1
|
Hou QL, Zhang HQ, Zhu JN, Chen EH. Tyrosine Hydroxylase Is Required for the Larval-Pupal Transformation and Immunity of Plutella xylostella: Potential for Pest Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27818-27829. [PMID: 39630615 DOI: 10.1021/acs.jafc.4c09279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Plutella xylostella has developed high levels of resistance to many commonly used insecticides. Tyrosine hydroxylase (TH) is essential for insect survival; thus, we evaluated whether TH could be a potential target for controlling P. xylostella. In this study, PxTH was identified; further qPCR analysis showed that PxTH increased its expression during larval pupation and was highly expressed in the head and epidermis of prepupa in P. xylostella. Subsequently, we found a significant decrease in insect pupation and eclosion rates after injection of dsPxTH or a feeding diet supplemented with 3-iodo-tyrosine (3-IT) as a TH inhibitor in P. xylostella. Moreover, this study suggested that PxTH enzyme activity and dopamine concentrations were significantly decreased, agreeing with the blockage of larval-pupal cuticle tanning, with thinner puparium and less melanization after feeding 3-IT. In addition, expression levels of four antimicrobial peptide genes were significantly inhibited after P. xylostella feeding with 3-IT, and injection of Escherichia coli resulted in 73.3% mortality, indicating that PxTH was required for immune responses. In summary, these results confirmed that PxTH was involved in the development and immunity of P. xylostella, suggesting a critical potential novel insecticide target for RNAi-based pest control.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Han-Qiao Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Hou QL, Zhang HQ, Zhu JN, Chen EH. Functional analysis of dopa decarboxylase in the larval pupation and immunity of the diamondback moth, Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106195. [PMID: 39672624 DOI: 10.1016/j.pestbp.2024.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/26/2024] [Indexed: 12/15/2024]
Abstract
The diamondback moth (Plutella xylostella L.), a notorious pest infesting cruciferous vegetables worldwide, has developed a high level of resistance to various commonly used chemical pesticides. In this paper, we explore whether dopa decarboxylase (DDC), which is essential for survival and development in insects, could be used as a potential target for the control of P. xylostella. Here, the full-length cDNA (PxDDC) of P. xylostella was identified, with a complete open reading frame of 1434 bp in length, encoding a protein of 477 amino acids. The temporal and spatial expression analysis showed a periodical expression pattern of PxDDC during molting, reaching a peak during the process of pupation, and it was found to be highly expressed in the epidermis of prepupal stage, indicating a crucial role of PxDDC in larval-pupal metamorphosis of P. xylostella. Subsequently, there was a significant decreasing in pupation and eclosion rates, and less production of melanin in P. xylostella after the disruption of PxDDC function by the injection of dsPxDDC (RNAi, RNA interference) or feeding a larval diet supplemented with L-α-methyl-DOPA (L-α-M-D) as DDC inhibitor. In addition, we found four antimicrobial peptide genes were significantly inhibited after feeding P. xylostella with L-α-M-D, and the injection of Escherichia coli could significantly increase insect mortality of enzyme inhibitor treated P. xylostella, suggesting PxDDC was involved in immune responses as well. In summary, these results confirm that PxDDC is required for larval-pupal metamorphosis and immunity of P. xylostella, suggesting a critical potential future novel insecticide target for RNAi based pest control.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Han-Qiao Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
3
|
Zhu M, Catta-Preta R, Lee C, Tabin C. Shifts in embryonic oxygen levels cue heterochrony in limb initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620348. [PMID: 39484532 PMCID: PMC11527133 DOI: 10.1101/2024.10.25.620348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Heterochrony, or the alteration of developmental timing, is an important mechanism of evolutionary change. Avian species display synchronized growth of the forelimbs and hindlimbs, while mammalian species show delayed hindlimb development. We find that mammalian limb heterochrony is evident from the start of limb bud formation, and is associated with heterochronic expression of T-box transcription factors. This heterochronic shift is not due to changes in cis-regulatory sequences controlling T-box gene expression, but unexpectedly, is dependent upon differential oxygen levels to which avian and mammalian embryos are exposed prior to limb initiation, mediated, at least partially, by an NFKB transcription factor, cRel. Together, these results provide mechanistic understanding of an important example of developmental heterochrony and exemplify how the maternal environment regulates timing during embryonic development.
Collapse
|
4
|
Griffith EC, West AE, Greenberg ME. Neuronal enhancers fine-tune adaptive circuit plasticity. Neuron 2024; 112:3043-3057. [PMID: 39208805 PMCID: PMC11550865 DOI: 10.1016/j.neuron.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Neuronal activity-regulated gene expression plays a crucial role in sculpting neural circuits that underpin adaptive brain function. Transcriptional enhancers are now recognized as key components of gene regulation that orchestrate spatiotemporally precise patterns of gene transcription. We propose that the dynamics of enhancer activation uniquely position these genomic elements to finely tune activity-dependent cellular plasticity. Enhancer specificity and modularity can be exploited to gain selective genetic access to specific cell states, and the precise modulation of target gene expression within restricted cellular contexts enabled by targeted enhancer manipulation allows for fine-grained evaluation of gene function. Mounting evidence also suggests that enduring stimulus-induced changes in enhancer states can modify target gene activation upon restimulation, thereby contributing to a form of cell-wide metaplasticity. We advocate for focused exploration of activity-dependent enhancer function to gain new insight into the mechanisms underlying brain plasticity and cognitive dysfunction.
Collapse
Affiliation(s)
- Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
5
|
Petrosky SJ, Williams TM, Rebeiz M. A genetic screen of transcription factors in the Drosophila melanogaster abdomen identifies novel pigmentation genes. G3 (BETHESDA, MD.) 2024; 14:jkae097. [PMID: 38820091 PMCID: PMC11373662 DOI: 10.1093/g3journal/jkae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 06/02/2024]
Abstract
Gene regulatory networks specify the gene expression patterns needed for traits to develop. Differences in these networks can result in phenotypic differences between organisms. Although loss-of-function genetic screens can identify genes necessary for trait formation, gain-of-function screens can overcome genetic redundancy and identify loci whose expression is sufficient to alter trait formation. Here, we leveraged transgenic lines from the Transgenic RNAi Project at Harvard Medical School to perform both gain- and loss-of-function CRISPR/Cas9 screens for abdominal pigmentation phenotypes. We identified measurable effects on pigmentation patterns in the Drosophila melanogaster abdomen for 21 of 55 transcription factors in gain-of-function experiments and 7 of 16 tested by loss-of-function experiments. These included well-characterized pigmentation genes, such as bab1 and dsx, and transcription factors that had no known role in pigmentation, such as slp2. Finally, this screen was partially conducted by undergraduate students in a Genetics Laboratory course during the spring semesters of 2021 and 2022. We found this screen to be a successful model for student engagement in research in an undergraduate laboratory course that can be readily adapted to evaluate the effect of hundreds of genes on many different Drosophila traits, with minimal resources.
Collapse
Affiliation(s)
- Sarah J Petrosky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Narbey R, Mouchel-Vielh E, Gibert JM. The H3K79me3 methyl-transferase Grappa is involved in the establishment and thermal plasticity of abdominal pigmentation in Drosophila melanogaster females. Sci Rep 2024; 14:9547. [PMID: 38664546 PMCID: PMC11045721 DOI: 10.1038/s41598-024-60184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females allows to investigate the mechanisms underlying phenotypic plasticity. Thermal plasticity of pigmentation is due to modulation of tan and yellow expression, encoding pigmentation enzymes. Furthermore, modulation of tan expression by temperature is correlated to the variation of the active histone mark H3K4me3 on its promoter. Here, we test the role of the DotCom complex, which methylates H3K79, another active mark, in establishment and plasticity of pigmentation. We show that several components of the DotCom complex are involved in the establishment of abdominal pigmentation. In particular, Grappa, the catalytic unit of this complex, plays opposite roles on pigmentation at distinct developmental stages. Indeed, its down-regulation from larval L2 to L3 stages increases female adult pigmentation, whereas its down-regulation during the second half of the pupal stage decreases adult pigmentation. These opposite effects are correlated to the regulation of distinct pigmentation genes by Grappa: yellow repression for the early role and tan activation for the late one. Lastly, reaction norms measuring pigmentation along temperature in mutants for subunits of the DotCom complex reveal that this complex is not only involved in the establishment of female abdominal pigmentation but also in its plasticity.
Collapse
Affiliation(s)
- Raphaël Narbey
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France
| | - Emmanuèle Mouchel-Vielh
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| | - Jean-Michel Gibert
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| |
Collapse
|
7
|
Mañes-García J, Marco-Ferreres R, Beccari L. Shaping gene expression and its evolution by chromatin architecture and enhancer activity. Curr Top Dev Biol 2024; 159:406-437. [PMID: 38729683 DOI: 10.1016/bs.ctdb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Transcriptional regulation plays a pivotal role in orchestrating the intricate genetic programs governing embryonic development. The expression of developmental genes relies on the combined activity of several cis-regulatory elements (CREs), such as enhancers and silencers, which can be located at long linear distances from the genes that they regulate and that interact with them through establishment of chromatin loops. Mutations affecting their activity or interaction with their target genes can lead to developmental disorders and are thought to have importantly contributed to the evolution of the animal body plan. The income of next-generation-sequencing approaches has allowed identifying over a million of sequences with putative regulatory potential in the human genome. Characterizing their function and establishing gene-CREs maps is essential to decode the logic governing developmental gene expression and is one of the major challenges of the post-genomic era. Chromatin 3D organization plays an essential role in determining how CREs specifically contact their target genes while avoiding deleterious off-target interactions. Our understanding of these aspects has greatly advanced with the income of chromatin conformation capture techniques and fluorescence microscopy approaches to visualize the organization of DNA elements in the nucleus. Here we will summarize relevant aspects of how the interplay between CRE activity and chromatin 3D organization regulates developmental gene expression and how it relates to pathological conditions and the evolution of animal body plan.
Collapse
Affiliation(s)
| | | | - Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
8
|
Wang Z, Peng C, Wu W, Yan C, Lv Y, Li JT. Developmental regulation of conserved non-coding element evolution provides insights into limb loss in squamates. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2399-2414. [PMID: 37256419 DOI: 10.1007/s11427-023-2362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
Limb loss shows recurrent phenotypic evolution across squamate lineages. Here, based on three de novo-assembled genomes of limbless lizards from different lineages, we showed that divergence of conserved non-coding elements (CNEs) played an important role in limb development. These CNEs were associated with genes required for limb initiation and outgrowth, and with regulatory signals in the early stage of limb development. Importantly, we identified the extensive existence of insertions and deletions (InDels) in the CNEs, with the numbers ranging from 111 to 756. Most of these CNEs with InDels were lineage-specific in the limbless squamates. Nearby genes of these InDel CNEs were important to early limb formation, such as Tbx4, Fgf10, and Gli3. Based on functional experiments, we found that nucleotide mutations and InDels both affected the regulatory function of the CNEs. Our study provides molecular evidence underlying limb loss in squamate reptiles from a developmental perspective and sheds light on the importance of regulatory element InDels in phenotypic evolution.
Collapse
Affiliation(s)
- Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
9
|
Ador K, Gobilik J, Benedick S. Phylogenetic and Morphological Characteristics Reveal Cryptic Speciation in Stingless Bee, Tetragonula laeviceps s.l. Smith 1857 (Hymenoptera; Meliponinae). INSECTS 2023; 14:insects14050438. [PMID: 37233066 DOI: 10.3390/insects14050438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/27/2023]
Abstract
Tetragonula laeviceps sensu lato (s.l.) Smith 1857 has the most complicated nomenclatural history among the Tetragonula genera. The objective of this study was to investigate whether T. laeviceps s.l. individuals with worker bees are grouped in the same or nearly the same morphological characteristics and have similar COI haplotype cluster groups. A total of 147 worker bees of T. laeviceps s.l. were collected from six sampling sites in Sabah (RDC, Tuaran, Kota Marudu, Putatan, Kinarut and Faculty of Sustainable Agriculture (FSA)), but only 36 were selected for further studies. These specimens were first classified according to the most obvious morphological characteristics, i.e., hind tibia color, hind basitarsus color and body size. Group identification was based on morphological characteristics important for distinguishing the four groups within T. laeviceps s.l. The four groups of T. laeviceps s.l. had significantly different body trait measurements for the TL (total length), HW (head width), HL (head length), CEL (compound eye length), CEW (compound eye width), FWLT (forewing length, including tegula), FWW (forewing width), FWL (forewing length), ML (mesoscutum length), MW (mesoscutum width), SW (mesoscutellum width), SL (mesoscutellum length), HTL = (hind tibia length), HTW (hind tibia width), HBL (hind basitarsus length) and HBW (hind basitarsus width) (p < 0.001). Body color included HC (head color), CC (clypeus color), ASC (antennae scape color), CFPP (Clypeus and frons plumose pubescence), HTC (hind tibia color), BSC (basitarsus color), SP (leg setae pubescence), SP (Thorax mesoscutellum pubescence), SPL (thorax mesoscutellum pubescence length) and TC (thorax color) (p < 0.05). The most distinctive features of the morphological and morphometric characteristics measured by PCA and LDA biplot that distinguish Group 1 (TL6-1, TL6-2 and TL6-3) from the other groups were the yellowish-brown ASC and the dark brown TC. Group 2 (haplotypes TL2-1, TL2-2 and TL2-3 and TL4-1, TL4-2 and TL4-3) had a dark brown ASC and a black TC, while Group 3 (haplotypes TL11-1, TL11-2 and TL11-3) had a blackish-brown ASC, a black TC and the largest TL, FWW and FWL. As for phylogenetic relationships, 12 out of 36 haplotypes showed clear separation with good bootstrap values (97-100%). The rest of the haplotypes did not show clear differentiation between subclades that belonged together, regardless of their morphology and morphometric characteristics. This suggests that the combination of DNA barcoding for species identification and phylogenetic analysis, as well as traditional methods based on morphological grouping by body size and body color, can be reliably used to determine intraspecific variations within T. laeviceps s.l.
Collapse
Affiliation(s)
- Kimberly Ador
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No. 3, Sandakan 90509, Malaysia
| | - Januarius Gobilik
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No. 3, Sandakan 90509, Malaysia
| | - Suzan Benedick
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No. 3, Sandakan 90509, Malaysia
| |
Collapse
|
10
|
Moran RL, Richards EJ, Ornelas-García CP, Gross JB, Donny A, Wiese J, Keene AC, Kowalko JE, Rohner N, McGaugh SE. Selection-driven trait loss in independently evolved cavefish populations. Nat Commun 2023; 14:2557. [PMID: 37137902 PMCID: PMC10156726 DOI: 10.1038/s41467-023-37909-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra, Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur.
Collapse
Affiliation(s)
- Rachel L Moran
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Emilie J Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior S/N. CP 04510, D. F. México, México City, México
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Alexandra Donny
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Jonathan Wiese
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular & Integrative Physiology, KU Medical Center, Kansas City, KS, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
11
|
Khatoon H, Raza RZ, Saleem S, Batool F, Arshad S, Abrar M, Ali S, Hussain I, Shubin NH, Abbasi AA. Evolutionary relevance of single nucleotide variants within the forebrain exclusive human accelerated enhancer regions. BMC Mol Cell Biol 2023; 24:13. [PMID: 36991330 PMCID: PMC10053400 DOI: 10.1186/s12860-023-00474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and hs304 (midbrain/forebrain). By including data from archaic hominins, these SNVs were shown to be Homo sapiens-specific, residing within transcriptional factors binding sites (TFBSs) for SOX2 (hs1210), RUNX1/3 (hs563), and FOS/JUND (hs304). Although these findings suggest that the predicted modifications in TFBSs may have some role in present-day brain structure, work is required to verify the extent to which these changes translate into functional variation.
Results
To start to fill this gap, we investigate the SOX2 SNV, with both forebrain expression and strong signal of positive selection in humans. We demonstrate that the HMG box of SOX2 binds in vitro with Homo sapiens-specific derived A-allele and ancestral T-allele carrying DNA sites in BE-HAE hs1210. Molecular docking and simulation analysis indicated highly favourable binding of HMG box with derived A-allele containing DNA site when compared to site carrying ancestral T-allele.
Conclusion
These results suggest that adoptive changes in TF affinity within BE-HAE hs1210 and other HAR enhancers in the evolutionary history of Homo sapiens might.
have brought about changes in gene expression patterns and have functional consequences on forebrain formation and evolution.
Methods
The present study employ electrophoretic mobility shift assays (EMSA) and molecular docking and molecular dynamics simulations approaches.
Collapse
|
12
|
Freoa L, Chevin LM, Christol P, Méléard S, Rera M, Véber A, Gibert JM. Drosophilids with darker cuticle have higher body temperature under light. Sci Rep 2023; 13:3513. [PMID: 36864153 PMCID: PMC9981618 DOI: 10.1038/s41598-023-30652-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Cuticle pigmentation was shown to be associated with body temperature for several relatively large species of insects, but it was questioned for small insects. Here we used a thermal camera to assess the association between drosophilid cuticle pigmentation and body temperature increase when individuals are exposed to light. We compared mutants of large effects within species (Drosophila melanogaster ebony and yellow mutants). Then we analyzed the impact of naturally occurring pigmentation variation within species complexes (Drosophila americana/Drosophila novamexicana and Drosophila yakuba/Drosophila santomea). Finally we analyzed lines of D. melanogaster with moderate differences in pigmentation. We found significant differences in temperatures for each of the four pairs we analyzed. The temperature differences appeared to be proportional to the differently pigmented area: between Drosophila melanogaster ebony and yellow mutants or between Drosophila americana and Drosophila novamexicana, for which the whole body is differently pigmented, the temperature difference was around 0.6 °C ± 0.2 °C. By contrast, between D. yakuba and D. santomea or between Drosophila melanogaster Dark and Pale lines, for which only the posterior abdomen is differentially pigmented, we detected a temperature difference of about 0.14 °C ± 0.10 °C. This strongly suggests that cuticle pigmentation has ecological implications in drosophilids regarding adaptation to environmental temperature.
Collapse
Affiliation(s)
- Laurent Freoa
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France
- CNRS, MAP5, Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Luis-Miguel Chevin
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier 3, 34000, Montpellier, France
| | - Philippe Christol
- UMR5214, CNRS, Institut d'électronique et des systèmes, Université de Montpellier, 34000, Montpellier, France
| | - Sylvie Méléard
- CMAP, CNRS, Ecole Polytechnique, France et Institut Universitaire de France, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Michael Rera
- Inserm UMR U1284, Centre de Recherche Interdisciplinaire (CRI Paris), 8 bis Rue Charles V, 75004, Paris, France
| | - Amandine Véber
- CNRS, MAP5, Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Jean-Michel Gibert
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| |
Collapse
|
13
|
Hughes JT, Williams ME, Rebeiz M, Williams TM. Widespread cis- and trans-regulatory evolution underlies the origin, diversification, and loss of a sexually dimorphic fruit fly pigmentation trait. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:143-161. [PMID: 34254440 DOI: 10.1002/jez.b.23068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Changes in gene expression are a prominent feature of morphological evolution. These changes occur to hierarchical gene regulatory networks (GRNs) of transcription factor genes that regulate the expression of trait-building differentiation genes. While changes in the expression of differentiation genes are essential to phenotypic evolution, they can be caused by mutations within cis-regulatory elements (CREs) that drive their expression (cis-evolution) or within genes for CRE-interacting transcription factors (trans-evolution). Locating these mutations remains a challenge, especially when experiments are limited to one species that possesses the ancestral or derived phenotype. We investigated CREs that control the expression of the differentiation genes tan and yellow, the expression of which evolved during the gain, modification, and loss of dimorphic pigmentation among Sophophora fruit flies. We show these CREs to be necessary components of a pigmentation GRN, as deletion from Drosophila melanogaster (derived dimorphic phenotype) resulted in lost expression and lost male-specific pigmentation. We evaluated the ability of orthologous CRE sequences to drive reporter gene expression in species with modified (Drosophila auraria), secondarily lost (Drosophila ananassae), and ancestrally absent (Drosophila willistoni) pigmentation. We show that the transgene host frequently determines CRE activity, implicating trans-evolution as a significant factor for this trait's diversity. We validated the gain of dimorphic Bab transcription factor expression as a trans-change contributing to the dimorphic trait. Our findings suggest an amenability to change for the landscape of trans-regulators and begs for an explanation as to why this is so common compared to the evolution of differentiation gene CREs.
Collapse
Affiliation(s)
- Jesse T Hughes
- Department of Biology, University of Dayton, Dayton, Ohio, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, Dayton, Ohio, USA.,The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, USA
| |
Collapse
|
14
|
Guo H, Long GJ, Liu XZ, Ma YF, Zhang MQ, Gong LL, Dewer Y, Hull JJ, Wang MM, Wang Q, He M, He P. Functional characterization of tyrosine melanin genes in the white-backed planthopper and utilization of a spray-based nanoparticle-wrapped dsRNA technique for pest control. Int J Biol Macromol 2023; 230:123123. [PMID: 36603718 DOI: 10.1016/j.ijbiomac.2022.123123] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
As a significant pest of rice the white-backed planthopper (WBPH) Sogatella furcifera is a focus of pest management. However, traditional chemical-based control methods risk the development of pesticide resistance as well as severe ecological repercussions. Although nanoparticle-encapsulated dsRNAs provide a promising alternative method for sustainable pest management, gene targets specific to WBPH have yet to be optimized. Genes in the tyrosine-melanin pathway impact epidermal melanization and sclerotization, two processes essential for insect development and metabolism, have been proposed as good candidate targets for pest management. Seven genes (aaNAT, black, DDC, ebony, tan, TH, and yellow-y) in this group were identified from WBPH genome and functionally characterized by using RNAi for their impact on WBPH body color, development, and mortality. Knockdown of SfDDC, Sfblack, SfaaNAT, and Sftan caused cuticles to turn black, whereas Sfyellow-y and Sfebony knockdown resulted in yellow coloration. SfTH knockdown resulted in pale-colored bodies and high mortality. Additionally, an Escherichia coli expression system for large-scale dsRNA production was coupled with star polycation nanoparticles to develop a sprayable RNAi method targeting SfTH that induced high WBPH mortality rates on rice seedlings. These findings lay the groundwork for the development of large-scale dsRNA nanoparticle sprays as a WBPH control method.
Collapse
Affiliation(s)
- Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, 12618 Giza, Egypt
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, 85138, USA
| | - Mei-Mei Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Qin Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
15
|
The Genetic Mechanisms Underlying the Concerted Expression of the yellow and tan Genes in Complex Patterns on the Abdomen and Wings of Drosophila guttifera. Genes (Basel) 2023; 14:genes14020304. [PMID: 36833231 PMCID: PMC9957387 DOI: 10.3390/genes14020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
How complex morphological patterns form is an intriguing question in developmental biology. However, the mechanisms that generate complex patterns remain largely unknown. Here, we sought to identify the genetic mechanisms that regulate the tan (t) gene in a multi-spotted pigmentation pattern on the abdomen and wings of Drosophila guttifera. Previously, we showed that yellow (y) gene expression completely prefigures the abdominal and wing pigment patterns of this species. In the current study, we demonstrate that the t gene is co-expressed with the y gene in nearly identical patterns, both transcripts foreshadowing the adult abdominal and wing melanin spot patterns. We identified cis-regulatory modules (CRMs) of t, one of which drives reporter expression in six longitudinal rows of spots on the developing pupal abdomen, while the second CRM activates the reporter gene in a spotted wing pattern. Comparing the abdominal spot CRMs of y and t, we found a similar composition of putative transcription factor binding sites that are thought to regulate the complex expression patterns of both terminal pigmentation genes y and t. In contrast, the y and t wing spots appear to be regulated by distinct upstream factors. Our results suggest that the D. guttifera abdominal and wing melanin spot patterns have been established through the co-regulation of y and t, shedding light on how complex morphological traits may be regulated through the parallel coordination of downstream target genes.
Collapse
|
16
|
Inoue S, Watanabe T, Hamaguchi T, Ishimaru Y, Miyawaki K, Nikawa T, Takahashi A, Noji S, Mito T. Combinatorial expression of ebony and tan generates body color variation from nymph through adult stages in the cricket, Gryllus bimaculatus. PLoS One 2023; 18:e0285934. [PMID: 37200362 DOI: 10.1371/journal.pone.0285934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Insect body colors and patterns change markedly during development in some species as they adapt to their surroundings. The contribution of melanin and sclerotin pigments, both of which are synthesized from dopamine, to cuticle tanning has been well studied. Nevertheless, little is known about how insects alter their body color patterns. To investigate this mechanism, the cricket Gryllus bimaculatus, whose body color patterns change during postembryonic development, was used as a model in this study. We focused on the ebony and tan genes, which encode enzymes that catalyze the synthesis and degradation, respectively, of the precursor of yellow sclerotin N-β-alanyl dopamine (NBAD). Expression of the G. bimaculatus (Gb) ebony and tan transcripts tended to be elevated just after hatching and the molting period. We found that dynamic alterations in the combined expression levels of Gb'ebony and Gb'tan correlated with the body color transition from the nymphal stages to the adult. The body color of Gb'ebony knockout mutants generated by CRISPR/Cas9 systemically darkened. Meanwhile, Gb'tan knockout mutants displayed a yellow color in certain areas and stages. The phenotypes of the Gb'ebony and Gb'tan mutants probably result from an over-production of melanin and yellow sclerotin NBAD, respectively. Overall, stage-specific body color patterns in the postembryonic stages of the cricket are governed by the combinatorial expression of Gb'ebony and Gb'tan. Our findings provide insights into the mechanism by which insects evolve adaptive body coloration at each developmental stage.
Collapse
Affiliation(s)
- Shintaro Inoue
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taiki Hamaguchi
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Katsuyuki Miyawaki
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takeshi Nikawa
- Departments of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| |
Collapse
|
17
|
Brent CS, Heu CC, Gross RJ, Fan B, Langhorst D, Hull JJ. RNAi-Mediated Manipulation of Cuticle Coloration Genes in Lygus hesperus Knight (Hemiptera: Miridae). INSECTS 2022; 13:986. [PMID: 36354810 PMCID: PMC9698757 DOI: 10.3390/insects13110986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Cuticle coloration in insects is a consequence of the accumulation of pigments in a species-specific pattern. Numerous genes are involved in regulating the underlying processes of melanization and sclerotization, and their manipulation can be used to create externally visible markers of successful gene editing. To clarify the roles for many of these genes and examine their suitability as phenotypic markers in Lygus hesperus Knight (western tarnished plant bug), transcriptomic data were screened for sequences exhibiting homology with the Drosophila melanogaster proteins. Complete open reading frames encoding putative homologs for six genes (aaNAT, black, ebony, pale, tan, and yellow) were identified, with two variants for black. Sequence and phylogenetic analyses supported preliminary annotations as cuticle pigmentation genes. In accord with observable difference in color patterning, expression varied for each gene by developmental stage, adult age, body part, and sex. Knockdown by injection of dsRNA for each gene produced varied effects in adults, ranging from the non-detectable (black 1, yellow), to moderate decreases (pale, tan) and increases (black 2, ebony) in darkness, to extreme melanization (aaNAT). Based solely on its expression profile and highly visible phenotype, aaNAT appears to be the best marker for tracking transgenic L. hesperus.
Collapse
|
18
|
Analysis of the leaf metabolome in Arabidopsis thaliana mutation accumulation lines reveals association of metabolic disruption and fitness consequence. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Sangsuwan T, Mannervik M, Haghdoost S. Transgenerational effects of gamma radiation dose and dose rate on Drosophila flies irradiated at an early embryonal stage. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503523. [PMID: 36031335 DOI: 10.1016/j.mrgentox.2022.503523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ionizing radiation (IR) kills cells mainly through induction of DNA damages and the surviving cells may suffer from mutations. Transgenerational effects of IR are well documented, but the exact mechanisms underlying them are less well understood; they include induction of mutations in germ cells and epigenetic inheritance. Previously, effects in the offspring of mice and zebrafish exposed to IR have been reported. A few studies also showed indications of transgenerational effects of radiation in humans, particularly in nuclear power workers. In the present project, short- and long-term effects of low-dose-rate (LDR; 50 and 97 mGy/h) and high-dose-rate (HDR; 23.4, 47.1 and 495 Gy/h) IR in Drosophila embryos were investigated. The embryos were irradiated at different doses and dose rates and radiosensitivity at different developmental stages was investigated. Also, the survival of larvae, pupae and adults developed from embryos irradiated at an early stage (30 min after egg laying) were studied. The larval crawling and pupation height assays were applied to investigate radiation effects on larval locomotion and pupation behavior, respectively. In parallel, the offspring from 3 Gy irradiated early-stage embryos were followed up to 12 generations and abnormal phenotypes were studied. Acute exposure of embryos at different stages of development showed that the early stage embryo is the most sensitive. The effects on larval locomotion showed no significant differences between the dose rates but a significant decrease of locomotion activity above 7 Gy was observed. The results indicate that embryos exposed to the low dose rates have shorter eclosion times. At the same cumulative dose (1 up to 7 Gy), HDR is more embryotoxic than LDR. We also found a radiation-induced depigmentation on males (A5 segment of the dorsal abdomen, A5pig-) that can be transmitted up to 12 generations. The phenomenon does not follow the classical Mendelian laws of segregation.
Collapse
Affiliation(s)
- Traimate Sangsuwan
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mattias Mannervik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; University of Caen Normandy, Cimap-Aria, Ganil, and Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Caen, France.
| |
Collapse
|
20
|
McDonald JMC, Reed RD. Patterns of selection across gene regulatory networks. Semin Cell Dev Biol 2022; 145:60-67. [PMID: 35474149 DOI: 10.1016/j.semcdb.2022.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Gene regulatory networks (GRNs) are the core engine of organismal development. If we would like to understand the origin and diversification of phenotypes, it is necessary to consider the structure of GRNs in order to reconstruct the links between genetic mutations and phenotypic change. Much of the progress in evolutionary developmental biology, however, has occurred without a nuanced consideration of the evolution of functional relationships between genes, especially in the context of their broader network interactions. Characterizing and comparing GRNs across traits and species in a more detailed way will allow us to determine how network position influences what genes drive adaptive evolution. In this perspective paper, we consider the architecture of developmental GRNs and how positive selection strength may vary across a GRN. We then propose several testable models for these patterns of selection and experimental approaches to test these models.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
21
|
Jarvis DE, Maughan PJ, DeTemple J, Mosquera V, Li Z, Barker MS, Johnson LA, Whipple CJ. Chromosome-Scale Genome Assembly of Gilia yorkii Enables Genetic Mapping of Floral Traits in an Interspecies Cross. Genome Biol Evol 2022; 14:evac017. [PMID: 35106544 PMCID: PMC8920513 DOI: 10.1093/gbe/evac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Substantial morphological variation in land plants remains inaccessible to genetic analysis because current models lack variation in important ecological and agronomic traits. The genus Gilia was historically a model for biosystematics studies and includes variation in morphological traits that are poorly understood at the genetic level. We assembled a chromosome-scale reference genome of G. yorkii and used it to investigate genome evolution in the Polemoniaceae. We performed QTL (quantitative trait loci) mapping in a G. yorkii×G. capitata interspecific population for traits related to inflorescence architecture and flower color. The genome assembly spans 2.75 Gb of the estimated 2.80-Gb genome, with 96.7% of the sequence contained in the nine largest chromosome-scale scaffolds matching the haploid chromosome number. Gilia yorkii experienced at least one round of whole-genome duplication shared with other Polemoniaceae after the eudicot paleohexaploidization event. We identified QTL linked to variation in inflorescence architecture and petal color, including a candidate for the major flower color QTL-a tandem duplication of flavanol 3',5'-hydroxylase. Our results demonstrate the utility of Gilia as a forward genetic model for dissecting the evolution of development in plants including the causal loci underlying inflorescence architecture transitions.
Collapse
Affiliation(s)
- David E Jarvis
- Plant and Wildlife Sciences Department, Brigham Young University, USA
| | - Peter J Maughan
- Plant and Wildlife Sciences Department, Brigham Young University, USA
| | | | | | - Zheng Li
- Department of Integrative Biology, University of Texas, Austin, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, USA
| | | | | |
Collapse
|
22
|
Luecke D, Rice G, Kopp A. Sex-specific evolution of a Drosophila sensory system via interacting cis- and trans-regulatory changes. Evol Dev 2022; 24:37-60. [PMID: 35239254 PMCID: PMC9179014 DOI: 10.1111/ede.12398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
The evolution of gene expression via cis-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in Drosophila. Drosophila prolongata males show a massively increased number of chemosensory bristles compared to females and males of sibling species. This increase is driven by sex-specific transformation of ancestrally mechanosensory organs. Consistent with this phenotype, the Pox neuro transcription factor (Poxn), which specifies chemosensory bristle identity, shows expanded expression in D. prolongata males. Poxn expression is controlled by nonadditive interactions among widely dispersed enhancers. Although some D. prolongata Poxn enhancers show increased activity, the additive component of this increase is slight, suggesting that most changes in Poxn expression are due to epistatic interactions between Poxn enhancers and trans-regulatory factors. Indeed, the expansion of D. prolongata Poxn enhancer activity is only observed in cells that express doublesex (dsx), the gene that controls sexual differentiation in Drosophila and also shows increased expression in D. prolongata males due to cis-regulatory changes. Although expanded dsx expression may contribute to increased activity of D. prolongata Poxn enhancers, this interaction is not sufficient to explain the full expansion of Poxn expression, suggesting that cis-trans interactions between Poxn, dsx, and additional unknown genes are necessary to produce the derived D. prolongata phenotype. Overall, our results demonstrate the importance of epistatic gene interactions for evolution, particularly when pivotal genes have complex regulatory architecture.
Collapse
Affiliation(s)
- David Luecke
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Integrative Biology, Michigan State University
| | - Gavin Rice
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Biological Sciences, University of Pittsburgh
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California – Davis
| |
Collapse
|
23
|
Ze LJ, Jin L, Li GQ. Silencing of Adc and Ebony Causes Abnormal Darkening of Cuticle in Henosepilachna vigintioctopunctata. Front Physiol 2022; 13:829675. [PMID: 35283776 PMCID: PMC8907826 DOI: 10.3389/fphys.2022.829675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
N-β-alanyldopamine (NBAD) is a precursor of N-acylquinone sclerotin utilized for cross-linking between cuticular proteins for cuticle during insect molting. The importance of NBAD in cuticle tanning has not been well compared among different developing stages of insects. Henosepilachna vigintioctopunctata, a typical polyphagous pest feeding on a large number of Solanaceae and Cucurbitaceae plants in Asian countries, displays diverse cuticle pigmentation patterns among developing stages and body regions. Here, we found that the expression of three genes (Hvadc, Hvebony, and Hvtan) involved in NBAD biosynthesis peaked in the 4-day-old pupae or 0-day-old adults of H. vigintioctopunctata. At the first, second, third, and fourth larval instar and pupal stage, their transcript levels were high just before and/or right after the molting. Moreover, they were more abundantly transcribed at the larval heads than in the bodies. RNA interference (RNAi) of either Hvadc or Hvebony at the third instar larvae selectively deepened the color of the larval head capsules, antennae, mouthpart, scoli, strumae, and legs; and depletion of the two genes blackened the pupal head capsules, antennae, mouthpart, and legs. However, the knockdown of either Hvadc or Hvebony darkened the whole bodies of the adults. Conversely, RNAi of Hvtan at the third instar stage had little influence on the pigmentation in the larvae, pupae, and adults. These findings demonstrated that Adc and Ebony are important in cuticle pigmentation of H. vigintioctopunctata and suggested that larger quantities of NBAD were present in adults and play more important roles in pigmentation than larvae/pupae.
Collapse
|
24
|
Massey JH, Li J, Stern DL, Wittkopp PJ. Distinct genetic architectures underlie divergent thorax, leg, and wing pigmentation between Drosophila elegans and D. gunungcola. Heredity (Edinb) 2021; 127:467-474. [PMID: 34537820 PMCID: PMC8551284 DOI: 10.1038/s41437-021-00467-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pigmentation divergence between Drosophila species has emerged as a model trait for studying the genetic basis of phenotypic evolution, with genetic changes contributing to pigmentation differences often mapping to genes in the pigment synthesis pathway and their regulators. These studies of Drosophila pigmentation have tended to focus on pigmentation changes in one body part for a particular pair of species, but changes in pigmentation are often observed in multiple body parts between the same pair of species. The similarities and differences of genetic changes responsible for divergent pigmentation in different body parts of the same species thus remain largely unknown. Here we compare the genetic basis of pigmentation divergence between Drosophila elegans and D. gunungcola in the wing, legs, and thorax. Prior work has shown that regions of the genome containing the pigmentation genes yellow and ebony influence the size of divergent male-specific wing spots between these two species. We find that these same two regions of the genome underlie differences in leg and thorax pigmentation; however, divergent alleles in these regions show differences in allelic dominance and epistasis among the three body parts. These complex patterns of inheritance can be explained by a model of evolution involving tissue-specific changes in the expression of Yellow and Ebony between D. elegans and D. gunungcola.
Collapse
Affiliation(s)
- Jonathan H Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jun Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Pu J, Wang Z, Cong H, Chin JSR, Justen J, Finet C, Yew JY, Chung H. Repression precedes independent evolutionary gains of a highly specific gene expression pattern. Cell Rep 2021; 37:109896. [PMID: 34706247 PMCID: PMC8578697 DOI: 10.1016/j.celrep.2021.109896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Highly specific expression patterns can be caused by the overlapping activities of activator and repressor sequences in enhancers. However, few studies illuminate how these sequences evolve in the origin of new enhancers. Here, we show that expression of the bond gene in the semicircular wall epithelium (swe) of the Drosophila melanogaster male ejaculatory bulb (EB) is controlled by an enhancer consisting of an activator region that requires Abdominal-B driving expression in the entire EB and a repressor region that restricts this expression to the EB swe. Although this expression pattern is independently gained in the distantly related Scaptodrosophila lebanonensis and does not require Abdominal-B, we show that functionally similar repressor sequences are present in Scaptodrosophila and also in species that do not express bond in the EB. We suggest that during enhancer evolution, repressor sequences can precede the evolution of activator sequences and may lead to similar but independently evolved expression patterns. Pu et al. show that the independent gain of a highly specific expression pattern across distantly related species may be because of the preexistence of repressor sequences that precedes the diversification of these species. This may reflect a general mechanism underlying the evolution of highly specific enhancers.
Collapse
Affiliation(s)
- Jian Pu
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
| | - Zinan Wang
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Haosu Cong
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jacqueline S R Chin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A(∗)STAR), Brenner Centre for Molecular Medicine, Singapore 117609, Singapore
| | - Jessa Justen
- Laboratory of Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Cédric Finet
- Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Finet C, Kassner VA, Carvalho AB, Chung H, Day JP, Day S, Delaney EK, De Ré FC, Dufour HD, Dupim E, Izumitani HF, Gautério TB, Justen J, Katoh T, Kopp A, Koshikawa S, Longdon B, Loreto EL, Nunes MDS, Raja KKB, Rebeiz M, Ritchie MG, Saakyan G, Sneddon T, Teramoto M, Tyukmaeva V, Vanderlinde T, Wey EE, Werner T, Williams TM, Robe LJ, Toda MJ, Marlétaz F. DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics. Genome Biol Evol 2021; 13:evab179. [PMID: 34343293 PMCID: PMC8382681 DOI: 10.1093/gbe/evab179] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
The vinegar fly Drosophila melanogaster is a pivotal model for invertebrate development, genetics, physiology, neuroscience, and disease. The whole family Drosophilidae, which contains over 4,400 species, offers a plethora of cases for comparative and evolutionary studies. Despite a long history of phylogenetic inference, many relationships remain unresolved among the genera, subgenera, and species groups in the Drosophilidae. To clarify these relationships, we first developed a set of new genomic markers and assembled a multilocus data set of 17 genes from 704 species of Drosophilidae. We then inferred a species tree with highly supported groups for this family. Additionally, we were able to determine the phylogenetic position of some previously unplaced species. These results establish a new framework for investigating the evolution of traits in fruit flies, as well as valuable resources for systematics.
Collapse
Affiliation(s)
- Cédric Finet
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Antonio B Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Henry Chung
- Department of Entomology, Michigan State University, USA
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, United Kingdom
| | - Stephanie Day
- Department of Biological Sciences, University of Pittsburgh, USA
| | - Emily K Delaney
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Francine C De Ré
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Héloïse D Dufour
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Eduardo Dupim
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Hiroyuki F Izumitani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Thaísa B Gautério
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Jessa Justen
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Toru Katoh
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Shigeyuki Koshikawa
- The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Japan
| | - Ben Longdon
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Elgion L Loreto
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, United Kingdom
- Centre for Functional Genomics, Oxford Brookes University, United Kingdom
| | - Komal K B Raja
- Department of Biological Sciences, Michigan Technological University, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, USA
| | | | - Gayane Saakyan
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Tanya Sneddon
- School of Biology, University of St Andrews, United Kingdom
| | - Machiko Teramoto
- The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Japan
| | | | - Thyago Vanderlinde
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Emily E Wey
- Department of Biology, University of Dayton, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, USA
| | | | - Lizandra J Robe
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Masanori J Toda
- Hokkaido University Museum, Hokkaido University, Sapporo, Japan
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
27
|
Dion WA, Steenwinkel TE, Werner T. From Aedes to Zeugodacus: a review of dipteran body coloration studies regarding evolutionary developmental biology, pest control, and species discovery. Curr Opin Genet Dev 2021; 69:35-41. [PMID: 33578125 PMCID: PMC8349939 DOI: 10.1016/j.gde.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Over the past two decades, evo-devo (evolution of development) studies have elucidated genetic mechanisms underlying novel dipteran body color patterns. Here we review the most recent developments, which show some departure from the model organism Drosophila melanogaster, leading the field into the investigation of more complex color patterns. We also discuss how the robust application of transgenic techniques has facilitated the study of many non-model pest species. Furthermore, we see that subtle pigmentation differences guide the discovery and description of new dipterans. Therefore, we argue that the existence of new field guides and the prevalence of pigmentation studies in non-model flies will enable scientists to adopt uninvestigated species into the lab, allowing them to study novel morphologies.
Collapse
Affiliation(s)
- William A Dion
- Integrative Systems Biology Graduate Program, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15213, United States; Aging Institute of UPMC, University of Pittsburgh School of Medicine, Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, United States
| | - Tessa E Steenwinkel
- Department of Biological Sciences, Michigan Technological University, 740 Dow Building, Houghton, MI, 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, 740 Dow Building, Houghton, MI, 49931, United States.
| |
Collapse
|
28
|
Liu J, Viales RR, Khoueiry P, Reddington JP, Girardot C, Furlong E, Robinson-Rechavi M. The hourglass model of evolutionary conservation during embryogenesis extends to developmental enhancers with signatures of positive selection. Genome Res 2021; 31:1573-1581. [PMID: 34266978 PMCID: PMC8415374 DOI: 10.1101/gr.275212.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
Inter-species comparisons of both morphology and gene expression within a phylum have revealed a period in the middle of embryogenesis with more similarity between species compared to earlier and later time-points. This "developmental hourglass" pattern has been observed in many phyla, yet the evolutionary constraints on gene expression, and underlying mechanisms of how this is regulated, remains elusive. Moreover, the role of positive selection on gene regulation in the more diverged earlier and later stages of embryogenesis remains unknown. Here, using DNase-seq to identify regulatory regions in two distant Drosophila species (D. melanogaster and D. virilis), we assessed the evolutionary conservation and adaptive evolution of enhancers throughout multiple stages of embryogenesis. This revealed a higher proportion of conserved enhancers at the phylotypic period, providing a regulatory basis for the hourglass expression pattern. Using an in silico mutagenesis approach, we detect signatures of positive selection on developmental enhancers at early and late stages of embryogenesis, with a depletion at the phylotypic period, suggesting positive selection as one evolutionary mechanism underlying the hourglass pattern of animal evolution.
Collapse
|
29
|
Popadić A, Tsitlakidou D. Regional patterning and regulation of melanin pigmentation in insects. Curr Opin Genet Dev 2021; 69:163-170. [PMID: 34087530 DOI: 10.1016/j.gde.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Insects display an immense diversity in melanin pigmentation, which is generated by the interplay between the regulatory genes (that provide general patterning information) and effector genes (that provide coloration of the pattern). However, recent studies encompassing several different orders (Hemiptera, Blattodea, Coleoptera, and Lepidoptera) have shown that knockdowns of melanin producing genes alone can generate distinct region-specific patterns. This review surveys the most recent studies to further document the regional patterning of effector genes, and highlights the new advances and their implications for future research.
Collapse
Affiliation(s)
- Aleksandar Popadić
- Biological Sciences Department, Wayne State University, Detroit, MI 48202, USA.
| | - Despina Tsitlakidou
- Biological Sciences Department, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
30
|
Peluffo AE, Hamdani M, Vargas‐Valderrama A, David JR, Mallard F, Graner F, Courtier‐Orgogozo V. A morphological trait involved in reproductive isolation between Drosophila sister species is sensitive to temperature. Ecol Evol 2021; 11:7492-7506. [PMID: 34188829 PMCID: PMC8216934 DOI: 10.1002/ece3.7580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
Male genitalia are usually extremely divergent between closely related species, but relatively constant within one species. Here we examine the effect of temperature on the shape of the ventral branches, a male genital structure involved in reproductive isolation, in the sister species Drosophila santomea and Drosophila yakuba. We designed a semi-automatic measurement machine learning pipeline that can reliably identify curvatures and landmarks based on manually digitized contours of the ventral branches. With this method, we observed that temperature does not affect ventral branches in D. yakuba but that in D. santomea ventral branches tend to morph into a D. yakuba-like shape at lower temperature. We found that male genitalia structures involved in reproductive isolation can be relatively variable within one species and can resemble the shape of closely related species' genitalia through plasticity to temperature. Our results suggest that reproductive isolation mechanisms can be dependent on the environmental context.
Collapse
Affiliation(s)
| | | | | | - Jean R. David
- Institut Systématique Evolution Biodiversité (ISYEB)CNRSMNHNSorbonne UniversitéEPHEParisFrance
- Laboratoire Evolution, Génomes, Comportement, Biodiversité (EGCE)CNRSIRDUniv. Paris‐sudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - François Mallard
- Institut de Biologie de l’École Normale SupérieureCNRS UMR 8197PSL Research UniversityParisFrance
| | - François Graner
- Matière et Systèmes ComplexesCNRS UMR 7057Univ. de ParisParisFrance
| | | |
Collapse
|
31
|
Rahman SR, Terranova T, Tian L, Hines HM. Developmental Transcriptomics Reveals a Gene Network Driving Mimetic Color Variation in a Bumble Bee. Genome Biol Evol 2021; 13:6244266. [PMID: 33881508 PMCID: PMC8220310 DOI: 10.1093/gbe/evab080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2021] [Indexed: 11/24/2022] Open
Abstract
A major goal of evolutionary genetics and evo-devo is to understand how changes in genotype manifest as changes in phenotype. Bumble bees display remarkable color pattern diversity while converging onto numerous regional Müllerian mimicry patterns, thus enabling exploration of the genetic mechanisms underlying convergent phenotypic evolution. In western North America, multiple bumble bee species converge onto local mimicry patterns through parallel shifts of midabdominal segments from red to black. It was previously demonstrated that a Hox gene, Abd-B, is the key regulator of the phenotypic switch in one of these species, Bombus melanopygus, however, the mechanism by which Abd-B regulates color differentiation remains unclear. Using tissue/stage-specific transcriptomic analysis followed by qRT–PCR validation, this study reveals a suite of genes potentially involved downstream of Abd-B during color pattern differentiation. The data support differential genes expression of not only the first switch gene Abd-B, but also an intermediate developmental gene nubbin, and a whole suite of downstream melanin and redox genes that together reinforce the observed eumelanin (black)-pheomelanin (red) ratios. These include potential genes involved in the production of insect pheomelanins, a pigment until recently not thought to occur in insects and thus lacking known regulatory enzymes. The results enhance understanding of pigmentation gene networks involved in bumble bee color pattern development and diversification, while providing insights into how upstream regulators such as Hox genes interact with downstream morphogenic players to facilitate this adaptive phenotypic radiation.
Collapse
Affiliation(s)
- Sarthok Rasique Rahman
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Tatiana Terranova
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Li Tian
- Department of Entomology, China Agricultural University, Beijing, China
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
32
|
Dion WA, Shittu MO, Steenwinkel TE, Raja KKB, Kokate PP, Werner T. The modular expression patterns of three pigmentation genes prefigure unique abdominal morphologies seen among three Drosophila species. Gene Expr Patterns 2020; 38:119132. [PMID: 32828854 PMCID: PMC7725850 DOI: 10.1016/j.gep.2020.119132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
To understand how novel animal body colorations emerged, one needs to ask how the development of color patterns differs among closely related species. Here we examine three species of fruit flies - Drosophila guttifera (D. guttifera), D. palustris, and D. subpalustris - displaying a varying number of abdominal spot rows. Through in situ hybridization experiments, we examine the mRNA expression patterns for the pigmentation genes Dopa decarboxylase (Ddc), tan (t), and yellow (y) during pupal development. Our results show that Ddc, t, and y are co-expressed in modular, identical patterns, each foreshadowing the adult abdominal spots in D. guttifera, D. palustris, and D. subpalustris. We suggest that differences in the expression patterns of these three genes partially underlie the morphological diversity of the quinaria species group.
Collapse
Affiliation(s)
- William A Dion
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Mujeeb O Shittu
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Tessa E Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Komal K B Raja
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Prajakta P Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
33
|
Abstract
Insects represent 85% of the animals. They have adapted to many environments and play a major role in ecosystems. Many insect species exhibit phenotypic plasticity. We here report on the mechanisms involved in phenotypic plasticity of different insects (aphids, migratory locust, map butterfly, honeybee) and also on the nutritional size plasticity in Drosophila and the plasticity of the wing eye-spots of the butterfly Bicyclus anynana. We also describe in more detail our work concerning the thermal plasticity of pigmentation in Drosophila. We have shown that the expression of the tan, yellow and Ddc genes, encoding enzymes of the melanin synthesis pathway, is modulated by temperature and that it is a consequence, at least in part, of the temperature-sensitive expression of the bab locus genes that repress them.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement (IBPS-LBD), 75005 Paris, France
| |
Collapse
|
34
|
Fukutomi Y, Kondo S, Toyoda A, Shigenobu S, Koshikawa S. Transcriptome analysis reveals wingless regulates neural development and signaling genes in the region of wing pigmentation of a polka-dotted fruit fly. FEBS J 2020; 288:99-110. [PMID: 32307851 DOI: 10.1111/febs.15338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/14/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
How evolutionary novelties have arisen is one of the central questions in evolutionary biology. Preexisting gene regulatory networks or signaling pathways have been shown to be co-opted for building novel traits in several organisms. However, the structure of entire gene regulatory networks and evolutionary events of gene co-option for emergence of a novel trait are poorly understood. In this study, to explore the genetic and molecular bases of the novel wing pigmentation pattern of a polka-dotted fruit fly (Drosophila guttifera), we performed de novo genome sequencing and transcriptome analyses. As a result, we comprehensively identified the genes associated with the pigmentation pattern. Furthermore, we revealed that 151 of these associated genes were positively or negatively regulated by wingless, a master regulator of wing pigmentation. Genes for neural development, Wnt signaling, Dpp signaling, and effectors (such as enzymes) for melanin pigmentation were included among these 151 genes. None of the known regulatory genes that regulate pigmentation pattern formation in other fruit fly species were included. Our results suggest that the novel pigmentation pattern of a polka-dotted fruit fly might have emerged through multistep co-options of multiple gene regulatory networks, signaling pathways, and effector genes, rather than recruitment of one large gene circuit.
Collapse
Affiliation(s)
- Yuichi Fukutomi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
35
|
Miller SW, Posakony JW. Disparate expression specificities coded by a shared Hox-C enhancer. eLife 2020; 9:39876. [PMID: 32342858 PMCID: PMC7188484 DOI: 10.7554/elife.39876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Can a single regulatory sequence be shared by two genes undergoing functional divergence? Here we describe a single promiscuous enhancer within the Drosophila Antennapedia Complex, EO053, that directs aspects of the expression of two adjacent genes, pb (a Hox2 ortholog) and zen2 (a divergent Hox3 paralog), with disparate spatial and temporal expression patterns. We were unable to separate the pb-like and zen2-like specificities within EO053, and we identify sequences affecting both expression patterns. Importantly, genomic deletion experiments demonstrate that EO053 cooperates with additional pb- and zen2-specific enhancers to regulate the mRNA expression of both genes. We examine sequence conservation of EO053 within the Schizophora, and show that patterns of synteny between the Hox2 and Hox3 orthologs in Arthropods are consistent with a shared regulatory relationship extending prior to the Hox3/zen divergence. Thus, EO053 represents an example of two genes having evolved disparate outputs while utilizing this shared regulatory region. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Steve W Miller
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, United States
| | - James W Posakony
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, United States
| |
Collapse
|
36
|
Koshikawa S. Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution. Dev Growth Differ 2020; 62:269-278. [PMID: 32171022 PMCID: PMC7384037 DOI: 10.1111/dgd.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
Fruit flies (Drosophila and its close relatives, or “drosophilids”) are a group that includes an important model organism, Drosophila melanogaster, and also very diverse species distributed worldwide. Many of these species have black or brown pigmentation patterns on their wings, and have been used as material for evo‐devo research. Pigmentation patterns are thought to have evolved rapidly compared with body plans or body shapes; hence they are advantageous model systems for studying evolutionary gains of traits and parallel evolution. Various groups of drosophilids, including genus Idiomyia (Hawaiian Drosophila), have a variety of pigmentations, ranging from simple black pigmentations around crossveins to a single antero‐distal spot and a more complex mottled pattern. Pigmentation patterns are sometimes obviously used for sexual displays; however, in some cases they may have other functions. The process of wing formation in Drosophila, the general mechanism of pigmentation formation, and the transport of substances necessary for pigmentation, including melanin precursors, through wing veins are summarized here. Lastly, the evolution of the expression of genes regulating pigmentation patterns, the role of cis‐regulatory regions, and the conditions required for the evolutionary emergence of pigmentation patterns are discussed. Future prospects for research on the evolution of wing pigmentation pattern formation in drosophilids are presented, particularly from the point of view of how they compare with other studies of the evolution of new traits.
Collapse
Affiliation(s)
- Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
37
|
Hughes JT, Williams ME, Johnson R, Grover S, Rebeiz M, Williams TM. Gene Regulatory Network Homoplasy Underlies Recurrent Sexually Dimorphic Fruit Fly Pigmentation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Red Light/Green Light, a Dual Fluorescent Protein Reporter System To Study Enhancer-Promoter Specificity in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:985-997. [PMID: 31900331 PMCID: PMC7056976 DOI: 10.1534/g3.119.401033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enhancers activate gene transcription in spatial and temporal patterns by interactions with gene promoters. These elements typically reside distal to their target promoter, with which they must interact selectively. Additional elements may contribute to enhancer-promoter specificity, including remote control element sequences within enhancers, tethering elements near promoters, and insulator/boundary elements that disrupt off-target interactions. However, few of these elements have been mapped, and as a result, the mechanisms by which these elements interact remain poorly understood. One impediment is their method of study, namely reporter transgenes in which enhancers are placed adjacent to a heterologous promoter, which may circumvent mechanisms controlling enhancer-promoter specificity and long-range interactions. Here, we report an optimized dual reporter transgene system in Drosophila melanogaster that allows the simultaneous comparison of an enhancer’s ability to activate proximal and distal fluorescent reporter genes. Testing a panel of fluorescent transgenes in vivo, we found a two-protein combination that allows simultaneous measurement with minimal detection interference. We note differences among four tested enhancers in their ability to regulate a distally placed reporter transgene. These results suggest that enhancers differ in their requirements for promoter interaction and raise important practical considerations when studying enhancer function.
Collapse
|
39
|
Lu XP, Xu L, Meng LW, Wang LL, Niu J, Wang JJ. Divergent molecular evolution in glutathione S-transferase conferring malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel). CHEMOSPHERE 2020; 242:125203. [PMID: 31678848 DOI: 10.1016/j.chemosphere.2019.125203] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 05/15/2023]
Abstract
Insect glutathione S-transferases (GSTs) are important in insecticide detoxification and Insect-specific GSTs, Epsilon and Delta, have largely expanded in insects. In this study, we functionally expressed and characterized an epsilon class GST gene (BdGSTe8), predominant in the adult Malpighian tubules of Bactrocera dorsalis. This gene may be associated with malathion resistance based on transcriptional studies of resistant and susceptible strains. RNA interference-mediated knockdown of this gene significantly recovered malathion susceptibility in the adults of a malathion-resistant strain, and overexpression of BdGSTe8 enhanced resistance in transgenic Drosophila. Analysis of BdGSTe8 polymorphism showed that several point mutations may be associated with metabolic resistance to malathion. A cytotoxicity assay in Escherichia coli indicated that both of the recombinant BdGSTe8 proteins may play a functional role in protecting cells from toxicity. The allele of BdGSTe8-B conferred higher levels of malathion detoxification capability. Liquid chromatography and ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that the BdGSTe8-A allele did not metabolize malathion directly. However, the BdGSTe8-B allele was involved in the direct metabolism of malathion, which was caused by a mutation in V128A. Further analysis of the sequence suggests that BdGSTe8 evolved rapidly. It maybe play the role of a backup gene and could become a new gene in the future in order to retain the ability of detoxification of malathion, which was driven by positive selection. These results suggest that divergent molecular evolution in BdGSTe8 has played a role in metabolic resistance to malathion in B. dorsalis.
Collapse
Affiliation(s)
- Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei, Chongqing, 400700, PR China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei, Chongqing, 400700, PR China; International Joint Laboratory on China-Belgium Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400700, PR China
| | - Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei, Chongqing, 400700, PR China; International Joint Laboratory on China-Belgium Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400700, PR China
| | - Luo-Luo Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei, Chongqing, 400700, PR China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei, Chongqing, 400700, PR China; International Joint Laboratory on China-Belgium Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400700, PR China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei, Chongqing, 400700, PR China; International Joint Laboratory on China-Belgium Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400700, PR China.
| |
Collapse
|
40
|
Langer BE, Roscito JG, Hiller M. REforge Associates Transcription Factor Binding Site Divergence in Regulatory Elements with Phenotypic Differences between Species. Mol Biol Evol 2019; 35:3027-3040. [PMID: 30256993 PMCID: PMC6278867 DOI: 10.1093/molbev/msy187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Elucidating the genomic determinants of morphological differences between species is key to understanding how morphological diversity evolved. While differences in cis-regulatory elements are an important genetic source for morphological evolution, it remains challenging to identify regulatory elements involved in phenotypic differences. Here, we present Regulatory Element forward genomics (REforge), a computational approach that detects associations between transcription factor binding site divergence in putative regulatory elements and phenotypic differences between species. By simulating regulatory element evolution in silico, we show that this approach has substantial power to detect such associations. To validate REforge on real data, we used known binding motifs for eye-related transcription factors and identified significant binding site divergence in vision-impaired subterranean mammals in 1% of all conserved noncoding elements. We show that these genomic regions are significantly enriched in regulatory elements that are specifically active in mouse eye tissues, and that several of them are located near genes, which are required for eye development and photoreceptor function and are implicated in human eye disorders. Thus, our genome-wide screen detects widespread divergence of eye-regulatory elements and highlights regulatory regions that likely contributed to eye degeneration in subterranean mammals. REforge has broad applicability to detect regulatory elements that could be involved in many other phenotypes, which will help to reveal the genomic basis of morphological diversity.
Collapse
Affiliation(s)
- Björn E Langer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| |
Collapse
|
41
|
Prud’homme B, Gompel N. Evolution: Remodelling Animal Body Plans, Gene by Gene. Curr Biol 2019; 29:R623-R625. [DOI: 10.1016/j.cub.2019.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Liu Y, Ramos-Womack M, Han C, Reilly P, Brackett KL, Rogers W, Williams TM, Andolfatto P, Stern DL, Rebeiz M. Changes throughout a Genetic Network Mask the Contribution of Hox Gene Evolution. Curr Biol 2019; 29:2157-2166.e6. [PMID: 31257142 DOI: 10.1016/j.cub.2019.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Hox genes pattern the anterior-posterior axis of animals and are posited to drive animal body plan evolution, yet their precise role in evolution has been difficult to determine. Here, we identified evolutionary modifications in the Hox gene Abd-B that dramatically altered its expression along the body plan of Drosophila santomea. Abd-B is required for pigmentation in Drosophila yakuba, the sister species of D. santomea, and changes to Abd-B expression would be predicted to make large contributions to the loss of body pigmentation in D. santomea. However, manipulating Abd-B expression in current-day D. santomea does not affect pigmentation. We attribute this epistatic interaction to four other genes within the D. santomea pigmentation network, three of which have evolved expression patterns that do not respond to Abd-B. Our results demonstrate how body plans may evolve through small evolutionary steps distributed throughout Hox-regulated networks. Polygenicity and epistasis may hinder efforts to identify genes and mechanisms underlying macroevolutionary traits.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Margarita Ramos-Womack
- Department of Ecology Evolution and Behavior, Princeton University, Princeton, NJ 08544, USA
| | - Clair Han
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Patrick Reilly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | - William Rogers
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, Sherman Fairchild Center for Life Sciences, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
43
|
Zhang Y, Li H, Du J, Zhang J, Shen J, Cai W. Three Melanin Pathway Genes, TH, yellow, and aaNAT, Regulate Pigmentation in the Twin-Spotted Assassin Bug, Platymeris biguttatus (Linnaeus). Int J Mol Sci 2019; 20:ijms20112728. [PMID: 31163651 PMCID: PMC6600426 DOI: 10.3390/ijms20112728] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/04/2022] Open
Abstract
Pigmentation plays a vital role in insect survival and reproduction. Many melanin pathway genes have been studied in holometabolous insects; however, they have only been studied in two hemimetabolous insect genera, Oncopeltus and Periplaneta. Here we analyzed three melanin pathway genes (TH, yellow, and aaNAT) using RNA interference (RNAi) in another hemimetabolous insect, namely the twin-spotted assassin bug, Platymeris biguttatus. TH was highly expressed in freshly molted nymphs and adults. TH RNAi resulted in a complete loss of black pigment, with yellow coloration maintained. Therefore, black pigment in this assassin bug is solely generated from the melanin pathway, whereas yellow pigment is generated from other unknown pigmentation pathways. yellow and aaNAT were highly expressed in the white spot of the hemelytra. Downregulation of yellow caused a brown phenotype with high mortality, indicating an important role of yellow functions in cuticle formation and in the process of converting melanin from brown to black. Interestingly, aaNAT RNAi caused not only loss of white pigment, but also loss of yellow and red pigments. This phenotype of aaNAT has not been reported in other insects. Our results provide new information for understanding the melanin pathway in which aaNAT is essential for the formation of colorless patterns.
Collapse
Affiliation(s)
- Yinqiao Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Al Sayad S, Yassin A. Quantifying the extent of morphological homoplasy: A phylogenetic analysis of 490 characters in Drosophila. Evol Lett 2019; 3:286-298. [PMID: 31171984 PMCID: PMC6546384 DOI: 10.1002/evl3.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Homoplasy is a fundamental phenomenon in evolutionary biology but an appraisal of its extent at the morphological level is still lacking. Here, we analyzed the evolution of 490 morphological characters conceptualized among 56 drosophilid species. We found that two thirds of morphological changes were homoplastic and that the level of homoplasy depended on the stage of development and the type of the organ, with the adult terminalia being the least homoplastic. In spite of its predominance at the character change level, homoplasy accounts for only ∼13% of between species similarities in pairwise comparisons. These results provide empirical insights on the limits of morphological changes and the frequency of recurrent evolution.
Collapse
Affiliation(s)
- Sinan Al Sayad
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| | - Amir Yassin
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| |
Collapse
|
45
|
Abstract
In this perspective, we evaluate the explanatory power of the neutral theory of molecular evolution, 50 years after its introduction by Kimura. We argue that the neutral theory was supported by unreliable theoretical and empirical evidence from the beginning, and that in light of modern, genome-scale data, we can firmly reject its universality. The ubiquity of adaptive variation both within and between species means that a more comprehensive theory of molecular evolution must be sought.
Collapse
Affiliation(s)
- Andrew D Kern
- Department of Genetics, Rutgers University, Piscataway, NJ
| | - Matthew W Hahn
- Department of Biology and Department of Computer Science, Indiana University Bloomington, IN
| |
Collapse
|
46
|
Ali S, Signor SA, Kozlov K, Nuzhdin SV. Novel approach to quantitative spatial gene expression uncovers genetic stochasticity in the developing Drosophila eye. Evol Dev 2019; 21:157-171. [PMID: 30756455 DOI: 10.1111/ede.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Robustness in development allows for the accumulation of genetically based variation in expression. However, this variation is usually examined in response to large perturbations, and examination of this variation has been limited to being spatial, or quantitative, but because of technical restrictions not both. Here we bridge these gaps by investigating replicated quantitative spatial gene expression using rigorous statistical models, in different genotypes, sexes, and species (Drosophila melanogaster and D. simulans). Using this type of quantitative approach with molecular developmental data allows for comparison among conditions, such as different genetic backgrounds. We apply this approach to the morphogenetic furrow, a wave of differentiation that patterns the developing eye disc. Within the morphogenetic furrow, we focus on four genes, hairy, atonal, hedgehog, and Delta. Hybridization chain reaction quantitatively measures spatial gene expression, co-staining for all four genes simultaneously. We find considerable variation in the spatial expression pattern of these genes in the eye between species, genotypes, and sexes. We also find that there has been evolution of the regulatory relationship between these genes, and that their spatial interrelationships have evolved between species. This variation has no phenotypic effect, and could be buffered by network thresholds or compensation from other genes. Both of these mechanisms could potentially be contributing to long term developmental systems drift.
Collapse
Affiliation(s)
- Sammi Ali
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.,Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
47
|
Nandamuri SP, Conte MA, Carleton KL. Multiple trans QTL and one cis-regulatory deletion are associated with the differential expression of cone opsins in African cichlids. BMC Genomics 2018; 19:945. [PMID: 30563463 PMCID: PMC6299527 DOI: 10.1186/s12864-018-5328-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023] Open
Abstract
Background Dissecting the genetic basis of phenotypic diversity is one of the fundamental goals in evolutionary biology. Despite growing evidence for gene expression divergence being responsible for the evolution of complex traits, knowledge about the proximate genetic causes underlying these traits is still limited. African cichlids have diverse visual systems, with different species expressing different combinations of seven cone opsin genes. Using opsin expression variation in African cichlids as a model for gene expression evolution, this study aims to investigate the genetic architecture of opsin expression divergence in this group. Results Results from a genome-wide linkage mapping on the F2 progeny of an intergeneric cross, between two species with differential opsin expression show that opsins in Lake Malawi cichlids are controlled by multiple quantitative trait loci (QTLs). Most of these QTLs are located in trans to the opsins except for one cis-QTL for SWS1 on LG17. A closer look at this major QTL revealed the presence of a 691 bp deletion in the promoter of the SWS1 opsin (located 751 bp upstream of the start site) that is associated with a decrease in its expression. Phylogenetic footprinting indicates that the region spanning the deletion harbors a microRNA miR-729 and a conserved non-coding element (CNE) that also occurs in zebrafish and other teleosts. This suggests that the deletion might contain ancestrally preserved regulators that have been tuned for SWS1 gene expression in Lake Malawi. While this deletion is not common, it does occur in several other species within the lake. Conclusions Differential expression of cichlid opsins is associated with multiple overlapping QTL, with all but one in trans to the opsins they regulate. The one cis-acting factor is a deletion in the promoter of the SWS1 opsin, suggesting that ancestral polymorphic deletions may contribute to cichlid’s visual diversity. In addition to expanding our understanding of the molecular landscape of opsin expression in African cichlids, this study sheds light on the molecular mechanisms underlying phenotypic variation in natural populations. Electronic supplementary material The online version of this article (10.1186/s12864-018-5328-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sri Pratima Nandamuri
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA
| | - Matthew A Conte
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA.
| |
Collapse
|
48
|
Liu Q, Onal P, Datta RR, Rogers JM, Schmidt-Ott U, Bulyk ML, Small S, Thornton JW. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. eLife 2018; 7:e34594. [PMID: 30298815 PMCID: PMC6177261 DOI: 10.7554/elife.34594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
The ancient mechanisms that caused developmental gene regulatory networks to diversify among distantly related taxa are not well understood. Here we use ancestral protein reconstruction, biochemical experiments, and developmental assays of transgenic animals carrying reconstructed ancestral genes to investigate how the transcription factor Bicoid (Bcd) evolved its central role in anterior-posterior patterning in flies. We show that most of Bcd's derived functions are attributable to evolutionary changes within its homeodomain (HD) during a phylogenetic interval >140 million years ago. A single substitution from this period (Q50K) accounts almost entirely for the evolution of Bcd's derived DNA specificity in vitro. In transgenic embryos expressing the reconstructed ancestral HD, however, Q50K confers activation of only a few of Bcd's transcriptional targets and yields a very partial rescue of anterior development. Adding a second historical substitution (M54R) confers regulation of additional Bcd targets and further rescues anterior development. These results indicate that two epistatically interacting mutations played a major role in the evolution of Bcd's controlling regulatory role in early development. They also show how ancestral sequence reconstruction can be combined with in vivo characterization of transgenic animals to illuminate the historical mechanisms of developmental evolution.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
| | - Pinar Onal
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Rhea R Datta
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Julia M Rogers
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Martha L Bulyk
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Stephen Small
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Joseph W Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
- Department of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
49
|
Mack KL, Ballinger MA, Phifer-Rixey M, Nachman MW. Gene regulation underlies environmental adaptation in house mice. Genome Res 2018; 28:1636-1645. [PMID: 30194096 PMCID: PMC6211637 DOI: 10.1101/gr.238998.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
Abstract
Changes in cis-regulatory regions are thought to play a major role in the genetic basis of adaptation. However, few studies have linked cis-regulatory variation with adaptation in natural populations. Here, using a combination of exome and RNA-seq data, we performed expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses to study the genetic architecture of regulatory variation in wild house mice (Mus musculus domesticus) using individuals from five populations collected along a latitudinal cline in eastern North America. Mice in this transect showed clinal patterns of variation in several traits, including body mass. Mice were larger in more northern latitudes, in accordance with Bergmann's rule. We identified 17 genes where cis-eQTLs were clinal outliers and for which expression level was correlated with latitude. Among these clinal outliers, we identified two genes (Adam17 and Bcat2) with cis-eQTLs that were associated with adaptive body mass variation and for which expression is correlated with body mass both within and between populations. Finally, we performed a weighted gene co-expression network analysis (WGCNA) to identify expression modules associated with measures of body size variation in these mice. These findings demonstrate the power of combining gene expression data with scans for selection to identify genes involved in adaptive phenotypic evolution, and also provide strong evidence for cis-regulatory elements as essential loci of environmental adaptation in natural populations.
Collapse
Affiliation(s)
- Katya L Mack
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA
| | - Mallory A Ballinger
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA
| | - Megan Phifer-Rixey
- Department of Biology, Monmouth University, West Long Branch, New Jersey 07764, USA
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
50
|
Grover S, Williams ME, Kaiser R, Hughes JT, Gresham L, Rebeiz M, Williams TM. Augmentation of a wound response element accompanies the origin of a Hox-regulated Drosophila abdominal pigmentation trait. Dev Biol 2018; 441:159-175. [PMID: 29981311 PMCID: PMC6075670 DOI: 10.1016/j.ydbio.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 11/16/2022]
Abstract
A challenge for evolutionary research is to uncover how new morphological traits evolve the coordinated spatial and temporal expression patterns of genes that govern their formation during development. Detailed studies are often limited to characterizing how one or a few genes contributed to a trait's emergence, and thus our knowledge of how entire GRNs evolve their coordinated expression of each gene remains unresolved. The melanic color patterns decorating the male abdominal tergites of Drosophila (D.) melanogaster evolved in part by novel expression patterns for genes acting at the terminus of a pigment metabolic pathway, driven by cis-regulatory elements (CREs) with distinct mechanisms of Hox regulation. Here, we examined the expression and evolutionary histories of two important enzymes in this pathway, encoded by the pale and Ddc genes. We found that while both genes exhibit dynamic patterns of expression, a robust pattern of Ddc expression specifically evolved in the lineage of fruit flies with pronounced melanic abdomens. Derived Ddc expression requires the activity of a CRE previously shown to activate expression in response to epidermal wounding. We show that a binding site for the Grainy head transcription factor that promotes the ancestral wound healing function of this CRE is also required for abdominal activity. Together with previous findings in this system, our work shows how the GRN for a novel trait emerged by assembling unique yet similarly functioning CREs from heterogeneous starting points.
Collapse
Affiliation(s)
- Sumant Grover
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Melissa E Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Rebecca Kaiser
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Jesse T Hughes
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Lauren Gresham
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA; The Integrative Science and Engineering Center, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|