1
|
Pérez-Gil J, Frick M. Acidic Enough for a Healthy Breath. Am J Respir Cell Mol Biol 2024; 71:383-385. [PMID: 38889348 PMCID: PMC11450314 DOI: 10.1165/rcmb.2024-0237ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Jesús Pérez-Gil
- Research Institute "Hospital 12 de Octubre (i+12)"
- Department of Biochemistry and Molecular Biology Complutense University Madrid, Spain
| | - Manfred Frick
- Institute of General Physiology Ulm University Ulm, Germany
| |
Collapse
|
2
|
Cyske Z, Gaffke L, Rintz E, Wiśniewska K, Węgrzyn G, Pierzynowska K. Molecular mechanisms of the ambroxol action in Gaucher disease and GBA1 mutation-associated Parkinson disease. Neurochem Int 2024; 178:105774. [PMID: 38797393 DOI: 10.1016/j.neuint.2024.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Glucocerebrosidase (GCase), encoded by the GBA1 gene, is one of the lysosomal enzymes responsible for hydrolyzing the glycosphingolipids. Deficiency in GCase activity (in patients with two defective alleles of GBA1) leads to glucosylceramide storage in lysosomes which in turn results in the development of the Gaucher diseases, a lysosomal storage disorder, while a heterozygous state may be correlated with the GBA1 mutation-associated Parkinson disease. One of the proposed forms of therapy for these two conditions is the use of pharmacological chaperones which work by facilitating the achievement of the correct conformation of abnormally folded enzymes. Several compounds with chaperone activities against GCase have already been tested, one of which turned out to be ambroxol. Studies conducted on the action of this compound have indeed indicated its effectiveness in increasing GCase levels and activity. However, some data have begun to question its activity as a chaperone against certain GCase variants. Then, a number of articles appeared pointing to other mechanisms of action of ambroxol, which may also contribute to the improvement of patients' condition. This paper summarizes the biological mechanisms of action of ambroxol in Gaucher disease and GBA1 mutation-associated Parkinson disease, focused on its activity as a chaperone, modulator of ERAD pathways, inducer of autophagy, and pain reliever in cellular and animal models as well as in patients. The effects of these activities on the reduction of disease markers and symptoms in patients are also discussed. Consideration of all the properties of ambroxol can help in the appropriate choice of therapy and the determination of the effective drug dose.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Estera Rintz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
3
|
Al-Abdi SY, Al-Aamri M. The Potential of Ambroxol as a Panacea for Neonatal Diseases: A Scoping Review. Cureus 2024; 16:e67977. [PMID: 39347262 PMCID: PMC11427714 DOI: 10.7759/cureus.67977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ambroxol, a commonly used mucolytic agent, has been extensively studied for its clinical effectiveness in managing respiratory conditions in pediatric and adult patients. The existing body of research on ambroxol demonstrates its safety and efficacy. However, its potential role in preventing and treating neonatal diseases still needs to be explored. This scoping review aims to shed light on the unexplored potential of ambroxol, particularly its applications in perinatal and neonatal care. We aim to offer valuable insights for healthcare professionals, researchers, and academics, thus presenting a positive perspective. Key scientific databases such as Google Scholar, PubMed, Cochrane Library, and Europe PMC were meticulously searched for relevant literature on ambroxol in perinatal and neonatal medicine. Gray literature was also surveyed, and the search encompassed all study designs and languages up to June 2024. Furthermore, citations and reference lists of relevant articles were scrutinized to identify additional pertinent literature. Ambroxol has demonstrated promising effects in preventing and managing respiratory distress syndrome (RDS). It can enter the placental circulation and rapidly build up in human lung tissue to a much greater extent than in plasma. It promotes fetal lung maturation, surfactant production, and alveolar expansion. Numerous studies have demonstrated the efficacy of antenatal and postnatal ambroxol in the prevention and treatment of RDS. Ambroxol has the potential to be administered intravenously or through nebulization, offering the hopeful possibility of reducing the high failure rate typically associated with non-invasive ventilation in extremely preterm infants, instilling a sense of hope and optimism about the potential of ambroxol. It also shows potential in treating bronchopulmonary dysplasia, meconium aspiration syndrome, and neonatal infections. Ambroxol has been observed to assist in the closure of patent ductus arteriosus in preterm infants by inhibiting vasodilator agents such as nitric oxide and exerting vasoconstrictive properties. However, these biological actions may raise concerns regarding the potential induction of pulmonary hypertension and an increased risk of necrotizing enterocolitis. The present scoping review also examines the clinical evidence and the potential of ambroxol in reducing the incidence of intraventricular hemorrhage in preterm infants. Ambroxol may have potential analgesic properties in managing neonatal pain, and as it can penetrate the blood-brain barrier, it suggests potential neuroprotective properties. These properties may encompass the modulation of microglial activation and the antagonistic impact on glutamate receptors. Ambroxol's attributes could contribute to a decreased susceptibility to neurological complications and have demonstrated anticonvulsant effects in preclinical studies. While low-to-moderate-quality evidence indicates potential applications of ambroxol in neonatal care, further research is needed to determine the drug's optimal dosing, timing, and safety profiles in this patient population. We need to investigate ambroxol's potential synergistic effects with antenatal steroids. Exploration is required to assess ambroxol's potential in reducing the high failure rate associated with non-invasive respiratory support for RDS. Lastly, comprehensive studies on the long-term neurodevelopmental outcomes of neonates exposed to ambroxol are essential.
Collapse
Affiliation(s)
| | - Maryam Al-Aamri
- Pediatric Nephrology, Maternity and Children Hospital Al-Ahsa, Al-Ahsa, SAU
| |
Collapse
|
4
|
Li H, Fletcher-Etherington A, Hunter LM, Keshri S, Fielding CA, Nightingale K, Ravenhill B, Nobre L, Potts M, Antrobus R, Crump CM, Rubinsztein DC, Stanton RJ, Weekes MP. Human cytomegalovirus degrades DMXL1 to inhibit autophagy, lysosomal acidification, and viral assembly. Cell Host Microbe 2024; 32:466-478.e11. [PMID: 38479395 DOI: 10.1016/j.chom.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.
Collapse
Affiliation(s)
- Hanqi Li
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Alice Fletcher-Etherington
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Leah M Hunter
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Swati Keshri
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Institute, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Ceri A Fielding
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Benjamin Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Colin M Crump
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Institute, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Richard J Stanton
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
5
|
Mohamed FE, Al-Jasmi F. Exploring the efficacy and safety of Ambroxol in Gaucher disease: an overview of clinical studies. Front Pharmacol 2024; 15:1335058. [PMID: 38414738 PMCID: PMC10896849 DOI: 10.3389/fphar.2024.1335058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Gaucher disease (GD) is mainly caused by glucocerebrosidase (GCase) enzyme deficiency due to genetic variations in the GBA1 gene leading to the toxic accumulation of sphingolipids in various organs, which causes symptoms such as anemia, thrombocytopenia, hepatosplenomegaly, and neurological manifestations. GD is clinically classified into the non-neuronopathic type 1, and the acute and chronic neuronopathic forms, types 2 and 3, respectively. In addition to the current approved GD medications, the repurposing of Ambroxol (ABX) has emerged as a prospective enzyme enhancement therapy option showing its potential to enhance mutated GCase activity and reduce glucosylceramide accumulation in GD-affected tissues of different GBA1 genotypes. The variability in response to ABX varies across different variants, highlighting the diversity in patients' therapeutic outcomes. Its oral availability and safety profile make it an attractive option, particularly for patients with neurological manifestations. Clinical trials are essential to explore further ABX's potential as a therapeutic medication for GD to encourage pharmaceutical companies' investment in its development. This review highlights the potential of ABX as a pharmacological chaperone therapy for GD and stresses the importance of addressing response variability in clinical studies to improve the management of this rare and complex disorder.
Collapse
Affiliation(s)
- Feda E. Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Haller T, Jesacher A, Hidalgo A, Schmidt C. Life cell imaging of amiodarone sequestration into lamellar bodies of alveolar type II cells. Toxicol In Vitro 2024; 94:105733. [PMID: 37984480 DOI: 10.1016/j.tiv.2023.105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Amiodarone is widely used to treat cardiac arrhythmias and is very effective in preventing these disorders. However, its use is limited by a wide range of adverse effects, mainly affecting the lungs, and ranging from mild shortness of breath to pulmonary fibrosis. Amiodarone has been shown to accumulate strongly in lung tissue, exceeding its plasma concentration by a hundredfold. However, the site of accumulation and the mechanisms of transport are not fully understood. In this study, we used live cell imaging of primary rat alveolar type II cells to show that amiodarone specifically accumulates in large amounts in lamellar bodies, the surfactant storage organelles. Fluorescence imaging and correlation, and colocalization studies combined with confocal Raman microscopy identified these organelles as a major target for sequestration. Accumulation was rapid, on the order of a few hours, while storage was much more persistent. Partial uptake was observed in chemically fixed, dead cells, or cells treated with bafilomycin A1. Not only was uptake pH dependent, but intraluminal pH, measured with lysosomotropic pH sensitive dyes, was also affected. From these observations and from the physicochemical properties of amiodarone, we propose that passive diffusion, ion-trapping and lipophilic interactions are the main mechanisms for intracellular bioaccumulation. Furthermore, we demonstrate that measurement of amiodarone autofluorescence is highly useful for tracking cellular uptake and sequestration.
Collapse
Affiliation(s)
- Thomas Haller
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Alexander Jesacher
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria.
| | - Alberto Hidalgo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.
| | - Christina Schmidt
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Nakahari T, Suzuki C, Kawaguchi K, Hosogi S, Tanaka S, Asano S, Inui T, Marunaka Y. Ambroxol-Enhanced Frequency and Amplitude of Beating Cilia Controlled by a Voltage-Gated Ca 2+ Channel, Cav1.2, via pH i Increase and [Cl -] i Decrease in the Lung Airway Epithelial Cells of Mice. Int J Mol Sci 2023; 24:16976. [PMID: 38069298 PMCID: PMC10707002 DOI: 10.3390/ijms242316976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Ambroxol (ABX), a frequently prescribed secretolytic agent which enhances the ciliary beat frequency (CBF) and ciliary bend angle (CBA, an index of amplitude) by 30%, activates a voltage-dependent Ca2+ channel (CaV1.2) and a small transient Ca2+ release in the ciliated lung airway epithelial cells (c-LAECs) of mice. The activation of CaV1.2 alone enhanced the CBF and CBA by 20%, mediated by a pHi increasei and a [Cl-]i decrease in the c-LAECs. The increase in pHi, which was induced by the activation of the Na+-HCO3- cotransporter (NBC), enhanced the CBF (by 30%) and CBA (by 15-20%), and a decrease in [Cl-]i, which was induced by the Cl- release via anoctamine 1 (ANO1), enhanced the CBA (by 10-15%). While a Ca2+-free solution or nifedipine (an inhibitor of CaV1.2) inhibited 70% of the CBF and CBA enhancement using ABX, CaV1.2 enhanced most of the CBF and CBA increases using ABX. The activation of the CaV1.2 existing in the cilia stimulates the NBC to increase pHi and ANO1 to decrease the [Cl-]i in the c-LAECs. In conclusion, the pHi increase and the [Cl-]i decrease enhanced the CBF and CBA in the ABX-stimulated c-LAECs.
Collapse
Affiliation(s)
- Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| | - Chihiro Suzuki
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (C.S.); (S.T.)
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.K.); (S.A.)
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan;
| | - Saori Tanaka
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (C.S.); (S.T.)
| | - Shinji Asano
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.K.); (S.A.)
| | - Toshio Inui
- Saisei Mirai Clinics, Moriguchi 570-0012, Japan;
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| |
Collapse
|
8
|
Ormazabal ME, Pavan E, Vaena E, Ferino D, Biasizzo J, Mucci JM, Serra F, Cifù A, Scarpa M, Rozenfeld PA, Dardis AE. Exploring the Pathophysiologic Cascade Leading to Osteoclastogenic Activation in Gaucher Disease Monocytes Generated via CRISPR/Cas9 Technology. Int J Mol Sci 2023; 24:11204. [PMID: 37446383 DOI: 10.3390/ijms241311204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Gaucher disease (GD) is caused by biallelic pathogenic variants in the acid β-glucosidase gene (GBA1), leading to a deficiency in the β-glucocerebrosidase (GCase) enzyme activity resulting in the intracellular accumulation of sphingolipids. Skeletal alterations are one of the most disabling features in GD patients. Although both defective bone formation and increased bone resorption due to osteoblast and osteoclast dysfunction contribute to GD bone pathology, the molecular bases are not fully understood, and bone disease is not completely resolved with currently available specific therapies. For this reason, using editing technology, our group has developed a reliable, isogenic, and easy-to-handle cellular model of GD monocytes (GBAKO-THP1) to facilitate GD pathophysiology studies and high-throughput drug screenings. In this work, we further characterized the model showing an increase in proinflammatory cytokines (Interleukin-1β and Tumor Necrosis Factor-α) release and activation of osteoclastogenesis. Furthermore, our data suggest that GD monocytes would display an increased osteoclastogenic potential, independent of their interaction with the GD microenvironment or other GD cells. Both proinflammatory cytokine production and osteoclastogenesis were restored at least, in part, by treating cells with the recombinant human GCase, a substrate synthase inhibitor, a pharmacological chaperone, and an anti-inflammatory compound. Besides confirming that this model would be suitable to perform high-throughput screening of therapeutic molecules that act via different mechanisms and on different phenotypic features, our data provided insights into the pathogenic cascade, leading to osteoclastogenesis exacerbation and its contribution to bone pathology in GD.
Collapse
Affiliation(s)
- Maximiliano Emanuel Ormazabal
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Eleonora Pavan
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| | - Emilio Vaena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Dania Ferino
- Institute of Clinical Pathology, Department of Laboratory Medicine, University Hospital of Udine, 33100 Udine, Italy
| | - Jessica Biasizzo
- Institute of Clinical Pathology, Department of Laboratory Medicine, University Hospital of Udine, 33100 Udine, Italy
| | - Juan Marcos Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Fabrizio Serra
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| | - Adriana Cifù
- Dipartimento di Area Medica, Università degli Studi di Udine, 33100 Udine, Italy
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| | - Paula Adriana Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Andrea Elena Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
9
|
Memon TA, Sun L, Almestica-Roberts M, Deering-Rice CE, Moos PJ, Reilly CA. Inhibition of TRPA1, Endoplasmic Reticulum Stress, Human Airway Epithelial Cell Damage, and Ectopic MUC5AC Expression by Vasaka ( Adhatoda vasica; Malabar Nut) Tea. Pharmaceuticals (Basel) 2023; 16:890. [PMID: 37375837 DOI: 10.3390/ph16060890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This study tested whether a medicinal plant, Vasaka, typically consumed as a tea to treat respiratory malaise, could protect airway epithelial cells (AECs) from wood smoke particle-induced damage and prevent pathological mucus production. Wood/biomass smoke is a pneumotoxic air pollutant. Mucus normally protects the airways, but excessive production can obstruct airflow and cause respiratory distress. Vasaka tea pre- and co-treatment dose-dependently inhibited mucin 5AC (MUC5AC) mRNA induction by AECs treated with wood smoke particles. This correlated with transient receptor potential ankyrin-1 (TRPA1) inhibition, an attenuation of endoplasmic reticulum (ER) stress, and AEC damage/death. Induction of mRNA for anterior gradient 2, an ER chaperone/disulfide isomerase required for MUC5AC production, and TRP vanilloid-3, a gene that suppresses ER stress and wood smoke particle-induced cell death, was also attenuated. Variable inhibition of TRPA1, ER stress, and MUC5AC mRNA induction was observed using selected chemicals identified in Vasaka tea including vasicine, vasicinone, apigenin, vitexin, isovitexin, isoorientin, 9-oxoODE, and 9,10-EpOME. Apigenin and 9,10-EpOME were the most cytoprotective and mucosuppressive. Cytochrome P450 1A1 (CYP1A1) mRNA was also induced by Vasaka tea and wood smoke particles. Inhibition of CYP1A1 enhanced ER stress and MUC5AC mRNA expression, suggesting a possible role in producing protective oxylipins in stressed cells. The results provide mechanistic insights and support for the purported benefits of Vasaka tea in treating lung inflammatory conditions, raising the possibility of further development as a preventative and/or restorative therapy.
Collapse
Affiliation(s)
- Tosifa A Memon
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA
| | - Lili Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA
- Center for Human Toxicology, College of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA
| | - Philip J Moos
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA
- Center for Human Toxicology, College of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Patzwaldt K, Berezhnoy G, Ionescu T, Schramm L, Wang Y, Owczorz M, Calderón E, Poli S, Serna Higuita LM, Gonzalez-Menendez I, Quintanilla-Martinez L, Herfert K, Pichler B, Trautwein C, Castaneda-Vega S. Repurposing the mucolytic agent ambroxol for treatment of sub-acute and chronic ischaemic stroke. Brain Commun 2023; 5:fcad099. [PMID: 37065090 PMCID: PMC10090797 DOI: 10.1093/braincomms/fcad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Ambroxol is a well-known mucolytic expectorant, which has gained much attention in amyotrophic lateral sclerosis, Parkinson's and Gaucher's disease. A specific focus has been placed on ambroxol's glucocerebrosidase-stimulating activity, on grounds that the point mutation of the gba1 gene, which codes for this enzyme, is a risk factor for developing Parkinson's disease. However, ambroxol has been attributed other characteristics, such as the potent inhibition of sodium channels, modification of calcium homeostasis, anti-inflammatory effects and modifications of oxygen radical scavengers. We hypothesized that ambroxol could have a direct impact on neuronal rescue if administered directly after ischaemic stroke induction. We longitudinally evaluated 53 rats using magnetic resonance imaging to examine stroke volume, oedema, white matter integrity, resting state functional MRI and behaviour for 1 month after ischemic stroke onset. For closer mechanistic insights, we evaluated tissue metabolomics of different brain regions in a subgroup of animals using ex vivo nuclear magnetic resonance spectroscopy. Ambroxol-treated animals presented reduced stroke volumes, reduced cytotoxic oedema, reduced white matter degeneration, reduced necrosis, improved behavioural outcomes and complex changes in functional brain connectivity. Nuclear magnetic resonance spectroscopy tissue metabolomic data at 24 h post-stroke proposes several metabolites that are capable of minimizing post-ischaemic damage and that presented prominent shifts during ambroxol treatment in comparison to controls. Taking everything together, we propose that ambroxol catalyzes recovery in energy metabolism, cellular homeostasis, membrane repair mechanisms and redox balance. One week of ambroxol administration following stroke onset reduced ischaemic stroke severity and improved functional outcome in the subacute phase followed by reduced necrosis in the chronic stroke phase.
Collapse
Affiliation(s)
- Kristin Patzwaldt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Tudor Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Linda Schramm
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Yi Wang
- Hertie Institute for Clinical Brain Research, Department for Neurology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Miriam Owczorz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Eduardo Calderón
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Sven Poli
- Hertie Institute for Clinical Brain Research, Department for Neurology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Lina M Serna Higuita
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Salvador Castaneda-Vega
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
11
|
Wahl-Schott C, Freichel M, Hennis K, Philippaert K, Ottenheijm R, Tsvilovskyy V, Varbanov H. Characterization of Endo-Lysosomal Cation Channels Using Calcium Imaging. Handb Exp Pharmacol 2023; 278:277-304. [PMID: 36894791 DOI: 10.1007/164_2023_637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Endo-lysosomes are membrane-bound acidic organelles that are involved in endocytosis, recycling, and degradation of extracellular and intracellular material. The membranes of endo-lysosomes express several Ca2+-permeable cation ion channels, including two-pore channels (TPC1-3) and transient receptor potential mucolipin channels (TRPML1-3). In this chapter, we will describe four different state-of-the-art Ca2+ imaging approaches, which are well-suited to investigate the function of endo-lysosomal cation channels. These techniques include (1) global cytosolic Ca2+ measurements, (2) peri-endo-lysosomal Ca2+ imaging using genetically encoded Ca2+ sensors that are directed to the cytosolic endo-lysosomal membrane surface, (3) Ca2+ imaging of endo-lysosomal cation channels, which are engineered in order to redirect them to the plasma membrane in combination with approaches 1 and 2, and (4) Ca2+ imaging by directing Ca2+ indicators to the endo-lysosomal lumen. Moreover, we will review useful small molecules, which can be used as valuable tools for endo-lysosomal Ca2+ imaging. Rather than providing complete protocols, we will discuss specific methodological issues related to endo-lysosomal Ca2+ imaging.
Collapse
Affiliation(s)
- Christian Wahl-Schott
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.
| | - Konstantin Hennis
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Hristo Varbanov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover(MHH), Hannover, Germany
| |
Collapse
|
12
|
Saito D, Suzuki C, Tanaka S, Hosogi S, Kawaguchi K, Asano S, Okamoto S, Yasuda M, Hirano S, Inui T, Marunaka Y, Nakahari T. Ambroxol-enhanced ciliary beating via voltage-gated Ca 2+ channels in mouse airway ciliated cells. Eur J Pharmacol 2023; 941:175496. [PMID: 36642128 DOI: 10.1016/j.ejphar.2023.175496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Ambroxol (ABX) facilitates the mucociliary clearance (MC) by enhancing ciliary beating in airways. In this study, we focused on airway ciliary beating enhanced by ABX. However, little is known about the ABX-stimulated Ca2+ signalling activating airway ciliary beating. Airway ciliated cells isolated from mice lungs were observed by a high-speed video microscope, and the activities of beating cilia were assessed by CBF (ciliary beat frequency) and CBD (ciliary bend distance, an index of amplitude). ABX (10 μM) enhanced the CBF and CBD by 30%, and the enhancement was inhibited by nifedipine (20 μM, a L-type voltage-gated Ca2+ channel (CaV) inhibitor), or a Ca2+-free solution (approximately 50%). Pre-treatment with BAPTA-AM (10 μM, a chelator of intracellular Ca2+) abolished ABX-stimulated increases in CBF, CBD and [Ca2+]i. Thus, ABX increases [Ca2+]i (intracellular Ca2+ concentration) by stimulating Ca2+ release from the internal stores and nifedipine-sensitive Ca2+ entry. A previous study demonstrated the expression of CaV1.2 in airway cilia. ABX enhanced CBF, CBD and [Ca2+]i even in a high extracellular K+ concentration (155.5 mM), suggesting that it activates CaV1.2 except by depolarization. These enhancements were inhibited by nifedipine. In conclusion, ABX, which increases [Ca2+]i by stimulating Ca2+ release from internal stores and Ca2+ entry through CaV1.2s, enhanced CBF and CBD in airway ciliated cells. ABX is a novel agonist that modulates CaV1.2 of airway beating cilia to enhance CBF and CBD.
Collapse
Affiliation(s)
- Daichi Saito
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Chihiro Suzuki
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Saori Tanaka
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shinji Asano
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shohta Okamoto
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Makoto Yasuda
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshio Inui
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Takashi Nakahari
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan.
| |
Collapse
|
13
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Maitan P, Bromfield EG, Stout TAE, Gadella BM, Leemans B. A stallion spermatozoon's journey through the mare's genital tract: In vivo and in vitro aspects of sperm capacitation. Anim Reprod Sci 2022; 246:106848. [PMID: 34556396 DOI: 10.1016/j.anireprosci.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Conventional in vitro fertilization is not efficacious when working with equine gametes. Although stallion spermatozoa bind to the zona pellucida in vitro, these gametes fail to initiate the acrosome reaction in the vicinity of the oocyte and cannot, therefore, penetrate into the perivitelline space. Failure of sperm penetration most likely relates to the absence of optimized in vitro fertilization media containing molecules essential to support stallion sperm capacitation. In vivo, the female reproductive tract, especially the oviductal lumen, provides an environmental milieu that appropriately regulates interactions between the gametes and promotes fertilization. Identifying these 'fertilization supporting factors' would be a great contribution for development of equine in vitro fertilization media. In this review, a description of the current understanding of the interactions stallion spermatozoa undergo during passage through the female genital tract, and related specific molecular changes that occur at the sperm plasma membrane is provided. Understanding these molecular changes may hold essential clues to achieving successful in vitro fertilization with equine gametes.
Collapse
Affiliation(s)
- Paula Maitan
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Veterinary Sciences, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth G Bromfield
- Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Priority Research Centre for Reproductive Science, College of Engineering, Science and Environment, University of Newcastle, Australia
| | - Tom A E Stout
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Bart M Gadella
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Bart Leemans
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
15
|
Heber S, Barthold L, Baier J, Papatheodorou P, Fois G, Frick M, Barth H, Fischer S. Inhibition of Clostridioides difficile Toxins TcdA and TcdB by Ambroxol. Front Pharmacol 2022; 12:809595. [PMID: 35058787 PMCID: PMC8764291 DOI: 10.3389/fphar.2021.809595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides (C.) difficile produces the exotoxins TcdA and TcdB, which are the predominant virulence factors causing C. difficile associated disease (CDAD). TcdA and TcdB bind to target cells and are internalized via receptor-mediated endocytosis. Translocation of the toxins’ enzyme subunits from early endosomes into the cytosol depends on acidification of endosomal vesicles, which is a prerequisite for the formation of transmembrane channels. The enzyme subunits of the toxins translocate into the cytosol via these channels where they are released after auto-proteolytic cleavage. Once in the cytosol, both toxins target small GTPases of the Rho/Ras-family and inactivate them by mono-glucosylation. This in turn interferes with actin-dependent processes and ultimately leads to the breakdown of the intestinal epithelial barrier and inflammation. So far, therapeutic approaches to treat CDAD are insufficient, since conventional antibiotic therapy does not target the bacterial protein toxins, which are the causative agents for the clinical symptoms. Thus, directly targeting the exotoxins represents a promising approach for the treatment of CDAD. Lately, it was shown that ambroxol (Ax) prevents acidification of intracellular organelles. Therefore, we investigated the effect of Ax on the cytotoxic activities of TcdA and TcdB. Ax significantly reduced toxin-induced morphological changes as well as the glucosylation of Rac1 upon intoxication with TcdA and TcdB. Most surprisingly, Ax, independent of its effects on endosomal acidification, decreased the toxins’ intracellular enzyme activity, which is mediated by a catalytic glucosyltransferase domain. Considering its undoubted safety profile, Ax might be taken into account as therapeutic option in the context of CDAD.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lara Barthold
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Jan Baier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
16
|
Dietl P, Frick M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021; 11:45. [PMID: 35011607 PMCID: PMC8750383 DOI: 10.3390/cells11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
17
|
Ivanova MM, Dao J, Kasaci N, Adewale B, Nazari S, Noll L, Fikry J, Sanati AH, Goker-Alpan O. Cellular and biochemical response to chaperone versus substrate reduction therapies in neuropathic Gaucher disease. PLoS One 2021; 16:e0247211. [PMID: 34695170 PMCID: PMC8544834 DOI: 10.1371/journal.pone.0247211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Gaucher disease (GD) is caused by deficiency of the lysosomal membrane enzyme glucocerebrosidase (GCase) and the subsequent accumulation of its substrate, glucosylceramide (GC). Mostly missense mutations of the glucocerebrosidase gene (GBA) cause GCase misfolding and inhibition of proper lysosomal trafficking. The accumulated GC leads to lysosomal dysfunction and impairs the autophagy pathway. GD types 2 and 3 (GD2-3), or the neuronopathic forms, affect not only the Central Nervous System (CNS) but also have severe systemic involvement and progressive bone disease. Enzyme replacement therapy (ERT) successfully treats the hematologic manifestations; however, due to the lack of equal distribution of the recombinant enzyme in different organs, it has no direct impact on the nervous system and has minimal effect on bone involvement. Small molecules have the potential for better tissue distribution. Ambroxol (AMB) is a pharmacologic chaperone that partially recovers the mutated GCase activity and crosses the blood-brain barrier. Eliglustat (EGT) works by inhibiting UDP-glucosylceramide synthase, an enzyme that catalyzes GC biosynthesis, reducing GC influx load into the lysosome. Substrate reduction therapy (SRT) using EGT is associated with improvement in GD bone marrow burden score and bone mineral density parallel with the improvement in hematological parameters. We assessed the effects of EGT and AMB on GCase activity and autophagy-lysosomal pathway (ALP) in primary cell lines derived from patients with GD2-3 and compared to cell lines from healthy controls. We found that EGT, same as AMB, enhanced GCase activity in control cells and that an individualized response, that varied with GBA mutations, was observed in cells from patients with GD2-3. EGT and AMB enhanced the formation of lysosomal/late endosomal compartments and improved autophagy, independent of GBA mutations. Both AMB and EGT increased mitochondrial mass and density in GD2-3 fibroblasts, suggesting enhancement of mitochondrial function by activating the mitochondrial membrane potential. These results demonstrate that EGT and AMB, with different molecular mechanisms of action, enhance GCase activity and improve autophagy-lysosome dynamics and mitochondrial functions.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
- * E-mail:
| | - Julia Dao
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Neil Kasaci
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Benjamin Adewale
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Shaista Nazari
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Lauren Noll
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Jacqueline Fikry
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Armaghan Hafez Sanati
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| |
Collapse
|
18
|
CNS-infecting pathogens Escherichia coli and Cryptococcus neoformans exploit the host Pdlim2 for intracellular traversal and exocytosis in the blood-brain barrier. Infect Immun 2021; 89:e0012821. [PMID: 34228504 DOI: 10.1128/iai.00128-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial penetration of the blood-brain barrier, a prerequisite for development of the central nervous system (CNS) infection, involves microbial invasion, intracellular traversal and exocytosis. Microbial invasion of the blood-brain barrier has been investigated, but the molecular basis for microbial traversal and exit from the blood-brain barrier remains unknown. We performed transcriptome analysis of the human brain microvascular endothelial cell (HBMEC) infected with Escherichia coli and Cryptococcus neoformans, representative bacterial and fungal pathogens common in CNS infection. Among the upregulated targets in response to E. coli and C. neoformans infection, PDLIM2 was knocked down by shRNA in HBMEC for further investigation. We demonstrated that Pdlim2 specifically regulated the microbial traversal and exit from HBMEC by assessing microbial invasion, transcytosis, intracellular multiplication and egression. Additionally, the defective exocytosis of internalized E. coli from the PDLIM2 shRNA knockdown cell was restored by treatment with a calcium ionophore (ionomycin). Moreover, we performed the proximity-dependent biotin labeling with the biotin ligase BioID2 and identified 210 potential Pdlim2-interactors. Among the nine enriched Pdlim2-interactors in response to both E. coli and C. neoformans infection, we selected MPRIP and showed that HBMEC with knockdown of MPRIP mimicked the phenotype of PDLIM2 knockdown cell. These results suggest that the CNS-infecting microbes hijack Pdlim2 and Mprip for intracellular traversal and exocytosis in the blood-brain barrier.
Collapse
|
19
|
Pope ED, Cordes L, Shi J, Mari Z, Decourt B, Sabbagh MN. Dementia with Lewy bodies: emerging drug targets and therapeutics. Expert Opin Investig Drugs 2021; 30:603-609. [PMID: 33899637 DOI: 10.1080/13543784.2021.1916913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Dementia with Lewy bodies (DLB) is characterized by the toxic accumulation of α-synuclein protein inside neural cells; this results in neurodegeneration which is clinically accompanied by behavioral and psychological changes. DLB shares features with Parkinson's disease (PD) and Parkinson's disease dementia (PDD), but also overlaps neurochemically and pathologically with Alzheimer's disease. Symptomatic treatments for LBD differ in their effectiveness while disease-modifying and curative approaches are much needed.Areas covered: We explore emerging therapeutics for DLB through the lens of repurposing approved drugs and survey their potential for disease modifying actions in DLB. Given the complexity of DLB with multiple pathologies, potential therapeutic targets that could affect Lewy body pathology, or metabolism or neurotransmitters or immunomodulation were surveyed. We queried PubMed and ClinicalTrials.gov searches 2017-2020.Expert opinion: DLB is not simply aredux ofAD or PD; hence, treatments should not be exclusively duplicative ofAD or PD directed treatments. This opens amyriad of possibilities for therapeutic approaches that are disease specific or repurposed.
Collapse
Affiliation(s)
- Evans D Pope
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Laura Cordes
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Jiong Shi
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Zoltan Mari
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Boris Decourt
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Marwan Noel Sabbagh
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| |
Collapse
|
20
|
Ambroxol Treatment Suppresses the Proliferation of Chlamydia pneumoniae in Murine Lungs. Microorganisms 2021; 9:microorganisms9040880. [PMID: 33924075 PMCID: PMC8074272 DOI: 10.3390/microorganisms9040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
Ambroxol (Ax) is used as a mucolytics in the treatment of respiratory tract infections. Ax, at a general dose for humans, does not alter Chlamydia pneumoniae growth in mice. Therefore, we aimed to investigate the potential anti-chlamydial effect of Ax at a concentration four timed higher than that used in human medicine. Mice were infected with C. pneumoniae and 5-mg/kg Ax was administered orally. The number of recoverable C. pneumoniae inclusion-forming units (IFUs) in Ax-treated mice was significantly lower than that in untreated mice. mRNA expression levels of several cytokines, including interleukin 12 (IL-12), IL-23, IL-17F, interferon gamma (IFN-γ), and surfactant protein (SP)-A, increased in infected mice treated with Ax. The IFN-γ protein expression levels were also significantly higher in infected and Ax-treated mice. Furthermore, the in vitro results suggested that the ERK 1/2 activity was decreased, which is essential for the C. pneumoniae replication. SP-A and SP-D treatments significantly decreased the number of viable C. pneumoniae IFUs and significantly increased the attachment of C. pneumoniae to macrophage cells. Based on our results, a dose of 5 mg/kg of Ax exhibited an anti-chlamydial effect in mice, probably an immunomodulating effect, and may be used as supporting drug in respiratory infections caused by C. pneumoniae.
Collapse
|
21
|
Hörnich BF, Großkopf AK, Schlagowski S, Tenbusch M, Kleine-Weber H, Neipel F, Stahl-Hennig C, Hahn AS. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. J Virol 2021; 95:e00002-21. [PMID: 33608407 PMCID: PMC8104116 DOI: 10.1128/jvi.00002-21] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infects cells through interaction of its spike protein (SARS2-S) with angiotensin-converting enzyme 2 (ACE2) and activation by proteases, in particular transmembrane protease serine 2 (TMPRSS2). Viruses can also spread through fusion of infected with uninfected cells. We compared the requirements of ACE2 expression, proteolytic activation, and sensitivity to inhibitors for SARS2-S-mediated and SARS-CoV-S (SARS1-S)-mediated cell-cell fusion. SARS2-S-driven fusion was moderately increased by TMPRSS2 and strongly by ACE2, while SARS1-S-driven fusion was strongly increased by TMPRSS2 and less so by ACE2 expression. In contrast to that of SARS1-S, SARS2-S-mediated cell-cell fusion was efficiently activated by batimastat-sensitive metalloproteases. Mutation of the S1/S2 proteolytic cleavage site reduced effector cell-target cell fusion when ACE2 or TMPRSS2 was limiting and rendered SARS2-S-driven cell-cell fusion more dependent on TMPRSS2. When both ACE2 and TMPRSS2 were abundant, initial target cell-effector cell fusion was unaltered compared to that of wild-type (wt) SARS2-S, but syncytia remained smaller. Mutation of the S2 cleavage (S2') site specifically abrogated activation by TMPRSS2 for both cell-cell fusion and SARS2-S-driven pseudoparticle entry but still allowed for activation by metalloproteases for cell-cell fusion and by cathepsins for particle entry. Finally, we found that the TMPRSS2 inhibitor bromhexine, unlike the inhibitor camostat, was unable to reduce TMPRSS2-activated cell-cell fusion by SARS1-S and SARS2-S. Paradoxically, bromhexine enhanced cell-cell fusion in the presence of TMPRSS2, while its metabolite ambroxol exhibited inhibitory activity under some conditions. On Calu-3 lung cells, ambroxol weakly inhibited SARS2-S-driven lentiviral pseudoparticle entry, and both substances exhibited a dose-dependent trend toward weak inhibition of authentic SARS-CoV-2.IMPORTANCE Cell-cell fusion allows viruses to infect neighboring cells without the need to produce free virus and contributes to tissue damage by creating virus-infected syncytia. Our results demonstrate that the S2' cleavage site is essential for activation by TMPRSS2 and unravel important differences between SARS-CoV and SARS-CoV-2, among those, greater dependence of SARS-CoV-2 on ACE2 expression and activation by metalloproteases for cell-cell fusion. Bromhexine, reportedly an inhibitor of TMPRSS2, is currently being tested in clinical trials against coronavirus disease 2019. Our results indicate that bromhexine enhances fusion under some conditions. We therefore caution against the use of bromhexine in high dosages until its effects on SARS-CoV-2 spike activation are better understood. The related compound ambroxol, which similarly to bromhexine is clinically used as an expectorant, did not exhibit activating effects on cell-cell fusion. Both compounds exhibited weak inhibitory activity against SARS-CoV-2 infection at high concentrations, which might be clinically attainable for ambroxol.
Collapse
Affiliation(s)
- Bojan F Hörnich
- Nachwuchsgruppe Herpesviren, Abteilung Infektionsbiologie, Deutsches Primatenzentrum-Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Anna K Großkopf
- Nachwuchsgruppe Herpesviren, Abteilung Infektionsbiologie, Deutsches Primatenzentrum-Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Sarah Schlagowski
- Nachwuchsgruppe Herpesviren, Abteilung Infektionsbiologie, Deutsches Primatenzentrum-Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Matthias Tenbusch
- Virologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Kleine-Weber
- Abteilung Infektionsbiologie, Deutsches Primatenzentrum-Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Frank Neipel
- Virologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christiane Stahl-Hennig
- Abteilung Infektionsmodelle, Deutsches Primatenzentrum-Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Alexander S Hahn
- Nachwuchsgruppe Herpesviren, Abteilung Infektionsbiologie, Deutsches Primatenzentrum-Leibniz-Institut für Primatenforschung, Göttingen, Germany
| |
Collapse
|
22
|
Alkotaji M. Azithromycin and ambroxol as potential pharmacotherapy for SARS-CoV-2. Int J Antimicrob Agents 2020; 56:106192. [PMID: 33045350 PMCID: PMC7546948 DOI: 10.1016/j.ijantimicag.2020.106192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/10/2020] [Accepted: 09/26/2020] [Indexed: 12/23/2022]
Abstract
Knowing the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to bind to the angiotensin-converting enzyme 2 (ACE2) receptor and to enter cells via endocytosis paved the way for repositioning of old drugs as potential treatment of COVID-19, the disease caused by SARS-CoV-2 infection. This paper highlights the potential of azithromycin and ambroxol to treat COVID-19. Azithromycin and ambroxol share lysosomotropic characteristics, i.e. they penetrate and accumulate inside the late endosomes and lysosomes and may possibly interfere with multiplication of the virus inside cells. In addition, both of these drugs have anti-inflammatory effects. Ambroxol has a proven antiviral effect and a unique stimulatory action on the secretion of surfactant by alveolar type II cells, the main target of SARS-CoV-2. Surfactant may form a fundamental defence mechanism against the virus. Involvement of nasal epithelial cells in SARS-CoV-2 entry suggested advantageous use of inhaled drug delivery of these two drugs over the use of systemic administration. Inhaled drug delivery could aid in targeting the drug to the exact site of action with little or no side effects. To conclude, administration of these two drugs using a special drug delivery system provides two kinds of drug targeting: (i) tissue targeting through using an inhaled drug delivery system to achieve high drug concentrations at the respiratory epithelial tissue that overexpress the ACE2 receptor for virus binding; and (ii) cellular targeting of the virus in the acidic vesicles (late endosomes and lysosomes), which represent the fate of endocytic viruses.
Collapse
Affiliation(s)
- Myasar Alkotaji
- Department of Pharmaceutics, College of Pharmacy, University of Mosul, Mosul, Iraq.
| |
Collapse
|
23
|
Shrimp J, Kales SC, Sanderson PE, Simeonov A, Shen M, Hall MD. An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19. ACS Pharmacol Transl Sci 2020; 3:997-1007. [PMID: 33062952 PMCID: PMC7507803 DOI: 10.1021/acsptsci.0c00106] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 is the viral pathogen causing the COVID19 global pandemic. Consequently, much research has gone into the development of preclinical assays for the discovery of new or repurposing of FDA-approved therapies. Preventing viral entry into a host cell would be an effective antiviral strategy. One mechanism for SARS-CoV-2 entry occurs when the spike protein on the surface of SARS-CoV-2 binds to an ACE2 receptor followed by cleavage at two cut sites ("priming") that causes a conformational change allowing for viral and host membrane fusion. TMPRSS2 has an extracellular protease domain capable of cleaving the spike protein to initiate membrane fusion. A validated inhibitor of TMPRSS2 protease activity would be a valuable tool for studying the impact TMPRSS2 has in viral entry and potentially be an effective antiviral therapeutic. To enable inhibitor discovery and profiling of FDA-approved therapeutics, we describe an assay for the biochemical screening of recombinant TMPRSS2 suitable for high throughput application. We demonstrate effectiveness to quantify inhibition down to subnanomolar concentrations by assessing the inhibition of camostat, nafamostat, and gabexate, clinically approved agents in Japan. Also, we profiled a camostat metabolite, FOY-251, and bromhexine hydrochloride, an FDA-approved mucolytic cough suppressant. The rank order potency for the compounds tested are nafamostat (IC50 = 0.27 nM), camostat (IC50 = 6.2 nM), FOY-251 (IC50 = 33.3 nM), and gabexate (IC50 = 130 nM). Bromhexine hydrochloride showed no inhibition of TMPRSS2. Further profiling of camostat, nafamostat, and gabexate against a panel of recombinant proteases provides insight into selectivity and potency.
Collapse
Affiliation(s)
- Jonathan
H. Shrimp
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Stephen C. Kales
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Philip E. Sanderson
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
24
|
Klouda CB, Stone WL. Oxidative Stress, Proton Fluxes, and Chloroquine/Hydroxychloroquine Treatment for COVID-19. Antioxidants (Basel) 2020; 9:E894. [PMID: 32967165 PMCID: PMC7555760 DOI: 10.3390/antiox9090894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have been proposed as treatments for COVID-19. These drugs have been studied for many decades, primarily in the context of their use as antimalarials, where they induce oxidative stress-killing of the malarial parasite. Less appreciated, however, is evidence showing that CQ/HCQ causes systemic oxidative stress. In vitro and observational data suggest that CQ/HCQ can be repurposed as potential antiviral medications. This review focuses on the potential health concerns of CQ/HCQ induced by oxidative stress, particularly in the hyperinflammatory stage of COVID-19 disease. The pathophysiological role of oxidative stress in acute respiratory distress syndrome (ARDS) has been well-documented. Additional oxidative stress caused by CQ/HCQ during ARDS could be problematic. In vitro data showing that CQ forms a complex with free-heme that promotes lipid peroxidation of phospholipid bilayers are also relevant to COVID-19. Free-heme induced oxidative stress is implicated as a systemic activator of coagulation, which is increasingly recognized as a contributor to COVID-19 morbidity. This review will also provide a brief overview of CQ/HCQ pharmacology with an emphasis on how these drugs alter proton fluxes in subcellular organelles. CQ/HCQ-induced alterations in proton fluxes influence the type and chemical reactivity of reactive oxygen species (ROS).
Collapse
Affiliation(s)
| | - William L. Stone
- Department of Pediatrics, East Tennessee State University, Johnson City, TN 37614, USA;
| |
Collapse
|
25
|
Olaleye OA, Kaur M, Onyenaka CC. Ambroxol Hydrochloride Inhibits the Interaction between Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein's Receptor Binding Domain and Recombinant Human ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32995775 DOI: 10.1101/2020.09.13.295691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), enters the host cells through two main pathways, both involving key interactions between viral envelope-anchored spike glycoprotein of the novel coronavirus and the host receptor, angiotensin-converting enzyme 2 (ACE2). To date, SARS-CoV-2 has infected up to 26 million people worldwide; yet, there is no clinically approved drug or vaccine available. Therefore, a rapid and coordinated effort to re-purpose clinically approved drugs that prevent or disrupt these critical entry pathways of SARS-CoV-2 spike glycoprotein interaction with human ACE2, could potentially accelerate the identification and clinical advancement of prophylactic and/or treatment options against COVID-19, thus providing possible countermeasures against viral entry, pathogenesis and survival. Herein, we discovered that Ambroxol hydrochloride (AMB), and its progenitor, Bromhexine hydrochloride (BHH), both clinically approved drugs are potent effective modulators of the key interaction between the receptor binding domain (RBD) of SARS-CoV-2 spike protein and human ACE2. We also found that both compounds inhibited SARS-CoV-2 infection-induced cytopathic effect at micromolar concentrations. Therefore, in addition to the known TMPRSS2 activity of BHH; we report for the first time that the BHH and AMB pharmacophore has the capacity to target and modulate yet another key protein-protein interaction essential for the two known SARS-CoV-2 entry pathways into host cells. Altogether, the potent efficacy, excellent safety and pharmacologic profile of both drugs along with their affordability and availability, makes them promising candidates for drug repurposing as possible prophylactic and/or treatment options against SARS-CoV-2 infection.
Collapse
|
26
|
Menozzi E, Schapira AHV. Enhancing the Activity of Glucocerebrosidase as a Treatment for Parkinson Disease. CNS Drugs 2020; 34:915-923. [PMID: 32607746 DOI: 10.1007/s40263-020-00746-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in the glucocerebrosidase (GBA1) gene are the most common genetic risk factor for Parkinson disease (PD). Homozygous or compound heterozygous GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD), characterized by deficient activity of the glucocerebrosidase enzyme (GCase). Both individuals with GD type I and heterozygous carriers of pathogenic variants of GBA1 have an increased risk of developing PD, by approximately ten- to 20-fold compared to non-carriers. GCase activity is also reduced in PD patients without GBA1 mutations, suggesting that the GCase lysosomal pathway might be involved in PD pathogenesis. Available evidence indicates that GCase can affect α-synuclein pathology in different ways. Misfolded GCase proteins are retained in the endoplasmic reticulum, altering the lysosomal trafficking of the enzyme and disrupting protein trafficking. Also, deficient GCase leads to accumulation of substrates that in turn may bind α-synuclein and promote pathological formation of aggregates. Furthermore, α-synuclein itself can lower the enzymatic activity of GCase, indicating that a bidirectional interaction exists between GCase and α-synuclein. Targeted therapies aimed at enhancing GCase activity, augmenting the trafficking of misfolded GCase proteins by small molecule chaperones, or reducing substrate accumulation, have been tested in preclinical and clinical trials. This article reviews the molecular mechanisms linking GCase to α-synuclein and discusses the therapeutic drugs that by targeting the GCase pathway can influence PD progression.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
27
|
Mullin S, Smith L, Lee K, D'Souza G, Woodgate P, Elflein J, Hällqvist J, Toffoli M, Streeter A, Hosking J, Heywood WE, Khengar R, Campbell P, Hehir J, Cable S, Mills K, Zetterberg H, Limousin P, Libri V, Foltynie T, Schapira AHV. Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Noncontrolled Trial. JAMA Neurol 2020; 77:427-434. [PMID: 31930374 PMCID: PMC6990847 DOI: 10.1001/jamaneurol.2019.4611] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Question Does ambroxol cross the blood-brain barrier, and what are the biochemical changes associated with ambroxol therapy in patients with Parkinson disease with and without glucocerebrosidase gene mutations? Findings In this open-label clinical trial of 17 patients with Parkinson disease, ambroxol crossed the blood-brain barrier and bound to the β-glucocerebrosidase enzyme, and it increased β-glucocerebrosidase enzyme protein levels and cerebrospinal fluid α-synuclein levels in patients both with and without glucocerebrosidase gene mutations. Meaning Ambroxol therapy has potential for study as a neuroprotective compound for the treatment of patients with Parkinson disease both with and without glucocerebrosidase gene mutations. Importance Mutations of the glucocerebrosidase gene, GBA1 (OMIM 606463), are the most important risk factor for Parkinson disease (PD). In vitro and in vivo studies have reported that ambroxol increases β-glucocerebrosidase (GCase) enzyme activity and reduces α-synuclein levels. These observations support a potential role for ambroxol therapy in modifying a relevant pathogenetic pathway in PD. Objective To assess safety, tolerability, cerebrospinal fluid (CSF) penetration, and target engagement of ambroxol therapy with GCase in patients with PD with and without GBA1 mutations. Interventions An escalating dose of oral ambroxol to 1.26 g per day. Design, Setting, and Participants This single-center open-label noncontrolled clinical trial was conducted between January 11, 2017, and April 25, 2018, at the Leonard Wolfson Experimental Neuroscience Centre, a dedicated clinical research facility and part of the University College London Queen Square Institute of Neurology in London, United Kingdom. Participants were recruited from established databases at the Royal Free London Hospital and National Hospital for Neurology and Neurosurgery in London. Twenty-four patients with moderate PD were evaluated for eligibility, and 23 entered the study. Of those, 18 patients completed the study; 1 patient was excluded (failed lumbar puncture), and 4 patients withdrew (predominantly lumbar puncture–related complications). All data analyses were performed from November 1 to December 14, 2018. Main Outcomes and Measures Primary outcomes at 186 days were the detection of ambroxol in the CSF and a change in CSF GCase activity. Results Of the 18 participants (15 men [83.3%]; mean [SD] age, 60.2 [9.7] years) who completed the study, 17 (8 with GBA1 mutations and 9 without GBA1 mutations) were included in the primary analysis. Between days 0 and 186, a 156-ng/mL increase in the level of ambroxol in CSF (lower 95% confidence limit, 129 ng/mL; P < .001) was observed. The CSF GCase activity decreased by 19% (0.059 nmol/mL per hour; 95% CI, –0.115 to –0.002; P = .04). The ambroxol therapy was well tolerated, with no serious adverse events. An increase of 50 pg/mL (13%) in the CSF α-synuclein concentration (95% CI, 14-87; P = .01) and an increase of 88 ng/mol (35%) in the CSF GCase protein levels (95% CI, 40-137; P = .002) were observed. Mean (SD) scores on part 3 of the Movement Disorders Society Unified Parkinson Disease Rating Scale decreased (ie, improved) by 6.8 (7.1) points (95% CI, –10.4 to –3.1; P = .001). These changes were observed in patients with and without GBA1 mutations. Conclusions and Relevance The study results suggest that ambroxol therapy was safe and well tolerated; CSF penetration and target engagement of ambroxol were achieved, and CSF α-synuclein levels were increased. Placebo-controlled clinical trials are needed to examine whether ambroxol therapy is associated with changes in the natural progression of PD. Trial Registration ClinicalTrials.gov identifier: NCT02941822; EudraCT identifier: 2015-002571-24
Collapse
Affiliation(s)
- Stephen Mullin
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom.,Institute of Translational and Stratified Medicine, University of Plymouth School of Medicine, Plymouth, United Kingdom
| | - Laura Smith
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Katherine Lee
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Gayle D'Souza
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Philip Woodgate
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Josh Elflein
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jenny Hällqvist
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, United Kingdom
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Adam Streeter
- Department of Medical Statistics, University of Plymouth School of Medicine, Plymouth, United Kingdom
| | - Joanne Hosking
- Department of Medical Statistics, University of Plymouth School of Medicine, Plymouth, United Kingdom
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, United Kingdom
| | - Rajeshree Khengar
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Philip Campbell
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Jason Hehir
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, United Kingdom
| | - Sarah Cable
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at University College London, London, United Kingdom.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Molndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Molndal, Sweden
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Tom Foltynie
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| |
Collapse
|
28
|
Kantar A, Klimek L, Cazan D, Sperl A, Sent U, Mesquita M. An overview of efficacy and safety of ambroxol for the treatment of acute and chronic respiratory diseases with a special regard to children. Multidiscip Respir Med 2020; 15:511. [PMID: 32269775 PMCID: PMC7137760 DOI: 10.4081/mrm.2020.511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction: Ambroxol (2-amino-3,5-dibromo-N-[trans-4-hydroxycyclohexyl]benzylamine), an over-the-counter product, is a mucoactive agent and has been used widely to treat both acute and chronic respiratory diseases since 1978. This review aims to provide an overview of the clinical evidence available on the use of ambroxol in children with acute and chronic respiratory diseases. Data for this review were obtained from both published and unpublished clinical studies, and real-world evidence studies. Although conducted prior to the introduction of Good Clinical Practice (GCP), these studies, representing almost 1,300 pediatric patients, report strong clinical outcomes following the use of ambroxol in pediatric patients. Furthermore, efficacy findings were consistent irrespective of age, including for patients as young as 1 month old. Additionally, the majority of studies found ambroxol to be well tolerated in children. Taken together, the clinical evidence for ambroxol shows treatment effects that offer significant benefits to pediatric patients for its licensed use as a secretolytic therapy in acute and chronic bronchopulmonary disorders associated with abnormal mucus secretion and impaired mucus transport. The findings from this review indicate that ambroxol, for its intended over-the-counter indications, is both efficacious and well tolerated in children and that the favorable benefit/risk profile of ambroxol reported in adults extends to the pediatric population, starting from early infancy, with acute and chronic respiratory diseases.
Collapse
Affiliation(s)
- Ahmad Kantar
- Pediatric Cough and Asthma Center, Istituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| | - Ludger Klimek
- Wiesbaden Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Dorotheea Cazan
- Maria Hilf Kliniken, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Aachen, Mönchengladbach, Germany
| | - Annette Sperl
- Wiesbaden Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Ulrike Sent
- Medical Advisor CHC GSA, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Margarida Mesquita
- Global Medical Lead CHC, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Ambroxol improves skeletal and hematological manifestations on a child with Gaucher disease. J Hum Genet 2019; 65:345-349. [DOI: 10.1038/s10038-019-0704-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 10/10/2019] [Accepted: 12/01/2019] [Indexed: 01/12/2023]
|
30
|
Leemans B, Stout TAE, Soom AV, Gadella BM. pH-dependent effects of procaine on equine gamete activation†. Biol Reprod 2019; 101:1056-1074. [PMID: 31373616 PMCID: PMC6877780 DOI: 10.1093/biolre/ioz131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/09/2019] [Accepted: 06/22/2019] [Indexed: 12/31/2022] Open
Abstract
Procaine directly triggers pH-dependent cytokinesis in equine oocytes and induces hypermotility in stallion spermatozoa, an important event during capacitation. However, procaine-induced hyperactivated motility is abolished when sperm is washed to remove the procaine prior to sperm-oocyte co-incubation. To understand how procaine exerts its effects, the external Ca2+ and Na+ and weak base activity dependency of procaine-induced hyperactivation in stallion spermatozoa was assessed using computer-assisted sperm analysis. Percoll-washed stallion spermatozoa exposed to Ca2+-depleted (+2 mM EGTA) procaine-supplemented capacitating medium (CM) still demonstrated hyperactivated motility, whereas CM without NaCl or Na+ did not. Both procaine and NH4Cl, another weak base, were shown to trigger a cytoplasmic pH increase (BCECF-acetoxymethyl (AM)), which is primarily induced by a pH rise in acidic cell organelles (Lysosensor green dnd-189), accompanied by hypermotility in stallion sperm. As for procaine, 25 mM NH4Cl also induced oocyte cytokinesis. Interestingly, hyperactivated motility was reliably induced by 2.5-10 mM procaine, whereas a significant cytoplasmic cAMP increase and tail-associated protein tyrosine phosphorylation were only observed at 10 mM. Moreover, 25 mM NH4Cl did not support the latter capacitation characteristics. Additionally, cAMP levels were more than 10× higher in boar than stallion sperm incubated under similar capacitating conditions. Finally, stallion sperm preincubated with 10 mM procaine did not fertilize equine oocytes. In conclusion, 10 mM procaine causes a cytoplasmic and acidic sperm cell organelle pH rise that simultaneously induces hyperactivated motility, increased levels of cAMP and tail-associated protein tyrosine phosphorylation in stallion spermatozoa. However, procaine-induced hypermotility is independent of the cAMP/protein tyrosine phosphorylation pathway.
Collapse
Affiliation(s)
- Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tom A E Stout
- Departments of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart M Gadella
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Departments of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Atakpa P, van Marrewijk LM, Apta-Smith M, Chakraborty S, Taylor CW. GPN does not release lysosomal Ca 2+ but evokes Ca 2+ release from the ER by increasing the cytosolic pH independently of cathepsin C. J Cell Sci 2019; 132:jcs223883. [PMID: 30617110 PMCID: PMC6382017 DOI: 10.1242/jcs.223883] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
The dipeptide glycyl-l-phenylalanine 2-naphthylamide (GPN) is widely used to perturb lysosomes because its cleavage by the lysosomal enzyme cathepsin C is proposed to rupture lysosomal membranes. We show that GPN evokes a sustained increase in lysosomal pH (pHly), and transient increases in cytosolic pH (pHcyt) and Ca2+ concentration ([Ca2+]c). None of these effects require cathepsin C, nor are they accompanied by rupture of lysosomes, but they are mimicked by structurally unrelated weak bases. GPN-evoked increases in [Ca2+]c require Ca2+ within the endoplasmic reticulum (ER), but they are not mediated by ER Ca2+ channels amplifying Ca2+ release from lysosomes. GPN increases [Ca2+]c by increasing pHcyt, which then directly stimulates Ca2+ release from the ER. We conclude that physiologically relevant increases in pHcyt stimulate Ca2+ release from the ER in a manner that is independent of IP3 and ryanodine receptors, and that GPN does not selectively target lysosomes.
Collapse
Affiliation(s)
- Peace Atakpa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Laura M van Marrewijk
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Michael Apta-Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Sumita Chakraborty
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
32
|
Fois G, Föhr KJ, Kling C, Fauler M, Wittekindt OH, Dietl P, Frick M. P2X 4 receptor re-sensitization depends on a protonation/deprotonation cycle mediated by receptor internalization and recycling. J Physiol 2018; 596:4893-4907. [PMID: 30144063 DOI: 10.1113/jp275448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Re-sensitization of P2X4 receptors depends on a protonation/de-protonation cycle Protonation and de-protonation of the receptors is achieved by internalization and recycling of P2X4 receptors via acidic compartments Protonation and de-protonation occurs at critical histidine residues within the extracellular loop of P2X4 receptors Re-sensitization is blocked in the presence of the receptor agonist ATP ABSTRACT: P2X4 receptors are members of the P2X receptor family of cation-permeable, ligand-gated ion channels that open in response to the binding of extracellular ATP. P2X4 receptors are implicated in a variety of biological processes, including cardiac function, cell death, pain sensation and immune responses. These physiological functions depend on receptor activation on the cell surface. Receptor activation is followed by receptor desensitization and deactivation upon removal of ATP. Subsequent re-sensitization is required to return the receptor into its resting state. Desensitization and re-sensitization are therefore crucial determinants of P2X receptor signal transduction and responsiveness to ATP. However, the molecular mechanisms controlling desensitization and re-sensitization are not fully understood. In the present study, we provide evidence that internalization and recycling via acidic compartments is essential for P2X4 receptor re-sensitization. Re-sensitization depends on a protonation/de-protonation cycle of critical histidine residues within the extracellular loop of P2X4 receptors that is mediated by receptor internalization and recycling. Interestingly, re-sensitization under acidic conditions is completely revoked by receptor agonist ATP. Our data support the physiological importance of the unique subcellular distribution of P2X4 receptors that is predominantly found within acidic compartments. Based on these findings, we suggest that recycling of P2X4 receptors regulates the cellular responsiveness in the sustained presence of ATP.
Collapse
Affiliation(s)
| | - Karl J Föhr
- Department of Anesthesiology, University of Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Kardos P, Beeh KM, Sent U, Mueck T, Gräter H, Michel MC. Characterization of differential patient profiles and therapeutic responses of pharmacy customers for four ambroxol formulations. BMC Pharmacol Toxicol 2018; 19:40. [PMID: 29973292 PMCID: PMC6030777 DOI: 10.1186/s40360-018-0229-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background Ambroxol relieves cough symptoms based on its secretagogue, anti-inflammatory, anti-oxidant, anti-bacterial, anti-viral, immunomodulatory and local anesthetic effects. The present study was designed to explore differential patient profiles and efficacy against acute respiratory symptoms of four formulations registered as over-the-counter medicines. Methods Nine hundred sixty-five pharmacy customers purchasing one of four branded ambroxol formulations (extended release capsules, adult syrup, pediatric syrup and soft pastilles) filled a questionnaire including a patient-adapted version of the Bronchitis Severity Scale, several questions on degree of impairment by acute cough, time to onset of symptom relief and duration of treatment. Data on pediatric syrup users were entered by their parents. Based on the exploratory character of the study, no hypothesis-testing statistical analysis was applied. Results Users of the pediatric syrup and the pastilles reported somewhat less severe baseline symptoms. The patient-adapted Bronchitis Severity Scale proved feasible as a self-administered tool. Among BSS items, ambroxol formulations improved chest pain while coughing to the largest and sputum to smallest degree (− 75% vs. -40%). Reported efficacy was comparable among formulations with minor differences in favor of the pediatric syrup. Time to onset of symptom relief was less than 60 min in more than 90% of patients and occurred prior to known systemic tmax. Time to onset was the parameter with the greatest differences between formulations, being reported fastest with pastilles and pediatric syrup and, as expected, slowest with extended release capsules. All ambroxol formulations were well tolerated. Conclusions We conclude that over-the-counter formulations of ambroxol exhibit comparable user profiles and efficacy. Differences in speed of onset of symptom relief may involve not only those in systemic pharmacokinetics but also local anesthetic effects of immediate release formulations. Differences between pediatric and adult syrup may in part reflect reporting bias.
Collapse
Affiliation(s)
- Peter Kardos
- Group Practice, Center for Allergy, Respiratory and Sleep Medicine, Red Cross Maingau Hospital, Frankfurt am Main, Germany
| | | | - Ulrike Sent
- Medical Affairs Consumer Healthcare, Sanofi-Aventis Deutschland GmbH, Frankfurt-Hoechst, Germany
| | - Tobias Mueck
- Medical Affairs Consumer Healthcare, Sanofi-Aventis Deutschland GmbH, Frankfurt-Hoechst, Germany
| | - Heidemarie Gräter
- Medical Affairs Consumer Healthcare, Sanofi-Aventis Deutschland GmbH, Frankfurt-Hoechst, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, 55131, Mainz, Germany.
| |
Collapse
|
34
|
Kalyani L, Rao CV. Simultaneous spectrophotometric estimation of Salbutamol, Theophylline and Ambroxol three component tablet formulation using simultaneous equation methods. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2018. [DOI: 10.1016/j.kijoms.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
35
|
Magalhaes J, Gegg ME, Migdalska-Richards A, Schapira AH. Effects of ambroxol on the autophagy-lysosome pathway and mitochondria in primary cortical neurons. Sci Rep 2018; 8:1385. [PMID: 29362387 PMCID: PMC5780491 DOI: 10.1038/s41598-018-19479-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/27/2017] [Indexed: 02/02/2023] Open
Abstract
Glucocerebrosidase (GBA1) mutations are the major genetic risk factor for Parkinson's Disease (PD). The pathogenic mechanism is still unclear, but alterations in lysosomal-autophagy processes are implicated due to reduction of mutated glucocerebrosidase (GCase) in lysosomes. Wild-type GCase activity is also decreased in sporadic PD brains. Small molecule chaperones that increase lysosomal GCase activity have potential to be disease-modifying therapies for GBA1-associated and sporadic PD. Therefore we have used mouse cortical neurons to explore the effects of the chaperone ambroxol. This chaperone increased wild-type GCase mRNA, protein levels and activity, as well as increasing other lysosomal enzymes and LIMP2, the GCase transporter. Transcription factor EB (TFEB), the master regulator of the CLEAR pathway involved in lysosomal biogenesis was also increased upon ambroxol treatment. Moreover, we found macroautophagy flux blocked and exocytosis increased in neurons treated with ambroxol. We suggest that ambroxol is blocking autophagy and driving cargo towards the secretory pathway. Mitochondria content was also found to be increased by ambroxol via peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α). Our data suggest that ambroxol, besides being a GCase chaperone, also acts on other pathways, such as mitochondria, lysosomal biogenesis, and the secretory pathway.
Collapse
Affiliation(s)
- J Magalhaes
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - M E Gegg
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - A Migdalska-Richards
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - A H Schapira
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, NW3 2PF, UK.
| |
Collapse
|
36
|
Chávez JC, De la Vega-Beltrán JL, José O, Torres P, Nishigaki T, Treviño CL, Darszon A. Acrosomal alkalization triggers Ca 2+ release and acrosome reaction in mammalian spermatozoa. J Cell Physiol 2018; 233:4735-4747. [PMID: 29135027 DOI: 10.1002/jcp.26262] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
The sperm acrosome reaction (AR), an essential event for mammalian fertilization, involves Ca2+ permeability changes leading to exocytosis of the acrosomal vesicle. The acrosome, an intracellular Ca2+ store whose luminal pH is acidic, contains hydrolytic enzymes. It is known that acrosomal pH (pHacr ) increases during capacitation and this correlates with spontaneous AR. Some AR inducers increase intracellular Ca2+ concentration ([Ca2+ ]i ) through Ca2+ release from internal stores, mainly the acrosome. Catsper, a sperm specific Ca2+ channel, has been suggested to participate in the AR. Curiously, Mibefradil and NNC55-0396, two CatSper blockers, themselves elevate [Ca2+ ]i by unknown mechanisms. Here we show that these compounds, as other weak bases, can elevate pHacr , trigger Ca2+ release from the acrosome, and induce the AR in both mouse and human sperm. To our surprise, μM concentrations of NNC55-0396 induced AR even in nominally Ca2+ free media. Our findings suggest that alkalization of the acrosome is critical step for Ca2+ release from the acrosome that leads to the acrosome reaction.
Collapse
Affiliation(s)
- Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - José L De la Vega-Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Omar José
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Paulina Torres
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| |
Collapse
|
37
|
Fois G, Winkelmann VE, Bareis L, Staudenmaier L, Hecht E, Ziller C, Ehinger K, Schymeinsky J, Kranz C, Frick M. ATP is stored in lamellar bodies to activate vesicular P2X 4 in an autocrine fashion upon exocytosis. J Gen Physiol 2017; 150:277-291. [PMID: 29282210 PMCID: PMC5806682 DOI: 10.1085/jgp.201711870] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
P2X4 receptor activation facilitates secretion of pulmonary surfactant from secretory vesicles called lamellar bodies in alveolar epithelial cells. Fois et al. reveal that P2X4 receptors on the lamellar body membranes are activated by ATP stored within the vesicles themselves upon vesicle exocytosis. Vesicular P2X4 receptors are known to facilitate secretion and activation of pulmonary surfactant in the alveoli of the lungs. P2X4 receptors are expressed in the membrane of lamellar bodies (LBs), large secretory lysosomes that store lung surfactant in alveolar type II epithelial cells, and become inserted into the plasma membrane after exocytosis. Subsequent activation of P2X4 receptors by adenosine triphosphate (ATP) results in local fusion-activated cation entry (FACE), facilitating fusion pore dilation, surfactant secretion, and surfactant activation. Despite the importance of ATP in the alveoli, and hence lung function, the origin of ATP in the alveoli is still elusive. In this study, we demonstrate that ATP is stored within LBs themselves at a concentration of ∼1.9 mM. ATP is loaded into LBs by the vesicular nucleotide transporter but does not activate P2X4 receptors because of the low intraluminal pH (5.5). However, the rise in intravesicular pH after opening of the exocytic fusion pore results in immediate activation of vesicular P2X4 by vesicular ATP. Our data suggest a new model in which agonist (ATP) and receptor (P2X4) are located in the same intracellular compartment (LB), protected from premature degradation (ATP) and activation (P2X4), and ideally placed to ensure coordinated and timely receptor activation as soon as fusion occurs to facilitate surfactant secretion.
Collapse
Affiliation(s)
- Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Lara Bareis
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Elena Hecht
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Charlotte Ziller
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | | | - Jürgen Schymeinsky
- Immunology and Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
38
|
[More than expectorant: new scientific data on ambroxol in the context of the treatment of bronchopulmonary diseases]. MMW Fortschr Med 2017. [PMID: 28643291 DOI: 10.1007/s15006-017-9805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ambroxol has been established for decades in the treatment of acute and chronic respiratory diseases. In 2015, the European Medicines Agency reassessed the clinical benefit-risk ratio of the drug. OBJECTIVE What new scientific data on ambroxol, which are relevant to the treatment of bronchopulmonary diseases, are available? METHOD The review is based on a systematic literature research in medline with the search term "ambroxol" during the publication period 2006-2015. Non-relevant publications were excluded manually. RESULTS AND CONCLUSIONS Ambroxol is still intensively researched. The traditional indication as an expectorant is confirmed. But there is also an ever better understanding of the various mechanisms of action as well as the ever more exact modeling of the structures under investigation. New fields of application are conceivable, e. g. in patients with severe pulmonary disease who undergo surgery or who are in intensive care, as an adjuvant in anti-infective therapies, especially in infections with biofilm-producing pathogens, or in rare diseases such as lysosomal storage diseases. However, final evidence of the clinical relevance in these fields of application is still missing.
Collapse
|
39
|
Sanchez-Martinez A, Beavan M, Gegg ME, Chau KY, Whitworth AJ, Schapira AHV. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep 2016; 6:31380. [PMID: 27539639 PMCID: PMC4990939 DOI: 10.1038/srep31380] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
GBA gene mutations are the greatest cause of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase) but the mechanisms by which loss of GCase contributes to PD remain unclear. Inhibition of autophagy and the generation of endoplasmic reticulum (ER) stress are both implicated. Mutant GCase can unfold in the ER and be degraded via the unfolded protein response, activating ER stress and reducing lysosomal GCase. Small molecule chaperones that cross the blood brain barrier help mutant GCase refold and traffic correctly to lysosomes are putative treatments for PD. We treated fibroblast cells from PD patients with heterozygous GBA mutations and Drosophila expressing human wild-type, N370S and L444P GBA with the molecular chaperones ambroxol and isofagomine. Both chaperones increased GCase levels and activity, but also GBA mRNA, in control and mutant GBA fibroblasts. Expression of mutated GBA in Drosophila resulted in dopaminergic neuronal loss, a progressive locomotor defect, abnormal aggregates in the ER and increased levels of the ER stress reporter Xbp1-EGFP. Treatment with both chaperones lowered ER stress and prevented the loss of motor function, providing proof of principle that small molecule chaperones can reverse mutant GBA-mediated ER stress in vivo and might prove effective for treating PD.
Collapse
Affiliation(s)
- Alvaro Sanchez-Martinez
- Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Michelle Beavan
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Matthew E Gegg
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Kai-Yin Chau
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Alexander J Whitworth
- Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Anthony H V Schapira
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK
| |
Collapse
|
40
|
Hobi N, Giolai M, Olmeda B, Miklavc P, Felder E, Walther P, Dietl P, Frick M, Pérez-Gil J, Haller T. A small key unlocks a heavy door: The essential function of the small hydrophobic proteins SP-B and SP-C to trigger adsorption of pulmonary surfactant lamellar bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2124-34. [DOI: 10.1016/j.bbamcr.2016.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/15/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023]
|
41
|
Abstract
Lysosomes have emerged in the last decade as an immensely important intracellular site of Ca2+ storage and signalling. More recently there has been an increase in the number of new ion channels found to be functional on lysosomes and the potential roles that these signalling pathways might play in fundamental cellular processes are being uncovered. Defects in lysosomal function have been shown to result in changes in lysosomal Ca2+ homeostasis and ultimately can result in cell death. Several neurodegenerative diseases, from rare lysosomal storage diseases through to more common diseases of ageing, have recently been identified as having alterations in lysosomal Ca2+ homeostasis that may play an important role in neuronal excitotoxicity and ultimately cell death. This review will critically summarise these recent findings.
Collapse
Affiliation(s)
- Emyr Lloyd-Evans
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX
| |
Collapse
|
42
|
Duda J, Pötschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem 2016; 139 Suppl 1:156-178. [PMID: 26865375 PMCID: PMC5095868 DOI: 10.1111/jnc.13572] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Dopamine‐releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age‐dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement‐related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium‐ and activity‐dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2‐autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double‐edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed‐forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD‐paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD‐triggers, as well as on bidirectional functions of voltage‐gated L‐type calcium channels and metabolically gated ATP‐sensitive potassium (K‐ATP) channels, and their probable interplay in health and PD.
We propose that SN DA neurons possess several feedback and feed‐forward mechanisms to protect and adapt their activity‐pattern and calcium‐homeostasis within a physiological bandwidth, and that PD‐trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium‐levels can trigger SN DA degeneration.
This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Johanna Duda
- Department of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Birgit Liss
- Department of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|