1
|
Zhao L, Tao YC, Hu L, Liu XY, Zhang Q, Zhang L, Ding YQ, Song NN. Satb2 and Nr4a2 are required for the differentiation of cortical layer 6b. Cell Death Discov 2025; 11:126. [PMID: 40164579 PMCID: PMC11958660 DOI: 10.1038/s41420-025-02402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/15/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Cortical layer 6 is divided into two sublayers, and layer 6b is situated above the white matter with distinct architecture from layer 6a. Layer 6b arises from the subplate and contains the earliest born neurons in the development of cerebral cortex. Although great progress has been made in understanding the cortical morphogenesis, there is a dearth of knowledge regarding the molecular mechanisms governing the development of layer 6b neurons. Here we report that transcription factor special AT-rich binding protein 2 (Satb2) and nuclear receptor subfamily 4 group A member 2 (Nr4a2) are required for the normal differentiation layer 6b neurons. Upon conditional deletion of Satb2 in the cortex (Satb2Emx1 CKO) or selectively inactivation of Satb2 in layer 6b neurons only (Satb2Nr4a2CreER CKO), the expressions of layer 6b-specific genes (i.e., Ctgf, Cplx3, Trh and Tnmd) were significantly reduced, whereas that of Nr4a2 was dramatically increased, underscoring that Satb2 is involved in the differentiation of layer 6b neurons in a cell-autonomous manner. On the other hand, when Nr4a2 was deleted in the cortex, the expressions of Trh and Tnmd were upregulated with unchanged expression of Ctgf and Cplx3. Notably, the defective differentiation resulting from the deletion of Satb2 remained in Satb2/Nr4a2 double CKO mice. In summary, our findings indicated that both Satb2 and Nr4a2 are required for the differentiation of layer 6b neurons possibly via different pathways.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory Animal Center, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ling Hu
- Laboratory Animal Center, Fudan University, Shanghai, China
| | - Xi-Yue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiong Zhang
- Laboratory Animal Center, Fudan University, Shanghai, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Yu-Qiang Ding
- Laboratory Animal Center, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Huashan Institute of Medicine (HS-IOM), Huashan Hospital, Fudan University, Shanghai, China.
| | - Ning-Ning Song
- Laboratory Animal Center, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Lee I, Takahashi Y, Sasaki T, Yamauchi Y, Sato R. Human colon organoid differentiation from induced pluripotent stem cells using an improved method. FEBS Lett 2025; 599:912-924. [PMID: 39716027 PMCID: PMC11931984 DOI: 10.1002/1873-3468.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024]
Abstract
The colonic epithelium plays a crucial role in gastrointestinal homeostasis, and colon organoids enable investigation into the molecular mechanisms underlying colonic physiology. However, the method for differentiating induced pluripotent stem cells (iPSCs) into human colon organoids (HCOs) is not necessarily standardized, and studies using HCOs are limited. This study refines the differentiation of HCOs by comparing two protocols reported in Cell Stem Cell and Nature Medicine journals. The former protocol, which uses transient bone morphogenetic protein 2 (BMP2) signaling activation, demonstrated superior efficacy in upregulating colon-specific markers. Additionally, adenovirus-mediated transduction of the transcription factors HOXD13 or SATB2 during hindgut endoderm development, together with BMP2 treatment, enhanced colonic identity, suggesting improved colonic maturation. This optimized protocol advances the generation of mature HCOs, offering a better model for investigating colonic epithelial biology and pathology.
Collapse
Affiliation(s)
- I‐Ting Lee
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| | - Takashi Sasaki
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| | - Ryuichiro Sato
- Nutri‐Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| |
Collapse
|
3
|
Kariyayama H, Kawashima T, Wada H, Ozaki H. Domain-Shuffling in the Evolution of Cyclostomes and Gnathostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:59-79. [PMID: 39629881 PMCID: PMC11788884 DOI: 10.1002/jez.b.23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 02/04/2025]
Abstract
Vertebrates acquired various novel traits that were pivotal in their morphological evolution. Domain shuffling, rearrangements of functional domains between genes, is a key molecular mechanism in deuterostome evolution. However, comprehensive studies focusing on early vertebrates are lacking. With advancements in genomic studies, the genomes of early vertebrate groups and cyclostomes are now accessible, enabling detailed comparative analysis while considering the timing of gene acquisition during evolution. Here, we compared 22 metazoans, including four cyclostomes, to identify genes containing novel domain architectures acquired via domain-shuffling (DSO-Gs), in the common ancestor of vertebrates, gnathostomes, and cyclostomes. We found that DSO-Gs in the common ancestor of vertebrates were associated with novel vertebrate characteristics and those in the common ancestor of gnathostomes correlated with gnathostome-specific traits. Notably, several DSO-Gs acquired in common ancestors of vertebrates have been linked to myelination, a distinct characteristic of gnathostomes. Additionally, in situ hybridization revealed specific expression patterns for the three vertebrate DSO-Gs in cyclostomes, supporting their potential functions. Our findings highlight the significance of DSO-Gs in the emergence of novel traits in the common ancestors of vertebrates, gnathostomes, and cyclostomes.
Collapse
Grants
- The study was supported by Japan Society for the Promotion of Science (23128502, 15KT0074, 18H04004, 19K20394, and 22K17992) and Japan Science, Technology Agency (JPMJSP2124), and Japan Agency for Medical Research and Development (JP21zf0127005).
- The study was supported by Japan Society for the Promotion of Science (23128502, 15KT0074, 18H04004, 19K20394, and 22K17992) and Japan Science, Technology Agency (JPMJSP2124), and Japan Agency for Medical Research and Development (JP21zf0127005).
Collapse
Affiliation(s)
- Hirofumi Kariyayama
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Takeshi Kawashima
- Department of GeneticsThe Graduate University for Advanced Studies, SOKENDAIMishimaShizuokaJapan
- National Institute of GeneticsMishimaShizuokaJapan
| | - Hiroshi Wada
- Institute of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Center for Artificial Intelligence ResearchUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
4
|
Maguire B, Kisakol B, Prehn JHM, Burke JP. SATB2 Expression Affects Chemotherapy Metabolism and Immune Checkpoint Gene Expression in Colorectal Cancer. Clin Colorectal Cancer 2024:S1533-0028(24)00119-1. [PMID: 39794188 DOI: 10.1016/j.clcc.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Special AT-rich binding protein-2 (SATB2) is a nuclear matrix associated protein regulating gene expression which is normally expressed in colonic tissue. Loss of SATB2 expression in colorectal cancer (CRC) has negative implications for prognosis and has been associated with chemotherapy resistance. Furthermore, recent evidence suggests SATB2 may influence immune checkpoint (IC) expression. We hypothesized that SATB2 expression may be associated with altered expression of chemotherapy resistance associated and IC genes. METHODS Clinicopathologic and gene expression data were extracted from The Cancer Genome Atlas PanCancer Atlas. SATB2 expression was compared by clinicopathologic characteristic and by using multivariate regression analysis to explore associations with chemotherapy and IC gene expression. RESULTS About 553 patients were included for analysis. Lower quartile SATB2 expression was associated with worse disease specific survival (P = .04). MSI (P < .001) and mucinous (P < .001) tumors were associated with reduced SATB2 expression independently. SATB2 varied by consensus molecular subtype (P < .001) and was lowest in CMS1. On multivariate analysis, SATB2 was negatively associated with 5-FU related metabolism genes, while more complex but significant relationships were seen with oxaliplatin and irinotecan related genes. Low SATB2 expression was associated with increased expression of PD-1, PD-L1, TIM-3 and CTLA-4 IC genes. CONCLUSION The positive prognostic influence of SATB2 expression is reaffirmed in this study. This effect may be explained by the negative association between SATB2 and 5-FU-resistance related gene expression. Enhanced IC gene expression in SATB2 low cases suggests a potential role for IC inhibition in this setting, but further study is required.
Collapse
Affiliation(s)
- Barry Maguire
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland; Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
5
|
Nkosi D, Crowe WE, Altman BJ, Oltvai ZN, Giampoli EJ, Velez MJ. SATB2 is an Emergent Biomarker of Anaplastic Thyroid Carcinoma: A Series with Comprehensive Biomarker and Molecular Studies. Endocr Pathol 2024; 35:432-441. [PMID: 39499447 DOI: 10.1007/s12022-024-09833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/07/2024]
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and aggressive thyroid malignancy typically comprised of undifferentiated tumor cells with various histologic morphologies, which makes the diagnosis challenging. These tumors commonly show loss of thyroglobulin and TTF1 with preservation of cytokeratin (67%) and Paired Box Gene 8 (PAX8) (55%) expression. Identification of a sensitive immunohistochemical stain to aid in the diagnosis of ATC would be beneficial. Immunohistochemistry (IHC) against special AT-rich sequence-binding protein 2 (SATB2) protein is a sensitive and specific marker expressed in colorectal adenocarcinoma and bone or soft tissue tumors with osteoblastic differentiation. However, SATB2 is also expressed in other sarcomatous/undifferentiated neoplasms lacking osteoblastic differentiation. Using quantitative reverse transcription PCR (RT-qPCR) we showed that there is variable expression of SATB2 mRNA expression in ATCs. To evaluate the role of SATB2 protein expression in ATC, we performed PAX8, SATB2, pancytokeratin (AE1/AE3 & CAM5.2), claudin-4 and TTF1 immunostaining on 23 cases. ATCs showed retained expression of PAX8 in 65% (15/23); SATB2 was detected in 74% (17/23); pancytokeratin was expressed in 65% (15/23); claudin-4 was expressed in 35% (8/23) and TTF1 showed expression in 13% (3/23) of cases. Furthermore, 83% (5/6) of ATCs which lacked SATB2 expression, retained PAX8 expression, while 88% (7/8) of the tumors without PAX8 expression were positive for SATB2. Differentiated follicular cell-derived thyroid cancers (n = 30), differentiated high grade thyroid carcinoma (n = 3), and poorly differentiated thyroid carcinoma (n = 8) were negative for SATB2 immunoreactivity. Next-generation selected cases detected the commonly identified oncogenic variants including those in BRAF, RAS, TP53, and TERT promoter. Overall, we hereby demonstrate that SATB2 IHC may be used to support the diagnosis of ATC.
Collapse
Affiliation(s)
- Dingani Nkosi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - William E Crowe
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Zoltán N Oltvai
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ellen J Giampoli
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Moises J Velez
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
6
|
Collu R, Zarate YA, Xia W, Fish JL. Individuals with SATB2-associated syndrome have impaired vitamin and energy metabolism pathways. Metab Brain Dis 2024; 40:3. [PMID: 39541055 DOI: 10.1007/s11011-024-01465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Special AT-rich sequence-binding protein 2 (SATB2) is a master regulator of gene expression. Mutations of the SATB2 gene results in the SATB2-associated syndrome (SAS), a genetic disorder characterized by neurodevelopmental disabilities and autism-related phenotype. The importance of plasma as an indicator of SAS phenotypes is unknown. We aim to investigate if pathogenic variants in SATB2 are associated with alteration to relevant pathways in the plasma of SAS patients and identify key differentially regulated proteins which may serve as biomarkers to improve diagnostic and future pharmacological approaches. We used well-validated proteomic technologies to determine the proteomic profile of plasma from SAS patients compared to healthy control subjects. Bioinformatical analysis was performed to identify significant proteins and functionally enriched pathways. We identified differentially expressed proteins in the plasma of SAS patients that are significantly involved in metabolism-related pathways. Energy metabolism, glucose metabolism and vitamin metabolism pathways are significantly enriched in SAS patients as compared to healthy controls. Our study linked SATB2 mutations to the impairment of plasma proteins involved in different metabolic pathways in SAS patients.
Collapse
Affiliation(s)
- Roberto Collu
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA.
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Yuri A Zarate
- Division of Genetics and Metabolism, University of Kentucky, Lexington, KY, USA
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
7
|
Mills EG, Abbara A, Dhillo WS, Comninos AN. Interactions between kisspeptin and bone: Cellular mechanisms, clinical evidence, and future potential. Ann N Y Acad Sci 2024; 1540:47-60. [PMID: 39269749 DOI: 10.1111/nyas.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The neuropeptide kisspeptin and its cognate receptor have been extensively studied in reproductive physiology, with diverse and well-established functions, including as an upstream regulator of pubertal onset, reproductive hormone secretion, and sexual behavior. Besides classical reproduction, both kisspeptin and its receptor are extensively expressed in bone-resorbing osteoclasts and bone-forming osteoblasts, which putatively permits direct bone effects. Accordingly, this sets the scene for recent compelling findings derived from in vitro experiments through to in vivo and clinical studies revealing prominent regulatory interactions for kisspeptin signaling in bone metabolism, as well as certain oncological aspects of bone metabolism. Herein, we comprehensively examine the experimental evidence obtained to date supporting the interaction between kisspeptin and bone. A comprehensive understanding of this emerging facet of kisspeptin biology is fundamental to exploiting the future therapeutic potential of kisspeptin-based medicines as a novel strategy for treating bone-related disorders.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
- Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
8
|
Sharma A, Dsilva GJ, Deshpande G, Galande S. Exploring the versatility of zygotic genome regulators: A comparative and functional analysis. Cell Rep 2024; 43:114680. [PMID: 39182225 DOI: 10.1016/j.celrep.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The activation of the zygotic genome constitutes an essential process during early embryogenesis that determines the overall progression of embryonic development. Zygotic genome activation (ZGA) is tightly regulated, involving a delicate interplay of activators and repressors, to precisely control the timing and spatial pattern of gene expression. While regulators of ZGA vary across species, they accomplish comparable outcomes. Recent studies have shed light on the unanticipated roles of ZGA components both during and after ZGA. Moreover, different ZGA regulators seem to have acquired unique functional modalities to manifest their regulatory potential. In this review, we explore these observations to assess whether these are simply anecdotal or contribute to a broader regulatory framework that employs a versatile means to arrive at the conserved outcome.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Greg Jude Dsilva
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Girish Deshpande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India.
| |
Collapse
|
9
|
Nevoránková P, Šulcová M, Kavková M, Zimčík D, Balková SM, Peléšková K, Kristeková D, Jakešová V, Zikmund T, Kaiser J, Holá LI, Kolář M, Buchtová M. Region-specific gene expression profiling of early mouse mandible uncovered SATB2 as a key molecule for teeth patterning. Sci Rep 2024; 14:18212. [PMID: 39107332 PMCID: PMC11303781 DOI: 10.1038/s41598-024-68016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Mammalian dentition exhibits distinct heterodonty, with more simple teeth located in the anterior area of the jaw and more complex teeth situated posteriorly. While some region-specific differences in signalling have been described previously, here we performed a comprehensive analysis of gene expression at the early stages of odontogenesis to obtain complete knowledge of the signalling pathways involved in early jaw patterning. Gene expression was analysed separately on anterior and posterior areas of the lower jaw at two early stages (E11.5 and E12.5) of odontogenesis. Gene expression profiling revealed distinct region-specific expression patterns in mouse mandibles, including several known BMP and FGF signalling members and we also identified several new molecules exhibiting significant differences in expression along the anterior-posterior axis, which potentially can play the role during incisor and molar specification. Next, we followed one of the anterior molecules, SATB2, which was expressed not only in the anterior mesenchyme where incisor germs are initiated, however, we uncovered a distinct SATB2-positive region in the mesenchyme closely surrounding molars. Satb2-deficient animals demonstrated defective incisor development confirming a crucial role of SATB2 in formation of anterior teeth. On the other hand, ectopic tooth germs were observed in the molar area indicating differential effect of Satb2-deficiency in individual jaw regions. In conclusion, our data provide a rich source of fundamental information, which can be used to determine molecular regulation driving early embryonic jaw patterning and serve for a deeper understanding of molecular signalling directed towards incisor and molar development.
Collapse
Affiliation(s)
- Petra Nevoránková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Stomatology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Stomatology, St. Anne's University Hospital, Brno, Czech Republic
| | - Marie Šulcová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Kavková
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - David Zimčík
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simona Moravcová Balková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Kristýna Peléšková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Jakešová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Tomáš Zikmund
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - Jozef Kaiser
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - Lydie Izakovičová Holá
- Department of Stomatology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Stomatology, St. Anne's University Hospital, Brno, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
10
|
Yang J, Li Y, Tang Y, Yang L, Guo C, Peng C. Spatial transcriptome reveals the region-specific genes and pathways regulated by Satb2 in neocortical development. BMC Genomics 2024; 25:757. [PMID: 39095712 PMCID: PMC11297773 DOI: 10.1186/s12864-024-10672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND It is known that the neurodevelopmental disorder associated gene, Satb2, plays important roles in determining the upper layer neuron specification. However, it is not well known how this gene regulates other neocortical regions during the development. It is also lack of comprehensive delineation of its spatially regulatory pathways in neocortical development. RESULTS In this work, we utilized spatial transcriptomics and immuno-staining to systematically investigate the region-specific gene regulation of Satb2 by comparing the Satb2+/+ and Satb2-/- mice at embryonic stages, including the ventricle zone (VZ) or subventricle zone (SVZ), intermediate zone (IZ) and cortical plate (CP) respectively. The staining result reveals that these three regions become moderately or significantly thinner in the Satb2-/- mice. In the cellular level, the cell number increases in the VZ/SVZ, whereas the cell number decreases in the CP. The spatial transcriptomics data show that many important genes and relevant pathways are dysregulated in Satb2-/- mice in a region-specific manner. In the VZ/SVZ, the key genes involved in neural precursor cell proliferation, including the intermediate progenitor marker Tbr2 and the lactate production related gene Ldha, are up-regulated in Satb2-/- mice. In the IZ, the key genes in regulating neuronal differentiation and migration, such as Rnd2, exhibit ectopic expressions in the Satb2-/- mice. In the CP, the lineage-specific genes, Tbr1 and Bcl11b, are abnormally expressed. The neuropeptide related gene Npy is down-regulated in Satb2-/- mice. Finally, we validated the abnormal expressions of key regulators by using immunofluorescence or qPCR. CONCLUSIONS In summary, our work provides insights on the region-specific genes and pathways which are regulated by Satb2 in neocortical development.
Collapse
Affiliation(s)
- Jianfen Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Yu Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Yiyuli Tang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Ling Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Chunming Guo
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Cheng Peng
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
11
|
Zarate YA, Bosanko K, Derar N, Fish JL. Abnormalities in pharyngeal arch-derived structures in SATB2-associated syndrome. Clin Genet 2024; 106:209-213. [PMID: 38693682 PMCID: PMC11216868 DOI: 10.1111/cge.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
SATB2-associated syndrome (SAS, glass syndrome, OMIM#612313) is a neurodevelopmental autosomal dominant disorder with frequent craniofacial abnormalities including palatal and dental anomalies. To assess the role of Satb2 in craniofacial development, we analyzed mutant mice at different stages of development. Here, we show that Satb2 is broadly expressed in early embryonic mouse development including the mesenchyme of the second and third arches. Satb2-/- mutant mice exhibit microglossia, a shortened lower jaw, smaller trigeminal ganglia, and larger thyroids. We correlate these findings with the detailed clinical phenotype of four individuals with SAS and remarkable craniofacial phenotypes with one requiring mandibular distraction in childhood. We conclude that the mouse and patient data presented support less well-described phenotypic aspects of SAS including mandibular morphology and thyroid anatomical/functional issues.
Collapse
Affiliation(s)
- Yuri A Zarate
- Division of Genetics and Metabolism, University of Kentucky, Lexington, Kentucky, USA
- Department of Pediatrics, Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Katherine Bosanko
- Department of Pediatrics, Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nada Derar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
12
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
13
|
Lei LM, Li FXZ, Lin X, Xu F, Shan SK, Guo B, Zheng MH, Tang KX, Wang Y, Xu QS, Ouyang WL, Duan JY, Wu YY, Cao YC, Zhou ZA, He SY, Wu YL, Chen X, Lin ZJ, Pan Y, Yuan LQ, Li ZH. Cold exposure-induced plasma exosomes impair bone mass by inhibiting autophagy. J Nanobiotechnology 2024; 22:361. [PMID: 38910236 PMCID: PMC11194967 DOI: 10.1186/s12951-024-02640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.
Collapse
Affiliation(s)
- Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ouyang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ye-Chi Cao
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Si-Yang He
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi Pan
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, No. 374 The Dianmian Avenue, Wuhua, Kunming, Yunnan, 650101, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
14
|
Yu W, Srivastava R, Srivastava S, Ma Y, Shankar S, Srivastava RK. Oncogenic Role of SATB2 In Vitro: Regulator of Pluripotency, Self-Renewal, and Epithelial-Mesenchymal Transition in Prostate Cancer. Cells 2024; 13:962. [PMID: 38891096 PMCID: PMC11171950 DOI: 10.3390/cells13110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Rashmi Srivastava
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Yiming Ma
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- GLAX LLC, 3500 S Dupont Highway, Dover, DE 19901, USA
| |
Collapse
|
15
|
Zhang X, Zhao Z, Wang X, Zhang S, Zhao Z, Feng W, Xu L, Nie J, Li H, Liu J, Xiao G, Zhang Y, Li H, Lu M, Mai J, Zhou S, Zhao AZ, Li F. Deprivation of methionine inhibits osteosarcoma growth and metastasis via C1orf112-mediated regulation of mitochondrial functions. Cell Death Dis 2024; 15:349. [PMID: 38769167 PMCID: PMC11106329 DOI: 10.1038/s41419-024-06727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma is a malignant bone tumor that primarily inflicts the youth. It often metastasizes to the lungs after chemotherapy failure, which eventually shortens patients' lives. Thus, there is a dire clinical need to develop a novel therapy to tackle osteosarcoma metastasis. Methionine dependence is a special metabolic characteristic of most malignant tumor cells that may offer a target pathway for such therapy. Herein, we demonstrated that methionine deficiency restricted the growth and metastasis of cultured human osteosarcoma cells. A genetically engineered Salmonella, SGN1, capable of overexpressing an L-methioninase and hydrolyzing methionine led to significant reduction of methionine and S-adenosyl-methionine (SAM) specifically in tumor tissues, drastically restricted the growth and metastasis in subcutaneous xenograft, orthotopic, and tail vein-injected metastatic models, and prolonged the survival of the model animals. SGN1 also sharply suppressed the growth of patient-derived organoid and xenograft. Methionine restriction in the osteosarcoma cells initiated severe mitochondrial dysfunction, as evident in the dysregulated gene expression of respiratory chains, increased mitochondrial ROS generation, reduced ATP production, decreased basal and maximum respiration, and damaged mitochondrial membrane potential. Transcriptomic and molecular analysis revealed the reduction of C1orf112 expression as a primary mechanism underlies methionine deprivation-initiated suppression on the growth and metastasis as well as mitochondrial functions. Collectively, our findings unraveled a molecular linkage between methionine restriction, mitochondrial function, and osteosarcoma growth and metastasis. A pharmacological agent, such as SGN1, that can achieve tumor specific deprivation of methionine may represent a promising modality against the metastasis of osteosarcoma and potentially other types of sarcomas as well.
Collapse
Affiliation(s)
- Xindan Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xuepeng Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shiwei Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zilong Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wenbin Feng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Lijun Xu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Junhua Nie
- South China University of Technology School of Medicine, Guangzhou, China
| | - Hong Li
- Biomedical Laboratory, Guangzhou Jingke Life Science Institute, Guangzhou, China
| | - Jia Liu
- South China University of Technology School of Medicine, Guangzhou, China
| | - Gengmiao Xiao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yu Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou, China
| | - Haomiao Li
- Department of Musculoskeletal Oncology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Lu
- Department of Musculoskeletal Oncology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jialuo Mai
- Guangzhou Sinogen Pharmaceutical Co., Ltd., Guangzhou, Guangdong Province, China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Allan Z Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
16
|
Barrera-Lopez JF, Cumplido-Laso G, Olivera-Gomez M, Garrido-Jimenez S, Diaz-Chamorro S, Mateos-Quiros CM, Benitez DA, Centeno F, Mulero-Navarro S, Roman AC, Carvajal-Gonzalez JM. Early Atf4 activity drives airway club and goblet cell differentiation. Life Sci Alliance 2024; 7:e202302284. [PMID: 38176727 PMCID: PMC10766780 DOI: 10.26508/lsa.202302284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
Activating transcription factor 4 (Atf4), which is modulated by the protein kinase RNA-like ER kinase (PERK), is a stress-induced transcription factor responsible for controlling the expression of a wide range of adaptive genes, enabling cells to withstand stressful conditions. However, the impact of the Atf4 signaling pathway on airway regeneration remains poorly understood. In this study, we used mouse airway epithelial cell culture models to investigate the role of PERK/Atf4 in respiratory tract differentiation. Through pharmacological inhibition and silencing of ATF4, we uncovered the crucial involvement of PERK/Atf4 in the differentiation of basal stem cells, leading to a reduction in the number of secretory cells. ChIP-seq analysis revealed direct binding of ATF4 to regulatory elements of genes associated with osteoblast differentiation and secretory cell function. Our findings provide valuable insights into the role of ATF4 in airway epithelial differentiation and its potential involvement in innate immune responses and cellular adaptation to stress.
Collapse
Affiliation(s)
- Juan F Barrera-Lopez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marcos Olivera-Gomez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jimenez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Selene Diaz-Chamorro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Clara M Mateos-Quiros
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Dixan A Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Angel C Roman
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Jose M Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
17
|
Zarate YA, Bosanko K, Andres A, Fish JL. Bone health in SATB2-associated syndrome: Results from a large prospective cohort and recommendations for surveillance. Am J Med Genet A 2024; 194:203-210. [PMID: 37786328 DOI: 10.1002/ajmg.a.63421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
Alterations in SATB2 result in SATB2-associated syndrome (SAS; Glass syndrome, OMIM 612313), an autosomal dominant multisystemic disorder predominantly characterized by developmental delay, craniofacial anomalies, and growth retardation. The bone phenotype of SAS has been less explored until recently and includes a variety of skeletal deformities, increased risk of low bone mineral density (BMD) with a propensity to fractures, and other biochemical abnormalities that suggest elevated bone turnover. We present the results of ongoing surveillance of bone health from 32 individuals (47% females, 3-18 years) with molecularly-confirmed SAS evaluated at a multidisciplinary clinic. Five individuals (5/32, 16%) were documented to have BMD Z-scores by DXA scans of -2.0 SD or lower and 7 more (7/32, 22%) had Z-scores between -1 and - 2 SD at the lumbar spine or the total hip. Alkaline phosphatase levels were found to be elevated in 19 individuals (19/30, 63%) and determined to correspond to bone-specific alkaline phosphatase elevations when measured (11/11, 100%). C-telopeptide levels were found to be elevated when adjusted by age and gender in 6 individuals (6/14, 43%). Additionally, the two individuals who underwent bone cross-sectional geometry evaluation by peripheral quantitative computed tomography were documented to have low cortical bone density for age and sex despite concurrent DXA scans that did not have this level of decreased density. While we could not identify particular biochemical abnormalities that predicted low BMD, the frequent elevations in markers of bone formation and resorption further confirmed the increased bone turnover in SAS. Based on our results and other recently published studies, we propose surveillance guidelines for the skeletal phenotype of SAS.
Collapse
Affiliation(s)
- Yuri A Zarate
- Division of Genetics and Metabolism, University of Kentucky, Lexington, Kentucky, USA
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Katherine Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Section of Developmental Nutrition, Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
18
|
Yan F, Suzuki A, Iwaya C, Pei G, Chen X, Yoshioka H, Yu M, Simon LM, Iwata J, Zhao Z. Single-cell multiomics decodes regulatory programs for mouse secondary palate development. Nat Commun 2024; 15:821. [PMID: 38280850 PMCID: PMC10821874 DOI: 10.1038/s41467-024-45199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5. We construct five trajectories representing continuous differentiation of cranial neural crest-derived multipotent cells into distinct lineages. By linking open chromatin signals to gene expression changes, we characterize the underlying lineage-determining transcription factors. In silico perturbation analysis identifies transcription factors SHOX2 and MEOX2 as important regulators of the development of the anterior and posterior palate, respectively. In conclusion, our study charts epigenetic and transcriptional dynamics in palatogenesis, serving as a valuable resource for further cleft palate research.
Collapse
Affiliation(s)
- Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri - Kansas City, Kansas City, Missouri, 64108, USA
| | - Chihiro Iwaya
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xian Chen
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Meifang Yu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Ma Y, Liu H, Shi L. Progress of epigenetic modification of SATB2 gene in the pathogenesis of non-syndromic cleft lip and palate. Asian J Surg 2024; 47:72-76. [PMID: 37852859 DOI: 10.1016/j.asjsur.2023.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Non-syndromic Cleft Lip and Palate (NSCLP) is one of the most common congenital craniofacial malformations. However, there is no enough knowledge about its mechanism, even through many relevant studies verify that cleft lip and palate is caused by interactions between environmental and genetic factors. SATB2 gene is one of the most common candidate genes of NSCLP, and the development of epigenetics provides a new direction on pathogenesis of cleft lip and palate. This review summarizes SATB2 gene in the pathogenesis of non-syndromic cleft lip and palate, expecting to provide strategies to prevent and treat cleft and palate in the future.
Collapse
Affiliation(s)
- Yang Ma
- Department of Plastic Surgery, Meizhou Clinical Institute of Shantou University Medical College, No 63 Huangtang Road, Meizhou, 514031, Guangdong, China
| | - Hangyu Liu
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Lungang Shi
- Department of Plastic Surgery, Meizhou Clinical Institute of Shantou University Medical College, No 63 Huangtang Road, Meizhou, 514031, Guangdong, China; Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
20
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
21
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
22
|
Lorenzo-Guerra SL, Codina-Martínez H, Suárez-Fernández L, Cabal VN, García-Marín R, Riobello C, Vivanco B, Blanco-Lorenzo V, Sánchez-Fernández P, López F, Llorente JL, Hermsen MA. Characterization of a Preclinical In Vitro Model Derived from a SMARCA4-Mutated Sinonasal Teratocarcinosarcoma. Cells 2023; 13:81. [PMID: 38201285 PMCID: PMC10778008 DOI: 10.3390/cells13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Sinonasal teratocarcinosarcoma (TCS) is a rare tumor that displays a variable histology with admixtures of epithelial, mesenchymal, neuroendocrine and germ cell elements. Facing a very poor prognosis, patients with TCS are in need of new options for treatment. Recently identified recurrent mutations in SMARCA4 may serve as target for modern therapies with EZH1/2 and CDK4/6 inhibitors. Here, we present the first in vitro cell line TCS627, established from a previously untreated primary TCS originating in the ethmoid sinus with invasion into the brain. The cultured cells expressed immunohistochemical markers, indicating differentiation of epithelial, neuroepithelial, sarcomatous and teratomatous components. Whole-exome sequencing revealed 99 somatic mutations including SMARCA4, ARID2, TET2, CDKN2A, WNT7A, NOTCH3 and STAG2, all present both in the primary tumor and in the cell line. Focusing on mutated SMARCA4 as the therapeutic target, growth inhibition assays showed a strong response to the CDK4/6 inhibitor palbociclib, but much less to the EZH1/2 inhibitor valemetostat. In conclusion, cell line TCS627 carries both histologic and genetic features characteristic of TCS and is a valuable model for both basic research and preclinical testing of new therapeutic options for treatment of TCS patients.
Collapse
Affiliation(s)
- Sara Lucila Lorenzo-Guerra
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Helena Codina-Martínez
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Laura Suárez-Fernández
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Virginia N. Cabal
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Rocío García-Marín
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Cristina Riobello
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Blanca Vivanco
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.)
| | - Paula Sánchez-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (F.L.); (J.L.L.)
| | - Fernando López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (F.L.); (J.L.L.)
| | - Jóse Luis Llorente
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (F.L.); (J.L.L.)
| | - Mario A. Hermsen
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| |
Collapse
|
23
|
Ma Y, Wang S, Wang H, Chen X, Shuai Y, Wang H, Mao Y, He F. Mesenchymal stem cells and dental implant osseointegration during aging: from mechanisms to therapy. Stem Cell Res Ther 2023; 14:382. [PMID: 38124153 PMCID: PMC10734190 DOI: 10.1186/s13287-023-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Dental implants are widely used to replace missing teeth, providing patients with unparalleled levels of effectiveness, convenience, and affordability. The biological basis for the clinical success of dental implants is osseointegration. Bone aging is a high-risk factor for the reduced osseointegration and survival rates of dental implants. In aged individuals, mesenchymal stem cells (MSCs) in the bone marrow show imbalanced differentiation with a reduction in osteogenesis and an increase in adipogenesis. This leads to impaired osseointegration and implant failure. This review focuses on the molecular mechanisms underlying the dysfunctional differentiation of aged MSCs, which primarily include autophagy, transcription factors, extracellular vesicle secretion, signaling pathways, epigenetic modifications, microRNAs, and oxidative stress. Furthermore, this review addresses the pathological changes in MSCs that affect osseointegration and discusses potential therapeutic interventions to enhance osseointegration by manipulating the mechanisms underlying MSC aging.
Collapse
Affiliation(s)
- Yang Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaoyu Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yi Shuai
- Nanjing Jinling Hospital: East Region Military Command General Hospital, Nanjing, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Yingjie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Sugyo A, Tsuji AB, Sudo H, Sugiura Y, Koizumi M, Higashi T. Wnt1 induces osteoblastic changes in a well-established osteolytic skeletal metastatic model derived from breast cancer. Cancer Rep (Hoboken) 2023; 6:e1909. [PMID: 37840014 PMCID: PMC10728502 DOI: 10.1002/cnr2.1909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Osteoblastic skeletal metastasis is frequently observed in prostate cancer. An effective therapy has not been developed due to the unclear molecular mechanism. The Wnt family is involved in various biological phenomena including bone metabolism. There is no direct evidence that the family causes osteoblastic skeletal metastasis. AIMS The present study aims to evaluate whether overexpressed Wnt induces osteoblastic bone metastasis in a well-established osteolytic bone metastatic model. METHODS AND RESULTS The breast cancer-derived 5a-D-Luc-ZsGreen cells were transfected with Wnt1, Wnt3A, and Wnt5A expression vectors, producing stably highly expressing cells. These cells were intracardially transplanted in nude mice. Bone metastasis development was confirmed by fluorescence imaging. Hind-limb bones including metastasis were dissected and visualized through micro-CT imaging. After imaging, sections were stained with hematoxylin and eosin (H&E), and immunohistochemically stained with an anti-SATB2 antibody. Luminescent imaging confirmed mice with bone metastases in the hind limbs. Micro-CT imaging found an osteoblastic change only in bone metastasis of mice transplanted with Wnt1-expressing cells. This was confirmed on H&E-stained sections. SATB2 immunostaining showed differentiated osteoblasts were at the site of bone metastases in the diaphysis. SATB2 in the Wnt/β-catenin pathway activated by overexpressed Wnt1 could induce osteoblastic change. CONCLUSION Our findings provided direct evidence Wnt1 is involved in osteoblastic bone metastasis development. Our model would be a powerful tool for further elucidating molecular mechanisms underlying the disease and developing effective therapies.
Collapse
Affiliation(s)
- Aya Sugyo
- Experimental Nuclear Medicine Group, Department of Molecular Imaging and TheranosticsInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Atsushi B. Tsuji
- Experimental Nuclear Medicine Group, Department of Molecular Imaging and TheranosticsInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Hitomi Sudo
- Experimental Nuclear Medicine Group, Department of Molecular Imaging and TheranosticsInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Yoshiya Sugiura
- Department of PathologyToho University Sakura Medical CenterSakuraJapan
| | - Mitsuru Koizumi
- Department of Nuclear MedicineCancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tatsuya Higashi
- Experimental Nuclear Medicine Group, Department of Molecular Imaging and TheranosticsInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
25
|
Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, Pratama YA, Tahir M. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn 2023; 41:10257-10276. [PMID: 36420663 DOI: 10.1080/07391102.2022.2148749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells responsible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways. Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix. Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the development of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis, which are transcription factors. Previous studies have heavily examined the role of factors that control gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relationship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism, particularly miRNAs, lncRNAs, and circRNAs, has been shown to influence transcriptional factor activity in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors involved in osteoblast differentiation, including Runx2, Osx, Dlx5, β-catenin, ATF4, Ihh, Satb2, and Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcription factors in order to improve our understanding of the transcriptional regulation of osteoblast differentiation. Adequate exploration and understanding of the molecular mechanisms of osteoblastogenesis can be a critical strategy in the development of therapies for bone-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Tahir
- Department of Pharmaceutical Science, Kulliyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
26
|
Guo J, Chen Z, Xiao Y, Yu G, Li Y. SATB1 promotes osteogenic differentiation of diabetic rat BMSCs through MAPK signalling activation. Oral Dis 2023; 29:3610-3619. [PMID: 35608610 DOI: 10.1111/odi.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Special AT-rich binding protein 1 (SATB1), a chromatin organizer and global transcriptional regulator, plays an important role in tumorigenesis and immune response. However, its function in the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) remains unknown. Therefore, this study aimed to explore the role of SATB1 in osteogenesis. METHODS BMSCs were collected from the type 2 diabetes rat model and the protein and gene expression of SATB1 and osteospecific genes were evaluated post osteogenic induction. RESULTS SATB1 protein expression significantly decreased in diabetic rat BMSCs whereas it increased in BMSCs following osteogenic induction. SATB1 knockdown significantly suppressed the expression of osteospecific genes, including alkaline phosphatase (Alp), runt-related transcription factor 2, and osteocalcin, and reduced the number of mineral deposits and ALP activity, whereas SATB1 overexpression yielded the opposite results. Moreover, SATB1 knockdown suppressed activation of the MAPK signalling pathway (phosphorylation of p38 and ERK), and MAPK pathway inhibitors could reverse the inhibitory effect of SATB1 knockdown on osteogenic differentiation of BMSCs. CONCLUSION SATB1 plays a key role in the osteogenic differentiation of BMSCs via the p38 MAPK and ERK MAPK signalling pathways. These findings may provide a new strategy for the application of BMSCs in bone regeneration.
Collapse
Affiliation(s)
- Jing Guo
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Zhuochen Chen
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Yue Xiao
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Guiyuan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
28
|
Liu Q, Feng NN, Chen LJ. Genetic analysis of a child with SATB2‑associated syndrome and literature study. Exp Ther Med 2023; 26:372. [PMID: 37415841 PMCID: PMC10320656 DOI: 10.3892/etm.2023.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/23/2023] [Indexed: 07/08/2023] Open
Abstract
The present study aimed to investigate clinical phenotype and genotype characteristics of a male child with SATB2-associated syndrome (SAS) and analyzed the relationship between these characteristics and the possible underlying genetic mechanism. His clinical phenotype was analyzed. Using a high-throughput sequencing platform, his DNA samples were subjected to medical exome sequencing, screened for suspected variant loci and analyzed for chromosomal copy number variations. The suspected pathogenic loci were verified by Sanger sequencing. He presented with phenotypic anomalies of delayed growth, delayed speech and mental development, facial dysmorphism showing the typical manifestation of SAS and motor retardation symptoms. Gene sequencing result analyses revealed a de novo heterozygous repeat insertion shift mutation in the SATB2 gene (NM_015265.3) c.771dupT (p.Met258Tyrfs*46), resulting in a frameshift mutation from methionine to tyrosine at the amino acid site 258 and a truncated protein with 46 amino acids missing. The parents showed no mutation at this locus. This mutation was identified as the nosogenesis of this syndrome in children. To the best of the authors' knowledge, this is the first report on this mutation. The clinical manifestations and gene variation characteristics of 39 previously reported SAS cases were analyzed together with this case. The findings of the present study suggested severely impaired language development, facial dysmorphism and varying degrees of delayed intellectual development as the characteristic clinical manifestations of SAS.
Collapse
Affiliation(s)
- Qian Liu
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Nan-Nan Feng
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin-Jiao Chen
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
29
|
Torrecillas-Baena B, Pulido-Escribano V, Dorado G, Gálvez-Moreno MÁ, Camacho-Cardenosa M, Casado-Díaz A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J Clin Med 2023; 12:4385. [PMID: 37445420 DOI: 10.3390/jcm12134385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Bone metabolism is regulated by osteoblasts, osteoclasts, osteocytes, and stem cells. Pathologies such as osteoporosis, osteoarthritis, osteonecrosis, and traumatic fractures require effective treatments that favor bone formation and regeneration. Among these, cell therapy based on mesenchymal stem cells (MSC) has been proposed. MSC are osteoprogenitors, but their regenerative activity depends in part on their paracrine properties. These are mainly mediated by extracellular vesicle (EV) secretion. EV modulates regenerative processes such as inflammation, angiogenesis, cell proliferation, migration, and differentiation. Thus, MSC-EV are currently an important tool for the development of cell-free therapies in regenerative medicine. This review describes the current knowledge of the effects of MSC-EV in the different phases of bone regeneration. MSC-EV has been used by intravenous injection, directly or in combination with different types of biomaterials, in preclinical models of bone diseases. They have shown great clinical potential in regenerative medicine applied to bone. These findings should be confirmed through standardization of protocols, a better understanding of the mechanisms of action, and appropriate clinical trials. All that will allow the translation of such cell-free therapy to human clinic applications.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
30
|
Han JS, Fishman-Williams E, Decker SC, Hino K, Reyes RV, Brown NL, Simó S, Torre AL. Notch directs telencephalic development and controls neocortical neuron fate determination by regulating microRNA levels. Development 2023; 150:dev201408. [PMID: 37272771 PMCID: PMC10309580 DOI: 10.1242/dev.201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
The central nervous system contains a myriad of different cell types produced from multipotent neural progenitors. Neural progenitors acquire distinct cell identities depending on their spatial position, but they are also influenced by temporal cues to give rise to different cell populations over time. For instance, the progenitors of the cerebral neocortex generate different populations of excitatory projection neurons following a well-known sequence. The Notch signaling pathway plays crucial roles during this process, but the molecular mechanisms by which Notch impacts progenitor fate decisions have not been fully resolved. Here, we show that Notch signaling is essential for neocortical and hippocampal morphogenesis, and for the development of the corpus callosum and choroid plexus. Our data also indicate that, in the neocortex, Notch controls projection neuron fate determination through the regulation of two microRNA clusters that include let-7, miR-99a/100 and miR-125b. Our findings collectively suggest that balanced Notch signaling is crucial for telencephalic development and that the interplay between Notch and miRNAs is essential for the control of neocortical progenitor behaviors and neuron cell fate decisions.
Collapse
Affiliation(s)
- Jisoo S. Han
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | | | - Steven C. Decker
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Raenier V. Reyes
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Nadean L. Brown
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
31
|
Lamandé SR, Ng ES, Cameron TL, Kung LHW, Sampurno L, Rowley L, Lilianty J, Patria YN, Stenta T, Hanssen E, Bell KM, Saxena R, Stok KS, Stanley EG, Elefanty AG, Bateman JF. Modeling human skeletal development using human pluripotent stem cells. Proc Natl Acad Sci U S A 2023; 120:e2211510120. [PMID: 37126720 PMCID: PMC10175848 DOI: 10.1073/pnas.2211510120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders.
Collapse
Affiliation(s)
- Shireen R. Lamandé
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Elizabeth S. Ng
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Trevor L. Cameron
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Louise H. W. Kung
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Lisa Sampurno
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Lynn Rowley
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Jinia Lilianty
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yudha Nur Patria
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Child Health, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| | - Tayla Stenta
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Eric Hanssen
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Ritika Saxena
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Kathryn S. Stok
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Edouard G. Stanley
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Andrew G. Elefanty
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - John F. Bateman
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
32
|
Kurosaka H, Yamamoto S, Hirasawa K, Yanagishita T, Fujioka K, Yagasaki H, Nagata M, Ishihara Y, Yonei A, Asano Y, Nagata N, Tsujimoto T, Inubushi T, Yamamoto T, Sakai N, Yamashiro T. Craniofacial and dental characteristics of three Japanese individuals with genetically diagnosed SATB2-associated syndrome. Am J Med Genet A 2023. [PMID: 37141439 DOI: 10.1002/ajmg.a.63225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Craniofacial defects are one of the most frequent phenotypes in syndromic diseases. More than 30% of syndromic diseases are associated with craniofacial defects, which are important for the precise diagnosis of systemic diseases. Special AT-rich sequence-binding protein 2 (SATB2)-associated syndrome (SAS) is a rare syndromic disease associated with a wide variety of phenotypes, including intellectual disability and craniofacial defects. Among them, dental anomalies are the most frequently observed phenotype and thus becomes an important diagnostic criterion for SAS. In this report, we demonstrate three Japanese cases of genetically diagnosed SAS with detailed craniofacial phenotypes. The cases showed multiple dental problems, which have been previously reported to be linked to SAS, including abnormal crown morphologies and pulp stones. One case showed a characteristic enamel pearl at the root furcation. These phenotypes add new insights for differentiating SAS from other disorders.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Sayuri Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kyoko Hirasawa
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoe Yanagishita
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kaoru Fujioka
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hideaki Yagasaki
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Yonei
- Department of Genetic Counseling Osaka University Hospital, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Namiki Nagata
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takayuki Tsujimoto
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Norio Sakai
- Department of Genetic Counseling Osaka University Hospital, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Health Science, Child Healthcare and Genetic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
33
|
Guo Q, Wang Y, Wang Q, Qian Y, Jiang Y, Dong X, Chen H, Chen X, Liu X, Yu S, Zhu J, Shan S, Wu B, Zhou W, Wang H. In the developing cerebral cortex: axonogenesis, synapse formation, and synaptic plasticity are regulated by SATB2 target genes. Pediatr Res 2023; 93:1519-1527. [PMID: 36028553 DOI: 10.1038/s41390-022-02260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Special AT-rich sequence-binding protein 2 is essential for the development of cerebral cortex and key molecular node for the establishment of proper neural circuitry and function. Mutations in the SATB2 gene lead to SATB2-associated syndrome, which is characterized by abnormal development of skeleton and central nervous systems. METHODS We generated Satb2 knockout mouse model through CRISPR-Cas9 technology and performed RNA-seq and ChIP-seq of embryonic cerebral cortex. We conducted RT-qPCR, western blot, immunofluorescence staining, luciferase reporter assay and behavioral analysis for experimental verification. RESULTS We identified 1363 downstream effector genes of Satb2 and correlation analysis of Satb2-targeted genes and neurological disease genes showed that Satb2 contribute to cognitive and mental disorders from the early developmental stage. We found that Satb2 directly regulate the expression of Ntng1, Cdh13, Kitl, genes important for axon guidance, synaptic formation, neuron migration, and Satb2 directly activates the expression of Mef2c. We also showed that Satb2 heterozygous knockout mice showed impaired spatial learning and memory. CONCLUSIONS Taken together, our study supportsroles of Satb2 in the regulation of axonogenesis and synaptic formation at the early developmental stage and provides new insights into the complicated regulatory mechanism of Satb2 and new evidence to elucidate the pathogen of SATB2-associated syndrome. IMPACT 1363 downstream effector genes of Satb2 were classified into 5 clusters with different temporal expression patterns. We identified Plxnd1, Ntng1, Efnb2, Ephb1, Plxna2, Epha3, Plxna4, Unc5c, and Flrt2 as axon guidance molecules to regulate axonogenesis. 168 targeted genes of Satb2 were found to regulate synaptic formation in the early development of the cerebral cortex. Transcription factor Mef2c is positively regulated by Satb2, and 28 Mef2c-targeted genes can be directly regulated by Satb2. In the Morris water maze test, Satb2+/- mice showed impaired spatial learning and memory, further strengthening that Satb2 can regulate synaptic functions.
Collapse
Affiliation(s)
- Qiufang Guo
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
- Berry Genomics Co, 102206, Beijing, China
| | - Yaqiong Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Qing Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Yinmo Jiang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Xiang Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Xiuyun Liu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Sha Yu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Jitao Zhu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Shifang Shan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China.
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Key Laboratory of Neonatal Diseases, Ministry of Health, 201102, Shanghai, China.
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China.
| |
Collapse
|
34
|
Copelli MDM, Pairet E, Atique-Tacla M, Vieira TP, Appenzeller S, Helaers R, Vikkula M, Gil-da-Silva-Lopes VL. SATB2-Associated Syndrome Due to a c.715C>T:p(Arg239*) Variant in Adulthood: Natural History and Literature Review. Genes (Basel) 2023; 14:genes14040882. [PMID: 37107640 PMCID: PMC10137462 DOI: 10.3390/genes14040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
SATB2-associated syndrome (SAS) is a rare condition, and it is characterized by severe developmental delay/intellectual disability, especially severe speech delay/or absence, craniofacial abnormalities, and behavioral problems. Most of the published reports are limited to children, with little information about the natural history of the disease and the possible novel signs and symptoms or behavioral changes in adulthood. We describe the management and follow-up of a 25-year-old male with SAS due to a de novo heterozygous nonsense variant SATB2:c.715C>T:p.(Arg239*) identified by whole-exome sequencing and review the literature. The case herein described contributes to a better characterization of the natural history of this genetic condition and in addition to the genotype-phenotype correlation of the SATB2:c.715C>T:p.(Arg239*) variant in SAS, highlights some particularities of its management.
Collapse
Affiliation(s)
- Matheus de Mello Copelli
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| | - Eleonore Pairet
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Milena Atique-Tacla
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| | - Társis Paiva Vieira
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| | - Simone Appenzeller
- Department of Orthopedics, Rheumatology and Traumatology, School of Medical Science, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| |
Collapse
|
35
|
Lozano D, López JM, Jiménez S, Morona R, Ruíz V, Martínez A, Moreno N. Expression of SATB1 and SATB2 in the brain of bony fishes: what fish reveal about evolution. Brain Struct Funct 2023; 228:921-945. [PMID: 37002478 PMCID: PMC10147777 DOI: 10.1007/s00429-023-02632-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
AbstractSatb1 and Satb2 belong to a family of homeodomain proteins with highly conserved functional and regulatory mechanisms and posttranslational modifications in evolution. However, although their distribution in the mouse brain has been analyzed, few data exist in other non-mammalian vertebrates. In the present study, we have analyzed in detail the sequence of SATB1 and SATB2 proteins and the immunolocalization of both, in combination with additional neuronal markers of highly conserved populations, in the brain of adult specimens of different bony fish models at key evolutionary points of vertebrate diversification, in particular including representative species of sarcopterygian and actinopterygian fishes. We observed a striking absence of both proteins in the pallial region of actinopterygians, only detected in lungfish, the only sarcopterygian fish. In the subpallium, including the amygdaloid complex, or comparable structures, we identified that the detected expressions of SATB1 and SATB2 have similar topologies in the studied models. In the caudal telencephalon, all models showed significant expression of SATB1 and SATB2 in the preoptic area, including the acroterminal domain of this region, where the cells were also dopaminergic. In the alar hypothalamus, all models showed SATB2 but not SATB1 in the subparaventricular area, whereas in the basal hypothalamus the cladistian species and the lungfish presented a SATB1 immunoreactive population in the tuberal hypothalamus, also labeled with SATB2 in the latter and colocalizing with the gen Orthopedia. In the diencephalon, all models, except the teleost fish, showed SATB1 in the prethalamus, thalamus and pretectum, whereas only lungfish showed also SATB2 in prethalamus and thalamus. At the midbrain level of actinopterygian fish, the optic tectum, the torus semicircularis and the tegmentum harbored populations of SATB1 cells, whereas lungfish housed SATB2 only in the torus and tegmentum. Similarly, the SATB1 expression in the rhombencephalic central gray and reticular formation was a common feature. The presence of SATB1 in the solitary tract nucleus is a peculiar feature only observed in non-teleost actinopterygian fishes. At these levels, none of the detected populations were catecholaminergic or serotonergic. In conclusion, the protein sequence analysis revealed a high degree of conservation of both proteins, especially in the functional domains, whereas the neuroanatomical pattern of SATB1 and SATB2 revealed significant differences between sarcopterygians and actinopterygians, and these divergences may be related to the different functional involvement of both in the acquisition of various neural phenotypes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Víctor Ruíz
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ana Martínez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain.
| |
Collapse
|
36
|
Feng J, Zhang X, Jiang M, Dai X, Li G, Liu Z. Effect of sevoflurane anesthesia to neonatal rat hippocampus by RNA-seq. Neurosci Lett 2023; 801:137141. [PMID: 36813076 DOI: 10.1016/j.neulet.2023.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Sevoflurane is an inhalational anesthetic for the induction and maintenance of general anesthesia in pediatric surgery. However, few studies have paid attention to the multiple organ toxicity and the mechanism behind it. METHODS Inhalation anesthesia neonatal rat model were realized by exposing to 3.5% sevoflurane. RNA-seq was performed to find out how inhalation anesthesia affects the lung, cerebral cortex, hippocampus, and heart. Validation of RNA-seq results by QPCR after animal model establishment. Tunel assay detects cell apoptosis in each group. CCK-8, cell apoptosis assay and western blot assay validation of the role of siRNA-Bckdhb in the action of sevoflurane on rat hippocampal neuronal cells. RESULTS There are significant differences between different groups, especially the hippocampus and cerebral cortex. Bckdhb was significantly up-regulated in the hippocampus with sevoflurane-treated. Pathway analysis revealed several abundant pathways related to DEGs, e.g., protein digestion and absorption and PI3K-Akt signaling pathway. A series of cellular and animal experiments showed that siRNA-Bckdhb can inhibit the reduction of cellular activity caused by sevoflurane. CONCLUSION Bckdhb interference experiments indicated that sevoflurane induces hippocampal neuronal cells apoptosis by regulating Bckdhb expression. Our study provided new insights into the molecular mechanism of sevoflurane-induced brain damage in pediatrics.
Collapse
Affiliation(s)
- Jinhua Feng
- Department of Pharmacy, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xuesong Zhang
- Department of Anesthesiology, Zhongshan Wusong Hospital, Fudan University, Shanghai, China
| | - Menglu Jiang
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xu Dai
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Guowei Li
- Department of Anesthesiology, Wuxi Fifth People's Hospital Affiliated to Jiangnan University, Wuxi, China.
| | - Zhenqing Liu
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China.
| |
Collapse
|
37
|
Jin J, Chen F, He W, Zhao L, Lin B, Zheng D, Chen L, He H, He Q. YAP-Activated SATB2 Is a Coactivator of NRF2 That Amplifies Antioxidative Capacity and Promotes Tumor Progression in Renal Cell Carcinoma. Cancer Res 2023; 83:786-803. [PMID: 36598364 DOI: 10.1158/0008-5472.can-22-1693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/04/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Aberrant epigenetic reprogramming contributes to the progression of renal cell carcinoma (RCC). Elucidation of key regulators of epigenetic reprogramming in RCC could help identify therapeutic vulnerabilities to improve treatment. Here, we report upregulation of the nuclear matrix-associated protein, special AT-rich binding protein-2 (SATB2), in RCC samples, which correlated with poor prognosis. SATB2 inhibition suppressed RCC growth and self-renewal capacities. YAP/TEAD4 activated SATB2 expression and depended on SATB2 to enhance cell proliferation. Transcriptome analysis implicated that SATB2 regulates NRF2 downstream targets to suppress oxidative stress without altering NRF2 levels. Integrated chromatin immunoprecipitation sequencing and assay for transposase-accessible chromatin using sequencing analyses demonstrated that SATB2 coordinated with NRF2 to drive enhancer-promoter interactions, amplifying transcriptional activity. SATB2 recruited SWI/SNF complex subunits, including BRD7 or BRG1, to sustain DNA accessibility. Increased SATB2 triggered chromatin remodeling into configurations that rendered RCC more sensitive to SATB2 deficiency. Moreover, SATB2 ablation promoted the sensitivity of RCC to chemotherapy-induced apoptosis. Finally, targeting SATB2 or BRD7 effectively restricted the proliferation of YAP-high tumors in patient-derived xenografts and patient-derived organoids. Together, SATB2 is an oncogenic chromatin organizer in RCC, and targeting SATB2 is an effective strategy to suppress the YAP-high RCC. SIGNIFICANCE A YAP-SATB2-NRF2 regulatory axis amplifies antioxidative stress signaling and provides potential therapeutic targets to enhance response to chemotherapy in renal cell carcinoma.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fen Chen
- Department of Ultrasound, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wenfang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Zhao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Lin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Danna Zheng
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Hongchao He
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Hojo H. Emerging RUNX2-Mediated Gene Regulatory Mechanisms Consisting of Multi-Layered Regulatory Networks in Skeletal Development. Int J Mol Sci 2023; 24:ijms24032979. [PMID: 36769300 PMCID: PMC9917854 DOI: 10.3390/ijms24032979] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal development is tightly coordinated by chondrocytes and osteoblasts, which are derived from skeletal progenitors, and distinct cell-type gene regulatory programs underlie the specification and differentiation of cells. Runt-related transcription factor 2 (Runx2) is essential to chondrocyte hypertrophy and osteoblast differentiation. Genetic studies have revealed the biological functions of Runx2 and its involvement in skeletal genetic diseases. Meanwhile, molecular biology has provided a framework for our understanding of RUNX2-mediated transactivation at a limited number of cis-regulatory elements. Furthermore, studies using next-generation sequencing (NGS) have provided information on RUNX2-mediated gene regulation at the genome level and novel insights into the multiple layers of gene regulatory mechanisms, including the modes of action of RUNX2, chromatin accessibility, the concept of pioneer factors and phase separation, and three-dimensional chromatin organization. In this review, I summarize the emerging RUNX2-mediated regulatory mechanism from a multi-layer perspective and discuss future perspectives for applications in the treatment of skeletal diseases.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
39
|
Asahina Y, Hashimoto H, Aihara M, Noie T, Morikawa T. Impact of Neoadjuvant Chemotherapy on SATB2 Expression in Colorectal Carcinomas: SATB2 Positivity is Preserved in Most Cases, but Down-Expressed in Effective Cases of Chemotherapy. Int J Surg Pathol 2023; 31:46-55. [PMID: 35343276 DOI: 10.1177/10668969221088881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Special AT-rich sequence-binding protein 2 (SATB2) is a novel, diagnostically useful, and highly sensitive immunohistochemical marker for both primary and metastatic colorectal or appendiceal tumors. In the present study, we aimed to assess the impact of neoadjuvant chemotherapy on SATB2 expression in primary colorectal carcinomas and their corresponding liver metastases. Forty-four patients with colorectal carcinomas who received neoadjuvant chemotherapy were included. SATB2 expression in specimens of biopsy, resected primary colorectal carcinomas, and resected metastatic foci were examined by immunohistochemistry and compared to caudal-type homeobox transcription factor 2 (CDX2). Using a modified H-score, expressions were scored semiquantitatively for both staining intensity and tumor cell proportion with nuclear staining. SATB2 was positive in 43/44 cases (98%) in biopsy specimens, 42/44 cases (96%) in resected colorectal carcinomas with neoadjuvant chemotherapy, and 9/9 cases (100%) with liver metastases. However, these expressions were variably decreased, and the H-score was lower in resected colorectal carcinomas (158 ± 69) than in biopsy specimens (174 ± 60) (p < 0.01). The proportion of SATB2-positive area of colorectal carcinoma was 93% in metastatic foci, while the CDX2-positive area was 78%. When categorized by histopathological tumor regression, the most effective tumors of chemotherapy showed the lowest H-score in resected colorectal carcinomas among the three groups (p < 0.01). SATB2 is a useful marker for both primary colorectal carcinoma and corresponding liver metastases, even with neoadjuvant chemotherapy. However, caution should be exercised when performing needle biopsy for metastatic foci with neoadjuvant therapy because expressions could be decreased, especially in chemotherapy-effective cases, and show immunohistochemically negative results.
Collapse
Affiliation(s)
- Yuichi Asahina
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.,Department of Diagnostic Pathology, 13635NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan
| | - Hirotsugu Hashimoto
- Department of Diagnostic Pathology, 13635NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan.,Faculty of Healthcare, Tokyo Healthcare University, 4-1-17, Higashi-Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Tamaki Noie
- Department of Surgery, 13635NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan
| | - Teppei Morikawa
- Department of Diagnostic Pathology, 13635NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan.,Faculty of Healthcare, Tokyo Healthcare University, 4-1-17, Higashi-Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| |
Collapse
|
40
|
Cleven AHG, Szuhai K, van IJzendoorn DGP, Groen E, Baelde H, Schreuder WH, Briaire-de Bruijn IH, van der Meeren SW, Kleijwegt MC, Furth WR, Kroon HM, Suurmeijer AJH, Savci-Heijink DC, Baumhoer D, Bovée JVMG. Psammomatoid Ossifying Fibroma Is Defined by SATB2 Rearrangement. Mod Pathol 2023; 36:100013. [PMID: 36788065 DOI: 10.1016/j.modpat.2022.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/19/2023]
Abstract
Psammomatoid ossifying fibroma (PsOF), also known as juvenile PsOF, is a benign fibro-osseous neoplasm predominantly affecting the extragnathic bones, particularly the frontal and ethmoid bones, with a preference for adolescents and young adults. The clinical and morphologic features of PsOF may overlap with those of other fibro-osseous lesions, and additional molecular markers would help increase diagnostic accuracy. Because identical chromosomal breakpoints at bands Xq26 and 2q33 have been described in 3 cases of PsOF located in the orbita, we aimed to identify the exact genes involved in these chromosomal breakpoints and determine their frequency in PsOF using transcriptome sequencing and fluorescence in situ hybridization (FISH). We performed whole RNA transcriptome sequencing on frozen tissue in 2 PsOF index cases and identified a fusion transcript involving SATB2, located on chromosome 2q33.1, and AL513487.1, located on chromosome Xq26, in one of the cases. The fusion was validated using reverse transcription (RT)-PCR and SATB2 FISH. The fusion lead to a truncated protein product losing most of the functional domains. Subsequently, we analyzed an additional 24 juvenile PsOFs, 8 juvenile trabecular ossifying fibromas (JTOFs), and 11 cemento-ossifying fibromas (COFs) for SATB2 using FISH and found evidence of SATB2 gene rearrangements in 58% (7 of 12) of the evaluable PsOF cases but not in any of the evaluable JTOF (n = 7) and COF (n = 7) cases. A combination of SATB2 immunofluorescence and a 2-color SATB2 FISH in our index case revealed that most tumor cells harboring the rearrangement lacked SATB2 expression. Using immunohistochemistry, 65% of PsOF, 100% of JTOF, and 100% of COF cases showed moderate or strong staining for SATB2. In these cases, we observed a mosaic pattern of expression with >25% of the spindle cells in between the bone matrix, with osteoblasts and osteocytes being positive for SATB2. Interestingly, 35% (8 of 23) of PsOFs, in contrast to JTOFs and COFs, showed SATB2 expression in <5% of cells. To our knowledge, this is the first report that shows the involvement of SATB2 in the development of a neoplastic lesion. In this study, we have showed that SATB2 rearrangement is a recurrent molecular alteration that appears to be highly specific for PsOF. Our findings support that PsOF is not only morphologically and clinically but also genetically distinct from JTOF and COF.
Collapse
Affiliation(s)
- Arjen H G Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - David G P van IJzendoorn
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Stanford University, Stanford, California
| | - Eline Groen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem H Schreuder
- Department of Oral and Maxillofacial Surgery/Head and Neck Surgery, Amsterdam University Medical Center/Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Stijn W van der Meeren
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maarten C Kleijwegt
- Department Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter R Furth
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Herman M Kroon
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert J H Suurmeijer
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
41
|
Bone Tissue and the Nervous System: What Do They Have in Common? Cells 2022; 12:cells12010051. [PMID: 36611845 PMCID: PMC9818711 DOI: 10.3390/cells12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Degenerative diseases affecting bone tissues and the brain represent important problems with high socio-economic impact. Certain bone diseases, such as osteoporosis, are considered risk factors for the progression of neurological disorders. Often, patients with neurodegenerative diseases have bone fractures or reduced mobility linked to osteoarthritis. The bone is a dynamic tissue involved not only in movement but also in the maintenance of mineral metabolism. Bone is also associated with the generation of both hematopoietic stem cells (HSCs), and thus the generation of the immune system, and mesenchymal stem cells (MSCs). Bone marrow is a lymphoid organ and contains MSCs and HSCs, both of which are involved in brain health via the production of cytokines with endocrine functions. Hence, it seems clear that bone is involved in the regulation of the neuronal system and vice versa. This review summarizes the recent knowledge on the interactions between the nervous system and bone and highlights the importance of the interaction between nerve and bone cells. In addition, experimental models that study the interaction between nerve and skeletal cells are discussed, and innovative models are suggested to better evaluate the molecular interactions between these two cell types.
Collapse
|
42
|
Yu W, Chakravarthi VP, Borosha S, Dilower I, Lee EB, Ratri A, Starks RR, Fields PE, Wolfe MW, Faruque MO, Tuteja G, Rumi MAK. Transcriptional regulation of Satb1 in mouse trophoblast stem cells. Front Cell Dev Biol 2022; 10:918235. [PMID: 36589740 PMCID: PMC9795202 DOI: 10.3389/fcell.2022.918235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
SATB homeobox proteins are important regulators of developmental gene expression. Among the stem cell lineages that emerge during early embryonic development, trophoblast stem (TS) cells exhibit robust SATB expression. Both SATB1 and SATB2 act to maintain the trophoblast stem-state. However, the molecular mechanisms that regulate TS-specific Satb expression are not yet known. We identified Satb1 variant 2 as the predominant transcript in trophoblasts. Histone marks, and RNA polymerase II occupancy in TS cells indicated an active state of the promoter. A novel cis-regulatory region with active histone marks was identified ∼21 kbp upstream of the variant 2 promoter. CRISPR/Cas9 mediated disruption of this sequence decreased Satb1 expression in TS cells and chromosome conformation capture analysis confirmed looping of this distant regulatory region into the proximal promoter. Scanning position weight matrices across the enhancer predicted two ELF5 binding sites in close proximity to SATB1 sites, which were confirmed by chromatin immunoprecipitation. Knockdown of ELF5 downregulated Satb1 expression in TS cells and overexpression of ELF5 increased the enhancer-reporter activity. Interestingly, ELF5 interacts with SATB1 in TS cells, and the enhancer activity was upregulated following SATB overexpression. Our findings indicate that trophoblast-specific Satb1 expression is regulated by long-range chromatin looping of an enhancer that interacts with ELF5 and SATB proteins.
Collapse
Affiliation(s)
- Wei Yu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rebekah R. Starks
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael W. Wolfe
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - M. Omar Faruque
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
43
|
Li X, Ye X, Su J. The dental phenotype of primary dentition in SATB2-associated syndrome: a report of three cases and literature review. BMC Oral Health 2022; 22:522. [PMID: 36457071 PMCID: PMC9717407 DOI: 10.1186/s12903-022-02594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND SATB2-associated syndrome (SAS; OMIM: 612,313) is an autosomal dominant inherited multisystemic disorder caused by several variants of the SATB2 gene. SAS is characterized by intellectual disability, developmental delay, severe speech anomalies, craniofacial anomalies, and dental abnormalities. Here, we report the dental phenotype of primary dentition of three Chinese children with SAS. CASE PRESENTATION All three cases with SAS showed intellectual disability, speech and language anomalies, and palate anomalies. For the dental phenotype, all three cases showed macrodontia, crowded dentition, extensive caries, periapical abscesses and fistulas. Radiographs showed the wide-open root apex of deciduous teeth, loss of mandibular second bicuspids, delayed root formation of permanent teeth, rotated teeth, and taurodontism. Sanger sequencing of case 1 showed that there was a heterozygous code shift variation, c1985delT (p.F662Sfs*9) in the SATB2 gene, which has not been reported in literature. Root canal therapy, carious restoration, and teeth extraction were managed promptly, while preventive dental care was given regularly. CONCLUSIONS The dental phenotype of primary dentition in SAS may show macrodontia, crowded dentition, severe caries, wide-open root apex of deciduous teeth, loss of mandibular second bicuspids, delayed root formation of permanent teeth, rotated teeth, and taurodontism. Regular oral hygiene instructions and preventive dental care are both required.
Collapse
Affiliation(s)
- Xiaojing Li
- grid.13402.340000 0004 1759 700XDepartment of Stomatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052 Zhejiang China
| | - Xiaowei Ye
- grid.13402.340000 0004 1759 700XDepartment of Stomatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052 Zhejiang China
| | - Jimei Su
- grid.13402.340000 0004 1759 700XDepartment of Stomatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052 Zhejiang China
| |
Collapse
|
44
|
Loss of SATB2 expression correlates with cytokeratin 7 and PD-L1 tumor cell positivity and aggressiveness in colorectal cancer. Sci Rep 2022; 12:19152. [PMID: 36351995 PMCID: PMC9646713 DOI: 10.1038/s41598-022-22685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Colorectal carcinoma (CRC) is a disease that causes significant morbidity and mortality worldwide. To improve treatment, new biomarkers are needed to allow better patient risk stratification in terms of prognosis. This study aimed to clarify the prognostic significance of colonic-specific transcription factor special AT-rich sequence-binding protein 2 (SATB2), cytoskeletal protein cytokeratin 7 (CK7), and immune checkpoint molecule programmed death-ligand 1 (PD-L1). We analyzed a cohort of 285 patients with surgically treated CRC for quantitative associations among the three markers and five traditional prognostic indicators (i.e., tumor stage, histological grade, variant morphology, laterality, and mismatch-repair/MMR status). The results showed that loss of SATB2 expression had significant negative prognostic implications relative to overall survival (OS) and cancer-specific survival (CSS), significantly shortened 5 years OS and CSS and 10 years CSS in patients with CRC expressing CK7, and borderline insignificantly shortened OS in patients with PD-L1 + CRC. PD-L1 showed a significant negative impact in cases with strong expression (membranous staining in 50-100% of tumor cells). Loss of SATB2 was associated with CK7 expression, advanced tumor stage, mucinous or signet ring cell morphology, high grade, right-sided localization but was borderline insignificant relative to PD-L1 expression. CK7 expression was associated with high grade and SATB2 loss. Additionally, a separate analysis of 248 neoadjuvant therapy-naïve cases was performed with mostly similar results. The loss of SATB2 and CK7 expression were significant negative predictors in the multivariate analysis adjusted for associated parameters and patient age. In summary, loss of SATB2 expression and gain of CK7 and strong PD-L1 expression characterize an aggressive phenotype of CRC.
Collapse
|
45
|
Li C, Du Y, Zhang T, Wang H, Hou Z, Zhang Y, Cui W, Chen W. "Genetic scissors" CRISPR/Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair. Bioact Mater 2022; 22:254-273. [PMID: 36263098 PMCID: PMC9554751 DOI: 10.1016/j.bioactmat.2022.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
CRISPR/Cas9 is a revolutionary genome editing technology with the tremendous advantages such as precisely targeting/shearing ability, low cost and convenient operation, becoming an efficient and indispensable tool in biological research. As a disruptive technique, CRISPR/Cas9 genome editing has a great potential to realize a future breakthrough in the clinical bone and cartilage repairing as well. This review highlights the research status of CRISPR/Cas9 system in bone and cartilage repair, illustrates its mechanism for promoting osteogenesis and chondrogenesis, and explores the development tendency of CRISPR/Cas9 in bone and cartilage repair to overcome the current limitations.
Collapse
Affiliation(s)
- Chao Li
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Tongtong Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Haoran Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhiyong Hou
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Yingze Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China,Corresponding author.
| | - Wei Chen
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Corresponding author.
| |
Collapse
|
46
|
Lin GW, Liang YC, Wu P, Chen CK, Lai YC, Jiang TX, Haung YH, Chuong CM. Regional specific differentiation of integumentary organs: SATB2 is involved in α- and β-keratin gene cluster switching in the chicken. Dev Dyn 2022; 251:1490-1508. [PMID: 34240503 PMCID: PMC8742846 DOI: 10.1002/dvdy.396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Animals develop skin regional specificities to best adapt to their environments. Birds are excellent models in which to study the epigenetic mechanisms that facilitate these adaptions. Patients suffering from SATB2 mutations exhibit multiple defects including ectodermal dysplasia-like changes. The preferential expression of SATB2, a chromatin regulator, in feather-forming compared to scale-forming regions, suggests it functions in regional specification of chicken skin appendages by acting on either differentiation or morphogenesis. RESULTS Retrovirus mediated SATB2 misexpression in developing feathers, beaks, and claws causes epidermal differentiation abnormalities (e.g. knobs, plaques) with few organ morphology alterations. Chicken β-keratins are encoded in 5 sub-clusters (Claw, Feather, Feather-like, Scale, and Keratinocyte) on Chromosome 25 and a large Feather keratin cluster on Chromosome 27. Type I and II α-keratin clusters are located on Chromosomes 27 and 33, respectively. Transcriptome analyses showed these keratins (1) are often tuned up or down collectively as a sub-cluster, and (2) these changes occur in a temporo-spatial specific manner. CONCLUSIONS These results suggest an organizing role of SATB2 in cluster-level gene co-regulation during skin regional specification.
Collapse
Affiliation(s)
- Gee-Way Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402204, Taiwan
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yen-Hua Haung
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
47
|
Raykova D, Kermpatsou D, Malmqvist T, Harrison PJ, Sander MR, Stiller C, Heldin J, Leino M, Ricardo S, Klemm A, David L, Spjuth O, Vemuri K, Dimberg A, Sundqvist A, Norlin M, Klaesson A, Kampf C, Söderberg O. A method for Boolean analysis of protein interactions at a molecular level. Nat Commun 2022; 13:4755. [PMID: 35963857 PMCID: PMC9375095 DOI: 10.1038/s41467-022-32395-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2022] [Indexed: 12/12/2022] Open
Abstract
Determining the levels of protein-protein interactions is essential for the analysis of signaling within the cell, characterization of mutation effects, protein function and activation in health and disease, among others. Herein, we describe MolBoolean - a method to detect interactions between endogenous proteins in various subcellular compartments, utilizing antibody-DNA conjugates for identification and signal amplification. In contrast to proximity ligation assays, MolBoolean simultaneously indicates the relative abundances of protein A and B not interacting with each other, as well as the pool of A and B proteins that are proximal enough to be considered an AB complex. MolBoolean is applicable both in fixed cells and tissue sections. The specific and quantifiable data that the method generates provide opportunities for both diagnostic use and medical research.
Collapse
Affiliation(s)
- Doroteya Raykova
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden.
| | - Despoina Kermpatsou
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | | | - Philip J Harrison
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Christiane Stiller
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Johan Heldin
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Mattias Leino
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Sara Ricardo
- Faculty of Medicine, University of Porto, Porto, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Anna Klemm
- Vi2, Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Leonor David
- Faculty of Medicine, University of Porto, Porto, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anders Sundqvist
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Axel Klaesson
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | | | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
48
|
Ho CK, Azurdia J, Park A, Clay MR, Gimarc D. Intra-articular Osteoid Osteoma of the Olecranon Fossa. Cureus 2022; 14:e27484. [PMID: 36060340 PMCID: PMC9423008 DOI: 10.7759/cureus.27484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoid osteomas are benign primary bone lesions characterized by a central nidus with surrounding reactive sclerosis, classically presenting as worsening nocturnal pain relieved by non-steroidal anti-inflammatory medications (NSAIDs). These most commonly occur in intracortical bone and the diaphysis of long bones. As a rare entity, intra-articular osteoid osteomas present unusually, often resulting in a delayed or incorrect diagnosis. We present a case of an intra-articular osteoid osteoma, emphasizing the importance of MRI in aiding diagnosis in this atypical location.
Collapse
|
49
|
Osteoblastic microRNAs in skeletal diseases: Biological functions and therapeutic implications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
50
|
Xiang Q, Zhao Y, Lin J, Jiang S, Li W. Epigenetic modifications in spinal ligament aging. Ageing Res Rev 2022; 77:101598. [PMID: 35218968 DOI: 10.1016/j.arr.2022.101598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Spinal stenosis is a common degenerative spine disorder in the aged population and the spinal ligament aging is a main contributor to this chronic disease. However, the underlying mechanisms of spinal ligament aging remain unclear. Epigenetics is the study of heritable and reversible changes in the function of a gene or genome that occur without any alteration in the primary DNA sequence. Epigenetic alterations have been demonstrated to play crucial roles in age-related diseases and conditions, and they are recently studied as biomarkers and therapeutic targets in the field of cancer research. The main epigenetic modifications, including DNA methylation alteration, histone modifications as well as dysregulated noncoding RNA modulation, have all been implicated in spinal ligament aging diseases. DNA methylation modulates the expression of critical genes including WNT5A, GDNF, ACSM5, miR-497 and miR-195 during spinal ligament degeneration. Histone modifications widely affect gene expression and obvious histone modification abnormalities have been found in spinal ligament aging. MicroRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) exert crucial regulating effects on spinal ligament aging conditions via targeting various osteogenic or fibrogenic differentiation related genes. To our knowledge, there is no systematic review yet to summarize the involvement of epigenetic mechanisms of spinal ligament aging in degenerative spinal diseases. In this study, we systematically discussed the different epigenetic modifications and their potential functions in spinal ligament aging process.
Collapse
|