE V domain. We found that S100B could interact with S100A1 via NMR 1H-15N HSQC titrations. We used the HADDOCK program to generate the following two binary complexes based on the NMR titration results: S100A1-RAGE V domain and S100A1-S100B. After overlapping these two complex structures, we found that S100B plays a crucial role in blocking the interaction site between RAGE V domain and S100A1. A cell proliferation assay WST-1 also supported our results. This report could potentially be useful for new protein development for cancer treatment.
Collapse
Affiliation(s)
- Md. Imran Khan
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Yu-Kai Su
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Jinhao Zou
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Physics Division, National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chin Yu
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| |
Collapse
|
22
|
Molecular basis for the interaction between stress-inducible phosphoprotein 1 (STIP1) and S100A1. Biochem J 2017; 474:1853-1866. [PMID: 28408431 DOI: 10.1042/bcj20161055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/27/2022]
Abstract
Stress-inducible phosphoprotein 1 (STIP1) is a cellular co-chaperone, which regulates heat-shock protein 70 (Hsp70) and Hsp90 activity during client protein folding. Members of the S100 family of dimeric calcium-binding proteins have been found to inhibit Hsp association with STIP1 through binding of STIP1 tetratricopeptide repeat (TPR) domains, possibly regulating the chaperone cycle. Here, we investigated the molecular basis of S100A1 binding to STIP1. We show that three S100A1 dimers associate with one molecule of STIP1 in a calcium-dependent manner. Isothermal titration calorimetry revealed that individual STIP1 TPR domains, TPR1, TPR2A and TPR2B, bind a single S100A1 dimer with significantly different affinities and that the TPR2B domain possesses the highest affinity for S100A1. S100A1 bound each TPR domain through a common binding interface composed of α-helices III and IV of each S100A1 subunit, which is only accessible following a large conformational change in S100A1 upon calcium binding. The TPR2B-binding site for S100A1 was predominately mapped to the C-terminal α-helix of TPR2B, where it is inserted into the hydrophobic cleft of an S100A1 dimer, suggesting a novel binding mechanism. Our data present the structural basis behind STIP1 and S100A1 complex formation, and provide novel insights into TPR module-containing proteins and S100 family member complexes.
Collapse
|
23
|
The misfolded pro-inflammatory protein S100A9 disrupts memory via neurochemical remodelling instigating an Alzheimer's disease-like cognitive deficit. Behav Brain Res 2016; 306:106-16. [PMID: 26965570 DOI: 10.1016/j.bbr.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/15/2016] [Accepted: 03/05/2016] [Indexed: 12/14/2022]
Abstract
Memory deficits may develop from a variety of neuropathologies including Alzheimer's disease dementia. During neurodegenerative conditions there are contributory factors such as neuroinflammation and amyloidogenesis involved in memory impairment. In the present study, dual properties of S100A9 protein as a pro-inflammatory and amyloidogenic agent were explored in the passive avoidance memory task along with neurochemical assays in the prefrontal cortex and hippocampus of aged mice. S100A9 oligomers and fibrils were generated in vitro and verified by AFM, Thioflavin T and A11 antibody binding. Native S100A9 as well as S100A9 oligomers and fibrils or their combination were administered intranasally over 14 days followed by behavioral and neurochemical analysis. Both oligomers and fibrils evoked amnestic activity which correlated with disrupted prefrontal cortical and hippocampal dopaminergic neurochemistry. The oligomer-fibril combination produced similar but weaker neurochemistry to the fibrils administered alone but without passive avoidance amnesia. Native S100A9 did not modify memory task performance even though it generated a general and consistent decrease in monoamine levels (DA, 5-HT and NA) and increased metabolic marker ratios of DA and 5-HT turnover (DOPAC/DA, HVA/DA and 5-HIAA) in the prefrontal cortex. These results provide insight into a novel pathogenetic mechanism underlying amnesia in a fear-aggravated memory task based on amyloidogenesis of a pro-inflammatory factor leading to disrupted brain neurochemistry in the aged brain. The data further suggests that amyloid species of S100A9 create deleterious effects principally on the dopaminergic system and this novel finding might be potentially exploited during dementia management through a neuroprotective strategy.
Collapse
|
24
|
Kabadi SV, Stoica BA, Zimmer DB, Afanador L, Duffy KB, Loane DJ, Faden AI. S100B inhibition reduces behavioral and pathologic changes in experimental traumatic brain injury. J Cereb Blood Flow Metab 2015; 35:2010-20. [PMID: 26154869 PMCID: PMC4671122 DOI: 10.1038/jcbfm.2015.165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 01/13/2023]
Abstract
Neuroinflammation following traumatic brain injury (TBI) is increasingly recognized to contribute to chronic tissue loss and neurologic dysfunction. Circulating levels of S100B increase after TBI and have been used as a biomarker. S100B is produced by activated astrocytes and can promote microglial activation; signaling by S100B through interaction with the multiligand advanced glycation end product-specific receptor (AGER) has been implicated in brain injury and microglial activation during chronic neurodegeneration. We examined the effects of S100B inhibition in a controlled cortical impact model, using S100B knockout mice or administration of neutralizing S100B antibody. Both interventions significantly reduced TBI-induced lesion volume, improved retention memory function, and attenuated microglial activation. The neutralizing antibody also significantly reduced sensorimotor deficits and improved neuronal survival in the cortex. However, S100B did not alter microglial activation in BV2 cells or primary microglial cultures stimulated by lipopolysaccharide or interferon gamma. Further, proximity ligation assays did not support direct interaction in the brain between S100B and AGER following TBI. Future studies are needed to elucidate specific pathways underlying S100B-mediated neuroinflammatory actions after TBI. Our results strongly implicate S100B in TBI-induced neuroinflammation, cell loss, and neurologic dysfunction, thereby indicating that it is a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bogdan A Stoica
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Danna B Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lauriaselle Afanador
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara B Duffy
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J Loane
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan I Faden
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Abstract
In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
Collapse
Affiliation(s)
- Anne R. Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - David J. Weber
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| | - Danna B. Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| |
Collapse
|