1
|
Girigoswami A, Deepika B, Pandurangan AK, Girigoswami K. Preparation of titanium dioxide nanoparticles from Solanum Tuberosum peel extract and its applications. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:59-68. [PMID: 38214666 DOI: 10.1080/21691401.2023.2301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
The present study describes a method for the preparation of green titanium dioxide (TiO2) nanoparticles from the peel of Solanum tuberosum, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO2 (G- TiO2) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO2 nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO2, the cell viability in normal as well as cancer cells was assessed. Further, the in vivo toxicity of the G- TiO2 nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.
Collapse
Affiliation(s)
- Agnishwar Girigoswami
- Medical Bionanotechnology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| |
Collapse
|
2
|
Salahshoori I, Yazdanbakhsh A, Namayandeh Jorabchi M, Kazemabadi FZ, Khonakdar HA, Mohammadi AH. Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103304. [PMID: 39357211 DOI: 10.1016/j.cis.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Zare Kazemabadi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| |
Collapse
|
3
|
Zhang S, Jiang T, Li M, Sun H, Wu H, Wu W, Li Y, Jiang H. Graphene-Based Wound Dressings for Wound Healing: Mechanism, Technical Analysis, and Application Status. ACS Biomater Sci Eng 2024. [PMID: 39467733 DOI: 10.1021/acsbiomaterials.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The development of novel wound dressings is critical in medical care. Graphene and its derivatives possess excellent biomedical properties, making them highly suitable for various applications in medical dressings. This review provides a comprehensive technical analysis and the current application status of graphene-based medical dressings. Initially, we discuss the chemical structure and the fabrication method of graphene and its derivatives. We then provide a detailed summary of the mechanisms by which graphene materials promote wound repair across the four stages of wound healing. Subsequently, we categorize the types of graphene-based wound dressings and analyze corresponding characteristics. Finally, we analyze the challenges encountered at present and propose solutions regarding future development trends. This paper aims to serve as a reference for further research in skin tissue engineering and the development of innovative graphene-based medical dressings.
Collapse
Affiliation(s)
- Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Ming Li
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, No. 157 Health Road, Harbin 150001, People's Republic of China
| | - Hao Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Wenlong Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| |
Collapse
|
4
|
Hamza ZA, Dawood JJ, Jabbar MA. Ag/Mo Doping for Enhanced Photocatalytic Activity of Titanium (IV) Dioxide during Fuel Desulphurization. Molecules 2024; 29:4603. [PMID: 39407533 PMCID: PMC11478494 DOI: 10.3390/molecules29194603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Regarding photocatalytic oxidative desulphurization (PODS), titanium oxide (TiO2) is a promising contender as a catalyst due to its photocatalytic prowess and long-term performance in desulphurization applications. This work demonstrates the effectiveness of double-doping TiO2 in silver (Ag) and molybdenum (Mo) for use as a novel catalyst in the desulphurization of light-cut hydrocarbons. FESEM, EDS, and AFM were used to characterize the morphology, doping concentration, surface features, grain size, and grain surface area of the Ag/Mo powder. On the other hand, XRD, FTIR spectroscopy, UV-Vis, and PL were used for structure and functional group detection and light absorption analysis based on TiO2's illumination properties. The microscopic images revealed nanoparticles with irregular shapes, and a 3D-AFM image was used to determine the catalyst's physiognomies: 0.612 nm roughness and a surface area of 811.79 m2/g. The average sizes of the grains and particles were calculated to be 32.15 and 344.4 nm, respectively. The XRD analysis revealed an anatase structure for the doped TiO2, and the FTIR analysis exposed localized functional groups, while the absorption spectra of the catalyst, obtained via UV-Vis, revealed a broad spectrum, including visible and near-infrared regions up to 1053.34 nm. The PL analysis showed luminescence with a lower emission intensity, indicating that the charge carriers were not thoroughly combined. This study's findings indicate a desulphurization efficiency of 97%. Additionally, the promise of a nano-homogeneous particle distribution bodes well for catalytic reactions. The catalyst retains its efficiency when it is dried and reused, demonstrating its sustainable use while maintaining the desulphurization efficacy. This study highlights the potential of the double doping approach in enhancing the catalytic properties of TiO2, opening up new possibilities for improving the performance of photo-oxidative processes.
Collapse
Affiliation(s)
- Zahraa A. Hamza
- Department of Materials Engineering, University of Technology-Iraq, Bagdad 10066, Iraq;
| | - Jamal J. Dawood
- Department of Materials Engineering, University of Technology-Iraq, Bagdad 10066, Iraq;
| | - Murtadha Abbas Jabbar
- Department of Mechanical Engineering, College of Engineering, University of Basrah, Basrah 61004, Iraq;
| |
Collapse
|
5
|
Yang J, Su Q, Song C, Luo H, Jiang H, Ni M, Meng F. A comprehensive adsorption and desorption study on the interaction of DNA oligonucleotides with TiO 2 nanolayers. Phys Chem Chem Phys 2024; 26:22681-22695. [PMID: 39158972 DOI: 10.1039/d4cp02260b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The utilization of TiO2 nanolayers that possess excellent biocompatibility and physical properties in DNA sensing and sequencing remains largely to be explored. To examine their applicability in gene sequencing, a comprehensive study on the interaction of DNA oligonucleotides with TiO2 nanolayers was performed through adsorption and desorption experiments. TiO2 nanolayers with 10 nm thickness were fabricated via magnetron sputtering onto a 6-inch silicon wafer. A simple chip block method, validated via quartz crystal microbalance experiments with dissipation monitoring (QCM-D), was proposed to study the adsorption behaviors and interaction mechanisms under a variety of critical influencing factors, including DNA concentration, length, and type, adsorption time, pH, and metal ions. It is determined that the adsorption takes 2 h to reach saturation in the MES solution and the adsorption capacity is significantly enhanced by lowering the pH due to the isoelectric point being pH = 6 for TiO2. The adsorption percentages of nucleobases are largely similar in the MES solution while following 5T = 5G > 5C > 5A in HEPES buffer for an adsorption duration of 2.5 h. Through pre-adsorption experiments, it is deduced that DNA oligonucleotides are horizontally adsorbed on the nanolayer. This further demonstrates that mono-, di-, and tri-valent metal ions promote the adsorption, whereas Zn2+ has strong adsorption by inducing DNA condensation. Based on the desorption experiments, it is revealed that electrostatic force dominates the adsorption over van der Waals force and hydrogen bonds. The phosphate group is the main functional group for adsorption, and the adsorption strength increases with the length of the oligonucleotide. This study provides comprehensive data on the adsorption of DNA oligonucleotides onto TiO2 nanolayers and clarifies the interaction mechanisms therein, which will be valuable for applications of TiO2 in DNA-related applications.
Collapse
Affiliation(s)
- Jin Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- MGI Tech, Shenzhen 518083, China.
| | - Qiong Su
- MGI Tech, Shenzhen 518083, China.
| | | | | | | | - Ming Ni
- MGI Tech, Shenzhen 518083, China.
| | - Fanchao Meng
- Institute for Advanced Studies in Precision Materials, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
6
|
Sadeq AM, Homod RZ, Hussein AK, Togun H, Mahmoodi A, Isleem HF, Patil AR, Moghaddam AH. Hydrogen energy systems: Technologies, trends, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173622. [PMID: 38821273 DOI: 10.1016/j.scitotenv.2024.173622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
This review critically examines hydrogen energy systems, highlighting their capacity to transform the global energy framework and mitigate climate change. Hydrogen showcases a high energy density of 120 MJ/kg, providing a robust alternative to fossil fuels. Adoption at scale could decrease global CO2 emissions by up to 830 million tonnes annually. Despite its potential, the expansion of hydrogen technology is curtailed by the inefficiency of current electrolysis methods and high production costs. Presently, electrolysis efficiencies range between 60 % and 80 %, with hydrogen production costs around $5 per kilogram. Strategic advancements are necessary to reduce these costs below $2 per kilogram and push efficiencies above 80 %. Additionally, hydrogen storage poses its own challenges, requiring conditions of up to 700 bar or temperatures below -253 °C. These storage conditions necessitate the development of advanced materials and infrastructure improvements. The findings of this study emphasize the need for comprehensive strategic planning and interdisciplinary efforts to maximize hydrogen's role as a sustainable energy source. Enhancing the economic viability and market integration of hydrogen will depend critically on overcoming these technological and infrastructural challenges, supported by robust regulatory frameworks. This comprehensive approach will ensure that hydrogen energy can significantly contribute to a sustainable and low-carbon future.
Collapse
Affiliation(s)
- Abdellatif M Sadeq
- Qatar University, Mechanical and Industrial Engineering Department, Doha, Qatar.
| | - Raad Z Homod
- Department of Oil and Gas Engineering, Basrah University for Oil and Gas, Basra, Iraq
| | - Ahmed Kadhim Hussein
- College of Engineering, Mechanical Engineering Department, University of Babylon, Babylon City, Hilla, Iraq
| | - Hussein Togun
- Department of Mechanical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Armin Mahmoodi
- Department of Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada.
| | - Haytham F Isleem
- School of Applied Technologies, Qujing Normal University, Qujing 655011, Yunnan, China.
| | - Amit R Patil
- Mechanical Engineering Department, M. E. S. Wadia College of Engineering, Pune, MH, India
| | - Amin Hedayati Moghaddam
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Hai A, Rambabu K, Al Dhaheri AS, Kurup SS, Banat F. Tapping into Palm Sap: Insights into extraction practices, quality profiles, fermentation chemistry, and preservation techniques. Heliyon 2024; 10:e35611. [PMID: 39170275 PMCID: PMC11336882 DOI: 10.1016/j.heliyon.2024.e35611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The quality profile, extraction yield, and fermentation chemistry of palm sap depend on various factors such as extraction technique, weather conditions, and preservation methods. This review aims to provide a detailed overview of palm sap extraction techniques and the methods for its preservation. The compositional analysis of palm sap, including physical and chemical parameters such as sugar content, acidity, and mineral composition, is discussed thoroughly. The role of microorganisms in fermentation and the effects of various influencing factors are also critically examined. Additionally, this review evaluates different preservation methods, including thermal processes, refrigeration, and electrical techniques, highlighting their effectiveness in extending the shelf life of palm sap. The review further explores the emerging impact of nanotechnology on palm sap preservation, offering insights into the latest industry challenges, developments, and future prospects. By presenting these findings, this review aims to enhance the scientific understanding of palm sap and stimulate additional research and innovation in the field, paving the way for improved production practices and product quality.
Collapse
Affiliation(s)
- Abdul Hai
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| | - K. Rambabu
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Ayesha S. Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Shyam S. Kurup
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
8
|
Nagaraju Myakala S, Rabl H, Schubert JS, Batool S, Ayala P, Apaydin DH, Cherevan A, Eder D. MOCHAs: An Emerging Class of Materials for Photocatalytic H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400348. [PMID: 38564790 DOI: 10.1002/smll.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Production of green hydrogen (H2) is a sustainable process able to address the current energy crisis without contributing to long-term greenhouse gas emissions. Many Ag-based catalysts have shown promise for light-driven H2 generation, however, pure Ag-in its bulk or nanostructured forms-suffers from slow electron transfer kinetics and unfavorable Ag─H bond strength. It is demonstrated that the complexation of Ag with various chalcogenides can be used as a tool to optimize these parameters and reach improved photocatalytic performance. In this work, metal-organic-chalcogenolate assemblies (MOCHAs) are introduced as effective catalysts for light-driven hydrogen evolution reaction (HER) and investigate their performance and structural stability by examining a series of AgXPh (X = S, Se, and Te) compounds. Two catalyst-support sensitization strategies are explored: by designing MOCHA/TiO2 composites and by employing a common Ru-based photosensitizer. It is demonstrated that the heterogeneous approach yields stable HER performance but involves a catalyst transformation at the initial stage of the photocatalytic process. In contrast to this, the visible-light-driven MOCHA-dye dyad shows similar HER activity while also ensuring the structural integrity of the MOCHAs. The work shows the potential of MOCHAs in constructing photosystems for catalytic H2 production and provides a direct comparison between known AgXPh compounds.
Collapse
Affiliation(s)
| | - Hannah Rabl
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Jasmin S Schubert
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Samar Batool
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Pablo Ayala
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Dogukan H Apaydin
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Alexey Cherevan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| | - Dominik Eder
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, Vienna, 1060, Austria
| |
Collapse
|
9
|
Venu Sreekala S, George J, Thoppil Ramakrishnan R, Puthenveedu Sadasivan Pillai H. Novel ternary nanocomposite (TiO 2@Fe 3O 4-chitosan) system for nitrate removal from water: an adsorption cum photocatalytic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50670-50685. [PMID: 39102139 DOI: 10.1007/s11356-024-34553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Nitrate pollution of water emerging from various anthropogenic activities has become a major environmental concern because of its deleterious effects on natural water resources. The present work deals with the synthesis of the ternary nanocomposite based on chitosan, iron oxide (Fe3O4), and titanium dioxide (TiO2) and its application for the removal of nitrates from model-contaminated water. Fe3O4 derived through a coprecipitation method was incorporated into the chitosan matrix which was fabricated in the form of beads. The wet gel beads were then successfully coated with sol-gel-derived silver-doped titanium dioxide sol followed by drying under suitable conditions to get the functional nanocomposite beads. The synthesized functional materials were further characterized for their structural, morphological, and textural features using X-ray diffraction analysis, physical property measurement (PPMS), Fourier transform infrared (FTIR) analysis, UV visible spectroscopy analysis (UV-vis), BET surface area analysis (BET), field emission scanning electron microscopic (FESEM), and transmission electron microscopy (TEM) analysis. The ternary nanocomposites were further used for the removal of nitrates via adsorption cum photocatalytic reduction technique from the model contaminated water when subjected to an adsorption study under dark conditions and photocatalytic study under UV/visible/sunlight for a definite time. Fe3O4 in the nanocomposite provides enhanced adsorption features whereas the functional coating of titanium dioxide aids in the removal of nitrates through the photocatalytic reduction technique. The functional beads containing 3% Fe3O4 in the wet gel form (CTA-F3) have excellent nitrate removal efficiency of ~ 97% via adsorption cum solar photocatalysis towards the removal of nitrate ions from 50 ppm nitrate solution, whereas the dried nanocomposite beads have got a nitrate removal efficiency of ~ 68% in 1 h from 100 ppm nitrate solution. Continuous flow adsorption cum photocatalytic study was performed further using the oven-dried functional beads in which flow rate and bed height were varied while maintaining the concentration of feed solution as constant. A nitrate removal efficiency of 65% and an adsorption capacity of 4.1 mgg-1 were obtained for the CTA-F3 beads in the continuous flow adsorption cum photocatalysis experiment for up to 5 h when using an inlet concentration of 100 ppm, bed height 12 cm, and flow rate 5.0 ml min-1. A representative fixed-bed column adsorption experiment conducted using CTA-F3 beads for the treatment of a real groundwater sample shows reasonable results for nitrate removal (71.7% efficiency) along with a significant removal rate for the other anions as well. Thus, the novel adsorbent/photocatalyst developed is suitable for the removal of nitrates from water due to the synergistic effect between Fe3O4, chitosan, and titanium dioxide.
Collapse
Affiliation(s)
- Smitha Venu Sreekala
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam P.O., Calicut, 673571, Kerala, India.
| | - Jilsha George
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam P.O., Calicut, 673571, Kerala, India
| | - Resmi Thoppil Ramakrishnan
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam P.O., Calicut, 673571, Kerala, India
| | | |
Collapse
|
10
|
Bijl M, Lim KRG, Garg S, Nicolas NJ, Visser NL, Aizenberg M, van der Hoeven JES, Aizenberg J. Controlling nanoparticle placement in Au/TiO 2 inverse opal photocatalysts. NANOSCALE 2024; 16:13867-13873. [PMID: 38979601 DOI: 10.1039/d4nr01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Gold nanoparticle-loaded titania (Au/TiO2) inverse opals are highly ordered three-dimensional photonic structures with enhanced photocatalytic properties. However, fine control over the placement of the Au nanoparticles in the inverse opal structures remains challenging with traditional preparative methods. Here, we present a multi-component co-assembly strategy to prepare high-quality Au/TiO2 inverse opal films in which Au nanoparticles are either located on, or inside the TiO2 matrix, as verified using electron tomography. We report that Au nanoparticles embedded in the TiO2 support exhibit enhanced thermal and mechanical stability compared to non-embedded nanoparticles that are more prone to both leaching and sintering.
Collapse
Affiliation(s)
- Marianne Bijl
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Natalie J Nicolas
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| |
Collapse
|
11
|
Quiñones C, Posada M, Hormiga A, Peña J, Diaz-Uribe C, Vallejo W, Muñoz-Acevedo A, Roa V, Schott E, Zarate X. Antimicrobial Activity against Fusarium oxysporum f. sp. dianthi of TiO 2/ZnO Thin Films under UV Irradiation: Experimental and Theoretical Study. ACS OMEGA 2024; 9:31546-31555. [PMID: 39072138 PMCID: PMC11270707 DOI: 10.1021/acsomega.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/17/2024] [Accepted: 04/25/2024] [Indexed: 07/30/2024]
Abstract
We deposited bare TiO2 and TiO2/ZnO thin films to study their antimicrobial capacity against Fusarium oxysporum f. sp. dianthi. The deposit of TiO2 was performed by spin coating and the ZnO thin films were deposited onto the TiO2 surface by plasma-assisted reactive evaporation technique. The characterization of the compounds was carried out by scanning electron microscopy (SEM) and powder X-ray diffraction techniques. Furthermore, density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed to support the observed experimental results. Thus, the removal of methylene blue (MB) by adsorption and posterior photocatalytic degradation was studied. Adsorption kinetic results showed that TiO2/ZnO thin films were more efficient in MB removal than bare TiO2 thin films, and the pseudo-second-order model was suitable to describe the experimental results for TiO2/ZnO (q e = 12.9 mg/g; k 2 = 0.14 g/mg/min) and TiO2 thin films (q e = 12.0 mg/g; k 2 = 0.13 g/mg/min). Photocatalytic results under UV irradiation showed that TiO2 thin films reached 10.9% of MB photodegradation (k = 1.0 × 10-3 min-1), whereas TiO2/ZnO thin films reached 20.6% of MB photodegradation (k = 3.9 × 10-3 min-1). Both thin films reduced the photocatalytic efficiency by less than 3% after 4 photocatalytic tests. DFT study showed that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap decreases for the mixed nanoparticle system, showing its increased reactivity. Furthermore, the chemical hardness shows a lower value for the mixed system, whereas the electrophilicity index shows the biggest value, supporting the larger reactivity for the mixed nanoparticle system. Finally, the antimicrobial activity against F. oxysporum f. sp. dianthi showed that bare TiO2 reached a growth reduction of 68% while TiO2/ZnO reached a growth reduction of 90% after 250 min of UV irradiation.
Collapse
Affiliation(s)
- Cesar Quiñones
- Facultad
de ingeniería, Programa de ingeniería Química, Universidad de La Salle, Bogotá 111711, Colombia
| | - Martha Posada
- Grupo
de Investigación Ceparium, Universidad
Colegio Mayor de Cundinamarca, Bogotá 111321, Colombia
| | - Angie Hormiga
- Grupo
de Investigación Ceparium, Universidad
Colegio Mayor de Cundinamarca, Bogotá 111321, Colombia
| | - Julian Peña
- Escuela
de negocios, Universidad del Caribe (UNICARIBE), Santo Domingo 11105, República Dominicana
| | - Carlos Diaz-Uribe
- Grupo
de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia 81007, Colombia
| | - William Vallejo
- Grupo
de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia 81007, Colombia
| | - Amner Muñoz-Acevedo
- Grupo
de Investigación en Química y Biología, Universidad del Norte, Puerto Colombia 81007, Colombia
| | - Vanesa Roa
- Departamento
de Química Inorgánica, Facultad de Química y
Farmacia, Centro de Energía UC, Centro de Investigación
en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860 Santiago, Chile
| | - Eduardo Schott
- Departamento
de Química Inorgánica, Facultad de Química y
Farmacia, Centro de Energía UC, Centro de Investigación
en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860 Santiago, Chile
| | - Ximena Zarate
- Instituto
de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 7500912, Chile
| |
Collapse
|
12
|
Sudarsan JS, Dogra K, Kumar R, Raval NP, Leifels M, Mukherjee S, Trivedi MH, Jain MS, Zang J, Barceló D, Mahlknecht J, Kumar M. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104389. [PMID: 38941876 DOI: 10.1016/j.jconhyd.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This paper aims to emphasize the occurrence of various emerging contaminant (EC) mixtures in natural ecosystems and highlights the primary concern arising from the unregulated release into soil and water, along with their impacts on human health. Emerging contaminant mixtures, including pharmaceuticals, personal care products, dioxins, polychlorinated biphenyls, pesticides, antibiotics, biocides, surfactants, phthalates, enteric viruses, and microplastics (MPs), are considered toxic contaminants with grave implications. MPs play a crucial role in transporting pollutants to aquatic and terrestrial ecosystems as they interact with the various components of the soil and water environments. This review summarizes that major emerging contaminants (ECs), like trimethoprim, diclofenac, sulfamethoxazole, and 17α-Ethinylestradiol, pose serious threats to public health and contribute to antimicrobial resistance. In addressing human health concerns and remediation techniques, this review critically evaluates conventional methods for removing ECs from complex matrices. The diverse physiochemical properties of surrounding environments facilitate the partitioning of ECs into sediments and other organic phases, resulting in carcinogenic, teratogenic, and estrogenic effects through active catalytic interactions and mechanisms mediated by aryl hydrocarbon receptors. The proactive toxicity of ECs mixture complexation and, in part, the yet-to-be-identified environmental mixtures of ECs represent a blind spot in current literature, necessitating conceptual frameworks for assessing the toxicity and risks with individual components and mixtures. Lastly, this review concludes with an in-depth exploration of future scopes, knowledge gaps, and challenges, emphasizing the need for a concerted effort in managing ECs and other organic pollutants.
Collapse
Affiliation(s)
- Jayaraman Sethuraman Sudarsan
- School of Energy and Environment, NICMAR (National Institute of Construction Management and Research) University, Pune 411045, India
| | - Kanika Dogra
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh 522 240, India
| | - Mats Leifels
- Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mrugesh H Trivedi
- Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370001, India
| | - Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, 453552, India
| | - Jian Zang
- School of Civil Engineering, Chongqing University, Chongqing, China
| | - Damià Barceló
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico
| | - Manish Kumar
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
13
|
Florean CT, Csapai A, Vermesan H, Gabor T, Hegyi A, Stoian V, Uriciuc WA, Petcu C, Cîmpan M. Influence of the Addition of TiO 2 Nanoparticles on the Self-Cleaning Capacity of Cementitious Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3098. [PMID: 38998184 PMCID: PMC11242873 DOI: 10.3390/ma17133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
This study evaluated the potential of incorporating TiO2 nanoparticles (NT) into cementitious composites to provide self-cleaning and self-sanitising properties, as well as the partial replacement of natural aggregates with recycled glass (RGA), ceramic brick (RBA), granulated blast furnace slag (GBA), and textolite waste (RTA) from electronic equipment on these properties. Based on the research results, the addition of NT to cementitious composites led to a significant reduction in contact angle, which means an increase in surface hydrophilicity. At the same time, Rhodamine B stain fading was highlighted, with the degree of whiteness recovery of NT composites exceeding that of the control by up to 11% for natural aggregate compositions, 10.6% for RGA compositions, 19.9% for RBA compositions, 15% for GBA compositions, and 13% for RTA compositions. In a mould-contaminated environment, it was shown that the introduction of NT allowed the material to develop a biocidal surface capacity which is also influenced by the nature of the aggregates used. Furthermore, the study revealed that, under controlled conditions, certain recycled waste aggregates, such as textolite, promoted mould growth, while others, such as brick and slag, inhibited it, highlighting not just the effect of the addition of NT, but also the significant influence of the aggregate type on the microbial resistance of cementitious composites. These improvements in the performance of cementitious composites are particularly advantageous when applied to prefabricated elements intended for the finishing and decorative surfaces of institutional (schools, administrative buildings, religious structures, etc.) or residential buildings.
Collapse
Affiliation(s)
- Carmen Teodora Florean
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
- National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development URBAN-INCERC Cluj-Napoca Branch, 117 Calea Florești, 400524 Cluj-Napoca, Romania
| | - Alexandra Csapai
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
- National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development URBAN-INCERC Cluj-Napoca Branch, 117 Calea Florești, 400524 Cluj-Napoca, Romania
| | - Horatiu Vermesan
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
| | - Timea Gabor
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
| | - Andreea Hegyi
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
- National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development URBAN-INCERC Cluj-Napoca Branch, 117 Calea Florești, 400524 Cluj-Napoca, Romania
| | - Vlad Stoian
- Department of Plant Culture-Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăstur, 400372 Cluj-Napoca, Romania
| | - Willi Andrei Uriciuc
- Faculty of Dental Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristian Petcu
- National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development URBAN-INCERC Cluj-Napoca Branch, 117 Calea Florești, 400524 Cluj-Napoca, Romania
| | - Marius Cîmpan
- Faculty of Civil Engineering, Technical University of Cluj-Napoca, 15, Constantin Daicoviciu Str., 400020 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Long X, Yu D, Han J, Huang Z, Xiao J, Feng G, Zhu J, Yang K. High-performance Ag-TiO 2 nanoparticle composite catalyst synthesized by pulsed laser ablation in liquid: properties, mechanism and preparation studies. OPTICS EXPRESS 2024; 32:21304-21326. [PMID: 38859488 DOI: 10.1364/oe.523188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Precious metal doping can effectively improves the catalytic performance of TiO2. In this study, pulsed laser ablation in liquid (PLAL) is employed to integrate preparation with doping and control composite nanoparticle products by adjusting the laser action time to synthesise Ag-TiO2 composite nanoparticles with high catalytic performance. The generation and evolution of Ag-TiO2 nanoparticles are investigated by analysing particle size, microscopic morphology, crystalline phase, and other characteristics. The generation and doped-morphology evolution of composite nanoparticles are simulated based on thermodynamics, and the optimisation of Ag-doped structure on the composite nanomaterials is investigated based on density functional theory. The effect of Ag-TiO2 structural properties on its performance is examined under different catalytic conditions to determine optimal degradation conditions. In this study, the effect of laser ablation time on the doped structure during PLAL is analysed, which is of further research significance in exploring the structural evolution law of laser and composite nanoparticles, multi-variate catalytic performance testing, reduction of photogenerated carrier complexation rate, and expansion of its spectral absorption range, thereby providing the basis for practical production.
Collapse
|
15
|
Govinda Raj M, Mahalingam S, Gnanarani SV, Jayashree C, Ganeshraja AS, Pugazhenthiran N, Rahaman M, Abinaya S, Senthil B, Kim J. TiO 2 nanorod decorated with MoS 2 nanospheres: An efficient dual-functional photocatalyst for antibiotic degradation and hydrogen production. CHEMOSPHERE 2024; 357:142033. [PMID: 38615961 DOI: 10.1016/j.chemosphere.2024.142033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The design and preparation of dual-functional photocatalysts for simultaneously realizing photocatalytic wastewater purification and hydrogen energy generation pose significant challenges. This article presents the engineering of a binary heterostructured photocatalyst by combining TiO2 (nanorods) and MoS2 nanosphere using a straightforward solvothermal method and the assessment of the phase structures, morphologies, and optical properties of the resulting nanocomposites using diverse analytical techniques. The TiO2(Rod)/MoS2 composite exhibits remarkable efficacy in degrading ciprofloxacin, achieving 93% removal rate within 1 h, which is four times higher than that of bare TiO2. Moreover, the optimized TiO2(Rod)/MoS2 presents an outstanding hydrogen production rate of 7415 μmol g-1, which is ∼24 times higher than that of pristine TiO2. Under UV-visible light irradiation, the TiO2(Rod)/MoS2 heterojunction displays an exceptional photocatalytic performance in terms of both photodegradation and hydrogen production, surpassing the performance of TiO2 particle/MoS2. The study findings demonstrate that TiO2(Rod)/MoS2 nanocomposites exhibit considerably improved photocatalytic degradation and hydrogen generation activities. Based on the experimental results, a possible mechanism is proposed for the transfer and separation of charge carriers in Z-scheme heterojunctions.
Collapse
Affiliation(s)
- Muniyandi Govinda Raj
- Centre for Herbal Pharmacology and Environmental Sustainability Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, 603 103, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Solomon Vasthi Gnanarani
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India
| | - Charmakani Jayashree
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India
| | - Ayyakannu Sundaram Ganeshraja
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, 600 077, Tamil Nadu, India
| | | | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Srinivasan Abinaya
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India
| | - Bakthavatchalam Senthil
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India.
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
16
|
Berbentea A, Ciopec M, Duteanu N, Negrea A, Negrea P, Nemeş NS, Pascu B, Svera (m. Ianasi) P, Ianăşi C, Duda Seiman DM, Muntean D, Boeriu E. Advanced Photocatalytic Degradation of Cytarabine from Pharmaceutical Wastewaters. TOXICS 2024; 12:405. [PMID: 38922085 PMCID: PMC11209206 DOI: 10.3390/toxics12060405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
The need to develop advanced wastewater treatment techniques and their use has become a priority, the main goal being the efficient removal of pollutants, especially those of organic origin. This study presents the photo-degradation of a pharmaceutical wastewater containing Kabi cytarabine, using ultraviolet (UV) radiation, and a synthesized catalyst, a composite based on bismuth and iron oxides (BFO). The size of the bandgap was determined by UV spectroscopy, having a value of 2.27 eV. The specific surface was determined using the BET method, having a value of 0.7 m2 g-1. The material studied for the photo-degradation of cytarabine presents a remarkable photo-degradation efficiency of 97.9% for an initial concentration 0f 10 mg/L cytarabine Kabi when 0.15 g of material was used, during 120 min of interaction with UV radiation at 3 cm from the irradiation source. The material withstands five photo-degradation cycles with good results. At the same time, through this study, it was possible to establish that pyrimidine derivatives could be able to combat infections caused by Escherichia coli and Candida parapsilosis.
Collapse
Affiliation(s)
- Alexandra Berbentea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania (A.N.); (P.N.)
| | - Nicoleta Sorina Nemeş
- Research Institute for Renewable Energies—ICER, Politehnica University Timisoara, Gavril Musicescu Street, no. 138, 300774 Timisoara, Romania;
| | - Bogdan Pascu
- Research Institute for Renewable Energies—ICER, Politehnica University Timisoara, Gavril Musicescu Street, no. 138, 300774 Timisoara, Romania;
| | - Paula Svera (m. Ianasi)
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 144th Dr. A. P. Podeanu Street, 300569 Timisoara, Romania
| | - Cătălin Ianăşi
- Coriolan Drăgulescu’ Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania
| | - Daniel Marius Duda Seiman
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy Timisoara, 2 Piata Eftimie Murgu, 300041 Timisoara, Romania;
| | - Delia Muntean
- Multidisciplinary Research Centre on Antimicrobial Resistance, Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Estera Boeriu
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| |
Collapse
|
17
|
Ramírez E, Carmona-Pérez D, Marco JF, Sanchez-Lievanos KR, Sabinas-Hernández SA, Knowles KE, Elizalde-González MP. Comparison of MAF-32 and a One-Pot Synthesized Superparamagnetic Iron Oxide/MAF-32 Composite for the Adsorption of Diclofenac. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2269. [PMID: 38793334 PMCID: PMC11123495 DOI: 10.3390/ma17102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The global presence of pharmaceutical pollutants in water sources represents a burgeoning public health concern. Recent studies underscore the urgency of addressing this class of emerging contaminants. In this context, our work focuses on synthesizing a composite material, FexOy/MAF-32, through a streamlined one-pot reaction process, as an adsorbent for diclofenac, an emerging environmental contaminant frequently found in freshwater environments and linked to potential toxicity towards several organisms such as fish and mussels. A thorough characterization was performed to elucidate the structural composition of the composite. The material presents magnetic properties attributed to its superparamagnetic behavior, which facilitates the recovery efficiency of the composite post-diclofenac adsorption. Our study further involves a comparative analysis between the FexOy/MAF-32 and a non-magnetic counterpart, comprised solely of 2-ethylimidazolate zinc polymer. This comparison aims to discern the relative advantages and disadvantages of incorporating magnetic iron oxide nanoparticles in the contaminant removal process facilitated by a coordination polymer. Our findings reveal that even a minimal incorporation of iron oxide nanoparticles substantially enhanced the composite's overall performance in pollutant adsorption.
Collapse
Affiliation(s)
- Erick Ramírez
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. IC7, Puebla Pue 72570, Mexico; (D.C.-P.); (M.P.E.-G.)
| | - Daniela Carmona-Pérez
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. IC7, Puebla Pue 72570, Mexico; (D.C.-P.); (M.P.E.-G.)
| | - J. F. Marco
- Instituto de Química-Física Blas Cabrera, CSIC, c/Serrano, 119, 28006 Madrid, Spain;
| | | | - Sergio A. Sabinas-Hernández
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Apartado Postal J-48, Puebla Pue 72570, Mexico;
| | - Kathryn E. Knowles
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA; (K.R.S.-L.); (K.E.K.)
| | - María P. Elizalde-González
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. IC7, Puebla Pue 72570, Mexico; (D.C.-P.); (M.P.E.-G.)
| |
Collapse
|
18
|
Nasir A, Tesler AB, Mohajernia S, Qin S, Schmuki P, Mazare A, Yasin T. Enhanced Photocatalytic H 2 Generation by Light-Induced Carbon Modification of TiO 2 Nanotubes. ChemistryOpen 2024; 13:e202300185. [PMID: 38088583 PMCID: PMC11095147 DOI: 10.1002/open.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Indexed: 05/16/2024] Open
Abstract
Titanium dioxide (TiO2) is the material of choice for photocatalytic and electrochemical applications owing to its outstanding physicochemical properties. However, its wide bandgap and relatively low conductivity limit its practical application. Modifying TiO2 with carbon species is a promising route to overcome these intrinsic complexities. In this work, we propose a facile method to modify TiO2 nanotubes (NTs) based on the remnant organic electrolyte retained inside the nanotubes after the anodization process, that is, without removing it by immersion in ethanol. Carbon-modified TiO2 NTs (C-TiO2 NTs) showed enhanced H2 evolution in photocatalysis under UV illumination in aqueous solutions. When the C-TiO2 NTs were subjected to UV light illumination, the carbon underwent modification, resulting in higher measured photocurrents in the tube layers. After UV illumination, the IPCE of the C-TiO2 NTs was 4.4-fold higher than that of the carbon-free TiO2 NTs.
Collapse
Affiliation(s)
- Amara Nasir
- Department of Materials Science and EngineeringWW4-LKOFriedrich-Alexander University Erlangen-NurembergMartensstrasse 791058ErlangenGermany
- Pakistan Institute of Engineering and AppliedSciences (PIEAS)PO NiloreIslamabad45650Pakistan.
| | - Alexander B. Tesler
- Department of Materials Science and EngineeringWW4-LKOFriedrich-Alexander University Erlangen-NurembergMartensstrasse 791058ErlangenGermany
| | - Shiva Mohajernia
- Chemical and Materials Engineering DepartmentUniversity of Alberta12-237 Donadeo Innovation Centre For Engineering, 9211–116 StEdmontonCanada
| | - Shanshan Qin
- Department of Materials Science and EngineeringWW4-LKOFriedrich-Alexander University Erlangen-NurembergMartensstrasse 791058ErlangenGermany
| | - Patrik Schmuki
- Department of Materials Science and EngineeringWW4-LKOFriedrich-Alexander University Erlangen-NurembergMartensstrasse 791058ErlangenGermany
- Regional Centre of Advanced Technologies and MaterialsŠlechtitel u 27Olomouc78371Czech Republic
| | - Anca Mazare
- Department of Materials Science and EngineeringWW4-LKOFriedrich-Alexander University Erlangen-NurembergMartensstrasse 791058ErlangenGermany
| | - Tariq Yasin
- Pakistan Institute of Engineering and AppliedSciences (PIEAS)PO NiloreIslamabad45650Pakistan.
| |
Collapse
|
19
|
Wang X, Li D, Wang W, Kozykan S, Liang Z, Ma Q, Yu X. Bi 2WO 6/TiO 2-based visible light-driven photoelectrochemical enzyme biosensor for glucose measurement. Mikrochim Acta 2024; 191:201. [PMID: 38489138 DOI: 10.1007/s00604-024-06286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Nowadays, the frequent occurrence of food adulteration makes glucose detection particularly important in food safety and quality management. The quality and taste of honey are closely related to the glucose content. However, due to the drawbacks of expensive equipment, complex operating procedures, and time-consuming processes, the application scope of traditional glucose detection methods is limited. Hence, this study developed a photoelectric chemical (PEC) sensor, which is composed of a photoactive material of bismuth tungstate (Bi2WO6) with titanium dioxide (TiO2) and glucose oxidase (GOD), for simple and rapid detection of glucose. Notably, the composites' absorption prominently increased in the visible light region, and the photo-generated electron-hole pairs were efficiently separated by virtue of the unique nanostructure system, thus playing a crucial role in facilitating PEC activity. In the presence of dissolved oxygen, the photocurrent intensity was enhanced by H2O2 generated from glucose under electro-oxidation specifically catalyzed by GOD fixed on the modified electrode. When the working potential was 0.3 V, the changes of photocurrent response indicated that the PEC enzyme biosensor provides a low detection limit (3.8 µM), and a wide linear range (0.008-8 mM). This method has better selectivity in honey samples and broad application prospects in clinical diagnosis for future.
Collapse
Affiliation(s)
- Xiaotian Wang
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Dongliang Li
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Weihua Wang
- College of Food Science and Engineering, Tarim University, Alar, China.
- Production & Construction Group Key Laboratory of Special Agr34.icultural Products Further Processing in Southern Xinjiang, Alar, China.
| | - Sabira Kozykan
- Kazakh National Agrarian Research University, Abay 8, Almaty, Kazakhstan
| | - Zilong Liang
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Qiujie Ma
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Xiaoqin Yu
- College of Food Science and Engineering, Tarim University, Alar, China
| |
Collapse
|
20
|
Chandrapal RR, Bharathi K, Bakiyaraj G, Bharathkumar S, Priyajanani Y, Manivannan S, Archana J, Navaneethan M. Harnessing ZnCr 2O 4/g-C 3N 4 nanosheet heterojunction for enhanced photocatalytic degradation of rhodamine B and ciprofloxacin. CHEMOSPHERE 2024; 350:141094. [PMID: 38171401 DOI: 10.1016/j.chemosphere.2023.141094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Utilizing semiconductors for photocatalytic processes in water bodies as an approach to environmental remediation has gained considerable attention. Theoretical band position calculations revealed a type-II step-scheme charge flow mechanism for ZnCr2O4/g-C3N4 (ZCr/gCN), emphasizing effective heterojunction formation due to synergies between the materials. A composite of agglomerated nanoparticle ZnCr2O4 (Zinc chromium oxide - ZCr)/g-C3N4 (graphitic carbon nitride - gCN) nanosheets was synthesized using the ultrasonication and leveraging the heterojunction to enhance degradation efficiency and active sites participation. The synthesized sample was characterized by XRD, XPS, FTIR, BET, HRSEM, EDX, HRTEM, EIS PL, and UV-visible spectroscopy. XRD analysis confirmed the successful formation of pure ZnCr2O4, g-C3N4 (gCN), and their composite without any secondary phases. Optical investigations demonstrated a red shift (444-470 nm) in UV-visible spectra as ZnCr2O4 content increased. Morphological assessment via HRSEM unveiled agglomerated nanoparticle and nanosheet structures. FTIR analysis indicated the presence of gCN with the tri-s-triazine breathing mode at 807 cm-1, and the identification of octahedral Zn-O (598.11 cm-1) and tetrahedral Cr-O (447.01 cm-1) metal bonds within the spinel structure of ZnCr2O4. A Surface area of 134.162 m2/g was noticed with a microporous structure of pore radius 1.484 nm. Notably, the 15% ZCr/gCN composite achieved a remarkable 93.94 % (Rhodamine B-RhB) and 74.36 % (Ciprofloxacin - CIP) within 100 and 120 min, surpassing the performance of pure gCN. Improved degradation was attributed to higher charge separation (photo-excited electrons and holes), reducing charge recombination, as supported by photoluminescence and photoelectrochemical analyses. The presence of active species like superoxide during degradation was confirmed through a scavenger test. The stability analysis confirms the sample's stable nature (without secondary phase formation) after degradation. This work underscores the potential of ZnCr2O4 based metal-free compounds intended for effective environmental remediation.
Collapse
Affiliation(s)
- R Roshan Chandrapal
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - K Bharathi
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - G Bakiyaraj
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - S Bharathkumar
- Department of Engineering Physics, College of Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram, Andhra Pradesh, India
| | - Y Priyajanani
- Carbon Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, India
| | - S Manivannan
- Carbon Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, India
| | - J Archana
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M Navaneethan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India; Nanotechnology Research Center, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| |
Collapse
|
21
|
Omotosho KD, Gurung V, Banerjee P, Shevchenko EV, Berman D. Self-Cleaning Highly Porous TiO 2 Coating Designed by Swelling-Assisted Sequential Infiltration Synthesis (SIS) of a Block Copolymer Template. Polymers (Basel) 2024; 16:308. [PMID: 38337197 DOI: 10.3390/polym16030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Photocatalytic self-cleaning coatings with a high surface area are important for a wide range of applications, including optical coatings, solar panels, mirrors, etc. Here, we designed a highly porous TiO2 coating with photoinduced self-cleaning characteristics and very high hydrophilicity. This was achieved using the swelling-assisted sequential infiltration synthesis (SIS) of a block copolymer (BCP) template, which was followed by polymer removal via oxidative thermal annealing. The quartz crystal microbalance (QCM) was employed to optimize the infiltration process by estimating the mass of material infiltrated into the polymer template as a function of the number of SIS cycles. This adopted swelling-assisted SIS approach resulted in a smooth uniform TiO2 film with an interconnected network of pores. The synthesized film exhibited good crystallinity in the anatase phase. The resulting nanoporous TiO2 coatings were tested for their functional characteristics. Exposure to UV irradiation for 1 h induced an improvement in the hydrophilicity of coatings with wetting angle reducing to unmeasurable values upon contact with water droplets. Furthermore, their self-cleaning characteristics were tested by measuring the photocatalytic degradation of methylene blue (MB). The synthesized porous TiO2 nanostructures displayed promising photocatalytic activity, demonstrating the degradation of approximately 92% of MB after 180 min under ultraviolet (UV) light irradiation. Thus, the level of performance was comparable to the photoactivity of commercial anatase TiO2 nanoparticles of the same quantity. Our results highlight a new robust approach for designing hydrophilic self-cleaning coatings with controlled porosity and composition.
Collapse
Affiliation(s)
- Khalil D Omotosho
- Materials Science and Engineering Department, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Vasanta Gurung
- Materials Science and Engineering Department, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Progna Banerjee
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Chemistry, James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Diana Berman
- Materials Science and Engineering Department, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| |
Collapse
|
22
|
Assadi AA. Efficient Photocatalytic Luminous Textile for Simulated Real Water Purification: Advancing Economical and Compact Reactors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:296. [PMID: 38255467 PMCID: PMC10817556 DOI: 10.3390/ma17020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
The growing worldwide problem of wastewater management needs sustainable methods for conserving water supplies while addressing environmental and economic considerations. With the depletion of freshwater supplies, wastewater treatment has become critical. An effective solution is needed to efficiently treat the organic contaminants departing from wastewater treatment plants (WWTPs). Photocatalysis appears to be a viable method for eliminating these recalcitrant micropollutants. This study is focused on the degradation of Reactive Black 5 (RB5), a typical contaminant from textile waste, using a photocatalytic method. Titanium dioxide (TiO2) was deposited on a novel luminous fabric and illuminated using a light-emitting diode (LED). The pollutant degrading efficiency was evaluated for two different light sources: (i) a UV lamp as an external light source and (ii) a cold LED. Interestingly, the LED UV source design showed more promising results after thorough testing at various light levels. In fact, we note a 50% increase in mineralization rate when we triple the number of luminous tissues in the same volume of reactor, which showed a clear improvement with an increase in compactness.
Collapse
Affiliation(s)
- Amin Aymen Assadi
- College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; or
- ENSCR, University Rennes, 11, Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| |
Collapse
|
23
|
Stepanova A, Tite T, Ivanenko I, Enculescu M, Radu C, Culita DC, Rostas AM, Galca AC. TiO 2 Phase Ratio's Contribution to the Photocatalytic Activity. ACS OMEGA 2023; 8:41664-41673. [PMID: 37970036 PMCID: PMC10634250 DOI: 10.1021/acsomega.3c05890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Photocatalysis is one of the approaches for solving environmental issues derived from extremely harmful pollution caused by industrial dyes, medicine, and heavy metals. Titanium dioxide is among the most promising photocatalytic semiconductors; thus, in this work, TiO2 powders were prepared by a hydrothermal synthesis using titanium tetrachloride TiCl4 as a Ti source. The effect of the hydrochloric acid (HCl) concentration on TiO2 formation was analyzed, in which a thorough morpho-structural analysis was performed employing different analysis methods like XRD, Raman spectroscopy, SEM/TEM, and N2 physisorption. EPR spectroscopy was employed to characterize the paramagnetic defect centers and the photogeneration of reactive oxygen species. Photocatalytic properties were tested by photocatalytic degradation of the rhodamine B (RhB) dye under UV light irradiation and using a solar simulator. The pH value directly influenced the formation of the TiO2 phases; for less acidic conditions, the anatase phase of TiO2 crystallized, with a crystallite size of ≈9 nm. Promising results were observed for TiO2, which contained 76% rutile, showing a 96% degradation of RhB under the solar simulator and 91% under UV light after 90 min irradiation, and the best result showed that the sample with 67% of the anatase phase after 60 min irradiation under the solar simulator had a 99% degradation efficiency.
Collapse
Affiliation(s)
- Anna Stepanova
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Teddy Tite
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Iryna Ivanenko
- National
Technical University of Ukraine Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Monica Enculescu
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Cristian Radu
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Daniela Cristina Culita
- Institute
of Physical Chemistry Ilie Murgulescu, Romanian Academy, Bucharest 060021, Romania
| | - Arpad Mihai Rostas
- National
Institute of Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania
| | | |
Collapse
|
24
|
Raditoiu A, Raditoiu V, Raduly MF, Gabor AR, Frone AN, Grapin M, Anastasescu M. Cellulose Fabrics Functionalized with Sol-Gel Photocatalytic Coatings Based on Iron (III) Phthalocyanine Tetracarboxylic Acids-TiO 2-Silica Hybrids. Gels 2023; 9:860. [PMID: 37998950 PMCID: PMC10671179 DOI: 10.3390/gels9110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
Photocatalytic coatings are difficult to obtain on textile materials because of the sometimes contradictory properties that must be achieved. In order to obtain a high efficiency of a photocatalytic effect, the metal-oxide semiconductor must be found in the vicinity of the coating-air interface in order to come into direct contact with the contaminant species and allow light radiation access to its surface. Another necessary condition is related to the properties of the covering textile material as well as to the stability of the xerogel films to light and wet treatments. In this sense, we proposed a solution based on hybrid silica films generated by sol-gel processes, coatings that contain as a photocatalyst TiO2 sensitized with tetracarboxylic acid of iron (III) phthalocyanine (FeTCPc). The coatings were made by the pad-dry-cure process, using in the composition a bifunctional anchoring agent (3-glycidoxipropyltrimethoxysilane, GLYMO), a crosslinking agent (sodium tetraborate, BORAX), and a catalyst (N-methylimidazole, MIM) for the polymerization of epoxy groups. The photodegradation experiments performed on methylene blue (MB), utilized as a model contaminant, using LED or xenon arc as light sources, showed that the treatment with BORAX improves the resistance of the coatings to wet treatments but worsens their photocatalytic performances.
Collapse
Affiliation(s)
- Alina Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.R.); (M.F.R.); (A.R.G.); (A.N.F.); (M.G.)
| | - Valentin Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.R.); (M.F.R.); (A.R.G.); (A.N.F.); (M.G.)
| | - Monica Florentina Raduly
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.R.); (M.F.R.); (A.R.G.); (A.N.F.); (M.G.)
| | - Augusta Raluca Gabor
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.R.); (M.F.R.); (A.R.G.); (A.N.F.); (M.G.)
| | - Adriana Nicoleta Frone
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.R.); (M.F.R.); (A.R.G.); (A.N.F.); (M.G.)
| | - Maria Grapin
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.R.); (M.F.R.); (A.R.G.); (A.N.F.); (M.G.)
| | - Mihai Anastasescu
- Institute of Physical Chemistry “Ilie Murgulescu”, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| |
Collapse
|
25
|
Meera G, Sasidharan Pillai IM, Reji PG, Sajithkumar KJ, Priya KL, Chellappan S. Coagulation studies on photodegraded and photocatalytically degraded polystyrene microplastics using polyaluminium chloride. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:329-340. [PMID: 37741081 DOI: 10.1016/j.wasman.2023.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Microplastics are ubiquitous persistent emerging contaminants, and its presence has been detected even in the most pristine and fragile ecosystems. Advanced oxidation processes are one of the novel degradation technologies used for the elimination of microplastics from the environment. In this study, the effect of ultraviolet C (UV-C, 253.7 nm) and ultraviolet A (UV-A, 365 nm) irradiations on polystyrene (PS) microplastic properties in the presence and absence of titanium dioxide were studied along with their coagulation performances using polyaluminium chloride (PAC). The effects of solar irradiation on the chemical properties of microplastics in aqueous and dry conditions were also investigated. PS microplastics (1.5 g) in three size ranges, 300-150 μm, 150-75 μm, and <75 μm were used during this experiment. After 45 days of irradiation, samples showed discolouration, brittleness, and loss of hydrophobicity. Images obtained from scanning electron microscope revealed smoothening and melting of PS surfaces upon UV exposure. Attenuated total reflectance- Fourier transform infrared spectroscopy and X-ray photon spectroscopy of photoaged samples revealed chemical alterations, bond cleavage and formation of oxygenated functional groups on microplastic surfaces. PAC coagulation of samples before and after UV irradiation showed drastic differences in removal efficiencies, with UV-C irradiated microplastics exhibiting maximum efficiency. Large sized and photocatalytically degraded microplastics showed better removal efficiencies than small sized particles. The 300-150 μm sized PS microplastic, degraded photo catalytically under UV-C irradiation showed approximately 99 % removal efficiency, while PS < 75 μm photodegraded under UV-A irradiation showed only 74.2 % removal efficiency.
Collapse
Affiliation(s)
- G Meera
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India
| | | | - P G Reji
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India
| | - K J Sajithkumar
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India; School for Sustainable Development, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - K L Priya
- Department of Civil Engineering, TKM College of Engineering, Kollam, Kerala, India
| | - Suchith Chellappan
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India
| |
Collapse
|
26
|
Li X, Wei H, Song T, Lu H, Wang X. A review of the photocatalytic degradation of organic pollutants in water by modified TiO 2. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1495-1507. [PMID: 37768751 PMCID: wst_2023_288 DOI: 10.2166/wst.2023.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Organic pollutants in water bodies pose a serious environmental problem, and photocatalytic technology is an efficient and environmentally friendly water treatment method. Titanium dioxide (TiO2) is a widely used photocatalyst, but it suffers from some drawbacks such as a narrow light response range, fast charge recombination, and low photocatalytic activity. To improve the photocatalytic performance of TiO2, this article reviews the preparation methods, performance evaluation, and applications of modified TiO2 photocatalysts. Firstly, the article introduces the effects of doping modification, semiconductor composite modification, and other modification methods on the structure and properties of TiO2 photocatalysts, as well as the common characterization techniques and activity test methods of photocatalysts. Secondly, the article discusses the effects and mechanisms of modified TiO2 photocatalysts on degrading dye, pesticide, and other organic pollutants in water bodies, as well as the influencing factors. Finally, the article summarizes the main achievements and advantages of modified TiO2 photocatalysts in degrading organic pollutants in water bodies, points out the existing problems and challenges, and prospects for the development direction and future of this field.
Collapse
Affiliation(s)
- Xueqi Li
- Changchun University of Architecture and Civil Engineering, Changchun 130000, China E-mail:
| | - Hongyan Wei
- Changchun University of Architecture and Civil Engineering, Changchun 130000, China
| | - Tiehong Song
- Changchun University of Architecture and Civil Engineering, Changchun 130000, China
| | - Hai Lu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun City, Jilin Province, China
| | - Xiaoyan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun City, Jilin Province, China
| |
Collapse
|
27
|
Andrade ÓR, Camarillo R, Martínez F, Jiménez C, Rincón J. Impact of the Precursor on the Physicochemical Properties and Photoactivity of TiO 2 Nanoparticles Produced in Supercritical CO 2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2328. [PMID: 37630913 PMCID: PMC10459058 DOI: 10.3390/nano13162328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
The synthesis of TiO2 nanoparticles (NPs) in supercritical media has been reported over the last two decades. However, very few studies have compared the physicochemical characteristics and photoactivity of the TiO2 powders produced from different precursors, and even fewer have investigated the effect of using different ratios of hydrolytic agent/precursor (HA/P) on the properties of the semiconductor. To bridge this knowledge gap, this research focuses on the synthesis and characterization of TiO2 NPs obtained in a supercritical CO2 medium from four different TiO2 precursors, namely diisopropoxytitanium bis (acetylacetonate) (TDB), titanium (IV) isopropoxide (TIP), titanium (IV) butoxide (TBO), and titanium (IV) 2-ethylhexyloxide (TEO). Further, the effect of various HA/P ratios (10, 20, 30, and 40 mol/mol) when using ethanol as a hydrolytic agent has also been analyzed. Results obtained have shown that the physicochemical properties of the catalysts are not significantly affected by these variables, although some differences do exist between the synthesized materials and their catalytic performances. Specifically, photocatalysts obtained from TIP and TEO at the higher HA/P ratios (HA/P = 30 and HA/P = 40) led to higher CO2 photoconversions (6.3-7 µmol·g-1·h-1, Apparent Quantum Efficiency < 0.1%), about three times higher than those attained with commercial TiO2 P-25. These results have been imputed to the fact that these catalysts exhibit appropriate values of crystal size, surface area, light absorption, and charge transfer properties.
Collapse
Affiliation(s)
| | - Rafael Camarillo
- Department of Chemical Engineering, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, 45071 Toledo, Spain
| | | | | | | |
Collapse
|
28
|
Gomes BR, Lopes JL, Coelho L, Ligonzo M, Rigoletto M, Magnacca G, Deganello F. Development and Upscaling of SiO 2@TiO 2 Core-Shell Nanoparticles for Methylene Blue Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2276. [PMID: 37630862 PMCID: PMC10458987 DOI: 10.3390/nano13162276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
SiO2@TiO2 core-shell nanoparticles were successfully synthesized via a simple, reproducible, and low-cost method and tested for methylene blue adsorption and UV photodegradation, with a view to their application in wastewater treatment. The monodisperse SiO2 core was obtained by the classical Stöber method and then coated with a thin layer of TiO2, followed by calcination or hydrothermal treatments. The properties of SiO2@TiO2 core-shell NPs resulted from the synergy between the photocatalytic properties of TiO2 and the adsorptive properties of SiO2. The synthesized NPs were characterized using FT-IR spectroscopy, HR-TEM, FE-SEM, and EDS. Zeta potential, specific surface area, and porosity were also determined. The results show that the synthesized SiO2@TiO2 NPs that are hydrothermally treated have similar behaviors and properties regardless of the hydrothermal treatment type and synthesis scale and better performance compared to the SiO2@TiO2 calcined and TiO2 reference samples. The generation of reactive species was determined by EPR, and the photocatalytic activity was evaluated by the methylene blue (MB) removal in aqueous solution under UV light. Hydrothermally treated SiO2@TiO2 showed the highest adsorption capacity and photocatalytic removal of almost 100% of MB after 15 min in UV light, 55 and 89% higher compared to SiO2 and TiO2 reference samples, respectively, while the SiO2@TiO2 calcined sample showed 80%. It was also observed that the SiO2-containing samples showed a considerable adsorption capacity compared to the TiO2 reference sample, which improved the MB removal. These results demonstrate the efficient synergy effect between SiO2 and TiO2, which enhances both the adsorption and photocatalytic properties of the nanomaterial. A possible photocatalytic mechanism was also proposed. Also noteworthy is that the performance of the upscaled HT1 sample was similar to one of the lab-scale synthesized samples, demonstrating the potentiality of this synthesis methodology in producing candidate nanomaterials for the removal of contaminants from wastewater.
Collapse
Affiliation(s)
- Bárbara R. Gomes
- CeNTItvc—Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão 4760-034, Portugal; (B.R.G.); (J.L.L.)
| | - Joana L. Lopes
- CeNTItvc—Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão 4760-034, Portugal; (B.R.G.); (J.L.L.)
| | - Lorena Coelho
- CeNTItvc—Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão 4760-034, Portugal; (B.R.G.); (J.L.L.)
| | - Mattia Ligonzo
- Dipartimento di Chimica, Università degli Studi di Torino (UNITO), Via Pietro Giuria 7, 10124 Torino, Italy; (M.L.); (M.R.); (G.M.)
| | - Monica Rigoletto
- Dipartimento di Chimica, Università degli Studi di Torino (UNITO), Via Pietro Giuria 7, 10124 Torino, Italy; (M.L.); (M.R.); (G.M.)
| | - Giuliana Magnacca
- Dipartimento di Chimica, Università degli Studi di Torino (UNITO), Via Pietro Giuria 7, 10124 Torino, Italy; (M.L.); (M.R.); (G.M.)
- NIS Interdepartmental Centre, Università degli Studi di Torino, Via Pietro Giuria 7, 10124 Torino, Italy
| | - Francesca Deganello
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| |
Collapse
|
29
|
Kishore A, Seksaria H, Arora A, De Sarkar A. Regulating excitonic effects in non-oxide based XPSe 3 (X = Cd, Zn) monolayers towards enhanced photocatalysis for overall water splitting. Phys Chem Chem Phys 2023. [PMID: 37464798 DOI: 10.1039/d3cp02196c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The non-oxide 2D materials have garnered considerable interest due to their potential utilization as photocatalysts, which offer a superior substitute to metal-oxide-based photocatalysts. This study investigates the impact of the dielectric environment on the size and binding energy of excitons in atomically thin, experimentally synthesized semiconducting monolayers [XPSe3, X = (Cd, Zn)] to address the critical problem of electron-hole recombination, which significantly hinders the efficiency of most photocatalysts. We employ a precise non-hydrogenic model surpassing the hydrogenic-based Mott-Wannier model. Our findings are among the first few demonstrations of an increase in exciton size (and decrease in exciton binding energy) as environmental screening increases. These findings have implications for photocatalytic water splitting and are not limited to metal phosphorus trichalcogenides, but can be applied to other classes of 2D materials as well. This work also compares metal-oxide photocatalysts, which have been the focus of much research over the past five decades, to non-oxide-based metal phosphorus trichalcogenide photocatalysts, which offer a superior alternative due to their ability to address issues such as light-harvesting inability in the visible spectrum and unwanted charge recombination centres. Furthermore, the implications of this study extend beyond photocatalysts and are significant for the design and development of next-generation optoelectronic devices that incorporate excitonic processes, such as solar cells, photodetectors, LEDs, etc.
Collapse
Affiliation(s)
- Amal Kishore
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| | - Harshita Seksaria
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| | - Anu Arora
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| |
Collapse
|
30
|
Liapun V, Hanif MB, Sihor M, Vislocka X, Pandiaraj S, V K U, Thirunavukkarasu GK, Edelmannová MF, Reli M, Monfort O, Kočí K, Motola M. Versatile application of BiVO 4/TiO 2 S-scheme photocatalyst: Photocatalytic CO 2 and Cr(VI) reduction. CHEMOSPHERE 2023:139397. [PMID: 37406942 DOI: 10.1016/j.chemosphere.2023.139397] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Herein, the synthesis, characterization, and reduction properties of 2D TiO2 aerogel powder decorated with BiVO4 (TiO2/BiVO4) were investigated for versatile applications. First, 2D TiO2 was prepared via lyophilization and subsequently modified with BiVO4 using a wet impregnation method. The morphology, structure, composition, and optical properties were evaluated using transmission electron microscopy (TEM), X-ray diffractometry (XRD), laser-induced breakdown spectroscopy (LIBS), and diffuse reflectance spectroscopy (DRS), respectively. Significantly enhanced photocurrent densities (by 3-15 times) were obtained for TiO2/BiVO4 compared to those of pure TiO2 and BiVO4. The reduction of toxic Cr(VI) to Cr(III) was assessed, including the effect of pH on overall photocatalytic efficiency. Under acidic conditions (pH ∼ 2), Cr(VI) reduction efficiency reached 100% within 2 h. For photocatalytic CO2 reduction, the highest yields of CH4 and CO were obtained using TiO2/BiVO4. A higher efficiency for both applications was achieved because of the better separation of the electron-hole pairs in TiO2/BiVO4. The excellent stability of TiO2/BiVO4 over repeated runs highlights its potential for use in versatile environmental applications. The efficiency of TiO2/BiVO4 is due to the interplay of the structure, morphology, composition, and photoelectrochemical properties that favour the material for the presented herein photocatalytic applications.
Collapse
Affiliation(s)
- Viktoriia Liapun
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia; Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Marcel Sihor
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava, Poruba, Czech Republic
| | - Xenia Vislocka
- Institute of Inorganic Chemistry, Czech Academy of Sciences, Husinec-Rez 1001, Rez, 250 68, Czech Republic
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, CFY Deanship, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Unnikrishnan V K
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Guru Karthikeyan Thirunavukkarasu
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Miroslava Filip Edelmannová
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava, Poruba, Czech Republic
| | - Martin Reli
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava, Poruba, Czech Republic
| | - Olivier Monfort
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Kamila Kočí
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava, Poruba, Czech Republic.
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
31
|
Akharkhach B, Barhdadi A. Electronic structure and optical properties of Br- and Cl-doped rutile TiO 2 for application in self-cleaning and photovoltaic panel's coatings: first-principle calculations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81697-81706. [PMID: 36977873 DOI: 10.1007/s11356-023-26464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Development of novel self-cleaning technologies, especially those based on semiconductor photocatalysis system, is one of the most important research problems in environmental cleanup. Titanium dioxide (TiO2) is a well-known semiconductor photocatalyst that has a strong photocatalytic activity in the ultra-violet part of the spectrum while its photocatalytic efficiency is very limited within the visible range due to its large band gap. In the field of photocatalytic materials, doping is an efficient method to increase the spectral response and promote charge separation. However, the type of dopant is not the only important factor, but also its position in the material lattice. In the present study, we have carried out first-principle calculations based on density functional theory to explore how particular doping configuration, such as Br or Cl doping at an O site, may influence the electronic structure and the charge density distribution within rutile TiO2. Furthermore, optical properties such as the absorption coefficient, the transmittance, and reflectance spectra have also been derived from the calculated complex dielectric function and examined to see whether this doping configuration has any effect on the use of the material as a self-cleaning coating on photovoltaic panels.
Collapse
Affiliation(s)
- Badr Akharkhach
- Physics of Semiconductors and Solar Energy Research Team, Energy Research Centre, Ecole Normale Supérieure, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelfettah Barhdadi
- Physics of Semiconductors and Solar Energy Research Team, Energy Research Centre, Ecole Normale Supérieure, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
32
|
Calabrese C, Maertens A, Piras A, Aprile C, Liotta LF. Novel Sol-Gel Synthesis of TiO 2 Spherical Porous Nanoparticles Assemblies with Photocatalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1928. [PMID: 37446444 DOI: 10.3390/nano13131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
For this study, the synthesis of TiO2 nanomaterials was performed via a novel sol-gel method employing titanium butoxide as a metal precursor, Pluronic F127 as a templating agent, toluene as a swelling agent, and acidic water or ethanol as the reaction solvents. The method was designed by tailoring certain reaction parameters, such as the sequence of toluene addition, magnetic stirring, the type of reaction solvent, and the calcination conditions. Analysis of the specific surface area and porosity was carried out via N2 physisorption, whereas the morphological features of the solids were investigated via transmission electron microscopy. The crystalline structure of both the dried powders and the calcined materials was evaluated using X-ray diffraction analysis. It transpired that the different phase compositions of the solids are related to the specific synthesis medium employed. Under the adopted reaction conditions, ethanol, which was used as a reaction solvent, promoted the local arrangement of dispersed anatase particles, the specific arrangement of which does not lead to rutile transformation. Conversely, the use of water alone supported high-particle packing, evolving into a rutile phase. The photodegradation of Rhodamine B was used as a target reaction for testing the photocatalytic activity of the selected samples.
Collapse
Affiliation(s)
- Carla Calabrese
- Institute for the Study of Nanostructured Materials (ISMN)-CNR, via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Amélie Maertens
- Unit of Nanomaterials Chemistry, Department of Chemistry, University of Namur, NISM, Rue de Bruxelles, 61-5000 Namur, Belgium
| | - Alessandra Piras
- Unit of Nanomaterials Chemistry, Department of Chemistry, University of Namur, NISM, Rue de Bruxelles, 61-5000 Namur, Belgium
- DEsign & Synthesis of INorganic materials for Energy applications (DESINe) Group, Institute for Materials Research (Imo-Imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Carmela Aprile
- Unit of Nanomaterials Chemistry, Department of Chemistry, University of Namur, NISM, Rue de Bruxelles, 61-5000 Namur, Belgium
| | - Leonarda Francesca Liotta
- Institute for the Study of Nanostructured Materials (ISMN)-CNR, via Ugo La Malfa, 153, 90146 Palermo, Italy
| |
Collapse
|
33
|
Benea L, Bounegru I, Forray A, Axente ER, Buruiana DL. Preclinical EIS Study of the Inflammatory Response Evolution of Pure Titanium Implant in Hank's Biological Solution. Molecules 2023; 28:4837. [PMID: 37375392 DOI: 10.3390/molecules28124837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Pure titanium (Ti) is investigated in a pre-clinical study in Hank's biological solution using electrochemical methods, open circuit potential, and electrochemical impedance spectroscopy to highlight the time effect in extreme body conditions, such as inflammatory diseases, on degradability due to corrosion processes occurring on the titanium implant. Electrochemical impedance spectroscopy (EIS) data are presented as Nyquist and Bode plots. The results show the increasing reactivity of titanium implants in the presence of hydrogen peroxide, which is an oxygen-reactive compound that describes inflammatory conditions. The polarization resistance, which results from electrochemical impedance spectroscopy measurements, declined dramatically from the highest value registered in Hank's solution to smaller values registered in all solutions when different concentrations of hydrogen peroxide were tested. The EIS analysis provided insights into titanium's in vitro corrosion behavior as an implanted biomaterial, which could not be solely obtained through potentiodynamic polarization testing.
Collapse
Affiliation(s)
- Lidia Benea
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
| | - Iulian Bounegru
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
| | - Alexandra Forray
- Military Medicine Institute, Street Institutul Medico-Militar 3-5, RO-010919 Bucharest, Romania
| | - Elena Roxana Axente
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 Al. I. Cuza Street, RO-800010 Galati, Romania
| | - Daniela Laura Buruiana
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
- Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, RO-800008 Galati, Romania
| |
Collapse
|
34
|
Hegyi A, Lăzărescu AV, Ciobanu AA, Ionescu BA, Grebenişan E, Chira M, Florean C, Vermeşan H, Stoian V. Study on the Possibilities of Developing Cementitious or Geopolymer Composite Materials with Specific Performances by Exploiting the Photocatalytic Properties of TiO 2 Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103741. [PMID: 37241366 DOI: 10.3390/ma16103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Starting from the context of the principles of Sustainable Development and Circular Economy concepts, the paper presents a synthesis of research in the field of the development of materials of interest, such as cementitious composites or alkali-activated geopolymers. Based on the reviewed literature, the influence of compositional or technological factors on the physical-mechanical performance, self-healing capacity and biocidal capacity obtained was analyzed. The inclusion of TiO2 nanoparticles in the matrix increase the performances of cementitious composites, producing a self-cleaning capacity and an anti-microbial biocidal mechanism. As an alternative, the self-cleaning capacity can be achieved through geopolymerization, which provides a similar biocidal mechanism. The results of the research carried out indicate the real and growing interest for the development of these materials but also the existence of some elements still controversial or insufficiently analyzed, therefore concluding the need for further research in these areas. The scientific contribution of this study consists of bringing together two apparently distinct research directions in order to identify convergent points, to create a favorable framework for the development of an area of research little addressed so far, namely, the development of innovative building materials by combining improved performance with the possibility of reducing environmental impact, awareness and implementation of the concept of a Circular Economy.
Collapse
Affiliation(s)
- Andreea Hegyi
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | | | | | | | - Elvira Grebenişan
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | - Mihail Chira
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | - Carmen Florean
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
- NIRD URBAN-INCERC Iaşi Branch, 6 Anton Şesan Street, 700048 Iaşi, Romania
| | - Horaţiu Vermeşan
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
| | - Vlad Stoian
- Department of Microbiology, Facutly of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
35
|
Cong Z, Zhou L, Zheng N, Sesay T. Synthesis and visible-light photocatalytic property of spinel CuAl 2O 4 for vehicle emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64123-64136. [PMID: 37060404 DOI: 10.1007/s11356-023-26814-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Photodegradation of vehicle emissions is a promising approach for dealing with atmospheric pollution in road tunnels. In this research, copper aluminate nanoparticles (CuAl2O4) were prepared by the sol-gel method using copper nitrate, aluminum nitrate, and citric acid as precursor materials. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy to validate their structure, surface morphology, and optical properties, respectively. The XRD and SEM results confirm that the CuAl2O4 powder has a particle size of 20-37 nm and exhibits a spinel-type structure. The upper limit of the stimulation wavelength in the UV-Vis diffuse reflectance spectrum is located at 725 nm with a band gap (Eg) of about 1.50 eV, which is suitable for effective visible-light degradation. Photocatalytic performance of the CuAl2O4 nanoparticles was analyzed by investigating the effects of light source, calcination temperature, and catalyst loading amount on the degradation of vehicle emissions (CO, HC, and NO). Best results were obtained under fluorescent light irradiation by CuAl2O4 nanoparticles calcined at 700 °C. The optimum catalyst amount for decomposing CO, HC, and NO were determined as 0.5 g, 0.5 g, and 2 g, respectively. Overall, the photocatalytic performance study verifies that spinel CuAl2O4 photocatalyst is a valuable material for next-generation technologies aimed at reducing harmful emissions from vehicles.
Collapse
Affiliation(s)
- Zhuohong Cong
- Key Laboratory of Road Construction Technology & Equipment, Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China.
| | - Liang Zhou
- Hunan Academy of Building Research, Changsha, 410000, Hunan, China
| | - Nanxiang Zheng
- Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China
| | - Taiwo Sesay
- School of Highway, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
36
|
Fabrication of nitrogen doped TiO 2/Fe 2O 3 nanostructures for photocatalytic oxidation of methanol based wastewater. Sci Rep 2023; 13:4431. [PMID: 36932149 PMCID: PMC10023745 DOI: 10.1038/s41598-023-31625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
An important industrial process that often occurs on the surface of a heterogeneous catalyst using thermochemical or photochemical could help in the oxidation of methanol-based wastewater to formaldehyde. Titania-based photocatalysts have drawn a lot of interest from scientists because they are a reliable and affordable catalyst material for photocatalytic oxidation processes in the presence of light energy. In this study, a straight-forward hydrothermal method for producing n-TiO2@α-Fe2O3 composite photocatalysts and hematite (α-Fe2O3) nanocubes has been done. By adjusting the ratio of n-TiO2 in the prepared composite photocatalysts, the enhancing influence of the nitrogen-doped titania on the photocatalytic characteristics of the prepared materials was investigated. The prepared materials were thoroughly characterized using common physiochemical methods, such as transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), X-ray photoelectrons spectroscopy (XPS), physisorption (BET), and others, in order to learn more about the structure The results obtained showed that nitrogen-doped titania outperforms non-doped titania for methanol photooxidation. The addition of nitrogen-doped titania to their surfaces resulted in an even greater improvement in the photooxidation rates of the methanol coupled with hematite. The photooxidation of methanol in the aqueous solution to simulate its concentration in the wastewater has been occurred. After 3 h, the four weight percent of n-TiO2@α-Fe2O3 photocatalyst showed the highest rate of HCHO production.
Collapse
|
37
|
Assadi AA, Baaloudj O, Khezami L, Ben Hamadi N, Mouni L, Assadi AA, Ghorbal A. An Overview of Recent Developments in Improving the Photocatalytic Activity of TiO 2-Based Materials for the Treatment of Indoor Air and Bacterial Inactivation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2246. [PMID: 36984127 PMCID: PMC10056653 DOI: 10.3390/ma16062246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Indoor air quality has become a significant public health concern. The low cost and high efficiency of photocatalytic technology make it a natural choice for achieving deep air purification. Photocatalysis procedures have been widely investigated for environmental remediation, particularly for air treatment. Several semiconductors, such as TiO2, have been used for photocatalytic purposes as catalysts, and they have earned a lot of interest in the last few years owing to their outstanding features. In this context, this review has collected and discussed recent studies on advances in improving the photocatalytic activity of TiO2-based materials for indoor air treatment and bacterial inactivation. In addition, it has elucidated the properties of some widely used TiO2-based catalysts and their advantages in the photocatalytic process as well as improved photocatalytic activity using doping and heterojunction techniques. Current publications about various combined catalysts have been summarized and reviewed to emphasize the significance of combining catalysts to increase air treatment efficiency. Besides, this paper summarized works that used these catalysts to remove volatile organic compounds (VOCs) and microorganisms. Moreover, the reaction mechanism has been described and summarized based on literature to comprehend further pollutant elimination and microorganism inactivation using photocatalysis. This review concludes with a general opinion and an outlook on potential future research topics, including viral disinfection and other hazardous gases.
Collapse
Affiliation(s)
- Achraf Amir Assadi
- Center for Research on Microelectronics and Nanotechnology, CRMN Sousse Techno Park, Sahloul BP 334, Sousse 4054, Tunisia
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6029, Tunisia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, Université des Sciences et de la Technologie Houari Boumediene, BP 32, Algiers 16111, Algeria
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - Lotfi Khezami
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculté SNVST, Université Bouira, Bouira 10000, Algeria
| | - Aymen Amine Assadi
- École Nationale Supérieure de Chimie de Rennes (ENSCR), Université de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, 35700 Rennes, France
| | - Achraf Ghorbal
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6029, Tunisia
| |
Collapse
|
38
|
Yakout S, Youssef A. Engineering of efficient visible light photocatalysts: Ti1–+Cu La O2 (x = 0.03, y = 0, 0.005, 0.01) compositions. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
39
|
Heavy Metal Removal from Aqueous Effluents by TiO2 and ZnO Nanomaterials. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/2728305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The presence of heavy metals in wastewater, such as Ni, Pb, Cd, V, Cr, and Cu, is a serious environmental problem. This kind of inorganic pollutant is not biodegradable for several years, and its harmful effect is cumulative. Recently, semiconductor nanomaterials based on metal oxides have gained interest due to their efficiency in the removal of heavy metals from contaminated water, by inducing photocatalytic ion reduction when they absorb light of the appropriate wavelength. The most commonly applied semiconductor oxides for these purposes are titanium oxide (TiO2), zinc oxide (ZnO), and binary nanomaterials composed of both types of oxides. The main purpose of this work is to critically analyse the existent literature concerning this topic focusing specially in the most important factors affecting the adsorption or photocatalytic capacities of this type of nanomaterials. In particular, photocatalytic activity is altered by various factors, such as proportion of polymorphs, synthesis method, surface area, concentration of defects and particle size, among others. After a survey of the actual literature, it was found that, although these metal oxides have low absorption capacity for visible light, it is possible to obtain an acceptable heavy metal reduction performance by sensitization with dyes, doping with metallic or nonmetallic atoms, introduction of defects, or the coupling of two or more semiconductors.
Collapse
|
40
|
K K S, P M PN, Vasundhara M. Enhanced photocatalytic activity in ZnO nanoparticles developed using novel Lepidagathis ananthapuramensis leaf extract. RSC Adv 2023; 13:1497-1515. [PMID: 36688071 PMCID: PMC9819108 DOI: 10.1039/d2ra06967a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
The present study focuses on the green synthesis of zinc oxide nanoparticles (ZnO NPs) using a novel Lepidagathis ananthapuramensis (LA) leaf extract and a systematic study on the photocatalytic degradation of methylene blue (MB) dye. The structural, thermal, morphological, optical, and surface area analysis of prepared ZnO NPs were examined using X-ray diffraction (XRD), UV-visible spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis (TGA), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDAX) and high-resolution transmission electron microscopy (HR-TEM). The LA stabilised ZnO NPs produced NPs with diverse morphologies, low band gap and cost-effective high yield of production. A systematic study has been carried out to determine the crystallinity and crystallite size of ZnO NPs based on the concentration of Zn(NO3)2 precursor, concentration of LA leaf extract, calcination temperature and calcination time. The crystallinity and crystallite size of ZnO NPs were evaluated based on the XRD technique. The photocatalytic activity of ZnO NPs was thoroughly investigated for the degradation of MB dye based on various physicochemical parameters such as reaction time, concentration of catalyst, concentration of precursors, concentration of LA extract, concentration of MB, calcination temperature and calcination time. These systematic photocatalytic studies followed green protocols and provided an excellent photocatalytic efficiency result of 96-98.5% towards the decomposition of MB. Hence, this material can work as a potential candidate for waste water treatment by also degrading other toxic dyes.
Collapse
Affiliation(s)
- Supin K K
- Polymers and Functional Materials Department, CSIR- Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Parvathy Namboothiri P M
- Polymers and Functional Materials Department, CSIR- Indian Institute of Chemical Technology Hyderabad 500007 India
| | - M Vasundhara
- Polymers and Functional Materials Department, CSIR- Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
41
|
Ramesh S, Punithamoorthy K. Synthesis and characterization of ternary nanocomposites of
TiO
2
/
rGO
/
CdS
as an efficient catalyst for photo‐degradation of methyl orange. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Methods and strategies for producing porous photocatalysts: Review. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Kumar N, Jung U, Jung B, Park J, Naushad M. Zinc hydroxystannate/zinc-tin oxide heterojunctions for the UVC-assisted photocatalytic degradation of methyl orange and tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120353. [PMID: 36240965 DOI: 10.1016/j.envpol.2022.120353] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Partial phase modification of zinc hydroxystannate (ZHS) is an effective technique for improving its light absorption capacity. In this study, a zinc hydroxystannate/zinc-tin oxide (ZHS/ZTO) heterostructure was synthesized via chemical co-precipitation followed by annealing. The as-prepared heterostructure revealed cubic crystal morphology along with high-intensity diffraction peaks in the XRD pattern. The XPS analysis of ZHS/ZTO heterostructures demonstrated the presence of key elements (Zn, Sn, and O) in their most stable ionic forms. The photocatalytic degradation efficiencies of the prepared samples were tested against methyl orange (MO) and tetracycline (TC) in an aqueous medium under UVC (254 nm) radiation. Under optimized conditions, maximum degradation efficiencies of 99% for MO and 97% for TC were observed in 120 and 180 min, respectively. Further, the predominant role of OH˙ radicals in the photocatalytic removal of MO and TC was evident through scavenging experiments. 2nd order kinetic model was outperformed in simulating the degradation mechanism of both targets over 1st and zero-order kinetic models. Finally, a photocatalytic degradation mechanism is proposed based on the energy values estimated for the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) using UPS analysis.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Uijin Jung
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Bomseumin Jung
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Jinsub Park
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea; Division of Nanoscale Semiconductor Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
44
|
Chakinala N, Ranjan P, Chakinala AG, Gogate PR. Performance comparison of photocatalysts for degradation of organic pollutants using experimental studies supported with DFT and fundamental characterization. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
45
|
Feizpoor S, Habibi-Yangjeh A, Luque R. Design of TiO 2/Ag 3BiO 3 n-n heterojunction for enhanced degradation of tetracycline hydrochloride under visible-light irradiation. ENVIRONMENTAL RESEARCH 2022; 215:114315. [PMID: 36116489 DOI: 10.1016/j.envres.2022.114315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical residual contaminants in aquatic ecosystems have caused severe risks to human health. Affordable, eco-friendly and effective photocatalysts to deal with these pollutants has become a hot topic in the scientific community. In this research, Ag3BiO3 nanoparticles were embedded on TiO2 to form n-n heterojunction through a facile hydrothermal method. According to scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), brunauer emmett teller (BET), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), photoluminescence (PL), X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS) tests, the successful construction of TiO2/Ag3BiO3 heterojunction is proved. TiO2/Ag3BiO3 heterojunctions were employed as photocatalysts to remove tetracycline hydrochloride (TCH) under visible light irradiation in aqueous solution. Optimum TCH photodegradation efficiency was observed for TiO2/Ag3BiO3 (10%), 15.4 times superior to that of TiO2. The enhanced TCH photodegradation efficiency of TiO2/Ag3BiO3 results from improved light absorption capacity and the reduction of recombination of photogenerated charge carriers via generation of n-n heterojunctions. The mechanism of increasing the photodegradation efficiency of TCH was determined by employing reactive species quenching experiments. TiO2/Ag3BiO3 (10%) also exhibited an acceptable stability.
Collapse
Affiliation(s)
- Solmaz Feizpoor
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran; Departamento de Química Organica, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra. N-IV Km. 396, E14014, Córdoba, Spain
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Rafael Luque
- Departamento de Química Organica, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra. N-IV Km. 396, E14014, Córdoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| |
Collapse
|
46
|
Ponce-Robles L, Mena E, Diaz S, Pagán-Muñoz A, Lara-Guillén AJ, Fellahi I, Alarcón JJ. Integrated full-scale solar CPC/UV-LED–filtration system as a tertiary treatment in a conventional WWTP for agricultural reuse purposes. Photochem Photobiol Sci 2022; 22:641-654. [PMID: 36401770 PMCID: PMC9676787 DOI: 10.1007/s43630-022-00342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
AbstractToday, the emergence of increasingly restrictive treatment and reuse policies make the implementation of full-scale tertiary treatment, capable of improving the quality of water, a priority. Full-scale TiO2 photocatalysis systems are resulting in a promising option, since TiO2 is commercially available. However, questions such as how to work continuously during day/night irradiation cycle, or the removing of TiO2 in outlet flow are still unresolved. In this work, a full-scale system integrating a solar CPC/UV-LED step combined with commercial microfiltration membranes was installed in a conventional WWTP for agricultural reuse purposes. After optimization, 0.5 g/L of catalyst and combined SOLAR + UV-LED showing the highest pharmaceutical removal percentages, while a self-designed UV-LED included in the own reaction tank resulting in higher efficiencies compared with commercial lamps. Longer membrane surface area decreased fouling problems in the system. However, 60 min of irradiation time was necessary to reach the most restrictive water quality values according with (EU 2020/741). After optimization step, total costs were reduced by 45%. However, it was shown that a reduction in operating and maintenance costs, along with the development of more effective and economical commercial filtration membranes is a key factor; therefore, working on these aspects is essential in the treated water cost reduction.
Graphical abstract
Collapse
|
47
|
Kocsis G, Szabó-Bárdos E, Fónagy O, Farsang E, Juzsakova T, Jakab M, Pekker P, Kovács M, Horváth O. Characterization of Various Titanium-Dioxide-Based Catalysts Regarding Photocatalytic Mineralization of Carbamazepine also Combined with Ozonation. Molecules 2022; 27:molecules27228041. [PMID: 36432141 PMCID: PMC9697621 DOI: 10.3390/molecules27228041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Titanium-dioxide-based semiconductors proved to be appropriate for photocatalytic application to efficiently degrade emerging organic pollutants such as various herbicides, pesticides, and pharmaceuticals in waters of environmental importance. The characterization of various TiO2 catalysts, both bare and modified (Ag- and/or N-doped), by mechanochemical treatment was carried out in this work, regarding their structure, morphology, and photocatalytic activity. For the latter investigations, carbamazepine, an antidepressant, proved to be applicable and versatile. The photocatalytic behavior of the catalysts was studied under both UV and visible light. Besides the decomposition efficiency, monitoring the intermediates provided information on the degradation mechanisms. Mechanochemical treatment significantly increased the particle size (from 30 nm to 10 μm), causing a considerable (0.14 eV) decrease in the band gap. Depending on the irradiation wavelength and the catalyst, the activity orders differed, indicating that, in the mineralization processes of carbamazepine, the importance of the different oxidizing radicals considerably deviated, e.g., Ag-TiO2 < DP25-TiO2 < ground-DP25-TiO2 < N-TiO2 ≈ N-Ag-TiO2 for O2•− and N-TiO2 ≈ Ag-TiO2 < N-Ag-TiO2 < ground-DP25-TiO2 ≈ DP25-TiO2 for HO• generation under UV irradiation. Toxicity studies have shown that the resulting intermediates are more toxic than the starting drug molecule, so full mineralization is required. This could be realized by a synergistic combination of heterogeneous photocatalysis and ozonation.
Collapse
Affiliation(s)
- Gábor Kocsis
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Erzsébet Szabó-Bárdos
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Orsolya Fónagy
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Evelin Farsang
- Analytical Chemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Tatjána Juzsakova
- Sustainability Solutions Research Lab, Research Center for Biochemical, Environmental and Chemical Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Miklós Jakab
- Department of Materials Engineering, Research Center for Engineering Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Péter Pekker
- Environmental Mineralogy Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Margit Kovács
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Ottó Horváth
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
- Correspondence: ; Tel.: +36-88-624-000 (ext. 6049)
| |
Collapse
|
48
|
Natar NS, Ghani NIA, Hamzah SR, Rosli MA, Muhamad NA, Azami MS, Ishak MAM, Razak S, Nawawi WI. The Role of Nitrogen-Doped TiO 2 Supported by Platinum Catalyst Synthesized via Various Mode Preparations for Photocatalytic Enhancement. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3998. [PMID: 36432284 PMCID: PMC9698348 DOI: 10.3390/nano12223998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The limitations of TiO2 as a photocatalyst such as the larger bandgap energy, which only activates under the UV region, give a lower photocatalytic activity. This study reports the role of the N and Pt co-dopant on the modification of the TiO2 photocatalyst for photocatalytic degradation of methylene blue dye under different mode preparations, i.e., sequential and vice-versa modes. The sequential mode preparation of the N and Pt co-dopant TiO2 photocatalyst consisted of the initial preparation of the N-doped TiO2 (N-TiO2) under the calcination method, which was then further doped with platinum (Pt) through the photodeposition process labeled as NPseq-TiO2, while the vice-versa mode was labeled as PNrev-TiO2. About 1.58 wt.% of N element was found in the NPseq-TiO2 photocatalyst, while there was no presence of N element detected in PNrev-TiO2, confirmed through an elemental analyzer (CHNS-O) and (EDX) analysis. The optimum weight percentage of Pt for both modes was detected at about ±2.0 wt.%, which was confirmed by inductively coupled plasma-emission spectroscopy (ICP-OES). The photoactivity under methylene blue (MB) dye degradation of the NPseq-TiO2 photocatalyst was 2 and 1.5 times faster compared to the unmodified TiO2 and PNrev-TiO2, where the photodegradation rates were, ca., 0.065 min-1 and 0.078 min-1, respectively. This was due to the N elements being incorporated with the TiO2 lattice, which was proven by UV-Vis/DRS where the bandgap energy of NPseq-TiO2 was reduced from 3.2 eV to 2.9 eV. In addition, the N generated a stronger PL signal due to the formation of oxygen vacancies defects on the surface of the NPseq-TiO2 photocatalyst. The higher specific surface area as well as higher pore volume for the NPseq-TiO2 photocatalyst enhanced its photocatalytic activity. Moreover, the NPseq-TiO2 showed the lowest COD value, and it was completely mineralized after 7 h of light irradiation. The preparation order did not affect the Pt dopant but did for the N element. Therefore, it is significant to investigate different mode preparations of the N and Pt co-dopant for the modification of TiO2 to produce a good-quality photocatalyst for photocatalytic study under the photodegradation of MB dye.
Collapse
Affiliation(s)
- Nadiah Sabihah Natar
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau 02600, Perlis, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | | | - Siti Raihan Hamzah
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau 02600, Perlis, Malaysia
| | - Muhammad Afiq Rosli
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau 02600, Perlis, Malaysia
| | - Nur Aien Muhamad
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau 02600, Perlis, Malaysia
| | - Mohammad Saifulddin Azami
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau 02600, Perlis, Malaysia
| | - Mohd Azlan Mohd Ishak
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau 02600, Perlis, Malaysia
| | - Sharin Razak
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Wan Izhan Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Arau 02600, Perlis, Malaysia
| |
Collapse
|
49
|
TiO2/BiVO4 nanofibers: visible light-driven photocatalysts for indigo dye remediation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Dynamics of Diffusion- and Immobilization-Limited Photocatalytic Degradation of Dyes by Metal Oxide Nanoparticles in Binary or Ternary Solutions. Catalysts 2022. [DOI: 10.3390/catal12101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalytic degradation employing metal oxides, such as TiO2 nanoparticles, as catalysts is an important technique for the removal of synthetic dyes from wastewater under light irradiation. The basic principles of photocatalysis of dyes, the effects of the intrinsic photoactivity of a catalyst, and the conventional non-fundamental factors are well established. Recently reported photocatalysis studies of dyes in single, binary, and ternary solute solutions opened up a new perspective on competitive photocatalytic degradation of the dyes. There has not been a review on the photocatalytic behavior of binary or ternary solutions of dyes. In this regard, this current review article summarizes the photocatalytic behavior of methylene, rhodamine B, and methyl orange in their binary or ternary solutions. This brief overview introduces the importance of the dynamics of immobilization and reactivity of the dyes, the vital roles of molecular conformation and functional groups on their diffusion onto the catalyst surface, and photocatalytic degradation, and provides an understanding of the simultaneous photocatalytic processes of multiple dyes in aqueous systems.
Collapse
|