1
|
Yam AO, Jakovija A, Gatt C, Chtanova T. Neutrophils under the microscope: neutrophil dynamics in infection, inflammation, and cancer revealed using intravital imaging. Front Immunol 2024; 15:1458035. [PMID: 39439807 PMCID: PMC11493610 DOI: 10.3389/fimmu.2024.1458035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophils rapidly respond to inflammation resulting from infection, injury, and cancer. Intravital microscopy (IVM) has significantly advanced our understanding of neutrophil behavior, enabling real-time visualization of their migration, interactions with pathogens, and coordination of immune responses. This review delves into the insights provided by IVM studies on neutrophil dynamics in various inflammatory contexts. We also examine the dual role of neutrophils in tumor microenvironments, where they can either facilitate or hinder cancer progression. Finally, we highlight how computational modeling techniques, especially agent-based modeling, complement experimental data by elucidating neutrophil kinetics at the level of individual cells as well as their collective behavior. Understanding the role of neutrophils in health and disease is essential for developing new strategies for combating infection, inflammation and cancer.
Collapse
Affiliation(s)
- Andrew O. Yam
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Immune Biotherapeutics Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Arnolda Jakovija
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Gatt
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Sankar P, Ramos RB, Corro J, Mishra LK, Nafiz TN, Bhargavi G, Saqib M, Poswayo SKL, Parihar SP, Cai Y, Subbian S, Ojha AK, Mishra BB. Fatty acid metabolism in neutrophils promotes lung damage and bacterial replication during tuberculosis. PLoS Pathog 2024; 20:e1012188. [PMID: 39365825 PMCID: PMC11482725 DOI: 10.1371/journal.ppat.1012188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/16/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection induces a marked influx of neutrophils into the lungs, which intensifies the severity of tuberculosis (TB). The metabolic state of neutrophils significantly influences their functional response during inflammation and interaction with bacterial pathogens. However, the effect of Mtb infection on neutrophil metabolism and its consequent role in TB pathogenesis remain unclear. In this study, we examined the contribution of glycolysis and fatty acid metabolism on neutrophil responses to Mtb HN878 infection using ex-vivo assays and murine infection models. We discover that blocking glycolysis aggravates TB pathology, whereas inhibiting fatty acid oxidation (FAO) yields protective outcomes, including reduced weight loss, immunopathology, and bacterial burden in lung. Intriguingly, FAO inhibition preferentially disrupts the recruitment of a pathogen-permissive immature neutrophil population (Ly6Glo/dim), known to accumulate during TB. Targeting carnitine palmitoyl transferase 1a (Cpt1a)-a crucial enzyme in mitochondrial β-oxidation-either through chemical or genetic methods impairs neutrophils' ability to migrate to infection sites while also enhancing their antimicrobial function. Our findings illuminate the critical influence of neutrophil immunometabolism in TB pathogenesis, suggesting that manipulating fatty acid metabolism presents a novel avenue for host-directed TB therapies by modulating neutrophil functions.
Collapse
Affiliation(s)
- Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Jamie Corro
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Lokesh K. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Gunapati Bhargavi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Sibongiseni K. L. Poswayo
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Anil K. Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Bibhuti B. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
3
|
Cleary SJ, Qiu L, Seo Y, Baluk P, Liu D, Serwas NK, Cyster JG, McDonald DM, Krummel MF, Looney MR. Intravital imaging of pulmonary lymphatics in inflammation and metastatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612619. [PMID: 39345499 PMCID: PMC11430110 DOI: 10.1101/2024.09.12.612619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Intravital microscopy has enabled the study of immune dynamics in the pulmonary microvasculature, but many key events remain unseen because they occur in deeper lung regions. We therefore developed a technique for stabilized intravital imaging of bronchovascular cuffs and collecting lymphatics surrounding pulmonary veins in mice. Intravital imaging of pulmonary lymphatics revealed ventilation-dependence of steady-state lung lymph flow and ventilation-independent lymph flow during inflammation. We imaged the rapid exodus of migratory dendritic cells through lung lymphatics following inflammation and measured effects of pharmacologic and genetic interventions targeting chemokine signaling. Intravital imaging also captured lymphatic immune surveillance of lung-metastatic cancers and lymphatic metastasis of cancer cells. To our knowledge, this is the first imaging of lymph flow and leukocyte migration through intact pulmonary lymphatics. This approach will enable studies of protective and maladaptive processes unfolding within the lungs and in other previously inaccessible locations.
Collapse
Affiliation(s)
- Simon J. Cleary
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
- Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Longhui Qiu
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - Yurim Seo
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - Peter Baluk
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, CA, USA
| | - Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, UCSF, CA, USA
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, China
| | | | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, UCSF, CA, USA
- Bakar ImmunoX Initiative, UCSF, CA, USA
| | - Donald M. McDonald
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, CA, USA
| | - Matthew F. Krummel
- Department of Pathology, UCSF, CA, USA
- Bakar ImmunoX Initiative, UCSF, CA, USA
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
- Bakar ImmunoX Initiative, UCSF, CA, USA
| |
Collapse
|
4
|
Watts E, Willison J, Arienti S, Sadiku P, Coelho P, Sanchez-Garcia M, Zhang A, Murphy F, Dickinson R, Mirchandani A, Morrison T, Lewis A, Vermaelen W, Ghesquiere B, Carmeliet P, Mazzone M, Maxwell P, Pugh C, Dockrell D, Whyte M, Walmsley S. Differential roles for the oxygen sensing enzymes PHD1 and PHD3 in the regulation of neutrophil metabolism and function. Wellcome Open Res 2024; 8:569. [PMID: 39257914 PMCID: PMC11384204 DOI: 10.12688/wellcomeopenres.19915.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/12/2024] Open
Abstract
Background Neutrophils are essential in the early innate immune response to pathogens. Harnessing their antimicrobial powers, without driving excessive and damaging inflammatory responses, represents an attractive therapeutic possibility. The neutrophil population is increasingly recognised to be more diverse and malleable than was previously appreciated. Hypoxic signalling pathways are known to regulate important neutrophil behaviours and, as such, are potential therapeutic targets for regulating neutrophil antimicrobial and inflammatory responses. Methods We used a combination of in vivo and ex vivo models, utilising neutrophil and myeloid specific PHD1 or PHD3 deficient mouse lines to investigate the roles of oxygen sensing prolyl hydroxylase enzymes in the regulation of neutrophilic inflammation and immunity. Mass spectrometry and Seahorse metabolic flux assays were used to analyse the role of metabolic shifts in driving the downstream phenotypes. Results We found that PHD1 deficiency drives alterations in neutrophil metabolism and recruitment, in an oxygen dependent fashion. Despite this, PHD1 deficiency did not significantly alter ex vivo neutrophil phenotypes or in vivo outcomes in mouse models of inflammation. Conversely, PHD3 deficiency was found to enhance neutrophil antibacterial properties without excessive inflammatory responses. This was not linked to changes in the abundance of core metabolites but was associated with increased oxygen consumption and increased mitochondrial reactive oxygen species (mROS) production. Conclusions PHD3 deficiency drives a favourable neutrophil phenotype in infection and, as such, is an important potential therapeutic target.
Collapse
Affiliation(s)
- Emily Watts
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Joseph Willison
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Simone Arienti
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Pranvera Sadiku
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Patricia Coelho
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Manuel Sanchez-Garcia
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Ailiang Zhang
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Fiona Murphy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, G4 0RE, UK
| | - Rebecca Dickinson
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Ananda Mirchandani
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Tyler Morrison
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Amy Lewis
- The Bateson Centre, Department of Infection and Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, England, S10 2TN, UK
| | - Wesley Vermaelen
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Flanders, Belgium
- Metabolomics Core Facility, Vlaams Instituut voor Biotechnologie KU Leuven Center for Cancer Biology, Leuven, Flanders, Belgium
| | - Bart Ghesquiere
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Flanders, Belgium
- Metabolomics Core Facility, Vlaams Instituut voor Biotechnologie KU Leuven Center for Cancer Biology, Leuven, Flanders, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vlaams Instituut voor Biotechnologie KU Leuven Center for Cancer Biology, Leuven, Flanders, Belgium
| | - Massimilliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis (VIB-KU Leuven), KU Leuven, Leuven, Flanders, Belgium
| | - Patrick Maxwell
- School of Clinical Medicine, University of Cambridge, Cambridge, England, UK
| | - Christopher Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - David Dockrell
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Moira Whyte
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Sarah Walmsley
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| |
Collapse
|
5
|
Deng Y, Zhao Z, Sheldon M, Zhao Y, Teng H, Martinez C, Zhang J, Lin C, Sun Y, Yao F, Curran MA, Zhu H, Ma L. LIFR regulates cholesterol-driven bidirectional hepatocyte-neutrophil cross-talk to promote liver regeneration. Nat Metab 2024; 6:1756-1774. [PMID: 39147934 PMCID: PMC11498095 DOI: 10.1038/s42255-024-01110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Liver regeneration is under metabolic and immune regulation. Despite increasing recognition of the involvement of neutrophils in regeneration, it is unclear how the liver signals to the bone marrow to release neutrophils after injury and how reparative neutrophils signal to hepatocytes to reenter the cell cycle. Here we report that loss of the liver tumour suppressor Lifr in mouse hepatocytes impairs, whereas overexpression of leukaemia inhibitory factor receptor (LIFR) promotes liver repair and regeneration after partial hepatectomy or toxic injury. In response to physical or chemical damage to the liver, LIFR from hepatocytes promotes the secretion of cholesterol and CXCL1 in a STAT3-dependent manner, leading to the efflux of bone marrow neutrophils to the circulation and damaged liver. Cholesterol, via its receptor ERRα, stimulates neutrophils to secrete hepatocyte growth factor to accelerate hepatocyte proliferation. Altogether, our findings reveal a LIFR-STAT3-CXCL1-CXCR2 axis and a LIFR-STAT3-cholesterol-ERRα-hepatocyte growth factor axis that form bidirectional hepatocyte-neutrophil cross-talk to repair and regenerate the liver.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
6
|
Starkl P, Jonsson G, Artner T, Turnes BL, Gail LM, Oliveira T, Jain A, Serhan N, Stejskal K, Lakovits K, Hladik A, An M, Channon KM, Kim H, Köcher T, Weninger W, Stary G, Knapp S, Klang V, Gaudenzio N, Woolf CJ, Tikoo S, Jain R, Penninger JM, Cronin SJF. Mast cell-derived BH4 and serotonin are critical mediators of postoperative pain. Sci Immunol 2024; 9:eadh0545. [PMID: 39178277 DOI: 10.1126/sciimmunol.adh0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/01/2024] [Indexed: 08/25/2024]
Abstract
Postoperative pain affects most patients after major surgery and can transition to chronic pain. The considerable side effects and limited efficacy of current treatments underline the need for new therapeutic options. We observed increased amounts of the metabolites BH4 and serotonin after skin injury. Mast cells were primary postoperative sources of Gch1, the rate-limiting enzyme in BH4 synthesis, itself an obligate cofactor in serotonin production by tryptophan hydroxylase (Tph1). Mice deficient in mast cells or in mast cell-specific Gch1 or Tph1 showed drastically decreased postoperative pain. We found that injury induced the nociceptive neuropeptide substance P, mast cell degranulation, and granule nerve colocalization. Substance P triggered serotonin release in mouse and human mast cells, and substance P receptor blockade substantially ameliorated pain hypersensitivity. Our findings highlight the importance of mast cells at the neuroimmune interface and substance P-driven mast cell BH4 and serotonin production as a therapeutic target for postoperative pain treatment.
Collapse
Affiliation(s)
- Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Laura-Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tiago Oliveira
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
| | - Karel Stejskal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Karin Lakovits
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Keith M Channon
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hail Kim
- Korea Advanced Institute of Science and Technology, Daejoen, Republic of Korea
| | - Thomas Köcher
- Vienna BioCenter Core Facilities (VBCF), 1030 Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Shweta Tikoo
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rohit Jain
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Josef M Penninger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shane J F Cronin
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
7
|
Antos D, Parks OB, Duray AM, Abraham N, Michel JJ, Kupul S, Westcott R, Alcorn JF. Cell-intrinsic regulation of phagocyte function by interferon lambda during pulmonary viral, bacterial super-infection. PLoS Pathog 2024; 20:e1012498. [PMID: 39178311 PMCID: PMC11376568 DOI: 10.1371/journal.ppat.1012498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/05/2024] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
Influenza infections result in a significant number of severe illnesses annually, many of which are complicated by secondary bacterial super-infection. Primary influenza infection has been shown to increase susceptibility to secondary methicillin-resistant Staphylococcus aureus (MRSA) infection by altering the host immune response, leading to significant immunopathology. Type III interferons (IFNs), or IFNλs, have gained traction as potential antiviral therapeutics due to their restriction of viral replication without damaging inflammation. The role of IFNλ in regulating epithelial biology in super-infection has recently been established; however, the impact of IFNλ on immune cells is less defined. In this study, we infected wild-type and IFNLR1-/- mice with influenza A/PR/8/34 followed by S. aureus USA300. We demonstrated that global IFNLR1-/- mice have enhanced bacterial clearance through increased uptake by phagocytes, which was shown to be cell-intrinsic specifically in myeloid cells in mixed bone marrow chimeras. We also showed that depletion of IFNLR1 on CX3CR1 expressing myeloid immune cells, but not neutrophils, was sufficient to significantly reduce bacterial burden compared to mice with intact IFNLR1. These findings provide insight into how IFNλ in an influenza-infected lung impedes bacterial clearance during super-infection and show a direct cell intrinsic role for IFNλ signaling on myeloid cells.
Collapse
Affiliation(s)
- Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia B Parks
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexis M Duray
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nevil Abraham
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua J Michel
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Saran Kupul
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rosemary Westcott
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
8
|
Pulikkot S, Paul S, Hall A, Gardner B, Liu W, Hu L, Vella AT, Chen Y, Fan Z. Monitoring Circulating Myeloid Cells in Peritonitis with an In Vivo Imaging Flow Cytometer. Biomolecules 2024; 14:886. [PMID: 39199274 PMCID: PMC11351726 DOI: 10.3390/biom14080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Peritonitis is a common and life-threatening inflammatory disease. Myeloid cells are elevated in the peripheral blood and contribute to peritonitis, but their circulating dynamics are not clear. In vivo flow cytometry (IVFC) is a noninvasive technique for monitoring the dynamics of circulating cells in live animals. It has been extensively used to detect circulating tumor cells, but rarely for monitoring immune cells. Here, we describe a method adapting an intravital microscope for IVFC so that we can monitor LysM-EGFP-labeled circulating myeloid cells in a tumor necrosis factor (TNF) α-induced peritonitis mouse model. Using this IVFC method, we quantified the blood flow velocity and cell concentration in circulation. We observed a significant increase in LysM-EGFP+ cells in circulation after TNFα intraperitoneal (i.p.) injection, which reached a plateau in ~20 min. Conventional cytometry analysis showed that most LysM-EGFP+ cells were neutrophils. Increasing blood neutrophils were accompanied by neutrophil recruitment to the peritoneal cavity and neutrophil emigration from the bone marrow. We then monitored neutrophil CD64 expression in vivo and found a significant increase in TNFα-induced peritonitis. We also found that CD18 blockade doubled the circulating neutrophil number in TNFα-induced peritonitis, suggesting that CD18 is critical for neutrophil recruitment in peritonitis. Overall, we demonstrate that IVFC techniques are useful for studying the circulating dynamics of immune cells during inflammatory diseases.
Collapse
Affiliation(s)
- Sunitha Pulikkot
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Souvik Paul
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Alexxus Hall
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Brianna Gardner
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Wei Liu
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| |
Collapse
|
9
|
Xu Z, Liu F, Ding Y, Pan T, Wu YH, Liu J, Bado IL, Zhang W, Wu L, Gao Y, Hao X, Yu L, Edwards DG, Chan HL, Aguirre S, Dieffenbach MW, Chen E, Shen Y, Hoffman D, Dominguez LB, Rivas CH, Chen X, Wang H, Gugala Z, Satcher RL, Zhang XHF. Unbiased metastatic niche-labeling identifies estrogen receptor-positive macrophages as a barrier of T cell infiltration during bone colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593016. [PMID: 38765966 PMCID: PMC11100675 DOI: 10.1101/2024.05.07.593016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Microenvironment niches determine cellular fates of metastatic cancer cells. However, robust and unbiased approaches to identify niche components and their molecular profiles are lacking. We established Sortase A-Based Microenvironment Niche Tagging (SAMENT), which selectively labels cells encountered by cancer cells during metastatic colonization. SAMENT was applied to multiple cancer models colonizing the same organ and the same cancer to different organs. Common metastatic niche features include macrophage enrichment and T cell depletion. Macrophage niches are phenotypically diverse between different organs. In bone, macrophages express the estrogen receptor alpha (ERα) and exhibit active ERα signaling in male and female hosts. Conditional knockout of Esr1 in macrophages significantly retarded bone colonization by allowing T cell infiltration. ERα expression was also discovered in human bone metastases of both genders. Collectively, we identified a unique population of ERα+ macrophages in the metastatic niche and functionally tied ERα signaling in macrophages to T cell exclusion during metastatic colonization. HIGHLIGHTS SAMENT is a robust metastatic niche-labeling approach amenable to single-cell omics.Metastatic niches are typically enriched with macrophages and depleted of T cells.Direct interaction with cancer cells induces ERα expression in niche macrophages. Knockout of Esr1 in macrophages allows T cell infiltration and retards bone colonization.
Collapse
|
10
|
Desai JV, Zarakas MA, Wishart AL, Roschewski M, Aufiero MA, Donkó Á, Wigerblad G, Shlezinger N, Plate M, James MR, Lim JK, Uzel G, Bergerson JR, Fuss I, Cramer RA, Franco LM, Clark ES, Khan WN, Yamanaka D, Chamilos G, El-Benna J, Kaplan MJ, Staudt LM, Leto TL, Holland SM, Wilson WH, Hohl TM, Lionakis MS. BTK drives neutrophil activation for sterilizing antifungal immunity. J Clin Invest 2024; 134:e176142. [PMID: 38696257 PMCID: PMC11178547 DOI: 10.1172/jci176142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
We describe a previously-unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B-cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, BTKi-treated patients, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in susceptible patients.
Collapse
Affiliation(s)
- Jigar V Desai
- Fungal Pathogenesis Section, LCIM, NIAID, NIH, Bethesda, United States of America
| | - Marissa A Zarakas
- Fungal Pathogenesis Section, LCIM, NIAID, NIH, Bethesda, United States of America
| | - Andrew L Wishart
- Fungal Pathogenesis Section, LCIM, NIAID, NIH, Bethesda, United States of America
| | - Mark Roschewski
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, United States of America
| | - Mariano A Aufiero
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Ágnes Donkó
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, United States of America
| | - Gustaf Wigerblad
- Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, United States of America
| | - Neta Shlezinger
- Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Markus Plate
- Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Matthew R James
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, United States of America
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Gulbu Uzel
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, United States of America
| | - Jenna Re Bergerson
- Primary Immune Deficiency Clinic, LCIM, NIAID, NIH, Bethesda, United States of America
| | - Ivan Fuss
- Mucosal Immunity Section, LCIM, NIAID, NIH, Bethesda, United States of America
| | - Robert A Cramer
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, United States of America
| | - Luis M Franco
- Functional Immunogenomics Section, NIAMS, NIH, Bethesda, United States of America
| | - Emily S Clark
- Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States of America
| | - Wasif N Khan
- Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States of America
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Georgios Chamilos
- Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Greece
| | - Jamel El-Benna
- Center for Research on Inflammation, City University of Paris, INSERM-U1149, CNRS-ERL8252, Paris, France
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, United States of America
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, United States of America
| | - Thomas L Leto
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, United States of America
| | - Steven M Holland
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, United States of America
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, United States of America
| | - Tobias M Hohl
- Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Michail S Lionakis
- Fungal Pathogenesis Section, LCIM, NIAID, NIH, Bethesda, United States of America
| |
Collapse
|
11
|
Oh T, Kang GS, Jo HJ, Park HJ, Lee YR, Ahn GO. DNA-dependent protein kinase regulates cytosolic double-stranded DNA secretion from irradiated macrophages to increase radiosensitivity of tumors. Radiother Oncol 2024; 193:110111. [PMID: 38286241 DOI: 10.1016/j.radonc.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND AND PURPOSE To investigate the molecular mechanism by which irradiated macrophages secrete cytosolic double-stranded DNA (c-dsDNA) to increase radiosensitivity of tumors. MATERIALS AND METHODS Irradiated bone marrow-derived macrophages (BMDM) were co-incubated with irradiated EO771 or MC38 cancer cells to determine clonogenic survival. c-dsDNA were measured by agarose gel or enzyme-linked immunosorbent assay. BMDM or cancer cells were analyzed with immunostaining or western blot. Subcutaneously implanted MC38 cells in myeloid-specific Prkdc knockout (KO) mice or littermate control mice were irradiated with 8 Gy to determine radiosensitivity of tumors. RESULTS We observed that irradiated BMDM significantly increased radiosensitivity of cancer cells. By performing immunostaining, we found that there was a dose-dependent increase in the formation of c-dsDNA and phosphorylation in DNA-dependent protein kinase (DNA-PK) in irradiated BMDM. Importantly, c-dsDNA in irradiated BMDM could be secreted to the extracellular milieu and this process required DNA-PK, which phosphorylated myosin light chain to regulate the secretion. The secreted c-dsDNA from irradiated BMDM then activated toll-like receptor-9 and subsequent nuclear factor kappa-light-chain-enhancer of activated B cells signaling in the adjacent cancer cells inhibiting radiation-induced DNA double strand break repair. Lastly, we observed that irradiated tumors in vivo had a significantly increased number of tumor-associated macrophages (TAM) with phosphorylated DNA-PK expression in the cytosol. Furthermore, tumors grown in myeloid-specific Prkdc KO mice, in which TAM lacked phosphorylated DNA-PK expression were significantly more radioresistant than those of the wild-type control mice. CONCLUSIONS Irradiated macrophages can increase antitumor efficacy of radiotherapy through secretion of c-dsDNA under the regulation of DNA-PK.
Collapse
Affiliation(s)
- Taerim Oh
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Hye-Joon Park
- College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea.
| |
Collapse
|
12
|
Sollberger G, Brenes AJ, Warner J, Arthur JSC, Howden AJM. Quantitative proteomics reveals tissue-specific, infection-induced and species-specific neutrophil protein signatures. Sci Rep 2024; 14:5966. [PMID: 38472281 PMCID: PMC10933280 DOI: 10.1038/s41598-024-56163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Neutrophils are one of the first responders to infection and are a key component of the innate immune system through their ability to phagocytose and kill invading pathogens, secrete antimicrobial molecules and produce extracellular traps. Neutrophils are produced in the bone marrow, circulate within the blood and upon immune challenge migrate to the site of infection. We wanted to understand whether this transition shapes the mouse neutrophil protein landscape, how the mouse neutrophil proteome is impacted by systemic infection and perform a comparative analysis of human and mouse neutrophils. Using quantitative mass spectrometry we reveal tissue-specific, infection-induced and species-specific neutrophil protein signatures. We show a high degree of proteomic conservation between mouse bone marrow, blood and peritoneal neutrophils, but also identify key differences in the molecules that these cells express for sensing and responding to their environment. Systemic infection triggers a change in the bone marrow neutrophil population with considerable impact on the core machinery for protein synthesis and DNA replication along with environmental sensors. We also reveal profound differences in mouse and human blood neutrophils, particularly their granule contents. Our proteomics data provides a valuable resource for understanding neutrophil function and phenotypes across species and model systems.
Collapse
Affiliation(s)
- Gabriel Sollberger
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Alejandro J Brenes
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jordan Warner
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew J M Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
13
|
He XY, Gao Y, Ng D, Michalopoulou E, George S, Adrover JM, Sun L, Albrengues J, Daßler-Plenker J, Han X, Wan L, Wu XS, Shui LS, Huang YH, Liu B, Su C, Spector DL, Vakoc CR, Van Aelst L, Egeblad M. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 2024; 42:474-486.e12. [PMID: 38402610 PMCID: PMC11300849 DOI: 10.1016/j.ccell.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Chronic stress is associated with increased risk of metastasis and poor survival in cancer patients, yet the reasons are unclear. We show that chronic stress increases lung metastasis from disseminated cancer cells 2- to 4-fold in mice. Chronic stress significantly alters the lung microenvironment, with fibronectin accumulation, reduced T cell infiltration, and increased neutrophil infiltration. Depleting neutrophils abolishes stress-induced metastasis. Chronic stress shifts normal circadian rhythm of neutrophils and causes increased neutrophil extracellular trap (NET) formation via glucocorticoid release. In mice with neutrophil-specific glucocorticoid receptor deletion, chronic stress fails to increase NETs and metastasis. Furthermore, digesting NETs with DNase I prevents chronic stress-induced metastasis. Together, our data show that glucocorticoids released during chronic stress cause NET formation and establish a metastasis-promoting microenvironment. Therefore, NETs could be targets for preventing metastatic recurrence in cancer patients, many of whom will experience chronic stress due to their disease.
Collapse
Affiliation(s)
- Xue-Yan He
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | | | - Shanu George
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Jose M Adrover
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Lijuan Sun
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Jean Albrengues
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Université Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | | | - Xiao Han
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ledong Wan
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Xiaoli Sky Wu
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Longling S Shui
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Bodu Liu
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Vakoc
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
14
|
Fetit R, McLaren AS, White M, Mills ML, Falconer J, Cortes-Lavaud X, Gilroy K, Lannagan TRM, Ridgway RA, Nixon C, Naiker V, Njunge R, Clarke CJ, Whyte D, Kirschner K, Jackstadt R, Norman J, Carlin LM, Campbell AD, Sansom OJ, Steele CW. Characterizing Neutrophil Subtypes in Cancer Using scRNA Sequencing Demonstrates the Importance of IL1β/CXCR2 Axis in Generation of Metastasis-specific Neutrophils. CANCER RESEARCH COMMUNICATIONS 2024; 4:588-606. [PMID: 38358352 PMCID: PMC10903300 DOI: 10.1158/2767-9764.crc-23-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1β/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1β/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1β/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.
Collapse
Affiliation(s)
- Rana Fetit
- CRUK Scotland Institute, Glasgow, United Kingdom
| | - Alistair S McLaren
- CRUK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Mark White
- CRUK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | | | | | | | - Kathryn Gilroy
- CRUK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Colin Nixon
- CRUK Scotland Institute, Glasgow, United Kingdom
| | | | - Renee Njunge
- CRUK Scotland Institute, Glasgow, United Kingdom
| | | | - Declan Whyte
- CRUK Scotland Institute, Glasgow, United Kingdom
| | - Kristina Kirschner
- CRUK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom
| | | | - Jim Norman
- CRUK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom
| | - Leo M Carlin
- CRUK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom
| | | | - Owen J Sansom
- CRUK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom
| | - Colin W Steele
- CRUK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom
- Glasgow Royal Infirmary, Glasgow, United Kingdom
| |
Collapse
|
15
|
Divolis G, Synolaki E, Doulou A, Gavriil A, Giannouli CC, Apostolidou A, Foster ML, Matzuk MM, Skendros P, Galani IE, Sideras P. Neutrophil-derived Activin-A moderates their pro-NETotic activity and attenuates collateral tissue damage caused by Influenza A virus infection. Front Immunol 2024; 15:1302489. [PMID: 38476229 PMCID: PMC10929267 DOI: 10.3389/fimmu.2024.1302489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Background Pre-neutrophils, while developing in the bone marrow, transcribe the Inhba gene and synthesize Activin-A protein, which they store and release at the earliest stage of their activation in the periphery. However, the role of neutrophil-derived Activin-A is not completely understood. Methods To address this issue, we developed a neutrophil-specific Activin-A-deficient animal model (S100a8-Cre/Inhba fl/fl mice) and analyzed the immune response to Influenza A virus (IAV) infection. More specifically, evaluation of body weight and lung mechanics, molecular and cellular analyses of bronchoalveolar lavage fluids, flow cytometry and cell sorting of lung cells, as well as histopathological analysis of lung tissues, were performed in PBS-treated and IAV-infected transgenic animals. Results We found that neutrophil-specific Activin-A deficiency led to exacerbated pulmonary inflammation and widespread hemorrhagic histopathology in the lungs of IAV-infected animals that was associated with an exuberant production of neutrophil extracellular traps (NETs). Moreover, deletion of the Activin-A receptor ALK4/ACVR1B in neutrophils exacerbated IAV-induced pathology as well, suggesting that neutrophils themselves are potential targets of Activin-A-mediated signaling. The pro-NETotic tendency of Activin-A-deficient neutrophils was further verified in the context of thioglycollate-induced peritonitis, a model characterized by robust peritoneal neutrophilia. Of importance, transcriptome analysis of Activin-A-deficient neutrophils revealed alterations consistent with a predisposition for NET release. Conclusion Collectively, our data demonstrate that Activin-A, secreted by neutrophils upon their activation in the periphery, acts as a feedback mechanism to moderate their pro-NETotic tendency and limit the collateral tissue damage caused by neutrophil excess activation during the inflammatory response.
Collapse
Affiliation(s)
- Georgios Divolis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evgenia Synolaki
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Athanasia Doulou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ariana Gavriil
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Christina C. Giannouli
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasia Apostolidou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna-Evdokia Galani
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Paschalis Sideras
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
16
|
Guy A, Garcia G, Gourdou-Latyszenok V, Wolff-Trombini L, Josserand L, Kimmerlin Q, Favre S, Kilani B, Marty C, Boulaftali Y, Labrouche-Colomer S, Mansier O, James C. Platelets and neutrophils cooperate to induce increased neutrophil extracellular trap formation in JAK2V617F myeloproliferative neoplasms. J Thromb Haemost 2024; 22:172-187. [PMID: 37678548 DOI: 10.1016/j.jtha.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Neutrophils participate in the pathogenesis of thrombosis through the formation of neutrophil extracellular traps (NETs). Thrombosis is the main cause of morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). Recent studies have shown an increase in NET formation (NETosis) both in patients with JAK2V617F neutrophils and in mouse models, and reported the participation of NETosis in the pathophysiology of thrombosis in mice. OBJECTIVES This study investigated whether JAK2V617F neutrophils are sufficient to promote thrombosis or whether their cooperation with other blood cell types is necessary. METHODS NETosis was studied in PF4iCre;Jak2V617F/WT mice expressing JAK2V617F in all hematopoietic lineages, as occurs in MPNs, and in MRP8Cre;Jak2V617F/WT mice in which JAK2V617F is expressed only in leukocytes. RESULTS In PF4iCre;Jak2V617F/WT mice, an increase in NETosis and spontaneous lung thrombosis abrogated by DNAse administration were observed. The absence of spontaneous NETosis or lung thrombosis in MRP8Cre;Jak2V617F/WT mice suggested that mutated neutrophils alone are not sufficient to induce thrombosis. Ex vivo experiments demonstrated that JAK2V617F-mutated platelets trigger NETosis by JAK2V617F-mutated neutrophils. Aspirin treatment in PF4iCre;Jak2V617F/WT mice reduced NETosis and reduced lung thrombosis. In cytoreductive-therapy-free patients with MPN treated with aspirin, plasma NET marker concentrations were lower than that in patients with MPN not treated with aspirin. CONCLUSION Our study demonstrates that JAK2V617F neutrophils alone are not sufficient to promote thrombosis; rather, platelets cooperate with neutrophils to promote NETosis in vivo. A new role for aspirin in thrombosis prevention in MPNs was also identified.
Collapse
Affiliation(s)
- Alexandre Guy
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France; Laboratory of Hematology, Bordeaux University Hospital, Pessac, France. https://twitter.com/Alexandreguy6
| | - Geoffrey Garcia
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France. https://twitter.com/GeofGarciaVirginie
| | - Virginie Gourdou-Latyszenok
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France. https://twitter.com/GourdouV
| | - Laura Wolff-Trombini
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France. https://twitter.com/TrombiniWolff
| | - Lara Josserand
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France
| | - Quentin Kimmerlin
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Simon Favre
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France
| | - Badr Kilani
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France
| | - Caroline Marty
- Institut national de la santé et de la recherche médicale, UMR1287, University of Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Yacine Boulaftali
- Paris Diderot University, Institut national de la santé et de la recherche médicale, Unité Mixte de Recherche_S1148, Laboratory for Vascular Translational Science, Paris, France
| | - Sylvie Labrouche-Colomer
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France; Laboratory of Hematology, Bordeaux University Hospital, Pessac, France
| | - Olivier Mansier
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France; Laboratory of Hematology, Bordeaux University Hospital, Pessac, France
| | - Chloé James
- University of Bordeaux, Institut national de la santé et de la recherche médicale, Biologie des maladies cardio-vasculaires, U1034, Pessac, France; Laboratory of Hematology, Bordeaux University Hospital, Pessac, France.
| |
Collapse
|
17
|
Singhal R, Kotla NK, Solanki S, Huang W, Bell HN, El-Derany MO, Castillo C, Shah YM. Disruption of hypoxia-inducible factor-2α in neutrophils decreases colitis-associated colon cancer. Am J Physiol Gastrointest Liver Physiol 2024; 326:G53-G66. [PMID: 37933447 PMCID: PMC11208019 DOI: 10.1152/ajpgi.00182.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Neutrophils are abundant immune cells in the colon tumor microenvironment. Studies have shown that neutrophils are recruited into hypoxic foci in colon cancer. However, the impact of hypoxia signaling on neutrophil function and its involvement in colon tumorigenesis remain unclear. To address this, we generated mice with a deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α in neutrophils driven by the MRP8Cre (HIF-1αΔNeu) or (HIF-2αΔNeu) and littermate controls. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colon cancer, the disruption of neutrophils-HIF-1α did not result in any significant changes in body weight, colon length, tumor size, proliferation, or burden. However, the disruption of HIF-2α in neutrophils led to a slight increase in body weight, a significant decrease in the number of tumors, and a reduction in tumor size and volume compared with their littermate controls. Histological analysis of colon tissue from mice with HIF-2α-deficient neutrophils revealed notable reductions in proliferation as compared with control mice. In addition, we observed reduced levels of proinflammatory cytokines, such as TNF-α and IL-1β, in neutrophil-specific HIF-2α-deficient mice in both the tumor tissue as well as the neutrophils. Importantly, it is worth noting that the reduced tumorigenesis associated with HIF-2α deficiency in neutrophils was not evident in already established syngeneic tumors or a DSS-induced inflammation model, indicating a potential role of HIF-2α specifically in colon tumorigenesis. In conclusion, we found that the loss of neutrophil-specific HIF-2α slows colon tumor growth and progression by reducing the levels of inflammatory mediators.NEW & NOTEWORTHY Despite the importance of hypoxia and neutrophils in colorectal cancer (CRC), the contribution of neutrophil-specific HIFs to colon tumorigenesis is not known. We describe that neutrophil HIF-1α has no impact on colon cancer, whereas neutrophil HIF-2α loss reduces CRC growth by decreasing proinflammatory and immunosuppressive cytokines. Furthermore, neutrophil HIF-2α does not reduce preestablished tumor growth or inflammation-induced colitis. The present study offers novel potential of neutrophil HIF-2α as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Nikhil Kumar Kotla
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Cellular and Molecular Biology and Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, United States
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
18
|
LaMarche NM, Hegde S, Park MD, Maier BB, Troncoso L, Le Berichel J, Hamon P, Belabed M, Mattiuz R, Hennequin C, Chin T, Reid AM, Reyes-Torres I, Nemeth E, Zhang R, Olson OC, Doroshow DB, Rohs NC, Gomez JE, Veluswamy R, Hall N, Venturini N, Ginhoux F, Liu Z, Buckup M, Figueiredo I, Roudko V, Miyake K, Karasuyama H, Gonzalez-Kozlova E, Gnjatic S, Passegué E, Kim-Schulze S, Brown BD, Hirsch FR, Kim BS, Marron TU, Merad M. An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis. Nature 2024; 625:166-174. [PMID: 38057662 PMCID: PMC11189607 DOI: 10.1038/s41586-023-06797-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.
Collapse
Affiliation(s)
- Nelson M LaMarche
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara B Maier
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Leanna Troncoso
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clotilde Hennequin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Theodore Chin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda M Reid
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iván Reyes-Torres
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erika Nemeth
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruiyuan Zhang
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Deborah B Doroshow
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas C Rohs
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge E Gomez
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajwanth Veluswamy
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Hall
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Venturini
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- SingHealth Duke-NUS Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Buckup
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Igor Figueiredo
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Edgar Gonzalez-Kozlova
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Seunghee Kim-Schulze
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred R Hirsch
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian S Kim
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Thomas U Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Kotov DI, Lee OV, Fattinger SA, Langner CA, Guillen JV, Peters JM, Moon A, Burd EM, Witt KC, Stetson DB, Jaye DL, Bryson BD, Vance RE. Early cellular mechanisms of type I interferon-driven susceptibility to tuberculosis. Cell 2023; 186:5536-5553.e22. [PMID: 38029747 PMCID: PMC10757650 DOI: 10.1016/j.cell.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/16/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.
Collapse
Affiliation(s)
- Dmitri I Kotov
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Ophelia V Lee
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefan A Fattinger
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Charlotte A Langner
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jaresley V Guillen
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andres Moon
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Kristen C Witt
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Wang Y, Liu S, Yan J, Baseer-Tariq S, Salla B, Ji L, Li M, Chi P, Deng L. Activating neutrophils by co-administration of immunogenic recombinant modified vaccinia virus Ankara and granulocyte colony-stimulating factor for the treatment of malignant peripheral nerve sheath tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569123. [PMID: 38076896 PMCID: PMC10705442 DOI: 10.1101/2023.11.29.569123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare, aggressive soft-tissue sarcoma with a poor prognosis and is insensitive to immune checkpoint blockade (ICB) therapy. Loss-of-function of the histone modifying polycomb repressive complex 2 (PRC2) components, EED or SUZ12, is one of the main mechanisms of malignant transformation. In a murine model of MPNST, PRC2-loss tumors have an "immune desert" phenotype and intratumoral (IT) delivery immunogenic modified vaccinia virus Ankara (MVA) sensitized the PRC2-loss tumors to ICB. Here we show that IT MQ833, a second-generation recombinant modified vaccinia virus Ankara virus, results in neutrophil recruitment and activation and neutrophil-dependent tumor killing in the MPNST model. MQ833 was engineered by deleting three viral immune evasion genes, E5R, E3L, and WR199, and expressing three transgenes, including the two membrane-bound Flt3L and OX40L, and IL-12 with an extracellular matrix anchoring signal. Furthermore, we explored strategies to enhance anti-tumor effects of MQ833 by co-administration of granulocyte colony-stimulating factor (G-CSF).
Collapse
|
21
|
Zhu Y, Liu Y, Ma Y, Chen L, Huang H, Huang S, Zhang H, He Y, Tan C, He Y, Qiang L. Macrophage autophagy deficiency-induced CEBPB accumulation alleviates atopic dermatitis via impairing M2 polarization. Cell Rep 2023; 42:113430. [PMID: 37963021 DOI: 10.1016/j.celrep.2023.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/02/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Macroautophagy/autophagy plays a pivotal role in immune regulation. Its significance is evident in modulation of immune cell differentiation and maturation, physiologically and pathologically. Here, we investigate the role of macrophage autophagy on the development of atopic dermatitis (AD). By employing an MC903-induced AD mice model, we observe reduced cutaneous inflammation in macrophage Atg5 cKO mice compared with WT mice. Notably, there is a decreased infiltration of M2 macrophages in lesional skin from Atg5 cKO mice. Furthermore, impaired STAT6 phosphorylation and diminished expression of M2 markers are detected in autophagy-deficient macrophages. Our mechanistic exploration reveals that CEBPB drives the transcription of SOCS1/3 and SQSTM1/p62-mediated autophagy degrades CEBPB normally. Autophagy deficiency leads to CEBPB accumulation, and further promotes the expression of SOCS1/3. This process inhibits JAK1-STAT6 pathway activation and M2 marker expression. Together, our study indicates that autophagy is required for M2 activation and macrophage autophagy may be a promising target for AD intervention.
Collapse
Affiliation(s)
- Yongcheng Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Yuxiang Ma
- Department of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201213, China.
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huiling Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Cheng Tan
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China.
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
22
|
Banerji R, Grifno GN, Shi L, Smolen D, LeBourdais R, Muhvich J, Eberman C, Hiller BE, Lee J, Regan K, Zheng S, Zhang S, Jiang J, Raslan AA, Breda JC, Pihl R, Traber K, Mazzilli S, Ligresti G, Mizgerd JP, Suki B, Nia HT. Crystal ribcage: a platform for probing real-time lung function at cellular resolution. Nat Methods 2023; 20:1790-1801. [PMID: 37710017 PMCID: PMC10860663 DOI: 10.1038/s41592-023-02004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Understanding the dynamic pathogenesis and treatment response in pulmonary diseases requires probing the lung at cellular resolution in real time. Despite advances in intravital imaging, optical imaging of the lung during active respiration and circulation has remained challenging. Here, we introduce the crystal ribcage: a transparent ribcage that allows multiscale optical imaging of the functioning lung from whole-organ to single-cell level. It enables the modulation of lung biophysics and immunity through intravascular, intrapulmonary, intraparenchymal and optogenetic interventions, and it preserves the three-dimensional architecture, air-liquid interface, cellular diversity and respiratory-circulatory functions of the lung. Utilizing these capabilities on murine models of pulmonary pathologies we probed remodeling of respiratory-circulatory functions at the single-alveolus and capillary levels during disease progression. The crystal ribcage and its broad applications presented here will facilitate further studies of nearly any pulmonary disease as well as lead to the identification of new targets for treatment strategies.
Collapse
Affiliation(s)
- Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gabrielle N Grifno
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Linzheng Shi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Dylan Smolen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rob LeBourdais
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Johnathan Muhvich
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cate Eberman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Bradley E Hiller
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ahmed A Raslan
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Julia C Breda
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Riley Pihl
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Katrina Traber
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah Mazzilli
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
Van Damme KFA, Hertens P, Martens A, Gilis E, Priem D, Bruggeman I, Fossoul A, Declercq J, Aegerter H, Wullaert A, Hochepied T, Hoste E, Vande Walle L, Lamkanfi M, Savvides SN, Elewaut D, Lambrecht BN, van Loo G. Protein citrullination and NET formation do not contribute to the pathology of A20/TNFAIP3 mutant mice. Sci Rep 2023; 13:17992. [PMID: 37865713 PMCID: PMC10590390 DOI: 10.1038/s41598-023-45324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.
Collapse
Affiliation(s)
- Karel F A Van Damme
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
| | - Pieter Hertens
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Arne Martens
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Elisabeth Gilis
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Dario Priem
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Inge Bruggeman
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Amelie Fossoul
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Jozefien Declercq
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
| | - Helena Aegerter
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
| | - Andy Wullaert
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Laboratory of Proteinscience, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Tino Hochepied
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Esther Hoste
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | | | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
| | - Savvas N Savvides
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
| | - Dirk Elewaut
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Bart N Lambrecht
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Geert van Loo
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
24
|
Torres-Montaner A. Interactions between the DNA Damage Response and the Telomere Complex in Carcinogenesis: A Hypothesis. Curr Issues Mol Biol 2023; 45:7582-7616. [PMID: 37754262 PMCID: PMC10527771 DOI: 10.3390/cimb45090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Contrary to what was once thought, direct cancer originating from normal stem cells seems to be extremely rare. This is consistent with a preneoplastic period of telomere length reduction/damage in committed cells that becomes stabilized in transformation. Multiple observations suggest that telomere damage is an obligatory step preceding its stabilization. During tissue turnover, the telomeres of cells undergoing differentiation can be damaged as a consequence of defective DNA repair caused by endogenous or exogenous agents. This may result in the emergence of new mechanism of telomere maintenance which is the final outcome of DNA damage and the initial signal that triggers malignant transformation. Instead, transformation of stem cells is directly induced by primary derangement of telomere maintenance mechanisms. The newly modified telomere complex may promote survival of cancer stem cells, independently of telomere maintenance. An inherent resistance of stem cells to transformation may be linked to specific, robust mechanisms that help maintain telomere integrity.
Collapse
Affiliation(s)
- Antonio Torres-Montaner
- Department of Pathology, Queen’s Hospital, Rom Valley Way, Romford, London RM7 OAG, UK;
- Departamento de Bioquímica y Biologia Molecular, Universidad de Cadiz, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
25
|
Kao KD, Grasberger H, El-Zaatari M. The Cxcr2 + subset of the S100a8 + gastric granylocytic myeloid-derived suppressor cell population (G-MDSC) regulates gastric pathology. Front Immunol 2023; 14:1147695. [PMID: 37744359 PMCID: PMC10514515 DOI: 10.3389/fimmu.2023.1147695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/27/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Gastric myeloid-derived suppressor cells (MDSCs) are a prominent population that expands during gastric pre-neoplastic and neoplastic development in humans and mice. However, the heterogeneity of this population has circumvented the ability to study these cells or understand their functions. Aside from Schlafen-4+ (Slfn-4+) MDSCs in mouse studies, which constitute a subset of this population, limitations exist in characterizing the heterogeneity of the gastric CD11b+Ly6G+ population and targeting its different subsets. Here we identify S100a8 as a pan-specific marker for this population and utilize it to study the role of the S100a8+Cxcr2+ subset. Methods We profiled gastric CD11b+Ly6G+ versus CD11b+Ly6G- myeloid cells by transcriptomic and single-cell RNA sequencing. We identified S100a8 as a pan-specific marker of the gastric granulocytic MDSC (G-MDSC) population, and generated S100a8CreCxcr2flox/flox to study the effects of Cxcr2 knockdown. Results Following 6-months of Helicobacter felis infection, gastric CD11b+Ly6G+ G-MDSCs were highly enriched for the expression of S100a8, S100a9, Slfn4, Cxcr2, Irg1, Il1f9, Hcar2, Retnlg, Wfdc21, Trem1, Csf3R, Nlrp3, and Il1b. The expression of these distinct genes following 6mo H. felis infection marked heterogeneous subpopulations, but they all represented a subset of S100a8+ cells. S100a8 was identified as a pan-marker for CD11b+Ly6G+ cells arising in chronic inflammation, but not neutrophils recruited during acute gut infection. 6mo Helicobacter felis-infected S100a8CreCxcr2flox/flox mice exhibited worsened gastric metaplastic pathology than Cxcr2flox/flox mice, which was associated with dysregulated lipid metabolism and peroxidation. Conclusion S100a8 is a pan-specific marker that can be used to target gastric G-MDSC subpopulations, of which the Cxcr2+ subset regulates gastric immunopathology and associates with the regulation of lipid peroxidation.
Collapse
Affiliation(s)
| | | | - Mohamad El-Zaatari
- Division of Gastroenteorlogy, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States
| |
Collapse
|
26
|
Wang C, Zheng X, Zhang J, Jiang X, Wang J, Li Y, Li X, Shen G, Peng J, Zheng P, Gu Y, Chen J, Lin M, Deng C, Gao H, Lu Z, Zhao Y, Luo M. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 2023; 621:830-839. [PMID: 37674079 DOI: 10.1038/s41586-023-06511-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
The immune-suppressive tumour microenvironment represents a major obstacle to effective immunotherapy1,2. Pathologically activated neutrophils, also known as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), are a critical component of the tumour microenvironment and have crucial roles in tumour progression and therapy resistance2-4. Identification of the key molecules on PMN-MDSCs is required to selectively target these cells for tumour treatment. Here, we performed an in vivo CRISPR-Cas9 screen in a tumour mouse model and identified CD300ld as a top candidate of tumour-favouring receptors. CD300ld is specifically expressed in normal neutrophils and is upregulated in PMN-MDSCs upon tumour-bearing. CD300ld knockout inhibits the development of multiple tumour types in a PMN-MDSC-dependent manner. CD300ld is required for the recruitment of PMN-MDSCs into tumours and their function to suppress T cell activation. CD300ld acts via the STAT3-S100A8/A9 axis, and knockout of Cd300ld reverses the tumour immune-suppressive microenvironment. CD300ld is upregulated in human cancers and shows an unfavourable correlation with patient survival. Blocking CD300ld activity inhibits tumour development and has synergistic effects with anti-PD1. Our study identifies CD300ld as a critical immune suppressor present on PMN-MDSCs, being required for tumour immune resistance and providing a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoxiong Wang
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xichen Zheng
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinlan Zhang
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoyi Jiang
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Zhongshan-Xuhui Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuwei Li
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guanghui Shen
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiayin Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peixuan Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunqing Gu
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiaojiao Chen
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changwen Deng
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hai Gao
- Zhongshan-Xuhui Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Zhigang Lu
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Min Luo
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Németh T, Balogh L, Káposztás E, Szilveszter KP, Mócsai A. Neutrophil-Specific Syk Expression Is Crucial for Skin Disease in Experimental Epidermolysis Bullosa Acquisita. J Invest Dermatol 2023; 143:1147-1156. [PMID: 36641133 DOI: 10.1016/j.jid.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Autoantibodies against the dermal-epidermal junction component type VII collagen (C7) trigger skin disease in the inflammatory form of epidermolysis bullosa acquisita. We have previously identified the Syk tyrosine kinase as a crucial participant in anti-C7 antibody-induced experimental epidermolysis bullosa acquisita. However, it is still unclear which cellular lineage needs to express Syk during the disease process. In this study, we show that the loss of Syk, specifically from neutrophils, results in complete protection from the anti-C7 antibody-initiated skin disease both macroscopically and microscopically. Mice with a neutrophil-specific Syk deletion had decreased neutrophil accumulation and abrogated CXCL2 and IL-1β levels in the skin upon anti-C7 treatment, whereas isolated Syk-deficient neutrophils had decreased superoxide release, cell spreading, and cytokine release on C7-anti-C7 immune complex surfaces. Entospletinib and lanraplenib, two second-generation Syk-specific inhibitors, effectively abrogated immune complex-induced responses of human neutrophils and decreased the anti-C7 antibody-initiated, neutrophil-mediated ex vivo dermal-epidermal separation in human skin samples. Taken together, these results point to a crucial role for Syk in neutrophils in the development and progression of epidermolysis bullosa acquisita and suggest Syk inhibition as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary; Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| | - Lili Balogh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Eszter Káposztás
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
28
|
Zhang X, Li S, Malik I, Do MH, Ji L, Chou C, Shi W, Capistrano KJ, Zhang J, Hsu TW, Nixon BG, Xu K, Wang X, Ballabio A, Schmidt LS, Linehan WM, Li MO. Reprogramming tumour-associated macrophages to outcompete cancer cells. Nature 2023; 619:616-623. [PMID: 37380769 PMCID: PMC10719927 DOI: 10.1038/s41586-023-06256-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
In metazoan organisms, cell competition acts as a quality control mechanism to eliminate unfit cells in favour of their more robust neighbours1,2. This mechanism has the potential to be maladapted, promoting the selection of aggressive cancer cells3-6. Tumours are metabolically active and are populated by stroma cells7,8, but how environmental factors affect cancer cell competition remains largely unknown. Here we show that tumour-associated macrophages (TAMs) can be dietarily or genetically reprogrammed to outcompete MYC-overexpressing cancer cells. In a mouse model of breast cancer, MYC overexpression resulted in an mTORC1-dependent 'winner' cancer cell state. A low-protein diet inhibited mTORC1 signalling in cancer cells and reduced tumour growth, owing unexpectedly to activation of the transcription factors TFEB and TFE3 and mTORC1 in TAMs. Diet-derived cytosolic amino acids are sensed by Rag GTPases through the GTPase-activating proteins GATOR1 and FLCN to control Rag GTPase effectors including TFEB and TFE39-14. Depletion of GATOR1 in TAMs suppressed the activation of TFEB, TFE3 and mTORC1 under the low-protein diet condition, causing accelerated tumour growth; conversely, depletion of FLCN or Rag GTPases in TAMs activated TFEB, TFE3 and mTORC1 under the normal protein diet condition, causing decelerated tumour growth. Furthermore, mTORC1 hyperactivation in TAMs and cancer cells and their competitive fitness were dependent on the endolysosomal engulfment regulator PIKfyve. Thus, noncanonical engulfment-mediated Rag GTPase-independent mTORC1 signalling in TAMs controls competition between TAMs and cancer cells, which defines a novel innate immune tumour suppression pathway that could be targeted for cancer therapy.
Collapse
Affiliation(s)
- Xian Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shun Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isha Malik
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mytrang H Do
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Liangliang Ji
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chun Chou
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Shi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristelle J Capistrano
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jing Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ting-Wei Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Briana G Nixon
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Ke Xu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
- META Pharmaceuticals, Shenzhen, China
| | - Xinxin Wang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
29
|
Desai JV, Kumar D, Freiwald T, Chauss D, Johnson MD, Abers MS, Steinbrink JM, Perfect JR, Alexander B, Matzaraki V, Snarr BD, Zarakas MA, Oikonomou V, Silva LM, Shivarathri R, Beltran E, Demontel LN, Wang L, Lim JK, Launder D, Conti HR, Swamydas M, McClain MT, Moutsopoulos NM, Kazemian M, Netea MG, Kumar V, Köhl J, Kemper C, Afzali B, Lionakis MS. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell 2023; 186:2802-2822.e22. [PMID: 37220746 PMCID: PMC10330337 DOI: 10.1016/j.cell.2023.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.
Collapse
Affiliation(s)
- Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA; Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | | | - Michael S Abers
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Julie M Steinbrink
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - John R Perfect
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Barbara Alexander
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Vasiliki Matzaraki
- Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Brendan D Snarr
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Marissa A Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Lakmali M Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Raju Shivarathri
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Emily Beltran
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luciana Negro Demontel
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Micah T McClain
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
30
|
Cronin SJF, Tejada MA, Song R, Laval K, Cikes D, Ji M, Brai A, Stadlmann J, Novatchikova M, Perlot T, Ali OH, Botta L, Decker T, Lazovic J, Hagelkruys A, Enquist L, Rao S, Koyuncu OO, Penninger JM. Pseudorabies virus hijacks DDX3X, initiating an addictive "mad itch" and immune suppression, to facilitate viral spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539956. [PMID: 37214906 PMCID: PMC10197578 DOI: 10.1101/2023.05.09.539956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Infections with defined Herpesviruses, such as Pseudorabies virus (PRV) and Varicella zoster virus (VZV) can cause neuropathic itch, referred to as "mad itch" in multiple species. The underlying mechanisms involved in neuropathic "mad itch" are poorly understood. Here, we show that PRV infections hijack the RNA helicase DDX3X in sensory neurons to facilitate anterograde transport of the virus along axons. PRV induces re-localization of DDX3X from the cell body to the axons which ultimately leads to death of the infected sensory neurons. Inducible genetic ablation of Ddx3x in sensory neurons results in neuronal death and "mad itch" in mice. This neuropathic "mad itch" is propagated through activation of the opioid system making the animals "addicted to itch". Moreover, we show that PRV co-opts and diverts T cell development in the thymus via a sensory neuron-IL-6-hypothalamus-corticosterone stress pathway. Our data reveal how PRV, through regulation of DDX3X in sensory neurons, travels along axons and triggers neuropathic itch and immune deviations to initiate pathophysiological programs which facilitate its spread to enhance infectivity.
Collapse
Affiliation(s)
- Shane J F Cronin
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Miguel A Tejada
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Ren Song
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Domagoj Cikes
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Johannes Stadlmann
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Maria Novatchikova
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Thomas Perlot
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Omar Hasan Ali
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Institute of Immunobiology, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007 St. Gallen, Switzerland
- Department of Dermatology, University of Zurich, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Lorenzo Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Jelena Lazovic
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Lynn Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Orkide O Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
31
|
Turkalj S, Jakobsen NA, Groom A, Metzner M, Riva SG, Gür ER, Usukhbayar B, Salazar MA, Hentges LD, Mickute G, Clark K, Sopp P, Davies JOJ, Hughes JR, Vyas P. GTAC enables parallel genotyping of multiple genomic loci with chromatin accessibility profiling in single cells. Cell Stem Cell 2023; 30:722-740.e11. [PMID: 37146586 DOI: 10.1016/j.stem.2023.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Angus Groom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simone G Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Ravza Gür
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gerda Mickute
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
32
|
Baragetti A, Da Dalt L, Moregola A, Svecla M, Terenghi O, Mattavelli E, De Gaetano LN, Uboldi P, Catapano AL, Norata GD. Neutrophil aging exacerbates high fat diet induced metabolic alterations. Metabolism 2023; 144:155576. [PMID: 37116643 DOI: 10.1016/j.metabol.2023.155576] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND High fat diet (HFD) chronically hyper-activate the myeloid cell precursors, but whether it affects the neutrophil aging is unknown. PURPOSE We characterized how HFD impacts neutrophil aging, infiltration in metabolic tissues and if this aging, in turn, modulates the development of metabolic alterations. We immunophenotyped neutrophils and characterized the metabolic responses in physiology (wild-type mice, WT) and in mice with constitutively aged neutrophils (MRP8 driven conditional deletion of CXCR4; herein CXCR4fl/flCre+) or with constitutively fresh neutrophils (MRP8 driven conditional deletion of CXCR2; CXCR2fl/flCre+), following 20 weeks of HFD feeding (45 % kcal from fat). FINDINGS After 20 weeks HFD, the gluco-metabolic profile of CXCR4fl/flCre+ mice was comparable to that of WT mice, while CXCR2fl/flCre+ mice were protected from metabolic alterations. CXCR4fl/flCre+ infiltrated more, but CXCR2fl/flCre+ neutrophils infiltrated less, in liver and visceral adipose tissue (VAT). As consequence, while CXCR4fl/flCre+ resulted into hepatic "suicidal" neutrophils extracellular traps (NETs) and altered immune cell architecture in VAT, CXCR2fl/flCre+ promoted proresolutive hepatic NETs and reduced accumulation of pro-inflammatory macrophages in VAT. In humans, higher Cxcl12 (CXCR4 ligand) plasma levels correlated with visceral adiposity while higher levels of Cxcl1, the ligand of CXCR2, correlated with indexes of hepatic steatosis, adiposity and metabolic syndrome. CONCLUSIONS Neutrophil aging might contribute to the development of HFD induced metabolic disorders.
Collapse
Affiliation(s)
- Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Moregola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ottavia Terenghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisa Mattavelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Centre for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy
| | - Lucia Nicolini De Gaetano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Patrizia Uboldi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alberico Luigi Catapano
- SISA Centre for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Centre for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.
| |
Collapse
|
33
|
Wang YT, Sansone A, Smirnov A, Stallings CL, Orvedahl A. Myeloid autophagy genes protect mice against fatal TNF- and LPS-induced cytokine storm syndromes. Autophagy 2023; 19:1114-1127. [PMID: 36056542 PMCID: PMC10012903 DOI: 10.1080/15548627.2022.2116675] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
ABBREVIATIONS ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; ATG16L1: autophagy related 16-like 1 (S. cerevisiae); BECN1: beclin 1, autophagy related; CASP1: caspase 1; CASP4/CASP11: caspase 4, apoptosis-related cysteine peptidase; CIM: conditionally immortalized macrophage; CLP: cecal ligation and puncture; CSS: cytokine storm syndrome; DC: dendritic cell; IFNG/IFNγ: interferon gamma; IFNGR1: interferon gamma receptor 1; ip: intraperitoneal; iv: intravenous; IL12/p70: interleukin 12, p70 heterodimer; IL18: Interleukin 18; ITGAX/CD11c: integrin alpha X; LAP: LC3-associated phagocytosis; LPS: lipopolysaccharide; LYZ2/LYSM: lysozyme 2; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; RB1CC1/FIP200: RB1-inducible coiled-coil 1; S100A8/MRP8: S100 calcium binding protein A8 (calgranulin A); TICAM1/TRIF: TIR domain containing adaptor molecule 1; TLR4: toll-like receptor 4; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Center for Infectious Disease Research, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, Haidian, China
| | - Amy Sansone
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Asya Smirnov
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
34
|
Missinato MA, Murphy S, Lynott M, Yu MS, Kervadec A, Chang YL, Kannan S, Loreti M, Lee C, Amatya P, Tanaka H, Huang CT, Puri PL, Kwon C, Adams PD, Qian L, Sacco A, Andersen P, Colas AR. Conserved transcription factors promote cell fate stability and restrict reprogramming potential in differentiated cells. Nat Commun 2023; 14:1709. [PMID: 36973293 PMCID: PMC10043290 DOI: 10.1038/s41467-023-37256-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Defining the mechanisms safeguarding cell fate identity in differentiated cells is crucial to improve 1) - our understanding of how differentiation is maintained in healthy tissues or altered in a disease state, and 2) - our ability to use cell fate reprogramming for regenerative purposes. Here, using a genome-wide transcription factor screen followed by validation steps in a variety of reprogramming assays (cardiac, neural and iPSC in fibroblasts and endothelial cells), we identified a set of four transcription factors (ATF7IP, JUNB, SP7, and ZNF207 [AJSZ]) that robustly opposes cell fate reprogramming in both lineage and cell type independent manners. Mechanistically, our integrated multi-omics approach (ChIP, ATAC and RNA-seq) revealed that AJSZ oppose cell fate reprogramming by 1) - maintaining chromatin enriched for reprogramming TF motifs in a closed state and 2) - downregulating genes required for reprogramming. Finally, KD of AJSZ in combination with MGT overexpression, significantly reduced scar size and improved heart function by 50%, as compared to MGT alone post-myocardial infarction. Collectively, our study suggests that inhibition of barrier to reprogramming mechanisms represents a promising therapeutic avenue to improve adult organ function post-injury.
Collapse
Affiliation(s)
- Maria A Missinato
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sean Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Michael S Yu
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yu-Ling Chang
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Lee
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Prashila Amatya
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hiroshi Tanaka
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chun-Teng Huang
- Viral Vector Core Facility Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
35
|
Goldberg EL, Letian A, Dlugos T, Leveau C, Dixit VD. Innate immune cell-intrinsic ketogenesis is dispensable for organismal metabolism and age-related inflammation. J Biol Chem 2023; 299:103005. [PMID: 36775129 PMCID: PMC10025153 DOI: 10.1016/j.jbc.2023.103005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Aging is accompanied by chronic low-grade inflammation, but the mechanisms that allow this to persist are not well understood. Ketone bodies are alternative fuels produced when glucose is limited and improve indicators of healthspan in aging mouse models. Moreover, the most abundant ketone body, β-hydroxybutyrate, inhibits the NLRP3 inflammasome in myeloid cells, a key potentiator of age-related inflammation. Given that myeloid cells express ketogenic machinery, we hypothesized this pathway may serve as a metabolic checkpoint of inflammation. To test this hypothesis, we conditionally ablated ketogenesis by disrupting expression of the terminal enzyme required for ketogenesis, 3-Hydroxy-3-Methylglutaryl-CoA Lyase (HMGCL). By deleting HMGCL in the liver, we validated the functional targeting and establish that the liver is the only organ that can produce the life-sustaining quantities of ketone bodies required for survival during fasting or ketogenic diet feeding. Conditional ablation of HMGCL in neutrophils and macrophages had modest effects on body weight and glucose tolerance in aging but worsened glucose homeostasis in myeloid cell-specific Hmgcl-deficient mice fed a high-fat diet. Our results suggest that during aging, liver-derived circulating ketone bodies might be more important for deactivating the NLRP3 inflammasome and controlling organismal metabolism.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Physiology, University of California San Francisco, San Francisco, California, USA.
| | - Anudari Letian
- Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Tamara Dlugos
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Comparative Medicine, Yale School of Medicine; Department of Immunobiology, Yale School of Medicine
| | - Claire Leveau
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Comparative Medicine, Yale School of Medicine; Department of Immunobiology, Yale School of Medicine
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Comparative Medicine, Yale School of Medicine; Department of Immunobiology, Yale School of Medicine; Yale Center for Research on Aging, Yale School of Medicine.
| |
Collapse
|
36
|
Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus. Nat Commun 2023; 14:872. [PMID: 36797275 PMCID: PMC9935630 DOI: 10.1038/s41467-023-36522-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Although extracellular DNA is known to form immune complexes (ICs) with autoantibodies in systemic lupus erythematosus (SLE), the mechanisms leading to the release of DNA from cells remain poorly characterized. Here, we show that the pore-forming protein, gasdermin D (GSDMD), is required for nuclear DNA and mitochondrial DNA (mtDNA) release from neutrophils and lytic cell death following ex vivo stimulation with serum from patients with SLE and IFN-γ. Mechanistically, the activation of FcγR downregulated Serpinb1 following ex vivo stimulation with serum from patients with SLE, leading to spontaneous activation of both caspase-1/caspase-11 and cleavage of GSDMD into GSDMD-N. Furthermore, mtDNA oxidization promoted GSDMD-N oligomerization and cell death. In addition, GSDMD, but not peptidyl arginine deiminase 4 is necessary for extracellular mtDNA release from low-density granulocytes from SLE patients or healthy human neutrophils following incubation with ICs. Using the pristane-induced lupus model, we show that disease severity is significantly reduced in mice with neutrophil-specific Gsdmd deficiency or following treatment with the GSDMD inhibitor, disulfiram. Altogether, our study highlights an important role for oxidized mtDNA in inducing GSDMD oligomerization and pore formation. These findings also suggest that GSDMD might represent a possible therapeutic target in SLE.
Collapse
|
37
|
Starkl P, Jonsson G, Artner T, Turnes BL, Serhan N, Oliveira T, Gail LM, Stejskal K, Channon KM, Köcher T, Stary G, Klang V, Gaudenzio N, Knapp S, Woolf CJ, Penninger JM, Cronin SJ. Mast cell-derived BH4 is a critical mediator of postoperative pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525378. [PMID: 37293068 PMCID: PMC10245978 DOI: 10.1101/2023.01.24.525378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Postoperative pain affects most patients after major surgery and can transition to chronic pain. Here, we discovered that postoperative pain hypersensitivity correlated with markedly increased local levels of the metabolite BH4. Gene transcription and reporter mouse analyses after skin injury identified neutrophils, macrophages and mast cells as primary postoperative sources of GTP cyclohydrolase-1 (Gch1) expression, the rate-limiting enzyme in BH4 production. While specific Gch1 deficiency in neutrophils or macrophages had no effect, mice deficient in mast cells or mast cell-specific Gch1 showed drastically decreased postoperative pain after surgery. Skin injury induced the nociceptive neuropeptide substance P, which directly triggers the release of BH4-dependent serotonin in mouse and human mast cells. Substance P receptor blockade substantially ameliorated postoperative pain. Our findings underline the unique position of mast cells at the neuro-immune interface and highlight substance P-driven mast cell BH4 production as promising therapeutic targets for the treatment of postoperative pain.
Collapse
Affiliation(s)
- Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, United States
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, United States, Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
| | - Tiago Oliveira
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura-Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- LBI-RUD – Ludwig-Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Karel Stejskal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Keith M. Channon
- Radcliffe Department of, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Thomas Köcher
- Vienna BioCenter Core Facilities (VBCF), 1030 Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- LBI-RUD – Ludwig-Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Clifford J. Woolf
- Department of Neurobiology, Harvard Medical School, Boston, United States
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, United States, Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shane J.F. Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
38
|
Carai P, González LF, Van Bruggen S, Spalart V, De Giorgio D, Geuens N, Martinod K, Jones EAV, Heymans S. Neutrophil inhibition improves acute inflammation in a murine model of viral myocarditis. Cardiovasc Res 2023; 118:3331-3345. [PMID: 35426438 PMCID: PMC9847559 DOI: 10.1093/cvr/cvac052] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Viral myocarditis (VM) is an inflammatory pathology of the myocardium triggered by a viral infection that may cause sudden death or heart failure (HF), especially in the younger population. Current treatments only stabilize and improve cardiac function without resolving the underlying inflammatory cause. The factors that induce VM to progress to HF are still uncertain, but neutrophils have been increasingly associated with the negative evolution of cardiac pathologies. The present study investigates the contribution of neutrophils to VM disease progression in different ways. METHODS AND RESULTS In a coxsackievirus B3- (CVB3) induced mouse model of VM, neutrophils and neutrophil extracellular traps (NETs) were prominent in the acute phase of VM as revealed by enzyme-linked immunosorbent assay analysis and immunostaining. Anti-Ly6G-mediated neutrophil blockade starting at model induction decreased cardiac necrosis and leucocyte infiltration, preventing monocyte and Ly6CHigh pro-inflammatory macrophage recruitment. Furthermore, genetic peptidylarginine deiminase 4-dependent NET blockade reduced cardiac damage and leucocyte recruitment, significantly decreasing cardiac monocyte and macrophage presence. Depleting neutrophils with anti-Ly6G antibodies at 7 days post-infection, after the acute phase, did not decrease cardiac inflammation. CONCLUSION Collectively, these results indicate that the repression of neutrophils and the related NET response in the acute phase of VM improves the pathological phenotype by reducing cardiac inflammation.
Collapse
Affiliation(s)
- Paolo Carai
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Laura Florit González
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiology, Experimental Cardiology Laboratory, Utrecht University, Utrecht, The Netherlands
| | - Stijn Van Bruggen
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Valerie Spalart
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Daria De Giorgio
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Nadéche Geuens
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Anne Vincent Jones
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Stephane Heymans
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
39
|
Pereverzeva L, Otto NA, Peters-Sengers H, Roelofs JJTH, de Vos AF, van der Poll T. Role of Hypoxia-inducible factor 1α in host defense during pneumococcal pneumonia. Pathog Dis 2023; 81:6939823. [PMID: 36535641 DOI: 10.1093/femspd/ftac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia-inducible factor (HIF)1α is a transcription factor involved in cellular metabolism and regulation of immune cell effector functions. Here, we studied the role of HIF1α in myeloid cells during pneumonia caused by the major causative pathogen, Streptococcus pneumoniae (Spneu). Mice deficient for HIF1α in myeloid cells (LysMcreHif1αfl/fl) were generated to study the in vitro responsiveness of bone marrow-derived macrophages (BMDMs) and alveolar macrophages (AMs) to the Gram-positive bacterial wall component lipoteichoic acid (LTA) and heat-killed Spneu, and the in vivo host response after infection with Spneu via the airways. Both BMDMs and AMs released more lactate upon stimulation with LTA or Spneu, indicative of enhanced glycolysis; HIF1α-deficiency in these cells was associated with diminished lactate release. In BMDMs, HIF1α-deficiency resulted in reduced secretion of tumor necrosis factor (TNF)α and interleukin (IL)-6 upon activation with Spneu but not LTA, while HIF1α-deficient AMs secreted less TNFα and IL-6 in response to LTA, and TNFα after Spneu stimulation. However, no difference was found in the host response of LysMcreHif1αfl/fl mice after Spneu infection as compared to controls. Similar in vivo findings were obtained in neutrophil (Mrp8creHif1αfl/fl) HIF1α-deficient mice. These data suggest that myeloid HIF1α is dispensable for the host defense during pneumococcal pneumonia.
Collapse
Affiliation(s)
- Liza Pereverzeva
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Natasja A Otto
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Hessel Peters-Sengers
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Joris J T H Roelofs
- Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Pathology, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Alex F de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
40
|
Mazgaeen L, Yorek M, Saini S, Vogel P, Meyerholz DK, Kanneganti TD, Gurung P. CD47 halts Ptpn6-deficient neutrophils from provoking lethal inflammation. SCIENCE ADVANCES 2023; 9:eade3942. [PMID: 36608128 PMCID: PMC9821860 DOI: 10.1126/sciadv.ade3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mice with SHP1 proteins, which have a single amino acid substitution from tyrosine-208 residue to asparagine (hereafter Ptpn6spin mice), develop an autoinflammatory disease with inflamed footpads. Genetic crosses to study CD47 function in Ptpn6spin mice bred Ptpn6spin × Cd47-/- mice that were not born at the expected Mendelian ratio. Ptpn6spin bone marrow cells, when transferred into lethally irradiated Cd47-deficient mice, caused marked weight loss and subsequent death. At a cellular level, Ptpn6-deficient neutrophils promoted weight loss and death of the lethally irradiated Cd47-/- recipients. We posited that leakage of gut microbiota promotes morbidity and mortality in Cd47-/- mice receiving Ptpn6spin cells. Colonic cell death and gut leakage were substantially increased in the diseased Cd47-/- mice. Last, IL-1 blockade using anakinra rescued the morbidity and mortality observed in the diseased Cd47-/- mice. These data together demonstrate a protective role for CD47 in tempering pathogenic neutrophils in the Ptpn6spin mice.
Collapse
Affiliation(s)
- Lalita Mazgaeen
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew Yorek
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Saurabh Saini
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | | | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
- Immunology Graduate Program, University of Iowa, Iowa City, IA 52241, USA
- Center for Immunology and Immune-Based Disease, University of Iowa, Iowa City, IA 52241, USA
- Corresponding author.
| |
Collapse
|
41
|
Sieow JL, Penny HL, Gun SY, Tan LQ, Duan K, Yeong JPS, Pang A, Lim D, Toh HC, Lim TKH, Engleman E, Rotzschke O, Ng LG, Chen J, Tan SM, Wong SC. Conditional Knockout of Hypoxia-Inducible Factor 1-Alpha in Tumor-Infiltrating Neutrophils Protects against Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24010753. [PMID: 36614196 PMCID: PMC9821271 DOI: 10.3390/ijms24010753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
Large numbers of neutrophils infiltrate tumors and comprise a notable component of the inflammatory tumor microenvironment. While it is established that tumor cells exhibit the Warburg effect for energy production, the contribution of the neutrophil metabolic state to tumorigenesis is unknown. Here, we investigated whether neutrophil infiltration and metabolic status promotes tumor progression in an orthotopic mouse model of pancreatic ductal adenocarcinoma (PDAC). We observed a large increase in the proportion of neutrophils in the blood and tumor upon orthotopic transplantation. Intriguingly, these tumor-infiltrating neutrophils up-regulated glycolytic factors and hypoxia-inducible factor 1-alpha (HIF-1α) expression compared to neutrophils from the bone marrow and blood of the same mouse. This enhanced glycolytic signature was also observed in human PDAC tissue samples. Strikingly, neutrophil-specific deletion of HIF-1α (HIF-1αΔNφ) significantly reduced tumor burden and improved overall survival in orthotopic transplanted mice, by converting the pro-tumorigenic neutrophil phenotype to an anti-tumorigenic phenotype. This outcome was associated with elevated reactive oxygen species production and activated natural killer cells and CD8+ cytotoxic T cells compared to littermate control mice. These data suggest a role for HIF-1α in neutrophil metabolism, which could be exploited as a target for metabolic modulation in cancer.
Collapse
Affiliation(s)
- Je Lin Sieow
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hweixian Leong Penny
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Ling Qiao Tan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Joe Poh Sheng Yeong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Angela Pang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Diana Lim
- Department of Pathology, National University Health System, Singapore 119074, Singapore
| | - Han Chong Toh
- Department of Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Edgar Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olaf Rotzschke
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Siew Cheng Wong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: ; Tel.: +65-64070030
| |
Collapse
|
42
|
Petzold T, Zhang Z, Ballesteros I, Saleh I, Polzin A, Thienel M, Liu L, Ul Ain Q, Ehreiser V, Weber C, Kilani B, Mertsch P, Götschke J, Cremer S, Fu W, Lorenz M, Ishikawa-Ankerhold H, Raatz E, El-Nemr S, Görlach A, Marhuenda E, Stark K, Pircher J, Stegner D, Gieger C, Schmidt-Supprian M, Gaertner F, Almendros I, Kelm M, Schulz C, Hidalgo A, Massberg S. Neutrophil "plucking" on megakaryocytes drives platelet production and boosts cardiovascular disease. Immunity 2022; 55:2285-2299.e7. [PMID: 36272416 PMCID: PMC9767676 DOI: 10.1016/j.immuni.2022.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events.
Collapse
Affiliation(s)
- Tobias Petzold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Corresponding author
| | - Zhe Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Iván Ballesteros
- Program of Cardiovascular Regeneration, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Inas Saleh
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Amin Polzin
- Department of Cardiology, Pulmonology and Vascular Medicine, Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty of the Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuela Thienel
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Lulu Liu
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Qurrat Ul Ain
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Vincent Ehreiser
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Christian Weber
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Badr Kilani
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Pontus Mertsch
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Jeremias Götschke
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Sophie Cremer
- Department of Cardiology, Pulmonology and Vascular Medicine, Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty of the Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wenwen Fu
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Hellen Ishikawa-Ankerhold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Elisabeth Raatz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Shaza El-Nemr
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University of Munich, 80636 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany
| | - Esther Marhuenda
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, 97070 Würzburg, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, 80333 Munich, Germany,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany
| | - Florian Gaertner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Isaac Almendros
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain,CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty of the Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain,Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Corresponding author
| |
Collapse
|
43
|
Pérez-Benavente B, Fathinajafabadi A, de la Fuente L, Gandía C, Martínez-Férriz A, Pardo-Sánchez JM, Milián L, Conesa A, Romero OA, Carretero J, Matthiesen R, Jariel-Encontre I, Piechaczyk M, Farràs R. New roles for AP-1/JUNB in cell cycle control and tumorigenic cell invasion via regulation of cyclin E1 and TGF-β2. Genome Biol 2022; 23:252. [PMID: 36494864 PMCID: PMC9733061 DOI: 10.1186/s13059-022-02800-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND JUNB transcription factor contributes to the formation of the ubiquitous transcriptional complex AP-1 involved in the control of many physiological and disease-associated functions. The roles of JUNB in the control of cell division and tumorigenic processes are acknowledged but still unclear. RESULTS Here, we report the results of combined transcriptomic, genomic, and functional studies showing that JUNB promotes cell cycle progression via induction of cyclin E1 and repression of transforming growth factor (TGF)-β2 genes. We also show that high levels of JUNB switch the response of TGF-β2 stimulation from an antiproliferative to a pro-invasive one, induce endogenous TGF-β2 production by promoting TGF-β2 mRNA translation, and enhance tumor growth and metastasis in mice. Moreover, tumor genomic data indicate that JUNB amplification associates with poor prognosis in breast and ovarian cancer patients. CONCLUSIONS Our results reveal novel functions for JUNB in cell proliferation and tumor aggressiveness through regulation of cyclin E1 and TGF-β2 expression, which might be exploited for cancer prognosis and therapy.
Collapse
Affiliation(s)
| | | | - Lorena de la Fuente
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Present Address: PerkinElmer Informatics, Tres Cantos, Madrid, Spain
| | | | | | | | - Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia, Spain
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Julián Carretero
- Departament de Fisiologia, Facultat de Farmacia, Universitat de València, Burjassot, Valencia, Spain
| | - Rune Matthiesen
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Present address: IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
44
|
Deerhake ME, Cardakli ED, Shinohara ML. Dectin-1 signaling in neutrophils up-regulates PD-L1 and triggers ROS-mediated suppression of CD4 + T cells. J Leukoc Biol 2022; 112:1413-1425. [PMID: 36073780 PMCID: PMC9701158 DOI: 10.1002/jlb.3a0322-152rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/11/2022] [Indexed: 01/04/2023] Open
Abstract
Dectin-1 is known to drive proinflammatory cytokine production by macrophages and dendritic cells which promotes Th17 CD4+ T cell responses in the setting of fungal infection. However, the role of Dectin-1 signaling in neutrophils and its impact on CD4+ T cells is not well understood. In this study, we found that neutrophils stimulated with a Dectin-1 agonist diminish CD4+ T cell viability in a rapid and reactive oxygen species (ROS)-dependent manner. Furthermore, Dectin-1 promoted neutrophil PD-L1 expression via Syk and Card9 signaling, along with other immune-checkpoint factors in a neutrophil-biased manner. Although neutrophil PD-L1 did not significantly impact disease severity in experimental autoimmune encephalomyelitis (EAE), we found that CNS-infiltrated neutrophils potently up-regulate PD-L1 expression. Furthermore, a subset of PD-L1+ neutrophils was also found to express MHC-II during EAE. In summary, we found that Dectin-1 elicits a biphasic neutrophil response in which (1) T-cell suppressive ROS is followed by (2) up-regulation of PD-L1 expression. This response may serve to limit excess CD4+ T cell-driven inflammation in infection or autoimmunity while preserving host-defense functions of neutrophils. Summary sentence: Mechanisms by which Dectin-1 signaling in neutrophils promotes a cellular phenotype with T cell-suppressive properties.
Collapse
Affiliation(s)
| | - Emre D. Cardakli
- Department of Immunology, Duke University School of
Medicine, Durham, NC 27710, USA
- Tri-Institutional MD-PhD Program, Weill Cornell
Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center,
New York, NY 10021, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of
Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology,
Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
45
|
Hu J, Huang Z, Yu M, Zhang P, Xia Z, Gao C. Caspase-8 activation in neutrophils facilitates autoimmune kidney vasculitis through regulating CD4 + effector memory T cells. Front Immunol 2022; 13:1038134. [PMID: 36505410 PMCID: PMC9732547 DOI: 10.3389/fimmu.2022.1038134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are closely associated with neutrophil recruitment and activation, but the impact of the neutrophil apoptosis process in autoimmune disease has been rarely explained. Here, by integrating and analyzing single-cell transcriptome datasets, we found that the caspase-8-associated pathway in neutrophils was highly activated in the kidney rather than in the blood. To verify the function of caspase-8 in neutrophils on AAVs progression, we constructed neutrophil-specific caspase-8 knockout mice combined with an AAVs model induced by human ANCA from AAVs patients, a rapid and powerful model developed in this study. Our results show that caspase-8 activation of neutrophils up-regulates the expression of several inflammatory and immunoregulatory factors, especially IL23A, regulating the activation and differentiation of tissue-resident CD4+ effector memory T cells. This study reveals that the activation of caspase-8 in neutrophils can worsen glomerulonephritis of AAVs by regulating inflammation and immunity.
Collapse
Affiliation(s)
- Jian Hu
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Huang
- State Key Laboratory of Biotherapy, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Min Yu
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pei Zhang
- Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Zhengkun Xia, ; Chunlin Gao,
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Zhengkun Xia, ; Chunlin Gao,
| |
Collapse
|
46
|
Glaser KM, Tarrant TK, Lämmermann T. Combinatorial depletions of G-protein coupled receptor kinases in immune cells identify pleiotropic and cell type-specific functions. Front Immunol 2022; 13:1039803. [DOI: 10.3389/fimmu.2022.1039803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
G-protein coupled receptor kinases (GRKs) participate in the regulation of chemokine receptors by mediating receptor desensitization. They can be recruited to agonist-activated G-protein coupled receptors (GPCRs) and phosphorylate their intracellular parts, which eventually blocks signal propagation and often induces receptor internalization. However, there is growing evidence that GRKs can also control cellular functions beyond GPCR regulation. Immune cells commonly express two to four members of the GRK family (GRK2, GRK3, GRK5, GRK6) simultaneously, but we have very limited knowledge about their interplay in primary immune cells. In particular, we are missing comprehensive studies comparing the role of this GRK interplay for (a) multiple GPCRs within one leukocyte type, and (b) one specific GPCR between several immune cell subsets. To address this issue, we generated mouse models of single, combinatorial and complete GRK knockouts in four primary immune cell types (neutrophils, T cells, B cells and dendritic cells) and systematically addressed the functional consequences on GPCR-controlled cell migration and tissue localization. Our study shows that combinatorial depletions of GRKs have pleiotropic and cell-type specific effects in leukocytes, many of which could not be predicted. Neutrophils lacking all four GRK family members show increased chemotactic migration responses to a wide range of GPCR ligands, whereas combinatorial GRK depletions in other immune cell types lead to pro- and anti-migratory responses. Combined depletion of GRK2 and GRK6 in T cells and B cells shows distinct functional outcomes for (a) one GPCR type in different cell types, and (b) different GPCRs in one cell type. These GPCR-type and cell-type specific effects reflect in altered lymphocyte chemotaxis in vitro and localization in vivo. Lastly, we provide evidence that complete GRK deficiency impairs dendritic cell homeostasis, which unexpectedly results from defective dendritic cell differentiation and maturation in vitro and in vivo. Together, our findings demonstrate the complexity of GRK functions in immune cells, which go beyond GPCR desensitization in specific leukocyte types. Furthermore, they highlight the need for studying GRK functions in primary immune cells to address their specific roles in each leukocyte subset.
Collapse
|
47
|
PD-L1 negatively regulates antifungal immunity by inhibiting neutrophil release from bone marrow. Nat Commun 2022; 13:6857. [PMID: 36369287 PMCID: PMC9652346 DOI: 10.1038/s41467-022-34722-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) has been shown to be inducibly expressed on neutrophils to suppress host immunity during polymicrobial sepsis, virus and parasite infections. However, the role of PD-L1 on neutrophil-mediated antifungal immunity remains wholly unknown. Here, we show that the expression of PD-L1 on murine and human neutrophils was upregulated upon the engagement of C-type lectin receptor Dectin-1 with its ligand β-glucans, exposed on fungal pathogen Candida albicans yeast. Moreover, β-glucan stimulation induced PD-L1 translocation into nucleus to regulate the production of chemokines CXCL1 and CXCL2, which control neutrophil mobilization. Importantly, C. albicans infection-induced expression of PD-L1 leads to neutrophil accumulation in bone marrow, through mediating their autocrine secretion of CXCL1/2. Furthermore, neutrophil-specific deficiency of PD-L1 impaired CXCL1/2 secretion, which promoted neutrophil migration from bone marrow into the peripheral circulation, thereby conferring host resistance to C. albicans infection. Finally, either PD-L1 blockade or pharmacological inhibition of PD-L1 expression significantly increased neutrophil release from bone marrow to enhance host antifungal immunity. Our data together indicate that activation of Dectin-1/PD-L1 cascade by β-glucans inhibits neutrophil release from bone marrow reserve, contributing to the negative regulation of antifungal innate immunity, which functions as a potent immunotherapeutic target against life-threatening fungi infections.
Collapse
|
48
|
Amaral EP, Foreman TW, Namasivayam S, Hilligan KL, Kauffman KD, Barbosa Bomfim CC, Costa DL, Barreto-Duarte B, Gurgel-Rocha C, Santana MF, Cordeiro-Santos M, Du Bruyn E, Riou C, Aberman K, Wilkinson RJ, Barber DL, Mayer-Barber KD, Andrade BB, Sher A. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med 2022; 219:e20220504. [PMID: 36069923 PMCID: PMC9458471 DOI: 10.1084/jem.20220504] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 01/15/2023] Open
Abstract
Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.
Collapse
Affiliation(s)
- Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Taylor W. Foreman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Caio Cesar Barbosa Bomfim
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Diego L. Costa
- Departmento de Bioquímica e Imunologia, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Beatriz Barreto-Duarte
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
| | - Clarissa Gurgel-Rocha
- Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
- Center for Biotechnology and Cell Therapy, D’Or Institute for Research and Education, Sao Rafael Hospital, Salvador, Bahia, Brazil
| | - Monique Freire Santana
- Departmento de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas, Manaus, Brazil
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina, Universidade Nilton Lins, Manaus, Brazil
| | - Elsa Du Bruyn
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Aberman
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Robert John Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, Northwick Park Hospital, Harrow, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bruno B. Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
- Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Universidade Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|
49
|
Hérault L, Poplineau M, Duprez E, Remy É. A novel Boolean network inference strategy to model early hematopoiesis aging. Comput Struct Biotechnol J 2022; 21:21-33. [PMID: 36514338 PMCID: PMC9719905 DOI: 10.1016/j.csbj.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Hematopoietic stem cell (HSC) aging is a multifactorial event leading to changes in HSC properties and functions, which are intrinsically coordinated and affect the early hematopoiesis. To better understand the mechanisms and factors controlling these changes, we developed an original strategy to construct a Boolean model of HSC differentiation. Based on our previous scRNA-seq data, we exhaustively characterized active transcription modules or regulons along the differentiation trajectory and constructed an influence graph between 15 selected components involved in the dynamics of the process. Then we defined dynamical constraints between observed cellular states along the trajectory and using answer set programming with in silico perturbation analysis, we obtained a Boolean model explaining the early priming of HSCs. Finally, perturbations of the model based on age-related changes revealed important deregulations, such as the overactivation of Egr1 and Junb or the loss of Cebpa activation by Gata2. These new regulatory mechanisms were found to be relevant for the myeloid bias of aged HSC and explain the decreased transcriptional priming of HSCs to all mature cell types except megakaryocytes.
Collapse
Affiliation(s)
- Léonard Hérault
- Aix Marseille Université, CNRS, Marseille I2M, France,Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Élisabeth Remy
- Aix Marseille Université, CNRS, Marseille I2M, France,Corresponding author.
| |
Collapse
|
50
|
Zheng Z, He H, Tang XT, Zhang H, Gou F, Yang H, Cao J, Shi S, Yang Z, Sun G, Xie X, Zeng Y, Wen A, Lan Y, Zhou J, Liu B, Zhou BO, Cheng T, Cheng H. Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell 2022; 29:1562-1579.e7. [DOI: 10.1016/j.stem.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/24/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|