1
|
Mansour RM, El-Sayyad GS, Abulsoud AI, Hemdan M, Faraag AHI, Ali MA, Elsakka EGE, Abdelmaksoud NM, Abdallah AK, Mahdy A, Ashraf A, Zaki MB, Elrebehy MA, Mohammed OA, Abdel-Reheim MA, Abdel Mageed SS, Alam Eldein KM, Doghish AS. The role of miRNAs in pathogenesis, diagnosis, and therapy of Helicobacter pylori infection, gastric cancer-causing bacteria: Special highlights on nanotechnology-based therapy. Microb Pathog 2025; 205:107646. [PMID: 40348207 DOI: 10.1016/j.micpath.2025.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Helicobacter pylori (H. pylori) infection and consequent inflammation in the stomach are widely recognized as major contributors to gastric cancer (GC) development. Recent investigations have placed considerable emphasis on uncovering the controlling influence of small RNA molecules known as microRNAs (miRNAs) in H. pylori-related diseases, particularly gastric cancer. This review aims to offer a comprehensive understanding of the intricate roles fulfilled by miRNAs in conditions associated with H. pylori infection. Exploring miRNA biogenesis pathways reveals their intimate connection with H. pylori infection, shedding light on the underlying molecular mechanisms driving disease progression and identifying potential intervention targets. An examination of epidemiological data surrounding H. pylori infection, including prevalence, risk factors, and transmission routes, underscores the imperative for preventive measures and targeted interventions. Incorporating insights from miRNA-related research into these strategies holds promise for enhancing their efficacy in controlling H. pylori spread. The symptoms, underlying mechanisms, and virulent characteristics of the bacteria highlight the intricate relationship between H. pylori and host cells, influencing the course of diseases. Within this complex web, miRNAs play pivotal roles, regulating various facets of H. pylori's development. MicroRNAs intricately involved in directing the immune response against H. pylori infection serve as key players in molding host defense mechanisms and impacting the bacterium's evasion tactics. Utilizing this knowledge holds the potential to drive forward groundbreaking therapeutic strategies. The diagnostic and prognostic capabilities of miRNAs in H. pylori infection highlight their effectiveness as non-invasive indicators for identifying diseases and evaluating risk. Integration of miRNA signatures into diagnostic algorithms holds promise for enhancing early detection and management of H. pylori-related diseases. MiRNA-based therapeutics offer a promising avenue for combatting H. pylori-induced gastric cancer, targeting specific molecular pathways implicated in tumorigenesis. H. pylori infection induces dysregulation of several miRNAs that contribute to antibiotic resistance, inflammation, and gastric cancer progression, including downregulation of tumor-suppressive miR-7 and miR-153 and upregulation of oncogenic miR-671-5p and miR-155-5p, which promote carcinogenesis and inflammation. Additionally, H. pylori manipulates host immune responses by upregulating miRNAs such as let-7f-5p, let-7i-5p, miR-146b-5p, and miR-185-5p that suppress HLA class II expression and antigen presentation, facilitating immune evasion and chronic gastritis that predispose to gastric cancer. Future research endeavors should focus on refining these therapeutic modalities and identifying novel targets to optimize clinical outcomes. By elucidating the multifaceted roles of miRNAs in H. pylori infection, this review provides invaluable insights into disease pathogenesis, diagnostics, and therapeutics, and the role of some nanoparticles in combating the H. pylori infection. Continued research efforts are imperative for translating these insights into clinical practice and addressing the global burden of H. pylori-related diseases.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt; Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Gharieb S El-Sayyad
- Department of Medical Analysis Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt; Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt.
| | - Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Ahmed H I Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt; Medical Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt.
| | - Asmaa K Abdallah
- Botany and Microbiology Department, Faculty of Science, Benha University, 13518 Benha, Egypt.
| | - Ahmed Mahdy
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt; Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo-Alexandria Agricultural Road, Menofia, Egypt.
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Khaled M Alam Eldein
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Ahmed S Doghish
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
2
|
Kandettu A, Ghosal J, Tharayil JS, Kuthethur R, Mallya S, Narasimhamurthy RK, Mumbrekar KD, Subbannayya Y, Kumar NA, Radhakrishnan R, Kabekkodu SP, Chakrabarty S. Inhibition of mitochondrial genome-encoded mitomiR-3 contributes to ZEB1 mediated GPX4 downregulation and pro-ferroptotic lipid metabolism to induce ferroptosis in breast cancer cells. Free Radic Biol Med 2025; 234:151-168. [PMID: 40239722 DOI: 10.1016/j.freeradbiomed.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, represents a unique vulnerability in cancer cells. However, current ferroptosis-inducing therapies face clinical limitations due to poor cancer cell specificity, systemic toxicity, and off-target effects. Therefore, a deeper understanding of molecular regulators of ferroptosis sensitivity is critical for developing targeted therapies. The metabolic plasticity of cancer cells determines their sensitivity to ferroptosis. While mitochondrial dysfunction contributes to metabolic reprogramming in cancer, its role in modulating ferroptosis remains poorly characterized. Previously, studies have identified that mitochondrial genome also encodes several non-coding RNAs. We identified 13 novel mitochondrial genome-encoded miRNAs (mitomiRs) that are aberrantly overexpressed in triple-negative breast cancer (TNBC) cell lines and patient tumors. We observed higher levels of mitomiRs in basal-like triple-negative breast cancer (TNBC) cells compared to mesenchymal stem-like TNBC cells. Strikingly, 11 of these mitomiRs directly target the 3'UTR of ZEB1, a master regulator of epithelial-to-mesenchymal transition (EMT). Using mitomiR-3 mimic, inhibitor and sponges, we demonstrated its role as a key regulator of ZEB1 expression in TNBC cells. Inhibition of mitomiR-3 via sponge construct in basal-like TNBC, MDA-MB-468 cells, promoted ZEB1 upregulation and induced a mesenchymal phenotype. Further, mitomiR-3 inhibition in TNBC cells contributed to reduced cancer cell proliferation, migration, and invasion. Mechanistically, mitomiR-3 inhibition in TNBC cells promote metabolic reprogramming toward pro-ferroptotic pathways, including iron accumulation, increased polyunsaturated fatty acid (PUFA) metabolites, and lipid peroxidation, contributing to ferroptotic cell death via ZEB1-mediated downregulation of GPX4, a critical ferroptosis defense enzyme. We observed that mitomiR-3 inhibition significantly suppressed tumor growth in vivo. Our identified mitomiR-3 has low expression in normal breast cells, minimizing potential off-target toxicity, making them a promising target for pro-ferroptotic cancer therapy. Our study reveals a novel link between mitochondrial miRNAs and ferroptosis sensitivity in TNBC paving a way for miRNA-based therapeutics.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Joydeep Ghosal
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jesline Shaji Tharayil
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yashwanth Subbannayya
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Naveena An Kumar
- Department of Surgical Oncology, Manipal Comprehensive Cancer Care Centre, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, S10TTA, UK; Academic Unit of Oral Biology and Oral Pathology, Oman Dental College, Wattayah 116, Muscat, Oman
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Liu FF, Li K. The Abnormal ERα-miRNA Cross-Talk in AD-Affected Human Hippocampus: A Bioinformatics Perspective. Mol Neurobiol 2025; 62:7998-8012. [PMID: 39966328 PMCID: PMC12078360 DOI: 10.1007/s12035-025-04771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Estrogen's impact on Alzheimer's disease (AD) is multifaceted, with its receptors potentially influencing AD pathology in both beneficial and detrimental ways. This study aims to dissect the intricate cross-talk between estrogen receptor alpha (ERα) and microRNAs (miRNAs) in AD-affected human hippocampus. Through a comprehensive literature review in the PubMed database, coupled with a GeneCards database search, we obtained AD-related key miRNAs and genes in the hippocampus. Using bioinformatics tools, we predicted target genes and miRNAs of ERα, and the targets of the identified miRNAs. The integration of these elements resulted in the construction of an ERα-related FFL network, which includes 13 miRNAs and 56 core genes. Gene ontology (GO) and pathway enrichment analyses were conducted, revealing significant enrichment in biological processes such as neuron death and response to metal ions, and cellular components like membrane microdomains. Notably, the AKT-associated signaling pathway was prominently highlighted, with key genes including GSK3A, CDKN1A, AKT2, and MDM2, and key miRNAs including miR-485 and let-7f, suggesting a potential role of ERα in modulating this pathway in AD. The findings of this study provide a novel perspective on the regulatory network of ERα in the hippocampal region of AD and may pave the way for future research into the therapeutic potential of targeting the ERα pathway in neurodegenerative diseases.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Hankou District, Wuhan, 430014, People's Republic of China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Hankou District, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Nersisyan S, Loher P, Rigoutsos I. CorrAdjust unveils biologically relevant transcriptomic correlations by efficiently eliminating hidden confounders. Nucleic Acids Res 2025; 53:gkaf444. [PMID: 40448503 DOI: 10.1093/nar/gkaf444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
Correcting for confounding variables is often overlooked when computing RNA-RNA correlations, even though it can profoundly affect results. We introduce CorrAdjust, a method for identifying and correcting such hidden confounders. CorrAdjust selects a subset of principal components to residualize from expression data by maximizing the enrichment of "reference pairs" among highly correlated RNA-RNA pairs. Unlike traditional machine learning metrics, this novel enrichment-based metric is specifically designed to evaluate correlation data and provides valuable RNA-level interpretability. CorrAdjust outperforms current state-of-the-art methods when evaluated on 25 063 human RNA-seq datasets from The Cancer Genome Atlas, the Genotype-Tissue Expression project, and the Geuvadis collection. In particular, CorrAdjust excels at integrating small RNA and mRNA sequencing data, significantly enhancing the enrichment of experimentally validated miRNA targets among negatively correlated miRNA-mRNA pairs. CorrAdjust, with accompanying documentation and tutorials, is available at https://tju-cmc-org.github.io/CorrAdjust.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
5
|
Fan T, Su Z, Wang X, Wei T, Zhao L, Liu S. TarP: A microRNA target gene prediction tool utilizing a polymorphic structured alignment approach. Int J Biol Macromol 2025; 314:144320. [PMID: 40383335 DOI: 10.1016/j.ijbiomac.2025.144320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
MicroRNAs (miRNAs) represent a vital class of small non-coding RNAs that play key regulatory roles in gene expression. Accurate identification of miRNA-mRNA interactions is essential for understanding their biological functions. However, current computational prediction tools suffer from several limitations, including species-specific biases, suboptimal accuracy, high false discovery rates, and incomplete target gene coverage. To address these challenges, we present TarP, a novel miRNA target prediction algorithm employing a Polymorphic structured alignment (PMS) approach. Our method mimics the natural binding process between miRNAs and their target mRNAs by integrating key biological interaction features. The algorithm utilizes five distinct nucleotide-binding motifs to perform a structured decomposition and alignment of potential mRNA targets. Predictions are then rigorously evaluated through a dual scoring system: a Structure (St) coefficient assessing binding conformation and an Energy (En) coefficient evaluating thermodynamic stability, ensuring high-confidence target selection. Using experimentally validated human miRNA-mRNA interaction datasets, we benchmarked TarP against four widely used prediction tools (miRanda, RNAhybrid, PITA, and TargetScan). Comparative analyses demonstrate that TarP achieves superior performance in both sensitivity and specificity, exhibiting enhanced accuracy in positive target identification and improved discrimination between true and false interactions. The TarP algorithm is freely available at: https://github.com/Whimonk/TarP.
Collapse
Affiliation(s)
- Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Zhuanzhuan Su
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Xin Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Silva JP, Corrales WA, Catalán J, Olave FA, González-Mori PI, Alarcón M, Guarnieri T, Aliaga E, Maracaja-Coutinho V, Fiedler JL. Comprehensive Analysis of circRNA Expression and circRNA-miRNA-mRNA Networks in the Ventral Hippocampus of the Rat: Impact of Chronic Stress and Biological Sex. ACS Chem Neurosci 2025; 16:1720-1737. [PMID: 40257053 DOI: 10.1021/acschemneuro.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
This study provides new insights into how sex and chronic stress influence circRNA expression in the rat ventral hippocampus, a region critical for emotional processing. We identified 206 sex-biased circRNAs and 194 stress-responsive circRNAs, highlighting distinct expression profiles. Parental genes of male circRNAs were primarily enriched in synaptic transmission pathways, while those of female circRNAs were associated with axon guidance, emphasizing sex-specific molecular differences. Chronic stress also triggered miRNA changes unique to each sex, revealing divergent regulatory mechanisms. The identified circRNA-miRNA-mRNA axes, modulated under stress, appear to regulate the translation of numerous potential mRNA targets. In males, stress positively regulated neuroprotective pathways, suggesting a compensatory response to mitigate stress-induced damage. In contrast, females exhibited a broader translational network that favored mRNA expression without distinct pathway-specific actions. However, the smaller repressed network in females─characterized by a higher circRNA-to-miRNA and mRNA ratio─may indicate a more selective and targeted regulatory mechanism, with many interactions linked to anti-inflammatory processes. Coexpression analysis revealed two male-specific modules with altered activity under stress. These were associated with processes such as reticulum stress and actin dynamics, the latter linked to dendritic spine loss and depressive-like behaviors, extensively documented in chronically stressed male rats. Conversely, females displayed an activated stress-responsive module, promoting axon guidance and long-term potentiation, which may contribute to improved cognitive outcomes. Among the identified circRNAs, rno-Gabrg3_0001 emerged as stress-sensitive in males. This circRNA exhibited predicted miRNA binding sites and interactions with proteins involved in vesicle trafficking, forming part of a highly active module enriched in genes related to ion transport and membrane protein localization. Overall, these findings uncover sex-dependent regulatory mechanisms driving transcriptomic changes under chronic stress, deepening our understanding of ventral hippocampal molecular functions. Investigating these regulatory networks, which differentially affect the male and female ventral hippocampus, could inform the development of sex-specific therapeutic strategies for stress-related disorders.
Collapse
Affiliation(s)
- Juan Pablo Silva
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Unidad de Genómica Avanzada─UGA, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Wladimir A Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Unidad de Genómica Avanzada─UGA, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Julia Catalán
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Felipe A Olave
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Pablo I González-Mori
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Matías Alarcón
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Tatiana Guarnieri
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Esteban Aliaga
- School of Medícal Technology and The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca 3460000, Chile
| | - Vinicius Maracaja-Coutinho
- Unidad de Genómica Avanzada─UGA, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Advanced Center for Chronic Diseases─ACCDiS, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática─CM2B2, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Jenny L Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| |
Collapse
|
7
|
Wang Q, Wang S, Zhuang Z, Wu X, Gao H, Zhang T, Zou G, Ge X, Liu Y. Identification of potential crucial genes and mechanisms associated with metabolically unhealthy obesity based on the gene expression profile. Front Genet 2025; 16:1540721. [PMID: 40376303 PMCID: PMC12078199 DOI: 10.3389/fgene.2025.1540721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/10/2025] [Indexed: 05/18/2025] Open
Abstract
Background Obesity is an epidemic and systemic metabolic disease that seriously endangers human health. This study aimed to understand the transcriptomic characteristics of the blood of metabolically unhealthy obesity (MUO) and provide insight into the target genes of differently expressed microRNAs in the occurrence and development of MUO. Methods The GSE146869, GSE145412, GSE23561, and GSE169290 datasets were analyzed to understand the transcriptome characteristics of the blood of MUO and provide insights into the target genes of differently expressed microRNAs (DEMs) in MUO. Functional and pathway enrichment analyses and gene interaction network analyses were performed to profile the function of differentially expressed genes (DEGs). In addition, miRNet 2.0, TransmiR v2.0, RNA22, TargetScan 7.2, miRDB, and miRWalk databases were used to predict the target genes of effective microRNAs. Results A total of 189 co-DEGs were identified in at least two datasets. The 156 co-upregulated genes were enriched into 29 biological process (BP) terms and 12 KEGG pathways. Among the 29 BP terms, the immune- and metabolism-related BP terms were enriched. The 33 co-downregulated genes were enriched into two BP terms, including apoptotic process and regulation of the apoptotic process, with no KEGG pathway. The hub genes EGF, STAT3, IL1B, PF4, SELP, and ITGA2B in the gene interaction network might play important roles in abnormal BP in MUO. Among the 19 DEMs identified in the blood of the MUO group by the GSE169290 dataset, 18 microRNAs targeted 85 genes as risk factors in MUO. Conclusion A network consisting of 18 microRNAs and 85 target genes might serve as a risk factor for metabolically unhealthy obesity.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Nephrology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu, China
| | - Silu Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhanyu Zhuang
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Xueting Wu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Hongkun Gao
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianyi Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Guorong Zou
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Xing Ge
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Yapeng Liu
- Yunlong District Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Yang TH, Li XW, Lee YH, Lu SY, Wu WS, Lee HC. mirTarCLASH: a comprehensive miRNA target database based on chimeric read-based experiments. Database (Oxford) 2025; 2025:baaf023. [PMID: 40186419 PMCID: PMC11971479 DOI: 10.1093/database/baaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
MicroRNAs (miRNAs) can target messenger RNAs to control their degradation or translation repression effects. Therefore, identifying the target and binding sites of different miRNAs is essential for understanding miRNA functions. To investigate these interactions, researchers have employed the cross-linking, ligation, and sequencing of hybrids (CLASH-seq) and similar CLASH-like approaches to generate chimeric reads formed by miRNAs and their targeting segments. These chimeric reads allow for the direct extraction of both the miRNA-target gene pairs and their corresponding binding sites. Nevertheless, these studies lack user-friendly platforms for researchers to investigate these interactions efficiently, thus hindering scientists' ability to explore miRNA functions. To address this gap, we developed mirTarCLASH, a comprehensive database that deposits 502 061/322 707/224 452 unique hybrid reads from human/mouse/worm miRNA chimeric read-based experiments. In mirTarCLASH, the chimera analysis algorithm ChiRA and two distinct binding site inference tools, RNAup and miRanda, were adopted to facilitate the exploration of miRNA-target pairs derived from CLASH-like experiments. Compared with existing similar repositories, mirTarCLASH further enables several confidence evaluation filters with visualization functions for the extracted results. The results can be further refined based on the key properties of the miRNA targeting sites, including read depths, numbers of supporting algorithms, and cross-linking-induced mutations, to enhance confidence levels. In addition, these miRNA-binding sites are visually represented through an integrated transcript atlas. Finally, we demonstrated the biological applicability of mirTarCLASH via the well-characterized example interaction between cel-let-7-5p and lin-41 in Caenorhabditis elegans, showcasing the potential of mirTarCLASH to provide novel insights for subsequent experimental research designs. The constructed mirTarCLASH database is freely available at https://cosbi.ee.ncku.edu.tw/MirTarClash. Database URL: https://cosbi.ee.ncku.edu.tw/MirTarClash.
Collapse
Affiliation(s)
- Tzu-Hsien Yang
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan
| | - Xiang-Wei Li
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan
| | - Yuan-Han Lee
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan
| | - Shang-Yi Lu
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E. 58th Street, Suite 1106, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Ashraf MA, Shahid I, Brown JK, Yu N. An Integrative Computational Approach for Identifying Cotton Host Plant MicroRNAs with Potential to Abate CLCuKoV-Bur Infection. Viruses 2025; 17:399. [PMID: 40143327 PMCID: PMC11945813 DOI: 10.3390/v17030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bur) has a circular single-stranded ssDNA genome of 2759 nucleotides in length and belongs to the genus Begomovirus (family, Geminiviridae). CLCuKoV-Bur causes cotton leaf curl disease (CLCuD) and is transmitted by the whitefly Bemisis tabaci cryptic species. Monopartite begomoviruses encode five open reading frames (ORFs). CLCuKoV-Bur replicates through a dsDNA intermediate. Five open reading frames (ORFs) are organized in the small circular, single-stranded (ss)-DNA genome of CLCuKoV-Bur (2759 bases). RNA interference (RNAi) is a naturally occurring process that has revolutionized the targeting of gene regulation in eukaryotic organisms to combat virus infection. The aim of this study was to elucidate the potential binding attractions of cotton-genome-encoded microRNAs (Gossypium hirsutum-microRNAs, ghr-miRNAs) on CLCuKoV-Bur ssDNA-encoded mRNAs using online bioinformatics target prediction tools, RNA22, psRNATarget, RNAhybrid, and TAPIR. Using this suite of robust algorithms, the predicted repertoire of the cotton microRNA-binding landscape was determined for a CLCuKoV-Bur consensus genome sequence. Previously experimentally validated cotton (Gossypium hirsutum L.) miRNAs (n = 80) were selected from a public repository miRNA registry miRBase (v22) and hybridized in silico into the CLCuKoV-Bur genome (AM421522) coding and non-coding sequences. Of the 80 ghr-miRNAs interrogated, 18 ghr-miRNAs were identified by two to four algorithms evaluated. Among them, the ghr-miR399d (accession no. MIMAT0014350), located at coordinate 1747 in the CLCuKoV-Bur genome, was predicted by a consensus or "union" of all four algorithms and represents an optimal target for designing an artificial microRNA (amiRNA) silencing construct for in planta expression. Based on all robust predictions, an in silico ghr-miRNA-regulatory network was developed for CLCuKoV-Bur ORFs using Circos software version 0.6. These results represent the first predictions of ghr-miRNAs with the therapeutic potential for developing CLCuD resistance in upland cotton plants.
Collapse
Affiliation(s)
- Muhammad Aleem Ashraf
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Department of Biosciences and Technology, Emerson University, Multan 60000, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Naitong Yu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
10
|
Mohebbi M, Manzourolajdad A, Bennett E, Williams P. A Multi-Input Neural Network Model for Accurate MicroRNA Target Site Detection. Noncoding RNA 2025; 11:23. [PMID: 40126347 PMCID: PMC11932204 DOI: 10.3390/ncrna11020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
(1) Background: MicroRNAs are non-coding RNA sequences that regulate cellular functions by targeting messenger RNAs and inhibiting protein synthesis. Identifying their target sites is vital to understanding their roles. However, it is challenging due to the high cost and time demands of experimental methods and the high false-positive rates of computational approaches. (2) Methods: We introduce a Multi-Input Neural Network (MINN) algorithm that integrates diverse biologically relevant features, including the microRNA duplex structure, substructures, minimum free energy, and base-pairing probabilities. For each feature derived from a microRNA target-site duplex, we create a corresponding image. These images are processed in parallel by the MINN algorithm, allowing it to learn a comprehensive and precise representation of the underlying biological mechanisms. (3) Results: Our method, on an experimentally validated test set, detects target sites with an AUPRC of 0.9373, Precision of 0.8725, and Recall of 0.8703 and outperforms several commonly used computational methods of microRNA target-site predictions. (4) Conclusions: Incorporating diverse biologically explainable features, such as duplex structure, substructures, their MFEs, and binding probabilities, enables our model to perform well on experimentally validated test data. These features, rather than nucleotide sequences, enhance our model to generalize beyond specific sequence contexts and perform well on sequentially distant samples.
Collapse
Affiliation(s)
- Mohammad Mohebbi
- Department of Computer Science and Information Science, University of North Georgia, Dahlonega, GA 30597, USA; (E.B.); (P.W.)
| | | | - Ethan Bennett
- Department of Computer Science and Information Science, University of North Georgia, Dahlonega, GA 30597, USA; (E.B.); (P.W.)
| | - Phillip Williams
- Department of Computer Science and Information Science, University of North Georgia, Dahlonega, GA 30597, USA; (E.B.); (P.W.)
| |
Collapse
|
11
|
Liu X, Mi S, Dari G, Chen S, Song J, MacHugh DE, Yu Y. Functional validation to explore the protective role of miR-223 in Staphylococcus aureus-induced bovine mastitis. J Anim Sci Biotechnol 2025; 16:34. [PMID: 40033327 DOI: 10.1186/s40104-025-01152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Mastitis caused by Staphylococcus aureus (S. aureus) is one of the most intractable problems for the dairy industry, causing significantly reduced milk yields and early slaughter of cows worldwide. MicroRNAs (miRNAs) can post-transcriptionally regulate gene expression and studies in recent years have shown the importance of miRNA-associated gene regulation in S. aureus-induced mastitis. RESULTS In this study, to investigate the role of miR-223 in mastitis, we performed experiments to overexpress and suppress miR-223 in an immortalized bovine mammary epithelial cell line (MAC-T) infected with S. aureus. Overexpression of miR-223 in MAC-T cells repressed cell apoptosis and necrosis induced by S. aureus infection, whereas suppression of miR-223 had the opposite effect. Transcriptome expression profiling with weighted gene co-expression network analysis (WGCNA) and gene set variation analysis (GSVA) showed that miR-223 affects apoptosis and inflammation-related pathways. Furthermore, differentially expressed (DE) genes were evaluated, and genes exhibiting contrasting expression trends in the miR-223 overexpressed and suppressed groups were assessed as potential target genes of miR-223. Potential target genes, including CDC25B, PTPRF, DCTN1, and DPP9, were observed to be associated with apoptosis and necroptosis. Finally, through integrative analysis of genome-wide association study (GWAS) data and the animal quantitative trait loci (QTL) database, we determined that target genes of miR-223 were significantly enriched in single-nucleotide polymorphisms (SNP) and QTLs related to somatic cell count (SCC) and mastitis. CONCLUSION In summary, miR-223 has an inhibitory effect on S. aureus-induced cell apoptosis and necrosis by regulating PTPRF, DCTN1, and DPP9. These genes were significantly enriched in QTL regions associated with bovine mastitis resistance, underscoring their relevance in genetic regulation of disease resilience. Our findings provide critical genetic markers for enhancing mastitis resistance, particularly S. aureus-induced mastitis, through selective breeding. This work offers valuable insights for developing cattle with improved resistance to mastitis via targeted genetic selection.
Collapse
Affiliation(s)
- Xueqin Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Siyuan Mi
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gerile Dari
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD Centre for One Health, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| | - Ying Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Du Y, Yang Y, Zhang Y, Zhang F, Wu J, Yin J. Unraveling enhanced liver regeneration in ALPPS: Integrating multi-omics profiling and in vivo CRISPR in mouse models. Hepatol Commun 2025; 9:e0630. [PMID: 40048448 PMCID: PMC11888979 DOI: 10.1097/hc9.0000000000000630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/06/2024] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Postoperative liver failure due to insufficient liver cell quantity and function remains a major cause of mortality following surgery. Hence, additional investigation and elucidation are required concerning suitable surgeries for promoting in vivo regeneration. METHODS We established the portal vein ligation (PVL) and associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) mouse models to compare their in vivo regeneration capacity. Then, RNA-seq and microRNA-seq were conducted on the livers from both mouse models. Weighted gene co-expression network analysis algorithm was leveraged to identify crucial gene modules. ScRNA-seq analysis was used to understand the distinctions between Signature30high hepatocytes and Signature30low hepatocytes. Moreover, in vivo, validation was performed in fumarylacetoacetate hydrolase knockout mice with gene editing using the CRISPR-cas9 system. A dual luciferase report system was carried out to further identify the regulatory mechanisms. RESULTS RNA-seq analysis revealed that ALPPS could better promote cell proliferation compared to the sham and portal vein ligation models. Moreover, a Plk1-related 30-gene signature was identified to predict the cell state. ScRNA-seq analysis confirmed that signature30high hepatocytes had stronger proliferative ability than signature30low hepatocytes. Using microRNA-seq analysis, we identified 53 microRNAs that were time-dependently reduced after ALPPS. Finally, miR-30a-3p might be able to regulate the expression of Plk1, contributing to the liver regeneration of ALPPS. CONCLUSIONS ALPPS could successfully promote liver regeneration by activating hepatocytes into a proliferative state. Moreover, a Plk1-related 30-gene signature was identified to predict the cell state of hepatocytes. miR-30a-3p might be able to regulate the expression of Plk1, contributing to the liver regeneration of ALPPS.
Collapse
Affiliation(s)
- Yuan Du
- Department of Hepatobiliary Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - YiHan Yang
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - YiPeng Zhang
- Department of General Surgery, Dalian Rehabilitation Recuperation Center of Joint Logistics Support Force of PLA, Xigang District, Dalian, China
| | - FuYang Zhang
- Department of Hepatobiliary Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - JunJun Wu
- Department of Hepatobiliary Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - JunXiang Yin
- Department of Hepatobiliary Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Bogusławska J, Rakhmetullina A, Grzanka M, Białas A, Rybicka B, Życka-Krzesińska J, Molcan T, Zielenkiewicz P, Pączek L, Piekiełko-Witkowska A. miR395e from Manihot esculenta Decreases Expression of PD-L1 in Renal Cancer: A Preliminary Study. Genes (Basel) 2025; 16:293. [PMID: 40149445 PMCID: PMC11942022 DOI: 10.3390/genes16030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: microRNAs are small non-coding RNAs that regulate gene expression by inducing mRNA degradation or inhibiting translation. A growing body of evidence suggests that miRNAs may be utilized as anti-cancer therapeutics by targeting expression of key genes involved in cancerous transformation and progression. Renal cell cancer (RCC) is the most common kidney malignancy. The most efficient RCC treatments involve blockers of immune checkpoints, including antibodies targeting PD-L1 (Programmed Death Ligand 1). Interestingly, recent studies revealed the cross-kingdom horizontal transfer of plant miRNAs into mammalian cells, contributing to the modulation of gene expression by food ingestion. Here, we hypothesized that PD-L1 expression may be modulated by miRNAs originating from edible plants. Methods: To verify this hypothesis, we performed bioinformatic analysis to identify mes-miR395e from Manihot esculenta (cassava) as a promising candidate miRNA that could target PD-L1. To verify PD-L1 regulation mediated by the predicted plant miRNA, synthetic mes-miR395 mimics were transfected into cell lines derived from RCC tumors, followed by evaluation of PD-L1 expression using qPCR and Western blot. Results: Transfection of mes-miR395e mimics into RCC-derived cell lines confirmed that this miRNA decreases expression of PD-L1 in RCC cells at both mRNA and protein levels. Conclusions: This preliminary study shows the promise of plant miRNA as potential adjuvants supporting RCC treatment.
Collapse
Affiliation(s)
- Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (M.G.); (A.B.); (B.R.); (J.Ż.-K.)
| | - Aizhan Rakhmetullina
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (A.R.); (T.M.); (P.Z.); (L.P.)
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (M.G.); (A.B.); (B.R.); (J.Ż.-K.)
| | - Alex Białas
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (M.G.); (A.B.); (B.R.); (J.Ż.-K.)
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (M.G.); (A.B.); (B.R.); (J.Ż.-K.)
| | - Joanna Życka-Krzesińska
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (M.G.); (A.B.); (B.R.); (J.Ż.-K.)
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (A.R.); (T.M.); (P.Z.); (L.P.)
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland
| | - Piotr Zielenkiewicz
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (A.R.); (T.M.); (P.Z.); (L.P.)
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Leszek Pączek
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (A.R.); (T.M.); (P.Z.); (L.P.)
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (M.G.); (A.B.); (B.R.); (J.Ż.-K.)
| |
Collapse
|
14
|
Yokoi K, Wang J, Yoshioka Y, Fujisawa Y, Fujimoto M, Ochiya T, Tanemura A. Novel Detection and Clinical Utility of Serum-Derived Extracellular Vesicle in Angiosarcoma. Acta Derm Venereol 2025; 105:adv40902. [PMID: 40001341 PMCID: PMC11877856 DOI: 10.2340/actadv.v105.40902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Cutaneous angiosarcoma is a rare and highly aggressive skin malignancy. The aim of this study is to explore the alteration of serum-derived extracellular vesicle (EV) in angiosarcoma patients and to evaluate its clinical utility as a novel circulating biomarker. In a microarray analysis to examine the differential expression of specific EV-associated microRNAs in sera between cutaneous angiosarcoma patients and healthy controls, 73 microRNAs with significant upregulation and 100 microRNAs with significant downregulation, respectively, were identified in patients with angio-sarcoma. Among them, quantitative PCR confirmed that miR-184, miR-3925-5p, miR-3926, and miR-5703 were upregulated in sera of cutaneous angiosarcoma patients compared with those of healthy controls and melanoma patients. Additionally, these 4 microRNAs were expressed more highly in angiosarcoma cell lines compared with normal human endothelial cell lines and were prone to elevate along with disease progression. Furthermore, a gene analysis predicted that the target gene set of microRNAs might affect the regulation of TP53 via the epigenetic regulation of MECP2. Taken together, these 4 extracellular vesicle-associated microRNAs in circulation serve as a promising liquid biomarker to identify angiosarcoma patients and trace disease progression.
Collapse
Affiliation(s)
- Kazunori Yokoi
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jing Wang
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Tsukuba University, Tsukuba, Ibaraki, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
15
|
Wang Q, Niu G, Liu Z, Toma MA, Geara J, Bian X, Zhang L, Piipponen M, Li D, Wang A, Sommar P, Xu Landén N. Circular RNA circASH1L(4,5) protects microRNA-129-5p from target-directed microRNA degradation in human skin wound healing. Br J Dermatol 2025; 192:468-480. [PMID: 39422230 DOI: 10.1093/bjd/ljae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Skin wound healing involves a complex gene expression programme that remains largely undiscovered in humans. Circular RNAs (circRNAs) and microRNAs (miRNAs) are key players in this process. OBJECTIVES To understand the functions and potential interactions of circRNAs and miRNAs in human skin wound healing. METHODS CircRNA, linear RNA and miRNA expression in human acute and chronic wounds were analysed with RNA sequencing and quantitative reverse transcription polymerase chain reaction. The roles of circASH1L(4,5) and miR-129-5p were studied in human primary keratinocytes (proliferation and migration assays, microarray analysis) and ex vivo wound models (histological analysis). The interaction between circASH1L(4,5) and miR-129-5p was examined using luciferase reporter and RNA pulldown assays. RESULTS We identified circASH1L(4,5) and its interaction with miR-129-5p, both of which increased during human skin wound healing. Unlike typical miRNA sponging, circASH1L enhanced miR-129 stability and silencing activity by protecting it from target-directed degradation triggered by NR6A1 mRNA. Transforming growth factor-β signalling - crucial in wound healing - promoted circASH1L expression while suppressing NR6A1, thereby increasing the abundance of miR-129 at the post-transcriptional level. CircASH1L and miR-129 enhanced keratinocyte migration and proliferation, crucial processes for the re-epithelialization of human wounds. CONCLUSIONS Our study uncovered a novel role for circRNAs as protectors of miRNAs and highlights the importance of regulated miRNA degradation in skin wound healing.
Collapse
Affiliation(s)
- Qizhang Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria A Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Geara
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dongqing Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Aoxue Wang
- Department of Dermatology, The Second Hospital of Dalian Medical University, College of Integrative Medicine, Dalian, China
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Wang X, Li X, Tan L, Zhang F, Zhang J, Zhao X, Zhang Y, Du G, Liu W. Identification and Validation of Lipid Metabolism Gene FASN-Associated miRNA in Wilms Tumor. Biochem Genet 2025; 63:167-182. [PMID: 38416272 DOI: 10.1007/s10528-024-10703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
miRNA has been a research hotspot in recent years and its scope of action is very wide, involving the regulation of cell proliferation, differentiation, apoptosis, and other biological behaviors. This study intends to explore the role of miRNA in the lipid metabolism and development of Wilms tumor (WT) by detecting and analyzing the differences in the expression profiles of miRNAs between the tumor and adjacent normal tissue. Gene detection was performed in tumor tissues and adjacent normal tissues of three cases of WT to screen differentially expressed miRNAs (DEMs). According to our previous research, FASN, which participates in the lipid metabolism pathway, may be a target of WT. The starBase database was used to predict FASN-targeted miRNAs. The above two groups of miRNAs were intersected to obtain FASN-targeted DEMs and then GO Ontology (GO) functional enrichment analysis of FASN-targeted DEMs was performed. Finally, the FASN-targeted DEMs were compared and further verified by qRT‒PCR. Through gene sequencing and differential analysis, 287 DEMs were obtained, including 132 upregulated and 155 downregulated miRNAs. The top ten DEMs were all downregulated. Fourteen miRNAs targeted by the lipid metabolism-related gene FASN were predicted by starBase. After intersection with the DEMs, three miRNAs were finally obtained, namely, miR-107, miR-27a-3p, and miR-335-5p. GO enrichment analysis was mainly concentrated in the Parkin-FBXW7-Cul1 ubiquitin ligase complex and response to prostaglandin E. Further experimental verification showed that miR-27a-3p was significantly correlated with WT (P = 0.0018). Imbalanced expression of miRNAs may be involved in the occurrence and development of WT through lipid metabolism. The expression of miR-27a-3p is related to the malignant degree of WT, and it may become the target of diagnosis, prognosis, and treatment of WT in the later stage.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, People's Republic of China
- Post-Doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China
| | - Xiao Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, Shandong, People's Republic of China
| | - Lin Tan
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, Hunan, People's Republic of China
| | - Fengjun Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China
| | - Jing Zhang
- Department of Pediatrics, Shandong Second Provincial General Hospital, Jinan, 250022, Shandong, People's Republic of China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Yongfei Zhang
- Department of Dermatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, People's Republic of China.
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Vattathil SM, Gerasimov ES, Canon SM, Lori A, Tan SSM, Kim PJ, Liu Y, Lai EC, Bennett DA, Wingo TS, Wingo AP. Mapping the microRNA landscape in the older adult brain and its genetic contribution to neuropsychiatric conditions. NATURE AGING 2025; 5:306-319. [PMID: 39643657 PMCID: PMC11839474 DOI: 10.1038/s43587-024-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
MicroRNAs (miRNAs) play a crucial role in regulating gene expression and influence many biological processes. Despite their importance, understanding of how genetic variation affects miRNA expression in the brain and how this relates to brain disorders remains limited. Here we investigated these questions by identifying microRNA expression quantitative trait loci (miR-QTLs), or genetic variants associated with brain miRNA levels, using genome-wide small RNA sequencing profiles from dorsolateral prefrontal cortex samples of 604 older adult donors of European ancestry. Here we show that nearly half (224 of 470) of the analyzed miRNAs have associated miR-QTLs, many of which fall in regulatory regions such as brain promoters and enhancers. We also demonstrate that intragenic miRNAs often have genetic regulation independent from their host genes. Furthermore, by integrating our findings with 16 genome-wide association studies of psychiatric and neurodegenerative disorders, we identified miRNAs that likely contribute to bipolar disorder, depression, schizophrenia and Parkinson's disease. These findings advance understanding of the genetic regulation of miRNAs and their role in brain health and disease.
Collapse
Affiliation(s)
- Selina M Vattathil
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Se Min Canon
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Sze Min Tan
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Kim
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yue Liu
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Sacramento, CA, USA.
- Alzheimer's Disease Research Center, University of California, Davis, Sacramento, CA, USA.
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA.
- Veterans Affairs Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
18
|
Srisathaporn S, Ekalaksananan T, Heawchaiyaphum C, Aromseree S, Maranon DG, Altina NH, Nukpook T, Wilusz J, Pientong C. EBV-Induced LINC00944: A Driver of Oral Cancer Progression and Influencer of Macrophage Differentiation. Cancers (Basel) 2025; 17:491. [PMID: 39941858 PMCID: PMC11815735 DOI: 10.3390/cancers17030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a significant global health concern. Epstein-Barr virus (EBV) infection as well as long non-coding RNA (lncRNAs) associated EBV infection, have been linked to OSCC development and are known to influence cancer progression. LINC00944 is associated with various cancers and immune cells, but its role in oral cancer remains underexplored. This study investigated the role of EBV-induced LINC00944 in OSCC and its impact on the tumor microenvironment. The LINC00944 expression was analyzed from a database of head and neck squamous cell carcinoma (HNSCC) tissues, and its expression in EBV-positive and EBV-negative OSCC cell lines was examined via qRT-PCR. We overexpressed LINC00944 in SCC25 and ORL-48T oral cancer cell lines and evaluated its impact on migration and invasion ability using wound healing and transwell experiments. Additionally, we studied its influence on macrophage differentiation. The results showed that LINC00944 expression was higher in HNSCC than in normal tissues and was linked to EBV-positive OSCC cell lines. LINC00944 overexpressed-OSCC cell lines significantly increased cellular motility and invasiveness. Additionally, LINC00944 was secreted in a cultured medium, delivered to macrophages, and promoted macrophage differentiation into the M1 subtype. Predicted interactions suggested that LINC00944 targets miRNAs that regulate NFKB1 and RELA. In conclusion, EBV-induced LINC00944 contributes to OSCC progression by enhancing tumor cell migration, invasion, and macrophage differentiation, potentially regulating these processes through NFKB1 and RELA. These findings provide valuable directions for LINC00944's future studies on its mechanisms and suggest that it could be a target of study in EBV-associated OSCC.
Collapse
Affiliation(s)
- Sawarot Srisathaporn
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (T.E.); (C.H.); (S.A.); (T.N.)
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (D.G.M.); (N.H.A.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (T.E.); (C.H.); (S.A.); (T.N.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (T.E.); (C.H.); (S.A.); (T.N.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (T.E.); (C.H.); (S.A.); (T.N.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - David G. Maranon
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (D.G.M.); (N.H.A.)
| | - Noelia H. Altina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (D.G.M.); (N.H.A.)
| | - Thawaree Nukpook
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (T.E.); (C.H.); (S.A.); (T.N.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (D.G.M.); (N.H.A.)
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (T.E.); (C.H.); (S.A.); (T.N.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
19
|
Lin S, Qiu P. Predicting microRNA target genes using pan-cancer correlation patterns. BMC Genomics 2025; 26:77. [PMID: 39871129 PMCID: PMC11773953 DOI: 10.1186/s12864-025-11254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
The interaction relationship between miRNAs and genes is important as miRNAs play a crucial role in regulating gene expression. In the literature, several databases have been constructed to curate known miRNA target genes, which are valuable resources but likely only represent a small fraction of all miRNA-gene interactions. In this study, we constructed machine learning models to predict miRNA target genes that have not been previously reported. Using the miRNA and gene expression data from TCGA, we performed a correlation analysis between all miRNAs and all genes across multiple cancer types. The correlations served as features to describe each miRNA-gene pair. Using the existing databases of curated miRNA targets, we labeled the miRNA-gene pairs, and trained machine learning models to predict novel miRNA-gene interactions. For the miRNA-gene pairs that were consistently predicted across the models, we called them significant miRNA-gene pairs. Using held-out miRNA target databases and a literature survey, we validated 5.5% of the predicted significant miRNA-gene pairs. The remaining predicted miRNA-gene pairs could serve as hypotheses for experimental validation. Additionally, we explored several additional datasets that provided gene expression data before and after a specific miRNA perturbation and observed consistency between the correlation direction of predicted miRNA-gene pairs and their regulatory patterns. Together, this analysis revealed a novel framework for uncovering previously unidentified miRNA-gene relationships, enhancing the collective comprehension of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Shuting Lin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, Georgia, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, Georgia, USA.
| |
Collapse
|
20
|
Gao Y, Takenaka K, Xu SM, Cheng Y, Janitz M. Recent advances in investigation of circRNA/lncRNA-miRNA-mRNA networks through RNA sequencing data analysis. Brief Funct Genomics 2025; 24:elaf005. [PMID: 40251826 PMCID: PMC12008121 DOI: 10.1093/bfgp/elaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/21/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are RNA molecules that are transcribed from DNA but are not translated into proteins. Studies over the past decades have revealed that ncRNAs can be classified into small RNAs, long non-coding RNAs and circular RNAs by genomic size and structure. Accumulated evidences have eludicated the critical roles of these non-coding transcripts in regulating gene expression through transcription and translation, thereby shaping cellular function and disease pathogenesis. Notably, recent studies have investigated the function of ncRNAs as competitive endogenous RNAs (ceRNAs) that sequester miRNAs and modulate mRNAs expression. The ceRNAs network emerges as a pivotal regulatory function, with significant implications in various diseases such as cancer and neurodegenerative disease. Therefore, we highlighted multiple bioinformatics tools and databases that aim to predict ceRNAs interaction. Furthermore, we discussed limitations of using current technologies and potential improvement for ceRNAs network detection. Understanding of the dynamic interplay within ceRNAs may advance the biological comprehension, as well as providing potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
22
|
Zhang J, Xiong C, Wei X, Yang H, Zhao C. Modeling ncRNA Synergistic Regulation in Cancer. Methods Mol Biol 2025; 2883:377-402. [PMID: 39702718 DOI: 10.1007/978-1-0716-4290-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cancer seriously threatens human life and health, and the structure and function of genes within cancer cells have changed relative to normal cells. Essentially, cancer is a polygenic disorder, and the core of its occurrence and development is caused by polygenic synergy. Non-coding RNAs (ncRNAs) act as regulators to modulate gene expression levels, and they provide theoretical basis and new technology for the diagnosis and preventive treatment of cancer. However, the study of ncRNA regulation and its role as biomarkers in cancer remain largely unearthed. Driven by multi-omics data, an abundance of computational methods, tools, and databases have been developed for predicting ncRNA-cancer association/causality, inferring ncRNA regulation, and modeling ncRNA synergistic regulation. This chapter aims to provide a comprehensive perspective of modeling ncRNA synergistic regulation. Since the ncRNAs involved in cancer contribute to modeling cancer-associated ncRNA synergistic regulation, we first review the databases and tools of cancer-related ncRNAs. Then we investigate the existing tools or methods for modeling ncRNA-directed and ncRNA-mediated regulation. In addition, we survey the available computational tools or methods for modeling ncRNA synergistic regulation, including synergistic interaction and synergistic competition. Finally, we discuss the future directions and challenges in modeling ncRNA synergistic regulation.
Collapse
Affiliation(s)
- Junpeng Zhang
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Chenchen Xiong
- School of Engineering, Dali University, Dali, Yunnan, China
- Beijing CapitalBio Pharma Technology Co., Ltd., Beijing, China
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Haolin Yang
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, Yunnan, China
| |
Collapse
|
23
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
24
|
Nersisyan S, Loher P, Nazeraj I, Shao Z, Fullard JF, Voloudakis G, Girdhar K, Roussos P, Rigoutsos I. Comprehensive profiling of small RNAs and their changes and linkages to mRNAs in schizophrenia and bipolar disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630254. [PMID: 39763727 PMCID: PMC11703252 DOI: 10.1101/2024.12.24.630254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We investigated small non-coding RNAs (sncRNAs) from the prefrontal cortex of 93 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) and 77 controls. We uncovered recurring complex sncRNA profiles, with 98% of all sncRNAs being accounted for by miRNA isoforms (60.6%), tRNA-derived fragments (17.8%), rRNA-derived fragments (11.4%), and Y RNA-derived fragments (8.3%). In SCZ, 15% of all sncRNAs exhibit statistically significant changes in their abundance. In BD, the fold changes (FCs) are highly correlated with those in SCZ but less acute. Non-templated nucleotide additions to the 3´-ends of many miRNA isoforms determine their FC independently of miRNA identity or genomic locus of origin. In both SCZ and BD, disease- and age-associated sncRNAs and mRNAs reveal accelerated aging. Co-expression modules between sncRNAs and mRNAs align with the polarities of SCZ changes and implicate sncRNAs in critical processes, including synaptic signaling, neurogenesis, memory, behavior, and cognition.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Iliza Nazeraj
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Washington AM, Kostallari E. Extracellular Vesicles and Micro-RNAs in Liver Disease. Semin Liver Dis 2024. [PMID: 39626790 DOI: 10.1055/a-2494-2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Progression of liver disease is dependent on intercellular signaling, including those mediated by extracellular vesicles (EVs). Within these EVs, microRNAs (miRNAs) are packaged to selectively silence gene expression in recipient cells for upregulating or downregulating a specific pathway. Injured hepatocytes secrete EV-associated miRNAs which can be taken up by liver sinusoidal endothelial cells, immune cells, hepatic stellate cells, and other cell types. In addition, these recipient cells will secrete their own EV-associated miRNAs to propagate a response throughout the tissue and the circulation. In this review, we comment on the implications of EV-miRNAs in the progression of alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, viral and parasitic infections, liver fibrosis, and liver malignancies. We summarize how circulating miRNAs can be used as biomarkers and the potential of utilizing EVs and miRNAs as therapeutic methods to treat liver disease.
Collapse
Affiliation(s)
- Alexander M Washington
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Bai S, Wang H, Bai Y, Liu P, Bi C. β-Asarone Inhibits Carboplatin Resistance in Retinoblastoma Cells Through the UCA1/miR-206/NRP1 Axis. Biochem Genet 2024:10.1007/s10528-024-10985-1. [PMID: 39718722 DOI: 10.1007/s10528-024-10985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Retinoblastoma (RB) is an aggressive form of eye cancer. β-Asarone is a bioactive component isolated from the medicinal plant Acorus tatarinowii Schott and has anticancer effects on various human cancers. However, reports regarding the role of β-Asarone in RB remain limited. Our study investigates the mechanisms of β-Asarone in regulating drug resistance in RB, providing a theoretical foundation for RB treatment. A carboplatin-resistant RB cell line was established and treated with β-Asarone, followed by overexpression of long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1). The half-maximal inhibitory concentration and cell apoptosis were determined. The levels of lncRNA UCA1/miR-206/neuropilin 1 (NRP1) were measured. The subcellular localization of lncRNA UCA1 was examined. The binding relationships between lncRNA UCA1 and microRNA (miR)-206, and between miR-206 and NRP1 were analyzed. NRP1 expression was analyzed by Western blot assay. We found that β-Asarone downregulated lncRNA UCA1 expression in carboplatin-resistant RB cells. Overexpression of lncRNA UCA1 reversed the inhibitory effect of β-Asarone on cell drug resistance and cell proliferation and reduced apoptosis. LncRNA UCA1 functioned as a sponge for miR-206, which suppressed NRP1 expression. Inhibition of miR-206 or overexpression of NRP1 could partially reverse the suppressive effect of β-Asarone on RB cell drug resistance. In conclusion, β-Asarone suppresses RB cell drug resistance through the lncRNA UCA1/miR-206/NRP1 axis.
Collapse
Affiliation(s)
- Shuwei Bai
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China
| | - Haiyan Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China
| | - Ye Bai
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China
| | - Peiyang Liu
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China
| | - Chunchao Bi
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
27
|
Wu L, Zhao M, Chen X, Wang H. A miR-219-5p-bmal1b negative feedback loop contributes to circadian regulation in zebrafish. Commun Biol 2024; 7:1671. [PMID: 39702498 DOI: 10.1038/s42003-024-07309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
MicroRNAs post-transcriptionally regulate gene expression and contribute to numerous life processes, including circadian rhythms. However, whether miRNAs contribute to zebrafish circadian regulation has not yet been investigated. Here, we showed that mature miR-219-5p, and its three pre-miRNAs, mir-219-1, mir-219-2, and mir-219-3, are rhythmically expressed primarily in Tectum opticum (TeO), Corpus cerebelli (CCe), and Crista cerellaris (CC) of the zebrafish brain. While mir-219-1 and mir-219-2 are regulated by the circadian clock through the E-like box, mir-219-3 is regulated by light via the D-box. Deleting mir-219-1, mir-219-2, or mir-219-3 individually or knocking down miR-219-5p all results in a shortened period of locomotor rhythms and up-regulation of bmal1b. RIP assays with Ago2 and miRNA pull-down assays show that miR-219-5p binds to bmal1b in the RISC. Cell transfection and in Vivo assays show that miR219-5p inhibits bmal1b through binding to its 3'UTR. Further, transcriptome analysis of miR-219-5p knockdown zebrafish adult brain reveals possible roles of miR-219-5p in phototransduction and neuroactive ligand-receptor interaction. Together, our findings demonstrate that mir-219-1, mir-219-2, and mir-219-3 are controlled directly by the circadian clock; and in turn, miR-219-5p contributes to circadian regulation by targeting bmal1b, highlighting a miR-219-5p-bmal1b negative feedback loop in the zebrafish circadian circuit.
Collapse
Affiliation(s)
- Lianxin Wu
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhao
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xifeng Chen
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China.
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
28
|
Hu J, Yang J, Zhong H, Yu Q, Xiao J, Zhang C. Identification of Three POMCa Genotypes in Largemouth Bass ( Micropterus salmoides) and Their Differential Physiological Responses to Feed Domestication. Animals (Basel) 2024; 14:3638. [PMID: 39765543 PMCID: PMC11672714 DOI: 10.3390/ani14243638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Diverse feeding habits in teleosts involve a wide range of appetite-regulating factors. As an appetite-suppressing gene, the polymorphisms of POMCa in largemouth bass (Micropterus salmoides) were validated via sequencing and high-resolution melting (HRM). The frequency distribution of different POMCa genotypes were analyzed in two populations, and physiological responses of different POMCa genotypes to feed domestication were investigated. The indel of an 18 bp AU-rich element (ARE) in the 3' UTR and four interlocked SNP loci in the ORF of 1828 bp of POMCa cDNA sequence were identified in largemouth bass and constituted three genotypes of POMC-A I, II, and III, respectively. POMC-A I and Allele I had increased frequencies in the selection population than in the non-selection population (p < 0.01), 63.55% vs. 43.33% and 0.7850 vs. 0.6778, respectively. POMC-A I possessed the lowest value of POMCa mRNA during fasting (p < 0.05) and exhibited growth and physiological advantages under food deprivation and refeeding according to the levels of body mass and four physiological indicators, i.e., cortisol (Cor), growth hormone (GH), insulin-like growth factor-1 (IGF-1), and glucose (Glu). The identification of three POMCa genotypes, alongside their varying physiological responses during feed domestication, suggests a selective advantage that could be leveraged in molecular marker-assisted breeding of largemouth bass that are adapted to feeding on formula diet.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (J.Y.); (H.Z.); (Q.Y.); (J.X.)
| | | | | | | | | | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (J.Y.); (H.Z.); (Q.Y.); (J.X.)
| |
Collapse
|
29
|
Calin GA, Hubé F, Ladomery MR, Delihas N, Ferracin M, Poliseno L, Agnelli L, Alahari SK, Yu AM, Zhong XB. The 2024 Nobel Prize in Physiology or Medicine: microRNA Takes Center Stage. Noncoding RNA 2024; 10:62. [PMID: 39728607 PMCID: PMC11679529 DOI: 10.3390/ncrna10060062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
The Non-coding Journal Editorial Board Members would like to congratulate Victor Ambros and Gary Ruvkun, who were jointly awarded the 2024 Nobel Prize in Physiology or Medicine for their groundbreaking discovery of microRNAs and the role of microRNAs in post-transcriptional gene regulation, uncovering a previously unknown layer of gene control in eukaryotes [...].
Collapse
Affiliation(s)
- George A. Calin
- Department of Translational Molecular Pathology, Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Florent Hubé
- Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, UMR7622, 75005 Paris, France
| | - Michael R. Ladomery
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Nicholas Delihas
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, via S. Giacomo, 14, 40126 Bologna, Italy
| | - Laura Poliseno
- National Research Council (CNR) and Oncogenomics Unit, Core Research Laboratory (CRL), Institute of Clinical Physiology (IFC), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), via Moruzzi 1, 56124 Pisa, Italy
| | - Luca Agnelli
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, LSU School of Medicine, New Orleans, LA 70112, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
30
|
Rabou YKA, Zayed AA, Fahim SA, Abdelgwad M, Fiki AE, Fayed NN. Exploring New and Promising Genetic Biomarkers for Evaluating Traumatic Brain Injuries: A Case-Control Study. Neurochem Res 2024; 50:48. [PMID: 39641810 PMCID: PMC11624226 DOI: 10.1007/s11064-024-04292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Traumatic brain injury (TBI) is a common cause of morbidity and death in all age groups, with an estimated 50 million people having brain injury due to trauma each year. Accurate blood-based biomarkers are needed to assist with diagnosis of patients across the spectrum of time and severity. Our objectives were to explore the diagnostic precision of time- and severity- related four blood-based biomarkers: AKT3, GSK-3β, hsa-miR-16-5p, and MALAT-1 for TBI for the purpose of diagnosis, prognosis, and follow-up. 40 samples were recruited as the following: 30 TBI patients and 10 healthy volunteers as controls with matched age and sex. They were divided according to the Glasgow Coma Scale into mild (mTBI), moderate (modTBI), and severe(sTBI) TBI. Blood samples were withdrawn at entry, and after 5 and 30 days, RT-PCR was used for measuring the expression level. The results showed upregulated expression levels of AKT3, hsa-miR-16-5p and significantly downregulated expression levels of GSK-3β in TBI patients compared to controls at all timings measured. mTBI patients showed a higher expression level of hsa-miR-16-5p compared with modTBI, and sTBI patients. MALAT-1 level showed a significant increase in severe cases only. We concluded that AKT3, hsa-miR-16-5p, and GSK-3β are excellent diagnostic biomarkers in TBI patients at initial assessment, as well as at 5 and 30 days following the injury. Moreover, MALAT-1 had good diagnostic value in sTBI patients, and its prognostic value extends to 30 days. GSK-3β was an excellent biomarker for detecting mTBI.
Collapse
Affiliation(s)
- Yasmin Kamal Abd Rabou
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Abeer Ahmed Zayed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, New Giza University (NGU), New Giza, Km 22 Cairo- Alexandria Desert Road, P.O. Box 12577, Giza, Egypt.
| | - Marwa Abdelgwad
- Department of Biochemistry, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Ahmed El Fiki
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Nermin Nabil Fayed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| |
Collapse
|
31
|
Liu Y, Min Z, Mo J, Ju Z, Chen J, Liang W, Zhang L, Li H, Chan GCF, Wei Y, Zhang W. ExomiRHub: A comprehensive database for hosting and analyzing human disease-related extracellular microRNA transcriptomics data. Comput Struct Biotechnol J 2024; 23:3104-3116. [PMID: 39219717 PMCID: PMC11362623 DOI: 10.1016/j.csbj.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Extracellular microRNA (miRNA) expression data generated by different laboratories exhibit heterogeneity, which poses challenges for biologists without bioinformatics expertise. To address this, we introduce ExomiRHub (http://www.biomedical-web.com/exomirhub/), a user-friendly database designed for biologists. This database incorporates 191 human extracellular miRNA expression datasets associated with 112 disease phenotypes, 62 treatments, and 24 genotypes, encompassing 29,198 and 23 sample types. ExomiRHub also integrates 16,012 miRNA transcriptomes of 156 cancer subtypes from The Cancer Genome Atlas. All the data in ExomiRHub were further standardized and curated with annotations. The platform offers 25 analytical functions, including differential expression, co-expression, Weighted Gene Co-Expression Network Analysis (WGCNA), feature selection, and functional enrichment, enabling users to select samples, define groups, and customize parameters for analyses. Moreover, ExomiRHub provides a web service that allows biologists to analyze their uploaded miRNA expression data. Four additional tools were developed to evaluate the functions and targets of miRNAs and miRNA variations. Through ExomiRHub, we identified extracellular miRNA biomarkers associated with angiogenesis for monitoring glioma progression, demonstrating its potential to significantly accelerate the discovery of extracellular miRNA biomarkers.
Collapse
Affiliation(s)
- Yang Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, China
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518026, China
| | - Zhuochao Min
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jing Mo
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518026, China
| | - Zhen Ju
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianliang Chen
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Weiling Liang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Lantian Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, China
| | - Hanguang Li
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenliang Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, China
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518026, China
| |
Collapse
|
32
|
Gull B, Ahmad W, Baby J, Panicker NG, Khader TA, Rizvi TA, Mustafa F. Identification and characterization of host miRNAs that target the mouse mammary tumour virus (MMTV) genome. Open Biol 2024; 14:240203. [PMID: 39657819 PMCID: PMC11631425 DOI: 10.1098/rsob.240203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
The intricate interplay between viruses and hosts involves microRNAs (miRNAs) to regulate gene expression by targeting cellular/viral messenger RNAs (mRNAs). Mouse mammary tumour virus (MMTV), the aetiological agent of breast cancer and leukaemia/lymphomas in mice, provides an ideal model to explore how viral and host miRNAs interact to modulate virus replication and tumorigenesis. We previously reported dysregulation of host miRNAs in MMTV-infected mammary glands and MMTV-induced tumours, suggesting a direct interaction between MMTV and miRNAs. To explore this further, we systematically examined all potential interactions between host miRNAs and the MMTV genome using advanced prediction tools. Leveraging miRNA sequencing data from MMTV-expressing cells, we identified dysregulated miRNAs capable of targeting MMTV. Docking analysis validated the interaction of three dysregulated miRNAs with the MMTV genome, followed by confirmation with RNA immunoprecipitation assays. We further identified host targets of these miRNAs using mRNA sequencing data from MMTV-expressing cells. These findings should enhance our understanding of how MMTV replicates and interacts with the host to induce cancer in mice, a model important for cancer research. Given MMTV's potential zoonosis and association with human breast cancer/lymphomas, if confirmed, our work could further lead to novel miRNA-based antivirals/therapeutics to prevent possible MMTV transmission and associated cancers in humans.
Collapse
Affiliation(s)
- Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Neena G. Panicker
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Thanumol Abdul Khader
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
- Zayed Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, UAE
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
- Zayed Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, UAE
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE
| |
Collapse
|
33
|
Lin J, Zhou J, Xie G, Xie X, Luo Y, Liu J. Retracted article: Functional analysis of ceRNA network of lncRNA TSIX/miR-34a-5p/RBP2 in acute myocardial infarction based on GEO database. Bioengineered 2024; 15:2006865. [PMID: 34784842 PMCID: PMC10841007 DOI: 10.1080/21655979.2021.2006865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022] Open
Abstract
Jiezhong Lin, Jianyi Zhou, Guiting Xie, Xiongwei Xie, Yanfang Luo and Jinguang Liu. Functional analysis of ceRNA network of lncRNA TSIX/miR-34a-5p/RBP2 in acute myocardial infarction based on GEO database. 2021 Oct. doi: 10.1080/21655979.2021.2006865.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines.The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Jiezhong Lin
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Jianyi Zhou
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Guiting Xie
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Xiongwei Xie
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Yanfang Luo
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Jinguang Liu
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| |
Collapse
|
34
|
Uthayopas K, de Sá AG, Alavi A, Pires DE, Ascher DB. PRIMITI: A computational approach for accurate prediction of miRNA-target mRNA interaction. Comput Struct Biotechnol J 2024; 23:3030-3039. [PMID: 39175797 PMCID: PMC11340604 DOI: 10.1016/j.csbj.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 08/24/2024] Open
Abstract
Current medical research has been demonstrating the roles of miRNAs in a variety of cellular mechanisms, lending credence to the association between miRNA dysregulation and multiple diseases. Understanding the mechanisms of miRNA is critical for developing effective diagnostic and therapeutic strategies. miRNA-mRNA interactions emerge as the most important mechanism to be understood despite their experimental validation constraints. Accordingly, several computational models have been developed to predict miRNA-mRNA interactions, albeit presenting limited predictive capabilities, poor characterisation of miRNA-mRNA interactions, and low usability. To address these drawbacks, we developed PRIMITI, a PRedictive model for the Identification of novel miRNA-Target mRNA Interactions. PRIMITI is a novel machine learning model that utilises CLIP-seq and expression data to characterise functional target sites in 3'-untranslated regions (3'-UTRs) and predict miRNA-target mRNA repression activity. The model was trained using a reliable negative sample selection approach and the robust extreme gradient boosting (XGBoost) model, which was coupled with newly introduced features, including sequence and genetic variation information. PRIMITI achieved an area under the receiver operating characteristic (ROC) curve (AUC) up to 0.96 for a prediction of functional miRNA-target site binding and 0.96 for a prediction of miRNA-target mRNA repression activity on cross-validation and an independent blind test. Additionally, the model outperformed state-of-the-art methods in recovering miRNA-target repressions in an unseen microarray dataset and in a collection of validated miRNA-mRNA interactions, highlighting its utility for preliminary screening. PRIMITI is available on a reliable, scalable, and user-friendly web server at https://biosig.lab.uq.edu.au/primiti.
Collapse
Affiliation(s)
- Korawich Uthayopas
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Alex G.C. de Sá
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Azadeh Alavi
- School of Computational Technology, RMIT University, Melbourne, VIC 3000, Australia
| | - Douglas E.V. Pires
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- School of Computing and Information Systems, University of Melbourne, Parkville, VIC 3052, Australia
| | - David B. Ascher
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
35
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
36
|
Wu X, Wang J, Hao Z, Zhen H, Hu J, Liu X, Li S, Zhao F, Li M, Zhao Z, Shi B, Ren C. Circular RNA_015343 sponges microRNA-25 to regulate viability, proliferation, and milk fat synthesis of ovine mammary epithelial cells via INSIG1. J Cell Physiol 2024; 239:e31332. [PMID: 38828915 DOI: 10.1002/jcp.31332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In our previous study, circ_015343 was found to inhibit the viability and proliferation of ovine mammary epithelial cells (OMECs) and the expression levels of milk fat synthesis marker genes, but the regulatory mechanism underlying the processes is still unclear. Accordingly in this study, the target relationships between circ_015343 with miR-25 and between miR-25 with insulin induced gene 1 (INSIG1) were verified, and the functions of miR-25 and INSIG1 were investigated in OMECs. The dual-luciferase reporter assay revealed that miR-25 mimic remarkably decreased the luciferase activity of circ_015343 in HEK293T cells cotransfected with a wild-type vector, while it did not change the activity of circ_015343 in HEK293T cells cotransfected with a mutant vector. These suggest that cic_015343 can adsorb and bind miR-25. The miR-25 increased the viability and proliferation of OMECs, and the content of triglycerides in OMECs. In addition, INSIG1 was found to be a target gene of miR-25 using a dual-luciferase reporter assay. Overexpression of INSIG1 decreased the viability, proliferation, and level of triglycerides of OMECs. In contrast, the inhibition of INSIG1 in expression had the opposite effect on activities and triglycerides of OMECs with overexpressed INSIG1. A rescue experiment revealed that circ_015343 alleviated the inhibitory effect of miR-25 on the mRNA and protein abundance of INSIG1. These results indicate that circ_015343 sponges miR-25 to inhibit the activities and content of triglycerides of OMECs by upregulating the expression of INSIG1 in OMECs. This study provided new insights for understanding the genetic molecular mechanism of lactation traits in sheep.
Collapse
Affiliation(s)
- Xinmiao Wu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huimin Zhen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunyan Ren
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
37
|
Hintermayer MA, Juźwik CA, Morquette B, Hua E, Zhang J, Drake S, Shi SS, Rambaldi I, Vangoor V, Pasterkamp J, Moore C, Fournier AE. A miR-383-5p Signaling Hub Coordinates the Axon Regeneration Response to Inflammation. J Neurosci 2024; 44:e1822232024. [PMID: 39266301 PMCID: PMC11529811 DOI: 10.1523/jneurosci.1822-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration. We found that miR-383-5p is downregulated in retinal ganglion cells in response to zymosan-induced intraocular inflammation. MiR-383-5p downregulation in neurons is sufficient to promote axon growth in vitro, and the intravitreal injection of a miR-383-5p inhibitor into the eye promotes axon regeneration following optic nerve crush. MiR-383-5p directly targets ciliary neurotrophic factor (CNTF) receptor components, and miR-383-5p inhibition sensitizes adult retinal neurons to the outgrowth-promoting effects of CNTF. Interestingly, we also demonstrate that CNTF treatment is sufficient to reduce miR-383-5p levels in neurons, constituting a positive-feedback module, whereby initial CNTF treatment reduces miR-383-5p levels, which then disinhibits CNTF receptor components to sensitize neurons to the ligand. Additionally, miR-383-5p inhibition derepresses the mitochondrial antioxidant protein peroxiredoxin-3 (PRDX3) which was required for the proregenerative effects associated with miR-383-5p loss-of-function in vitro. We have thus identified a positive-feedback mechanism that facilitates neuronal CNTF sensitivity in neurons and a new molecular signaling module that promotes inflammation-induced axon regeneration.
Collapse
Affiliation(s)
- Matthew A Hintermayer
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Camille A Juźwik
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Barbara Morquette
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elizabeth Hua
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Julia Zhang
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Sienna Drake
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Shan Shan Shi
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Isabel Rambaldi
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Vamshi Vangoor
- Department of Translation Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Jeroen Pasterkamp
- Department of Translation Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Craig Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Alyson E Fournier
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
38
|
Xu Z, Rasteh AM, Dong A, Wang P, Liu H. Identification of molecular targets of Hypericum perforatum in blood for major depressive disorder: a machine-learning pharmacological study. Chin Med 2024; 19:141. [PMID: 39385284 PMCID: PMC11465934 DOI: 10.1186/s13020-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Hypericum perforatum (HP) is a traditional herb that has been shown to have antidepressant effects, but its mechanism is unclear. This study aims to identify the molecular targets of HP for the treatment of MDD. METHODS We performed differential analysis and weighted gene co-expression network analysis (WGCNA) with blood mRNA expression cohort of MDD and healthy control to identify DEGs and significant module genes (gene list 1). Three databases, CTD, DisGeNET, and GeneCards, were used to retrieve MDD-related gene intersections to obtain MDD-predicted targets (gene list 2). The validated targets were retrieved from the TCMSP database (gene list 3). Based on these three gene lists, 13 key pathways were identified. The PPI network was constructed by extracting the intersection of genes and HP-validated targets on all key pathways. Key therapeutic targets were obtained using MCODE and machine learning (LASSO, SVM-RFE). Clinical diagnostic assessments (Nomogram, Correlation, Intergroup expression), and gene set enrichment analysis (GSEA) were performed for the key targets. In addition, immune cell analysis was performed on the blood mRNA expression cohort of MDD to explore the association between the key targets and immune cells. Finally, molecular docking prediction was performed for the targets of HP active ingredients on MDD. RESULTS Differential expression analysis and WGCNA module analysis yielded 933 potential targets for MDD. Three disease databases were intersected with 982 MDD-predicted targets. The TCMSP retrieved 275 valid targets for HP. Separate enrichment analysis intersected 13 key pathways. Five key targets (AKT1, MAPK1, MYC, EGF, HSP90AA1) were finally screened based on all enriched genes and HP valid targets. Combined with the signaling pathway and immune cell analysis suggested the effect of peripheral immunity on MDD and the important role of neutrophils in immune inflammation. Finally, the binding of HP active ingredients (quercetin, kaempferol, and luteolin) and all 5 key targets were predicted based on molecular docking. CONCLUSIONS The active constituents of Hypericum perforatum can act on MDD and key targets and pathways of this action were identified.
Collapse
Affiliation(s)
- Zewen Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Hengrui Liu
- Cancer Research Institute, Jinan University, Guangzhou, China.
- Tianjin Yinuo Biomedical Co., Ltd, Tianjin, China.
| |
Collapse
|
39
|
Lee AT, Yang MY, Tsai IN, Chang YC, Hung TW, Wang CJ. Gallic Acid Alleviates Glucolipotoxicity-Induced Nephropathy by miR-709-NFE2L2 Pathway in db/db Mice on a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39365293 PMCID: PMC11487656 DOI: 10.1021/acs.jafc.4c05898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has become a major global issue, with diabetic nephropathy (DN) ranking as one of its most serious complications. The involvement of microRNAs (miRNAs) in the progression of T2DM and DN is an area of active research, yet the molecular mechanisms remain only partially elucidated. Gallic acid (GA), a naturally occurring polyphenolic compound found in various plants such as bearberry leaves, pomegranate root bark, tea leaves, and oak bark, has demonstrated antioxidant properties that may offer therapeutic benefits in DN. METHODS AND RESULTS The study aimed to investigate the therapeutic potential of GA in mitigating kidney fibrosis, oxidative stress and inflammation, within a glucolipotoxicity-induced diabetic model using db/db mice. The mice were subjected to a high-fat diet to induce glucolipotoxicity, a condition that mimics the metabolic stress experienced in T2DM. Through microarray data analysis, we identified a significant upregulation of renal miR-709a-5p in the diabetic mice, linking this miRNA to the pathological processes underlying DN. GA treatment was shown to boost the activity of including catalase, essential antioxidant enzymes, glutathione peroxidase and superoxide dismutase, while also reducing lipid accumulation in the kidneys, indicating a protective effect against HFD-induced steatosis. In vitro experiments further revealed that silencing miR-709a-5p in MES-13 renal cells led to a reduction in oxidative stress markers, notably lowering lipid peroxidation markers, and significantly boosting the activity of antioxidant defenses. Additionally, NFE2L2, a crucial transcription factor involved in the antioxidant response, was identified as a direct target of miR-709a-5p. The downregulation of miR-709a-5p by GA suggests that this polyphenol mitigates glucolipotoxicity-induced lipogenesis and oxidative stress, potentially offering a novel therapeutic avenue for managing diabetic fatty liver disease and DN. CONCLUSION Our findings indicate that GA exerts a protective effect in DN by downregulating miR-709a-5p, thereby alleviating oxidative stress through the suppression of NFE2L2. The results highlight the potential of GA and NFE2L2-activating agents as promising therapeutic strategies in the treatment of DN.
Collapse
Affiliation(s)
- Ang-Tse Lee
- Institute
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mon-Yuan Yang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
| | - I-Ning Tsai
- Institute
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yun-Ching Chang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 402, Taiwan
| | - Tung-Wei Hung
- Division
of Nephrology, Department of Medicine, Chung
Shan Medical University Hospital, Taichung 40201, Taiwan
- School
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chau-Jong Wang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 402, Taiwan
| |
Collapse
|
40
|
Ryu JY, Zhang J, Tirado SR, Dagen S, Frerichs KU, Patel NJ, Aziz-Sultan MA, Brown A, Rogers-Grazado M, Amr SS, Weiss ST, Du R. MiRNA expression profiling reveals a potential role of microRNA-148b-3p in cerebral vasospasm in subarachnoid hemorrhage. Sci Rep 2024; 14:22539. [PMID: 39341923 PMCID: PMC11438990 DOI: 10.1038/s41598-024-73579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Cerebral vasospasm (CVS) is an important contributor to delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage (aSAH), leading to high morbidity and long-term disability. While several microRNAs (miRNAs) have been implicated in vasospasm, the underlying mechanisms for CVS remain poorly understood. Our study aims to identify miRNAs that may contribute to the development of CVS. Whole-blood samples were obtained during or outside of vasospasm from aSAH patients whose maximal vasospasm was moderate or severe. MiRNAs were isolated from serial whole-blood samples, and miRNA sequencing was performed. Differentially expressed miRNAs were identified and the expression levels in patients' samples were verified using real-time qPCR. The biological functions of identified miRNA were evaluated in human brain endothelial cells (HBECs). MiRNA profiling revealed significant upregulation of miR-148b-3p in patients during CVS. We demonstrated that miR-148b-3p directly targeted and decreased the expression of ROCK1, affecting cell proliferation, migration, and invasion of HBECs through the ROCK-LIMK-Cofilin pathway. We propose that the upregulation of miRNA-148b-3p plays a role in the development of CVS by regulating actin cytoskeletal dynamics in HBECs, which is crucial for vascular function. Our study highlights miR-148b-3p as a potential diagnostic marker as well as therapeutic target for CVS following aSAH.
Collapse
Affiliation(s)
- Jee-Yeon Ryu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jianing Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Selena-Rae Tirado
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Sarajune Dagen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kai U Frerichs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - M Ali Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Alison Brown
- Mass General Brigham Personalized Medicine, Mass General Brigham, Cambridge, MA, USA
| | | | - Sami S Amr
- Mass General Brigham Personalized Medicine, Mass General Brigham, Cambridge, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Zhang J, Liu L, Wei X, Zhao C, Luo Y, Li J, Le TD. Scanning sample-specific miRNA regulation from bulk and single-cell RNA-sequencing data. BMC Biol 2024; 22:218. [PMID: 39334271 PMCID: PMC11438147 DOI: 10.1186/s12915-024-02020-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND RNA-sequencing technology provides an effective tool for understanding miRNA regulation in complex human diseases, including cancers. A large number of computational methods have been developed to make use of bulk and single-cell RNA-sequencing data to identify miRNA regulations at the resolution of multiple samples (i.e. group of cells or tissues). However, due to the heterogeneity of individual samples, there is a strong need to infer miRNA regulation specific to individual samples to uncover miRNA regulation at the single-sample resolution level. RESULTS Here, we develop a framework, Scan, for scanning sample-specific miRNA regulation. Since a single network inference method or strategy cannot perform well for all types of new data, Scan incorporates 27 network inference methods and two strategies to infer tissue-specific or cell-specific miRNA regulation from bulk or single-cell RNA-sequencing data. Results on bulk and single-cell RNA-sequencing data demonstrate the effectiveness of Scan in inferring sample-specific miRNA regulation. Moreover, we have found that incorporating the prior information of miRNA targets can generally improve the accuracy of miRNA target prediction. In addition, Scan can contribute to construct cell/tissue correlation networks and recover aggregate miRNA regulatory networks. Finally, the comparison results have shown that the performance of network inference methods is likely to be data-specific, and selecting optimal network inference methods is required for more accurate prediction of miRNA targets. CONCLUSIONS Scan provides a useful method to help infer sample-specific miRNA regulation for new data, benchmark new network inference methods and deepen the understanding of miRNA regulation at the resolution of individual samples.
Collapse
Affiliation(s)
- Junpeng Zhang
- School of Engineering, Dali University, Dali, 671003, Yunnan, China.
| | - Lin Liu
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, 671003, Yunnan, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, 671003, Yunnan, China
| | - Yanbi Luo
- School of Engineering, Dali University, Dali, 671003, Yunnan, China
| | - Jiuyong Li
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Thuc Duy Le
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
42
|
Pandey V, Srivastava A, Ali A, Gupta R, Shahid MS, Gaur RK. Predicting candidate miRNAs for targeting begomovirus to induce sequence-specific gene silencing in chilli plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1460540. [PMID: 39376242 PMCID: PMC11456425 DOI: 10.3389/fpls.2024.1460540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
The begomoviruses are the most economically damaging pathogens that pose a serious risk to India's chilli crop and have been associated with the chilli leaf curl disease (ChiLCD). Chilli cultivars infected with begomovirus have suffered significant decreases in biomass output, negatively impacting their economic characteristics. We used the C-mii tool to predict twenty plant miRNA families from SRA chilli transcriptome data (retrieved from the NCBI and GenBank databases). Five target prediction algorithms, i.e., C-mii, miRanda, psRNATarget, RNAhybrid, and RNA22, were applied to identify and evaluate chilli miRNAs (microRNAs) as potential therapeutic targets against ten begomoviruses that cause ChiLCD. In this study, the top five chilli miRNAs which were identified by all five algorithms were thoroughly examined. Moreover, we also noted strong complementarities between these miRNAs and the AC1 (REP), AC2 (TrAP) and betaC1 genes. Three computational approaches (miRanda, RNA22, and psRNATarget) identified the consensus hybridization site for CA-miR838 at locus 2052. The top predicted targets within ORFs were indicated by CA-miR2673 (a and b). Through Circos algorithm, we identified novel targets and create the miRNA-mRNA interaction network using the R program. Furthermore, free energy calculation of the miRNA-target duplex revealed that thermodynamic stability was optimal for miR838 and miR2673 (a and b). To the best of our knowledge, this was the first instance of miRNA being predicted from chilli transcriptome information that had not been reported in miRbase previously. Consequently, the anticipated biological results substantially assist in developing chilli plants resistant to ChiLCD.
Collapse
Affiliation(s)
- Vineeta Pandey
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Aarshi Srivastava
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Ramwant Gupta
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khoud, Oman
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
43
|
Xiao H, Zhang Y, Yang X, Yu S, Chen Z, Lu A, Zhang Z, Zhang G, Zhang BT. SMTRI: A deep learning-based web service for predicting small molecules that target miRNA-mRNA interactions. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102303. [PMID: 39281703 PMCID: PMC11401195 DOI: 10.1016/j.omtn.2024.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Mature microRNAs (miRNAs) are short, single-stranded RNAs that bind to target mRNAs and induce translational repression and gene silencing. Many miRNAs discovered in animals have been implicated in diseases and have recently been pursued as therapeutic targets. However, conventional pharmacological screening for candidate small-molecule drugs can be time-consuming and labor-intensive. Therefore, developing a computational program to assist mature miRNA-targeted drug discovery in silico is desirable. Our previous work (https://doi.org/10.1002/advs.201903451) revealed that the unique functional loops formed during Argonaute-mediated miRNA-mRNA interactions have stable structural characteristics and may serve as potential targets for small-molecule drug discovery. Developing drugs specifically targeting disease-related mature miRNAs and their target mRNAs would avoid affecting unrelated ones. Here, we present SMTRI, a convolutional neural network-based approach for efficiently predicting small molecules that target RNA secondary structural motifs formed by interactions between miRNAs and their target mRNAs. Measured on three additional testing sets, SMTRI outperformed state-of-the-art algorithms by 12.9%-30.3% in AUC and 2.0%-18.4% in accuracy. Moreover, four case studies on the published experimentally validated RNA-targeted small molecules also revealed the reliability of SMTRI.
Collapse
Affiliation(s)
- Huan Xiao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yihao Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ziqi Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
44
|
Lin CC, Law BF, Hettick JM. MicroRNA-mediated Krüppel-like factor 4 upregulation induces alternatively activated macrophage-associated marker and chemokine transcription in 4,4'-methylene diphenyl diisocyanate exposed macrophages. Xenobiotica 2024; 54:730-748. [PMID: 38568505 PMCID: PMC11489325 DOI: 10.1080/00498254.2024.2334329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
1. Occupational exposure to 4,4'-methylene diphenyl diisocyanate (MDI) is associated with occupational asthma (OA) development. Alveolar macrophage-induced recruitment of immune cells to the lung microenvironment plays an important role during asthma pathogenesis. Previous studies identified that MDI/MDI-glutathione (GSH)-exposure downregulates endogenous hsa-miR-206-3p/hsa-miR-381-3p. Our prior report shows that alternatively activated (M2) macrophage-associated markers/chemokines are induced by MDI/MDI-GSH-mediated Krüppel-Like Factor 4 (KLF4) upregulation in macrophages and stimulates immune cell chemotaxis. However, the underlying molecular mechanism(s) by which MDI/MDI-GSH upregulates KLF4 remain unclear. 2. Following MDI-GSH exposure, microRNA(miR)-inhibitors/mimics or plasmid transfection, endogenous hsa-miR-206-3p/hsa-miR-381-3p, KLF4, or M2 macrophage-associated markers (CD206, TGM2), and chemokines (CCL17, CCL22, CCL24) were measured by either RT-qPCR, western blot, or luciferase assay. 3. MDI-GSH exposure downregulates hsa-miR-206-3p/hsa-miR-381-3p by 1.46- to 9.75-fold whereas upregulates KLF4 by 1.68- to 1.99-fold, respectively. In silico analysis predicts binding between hsa-miR-206-3p/hsa-miR-381-3p and KLF4. Gain- and loss-of-function, luciferase reporter assays and RNA-induced silencing complex-immunoprecipitation (RISC-IP) studies confirm the posttranscriptional regulatory roles of hsa-miR-206-3p/hsa-miR-381-3p and KLF4 in macrophages. Furthermore, hsa-miR-206-3p/hsa-miR-381-3p regulate the expression of M2 macrophage-associated markers and chemokines via KLF4. 4. In conclusion, hsa-miR-206-3p/hsa-miR-381-3p play a major role in regulation of MDI/MDI-GSH-induced M2 macrophage-associated markers and chemokines by targeting the KLF4 transcript, and KLF4-mediated regulation in macrophages.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Brandon F. Law
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Justin M. Hettick
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| |
Collapse
|
45
|
Chauhan M, Singh K, Chongtham C, A G A, Sharma P. miR-449a mediated repression of the cell cycle machinery prevents neuronal apoptosis. J Biol Chem 2024; 300:107698. [PMID: 39173945 PMCID: PMC11419829 DOI: 10.1016/j.jbc.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Aberrant activation of the cell cycle of terminally differentiated neurons results in their apoptosis and is known to contribute to neuronal loss in various neurodegenerative disorders like Alzheimer's Disease. However, the mechanisms that regulate cell cycle-related neuronal apoptosis are poorly understood. We identified several miRNA that are dysregulated in neurons from a transgenic APP/PS1 mouse model for AD (TgAD). Several of these miRNA are known to and/or are predicted to target cell cycle-related genes. Detailed investigation on miR-449a revealed the following: a, it promotes neuronal differentiation by suppressing the neuronal cell cycle; b, its expression in cortical neurons was impaired in response to amyloid peptide Aβ42; c, loss of its expression resulted in aberrant activation of the cell cycle leading to apoptosis. miR-449a may prevent cell cycle-related neuronal apoptosis by targeting cyclin D1 and protein phosphatase CDC25A, which are important for G1-S transition. Importantly, the lentiviral-mediated delivery of miR-449a in TgAD mouse brain significantly reverted the defects in learning and memory, which are associated with AD.
Collapse
Affiliation(s)
- Monika Chauhan
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| | - Komal Singh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Chen Chongtham
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Aneeshkumar A G
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
46
|
El-Korany WA, Zahran WE, Alm El-Din MA, Al-Shenawy HA, Soliman AF. Rs12039395 Variant Influences the Expression of hsa-miR-181a-5p and PTEN Toward Colorectal Cancer Risk. Dig Dis Sci 2024; 69:3318-3332. [PMID: 38940971 DOI: 10.1007/s10620-024-08517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes could alter miRNA expression levels or processing and, thus, may contribute to colorectal cancer (CRC) development. Therefore, this study aimed to examine whether the MIR181A1 genomic sequence possesses SNPs that can affect the expression of hsa-miR-181a-5p and, subsequently, impact its targets and associate with CRC risk. METHODS The NCBI dbSNP database was searched for possible SNPs associated with MIR181A1. One SNP with a minor allele frequency > 5%, rs12039395 G > T was identified. In silico analyses determined the effect of the SNP on the secondary structure of the miRNA and predicted the hsa-miR-181a-5p target genes. The SNP was genotyped using allelic discrimination assay, the relative hsa-miR-181a-5p expression level was determined using quantitative real-time PCR, and immunohistochemical staining was used to detect target genes in 192 paraffin-embedded specimens collected from 160 CRC patients and 32 healthy subjects. RESULTS The rs6505162 SNP conferred protection against CRC, and the G-allele presence provides may provide accessibility for the transcriptional machinery. Hsa-miR-181a-5p was significantly over-expressed in the CRC group compared to controls and in samples carrying the G-allele compared to those with T-allele. PTEN, identified as the only hsa-miR-181a-5p target implicated in CRC, was significantly diminished in the CRC group compared to controls and showed an inverse relationship with hsa-miR-181a-5p expression level as well as negatively associated with the G-allele presence in CRC. CONCLUSION This study highlights that rs12039395 G > T may protect against CRC by influencing the expression of hsa-mir-181a-5p and its target gene, PTEN.
Collapse
Affiliation(s)
- Wael A El-Korany
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid E Zahran
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed A Alm El-Din
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Hanan A Al-Shenawy
- Pathology Department, Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
47
|
Li D, Xiang B, Peng J, Li H, Peng L, Chen X. Association of genetic variations of 3'-UTR in clopidogrel pharmacokinetic-relevant genes with clopidogrel response in Han Chinese patients with coronary artery disease. Eur J Pharm Sci 2024; 200:106830. [PMID: 38878906 DOI: 10.1016/j.ejps.2024.106830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Dual antiplatelet therapy with aspirin and clopidogrel has reduced ischemic vascular events significantly. Genetic influence, especially those in clopidogrel pharmacokinetic-relevant genes partially accounts for interindividual pharmacodynamic variability of clopidogrel. However, most studies have concentrated on the genetic variations in introns, exons, or promoters of the candidate genes, and the association between genetic variations in 3'-UTR in clopidogrel pharmacokinetic-relevant genes and clopidogrel response is unknown. In our study, ten different algorithms were applied to pick potential miRNAs targeting the clopidogrel pharmacokinetic-relevant genes. Furthermore, the correlation between miRNA expression profiles and mRNA expression of corresponding clopidogrel pharmacokinetic-relevant genes was analyzed. Through comprehensive analysis, including bioinformatics prediction and correlation analysis of miRNA and mRNA expression profiles, miR-218-5p and miR-506-5p were supposed to regulate the expression of PON1 via binding with its 3'-UTR. Moreover, PON1 rs854551 and rs854552 were located in miRNA recognizing sequences and may serve as potential miRSNPs possibly affecting PON1 expression. The rs854552 polymorphism was genotyped and platelet reactivity index (PRI) indicative of clopidogrel response was measured in 341 Chinese coronary artery disease (CAD) patients 24 h after administration of 300 mg clopidogrel. Our results showed that PON1 rs854552 had a significant influence on PRI in CAD patients, especially in patients with CYP2C19 extensive metabolic phenotype. In conclusion, PON1 rs854552 polymorphisms may affect clopidogrel response. Bioinformatics prediction followed by functional validation could aid in decoding the contribution of unexplained variations in the 3'-UTR in drug-metabolizing enzymes on clopidogrel response.
Collapse
Affiliation(s)
- Dongjie Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Boyu Xiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - He Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Liming Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
48
|
Maltseva D, Kirillov I, Zhiyanov A, Averinskaya D, Suvorov R, Gubani D, Kudriaeva A, Belogurov A, Tonevitsky A. Incautious design of shRNAs for stable overexpression of miRNAs could result in generation of undesired isomiRs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195046. [PMID: 38876159 DOI: 10.1016/j.bbagrm.2024.195046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
shRNA-mediated strategy of miRNA overexpression based on RNA Polymerase III (Pol III) expression cassettes is widely used for miRNA functional studies. For some miRNAs, e.g., encoded in the genome as a part of a polycistronic miRNA cluster, it is most likely the only way for their individual stable overexpression. Here we have revealed that expression of miRNAs longer than 19 nt (e.g. 23 nt in length hsa-miR-93-5p) using such approach could be accompanied by undesired predominant generation of 5' end miRNA isoforms (5'-isomiRs). Extra U residues (up to five) added by Pol III at the 3' end of the transcribed shRNA during transcription termination could cause a shift in the Dicer cleavage position of the shRNA. This results in the formation of 5'-isomiRs, which have a significantly altered seed region compared to the initially encoded canonical hsa-miR-93-5p. We demonstrated that the commonly used qPCR method is insensitive to the formation of 5'-isomiRs and cannot be used to confirm miRNA overexpression. However, the predominant expression of 5'-isomiRs without three or four first nucleotides instead of the canonical isoform could be disclosed based on miRNA-Seq analysis. Moreover, mRNA sequencing data showed that the 5'-isomiRs of hsa-miR-93-5p presumably regulate their own mRNA targets. Thus, omitting miRNA-Seq analysis may lead to erroneous conclusions regarding revealed mRNA targets and possible molecular mechanisms in which studied miRNA is involved. Overall, the presented results show that structures of shRNAs for stable overexpression of miRNAs requires careful design to avoid generation of undesired 5'-isomiRs.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Ivan Kirillov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Anton Zhiyanov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Daria Averinskaya
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Roman Suvorov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Daria Gubani
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Art Photonics GmbH, Berlin 12489, Germany.
| |
Collapse
|
49
|
Tong KL, Mahmood Zuhdi AS, Wong PF. The role of miR-134-5p in 7-ketocholesterol-induced human aortic endothelial dysfunction. EXCLI JOURNAL 2024; 23:1073-1090. [PMID: 39391056 PMCID: PMC11464864 DOI: 10.17179/excli2024-7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Atherosclerotic cardiovascular diseases are the leading causes of morbidity and mortality worldwide. In our previous study, a panel of miRNA including miR-134-5p was deregulated in young acute coronary syndrome (ACS) patients. However, the roles of these ACS-associated miRNAs in endothelial dysfunction, an early event preceding atherosclerosis, remain to be investigated. In the present study, human aortic endothelial cells (HAECs) were treated with 7-ketocholesterol (7-KC) to induce endothelial dysfunction. Following treatment with 20 μg/ml 7-KC, miR-134-5p was significantly up-regulated and endothelial nitric oxide synthase (eNOS) expression was suppressed. Endothelial barrier disruption was evidenced by the deregulation of adhesion molecules including the activation of focal adhesion kinase (FAK), down-regulation of VE-cadherin, up-regulation of adhesion molecules (E-selectin and ICAM-1), increased expression of inflammatory genes (IL1B, IL6 and COX2) and AKT activation. Knockdown of miR-134-5p in 7-KC-treated HAECs attenuated the suppression of eNOS, the activation of AKT, the down-regulation of VE-cadherin and the up-regulation of E-selectin. In addition, the interaction between miR-134-5p and FOXM1 mRNA was confirmed by the enrichment of FOXM1 transcripts in the pull-down miRNA-mRNA complex. Knockdown of miR-134-5p increased FOXM1 expression whereas transfection with mimic miR-134-5p decreased FOXM1 protein expression. In summary, the involvement of an ACS-associated miRNA, miR-134-5p in endothelial dysfunction was demonstrated. Findings from this study could pave future investigations into utilizing miRNAs as a supplementary tool in ACS diagnosis or as targets for the development of therapeutics.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
de Oliveira AC, Bovolenta LA, Figueiredo L, Ribeiro ADO, Pereira BJA, de Almeida TRA, Campos VF, Patton JG, Pinhal D. MicroRNA Transcriptomes Reveal Prevalence of Rare and Species-Specific Arm Switching Events During Zebrafish Ontogenesis. Evol Bioinform Online 2024; 20:11769343241263230. [PMID: 39055772 PMCID: PMC11271096 DOI: 10.1177/11769343241263230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
In metazoans, microRNAs (miRNAs) are essential regulators of gene expression, affecting critical cellular processes from differentiation and proliferation, to homeostasis. During miRNA biogenesis, the miRNA strand that loads onto the RNA-induced Silencing Complex (RISC) can vary, leading to changes in gene targeting and modulation of biological pathways. To investigate the impact of these "arm switching" events on gene regulation, we analyzed a diverse range of tissues and developmental stages in zebrafish by comparing 5p and 3p arms accumulation dynamics between embryonic developmental stages, adult tissues, and sexes. We also compared variable arm usage patterns observed in zebrafish to other vertebrates including arm switching data from fish, birds, and mammals. Our comprehensive analysis revealed that variable arm usage events predominantly take place during embryonic development. It is also noteworthy that isomiR occurrence correlates to changes in arm selection evidencing an important role of microRNA distinct isoforms in reinforcing and modifying gene regulation by promoting dynamics switches on miRNA 5p and 3p arms accumulation. Our results shed new light on the emergence and coordination of gene expression regulation and pave the way for future investigations in this field.
Collapse
Affiliation(s)
- Arthur Casulli de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Luiz Augusto Bovolenta
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Lucas Figueiredo
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Amanda De Oliveira Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Beatriz Jacinto Alves Pereira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Talita Roberto Aleixo de Almeida
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Vinicius Farias Campos
- Laboratory of Structural Genomics, Postgraduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|