1
|
Carrió-Seguí À, Brunot-Garau P, Úrbez C, Miskolczi P, Vera-Sirera F, Tuominen H, Agustí J. Weight-induced radial growth in plant stems depends on PIN3. Curr Biol 2024; 34:4285-4293.e3. [PMID: 39260363 DOI: 10.1016/j.cub.2024.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024]
Abstract
How multiple growth programs coordinate during development is a fundamental question in biology. During plant stem development, radial growth is continuously adjusted in response to longitudinal-growth-derived weight increase to guarantee stability.1,2,3 Here, we demonstrate that weight-stimulated stem radial growth depends on the auxin efflux carrier PIN3, which, upon weight increase, expands its cellular localization from the lower to the lateral sides of xylem parenchyma, phloem, procambium, and starch sheath cells, imposing a radial auxin flux that results in radial growth. Using the protein synthesis inhibitor cycloheximide (CHX) or the fluorescent endocytic tracer FM4-64, we reveal that this expansion of the PIN3 cellular localization domain occurs because weight increase breaks the balance between PIN3 biosynthesis and removal, favoring PIN3 biosynthesis. Experimentation using brefeldin A (BFA) treatments or arg1 and arl2 mutants further supports this conclusion. Analyses of CRISPR-Cas9 lines for Populus PIN3 orthologs reveals that PIN3 dependence of weight-induced radial growth is conserved at least in these woody species. Altogether, our work sheds new light on how longitudinal and radial growth coordinate during stem development.
Collapse
Affiliation(s)
- Àngela Carrió-Seguí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain; Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Paula Brunot-Garau
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Pál Miskolczi
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Hannele Tuominen
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain.
| |
Collapse
|
2
|
Tian H, Lyu R, Yi P. Crosstalk between Rho of Plants GTPase signalling and plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3778-3796. [PMID: 38616410 DOI: 10.1093/jxb/erae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Rho of Plants (ROPs) constitute a plant-specific subset of small guanine nucleotide-binding proteins within the Cdc42/Rho/Rac family. These versatile proteins regulate diverse cellular processes, including cell growth, cell division, cell morphogenesis, organ development, and stress responses. In recent years, the dynamic cellular and subcellular behaviours orchestrated by ROPs have unveiled a notable connection to hormone-mediated organ development and physiological responses, thereby expanding our knowledge of the functions and regulatory mechanisms of this signalling pathway. This review delineates advancements in understanding the interplay between plant hormones and the ROP signalling cascade, focusing primarily on the connections with auxin and abscisic acid pathways, alongside preliminary discoveries in cytokinin, brassinosteroid, and salicylic acid responses. It endeavours to shed light on the intricate, coordinated mechanisms bridging cell- and tissue-level signals that underlie plant cell behaviour, organ development, and physiological processes, and highlights future research prospects and challenges in this rapidly developing field.
Collapse
Affiliation(s)
- Haoyu Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Lyu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
3
|
Tang W, Yu Y, Xu T. The interplay between extracellular and intracellular auxin signaling in plants. J Genet Genomics 2024:S1673-8527(24)00162-0. [PMID: 38969259 DOI: 10.1016/j.jgg.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The phytohormone auxin exerts control over remarkable developmental processes in plants. It moves from cell to cell, resulting in the creation of both extracellular auxin and intracellular auxin, which are recognized by distinct auxin receptors. These two auxin signaling systems govern different auxin responses while working together to regulate plant development. In this review, we outline the latest research advancements in unraveling these auxin signaling pathways, encompassing auxin perception and signaling transductions. We emphasize the interaction between extracellular auxin and intracellular auxin, which contributes to the intricate role of auxin in plant development.
Collapse
Affiliation(s)
- Wenxin Tang
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yongqiang Yu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tongda Xu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Guo T, He D, Liu Y, Li J, Wang F. Lanthanum promotes Solanum nigrum L. growth and phytoremediation of cadmium and lead through endocytosis: Physiological and biochemical response, heavy metal uptake and visualization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168915. [PMID: 38030000 DOI: 10.1016/j.scitotenv.2023.168915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Rare earth elements (REEs) are important to enhance agricultural productivity. The utilization of phytoremediation as a green technology for addressing heavy metal (HMs) contamination in soil and wastewater has gained significant attention. In our research, we conducted indoor hydroponic experiments to examine the impacts of lanthanum (La) on the growth and enrichment capacity of Solanum nigrum L. (S. nigrum). S. nigrum was cultivated in 10 mg·L-1 of cadmium (Cd), 25 mg·L-1 of lead (Pb), and a mixture of both (5 mg·L-1 Cd + 15 mg·L-1 Pb). Additionally, S. nigrum were subjected to foliar spray or hydroponic supplementation of La(III). The treatment with La(III) significantly increased total fresh weight by 17.82 % to 42.20 %, compared to the treatment without La(III). Furthermore, La(III) facilitated the endocytosis of roots and enhanced Cd2+ flux ranging from 15.64 % to 75.99 % when compared to the treatment without La(III). Foliar and hydroponic application of La(III) resulted in an increase in the translocation factors (TF) in plants of Cd and Pb compared to treatments without La(III). These findings can offer valuable insights into the potential of La(III) to enhance the phytoremediation of soil or wastewater polluted with compounds.
Collapse
Affiliation(s)
- Ting Guo
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Ding He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Yongqiang Liu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
5
|
Yu Y, Tang W, Lin W, Li W, Zhou X, Li Y, Chen R, Zheng R, Qin G, Cao W, Pérez-Henríquez P, Huang R, Ma J, Qiu Q, Xu Z, Zou A, Lin J, Jiang L, Xu T, Yang Z. ABLs and TMKs are co-receptors for extracellular auxin. Cell 2023; 186:5457-5471.e17. [PMID: 37979582 PMCID: PMC10827329 DOI: 10.1016/j.cell.2023.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/03/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.
Collapse
Affiliation(s)
- Yongqiang Yu
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China
| | - Wenxin Tang
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Wenwei Lin
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Wei Li
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xiang Zhou
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, P.R. China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China
| | - Ying Li
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Rong Chen
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China
| | - Rui Zheng
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China
| | - Guochen Qin
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, P.R. China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Patricio Pérez-Henríquez
- Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92507, USA
| | - Rongfeng Huang
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Jun Ma
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Qiqi Qiu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ziwei Xu
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ailing Zou
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Juncheng Lin
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Tongda Xu
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China.
| | - Zhenbiao Yang
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, P.R. China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China; Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92507, USA.
| |
Collapse
|
6
|
Vetal PV, Poirier Y. The Arabidopsis PHOSPHATE 1 exporter undergoes constitutive internalization via clathrin-mediated endocytosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1477-1491. [PMID: 37638714 DOI: 10.1111/tpj.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
SUMMARYInorganic phosphate (Pi) homeostasis is essential for plant growth and depends on the transport of Pi across cells. In Arabidopsis thaliana, PHOSPHATE 1 (PHO1) is present in the root pericycle and xylem parenchyma where it exports Pi into the xylem apoplast for its transfer to shoots. PHO1 consists of a cytosolic SPX domain followed by membrane‐spanning α‐helices and ends with the EXS domain, which participates in the steady‐state localization of PHO1 to the Golgi and trans‐Golgi network (TGN). However, PHO1 exports Pi across the plasma membrane (PM), making its localization difficult to reconcile with its function. To investigate whether PHO1 transiently associates with the PM, we inhibited clathrin‐mediated endocytosis (CME) by overexpressing AUXILIN‐LIKE 2 or HUB1. Inhibiting CME resulted in PHO1 re‐localization from the Golgi/TGN to the PM when PHO1 was expressed in Arabidopsis root pericycle or epidermis or Nicotiana benthamiana leaf epidermal cells. A fusion protein between the PHO1 EXS region and GFP was stabilized at the PM by CME inhibition, indicating that the EXS domain plays an important role in sorting PHO1 to/from the PM. PHO1 internalization from the PM occurred independently of AP2 and was not influenced by Pi deficiency, the ubiquitin‐conjugating E2 PHO2, or the potential ubiquitination of cytosolic lysines in the EXS domain. PM‐stabilized PHO1 showed reduced root‐to‐shoot Pi export activity, indicating that CME of PHO1 may be important for its optimal Pi export activity and plant Pi homeostasis.
Collapse
Affiliation(s)
- Pallavi V Vetal
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
7
|
Fiedler L, Friml J. Rapid auxin signaling: Unknowns old and new. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102443. [PMID: 37666097 DOI: 10.1016/j.pbi.2023.102443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
To respond to auxin, the chief orchestrator of their multicellularity, plants evolved multiple receptor systems and signal transduction cascades. Despite decades of research, however, we are still lacking a satisfactory synthesis of various auxin signaling mechanisms. The chief discrepancy and historical controversy of the field is that of rapid and slow auxin effects on plant physiology and development. How is it possible that ions begin to trickle across the plasma membrane as soon as auxin enters the cell, even though the best-characterized transcriptional auxin pathway can take effect only after tens of minutes? Recently, unexpected progress has been made in understanding this and other unknowns of auxin signaling. We provide a perspective on these exciting developments and concepts whose general applicability might have ramifications beyond auxin signaling.
Collapse
Affiliation(s)
- Lukáš Fiedler
- Institute of Science and Technology Austria (ISTA), 3400, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400, Klosterneuburg, Austria.
| |
Collapse
|
8
|
Roychoudhry S, Sageman-Furnas K, Wolverton C, Grones P, Tan S, Molnár G, De Angelis M, Goodman HL, Capstaff N, Lloyd JPB, Mullen J, Hangarter R, Friml J, Kepinski S. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. NATURE PLANTS 2023; 9:1500-1513. [PMID: 37666965 PMCID: PMC10505559 DOI: 10.1038/s41477-023-01478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2023] [Indexed: 09/06/2023]
Abstract
Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root-PINs and phosphatases acting upon them-are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux.
Collapse
Affiliation(s)
| | - Katelyn Sageman-Furnas
- School of Biology, University of Leeds, Leeds, UK
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Peter Grones
- Institute of Science and Technology, Vienna, Austria
- Umeå Plant Science Centre, Umeå, Sweden
| | - Shutang Tan
- Institute of Science and Technology, Vienna, Austria
| | - Gergely Molnár
- Institute of Science and Technology, Vienna, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Heather L Goodman
- School of Biology, University of Leeds, Leeds, UK
- Tropic Biosciences Ltd, Norwich Research Park Innovation Centre, Norwich, UK
| | - Nicola Capstaff
- School of Biology, University of Leeds, Leeds, UK
- Department of Science, Innovation and Technology, UK Government, London, UK
| | - James P B Lloyd
- University of Western Australia, Perth, Western Australia, Australia
| | - Jack Mullen
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Roger Hangarter
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jiří Friml
- Institute of Science and Technology, Vienna, Austria
| | | |
Collapse
|
9
|
He B, Wang H, Liu G, Chen A, Calvo A, Cai Q, Jin H. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis. Nat Commun 2023; 14:4383. [PMID: 37474601 PMCID: PMC10359353 DOI: 10.1038/s41467-023-40093-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Small RNAs (sRNAs) of the fungal pathogen Botrytis cinerea can enter plant cells and hijack host Argonaute protein 1 (AGO1) to silence host immunity genes. However, the mechanism by which these fungal sRNAs are secreted and enter host cells remains unclear. Here, we demonstrate that B. cinerea utilizes extracellular vesicles (EVs) to secrete Bc-sRNAs, which are then internalized by plant cells through clathrin-mediated endocytosis (CME). The B. cinerea tetraspanin protein, Punchless 1 (BcPLS1), serves as an EV biomarker and plays an essential role in fungal pathogenicity. We observe numerous Arabidopsis clathrin-coated vesicles (CCVs) around B. cinerea infection sites and the colocalization of B. cinerea EV marker BcPLS1 and Arabidopsis CLATHRIN LIGHT CHAIN 1, one of the core components of CCV. Meanwhile, BcPLS1 and the B. cinerea-secreted sRNAs are detected in purified CCVs after infection. Arabidopsis knockout mutants and inducible dominant-negative mutants of key components of the CME pathway exhibit increased resistance to B. cinerea infection. Furthermore, Bc-sRNA loading into Arabidopsis AGO1 and host target gene suppression are attenuated in those CME mutants. Together, our results demonstrate that fungi secrete sRNAs via EVs, which then enter host plant cells mainly through CME.
Collapse
Affiliation(s)
- Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Huan Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Guosheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Angela Chen
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alejandra Calvo
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
10
|
He B, Wang H, Liu G, Chen A, Calvo A, Cai Q, Jin H. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545159. [PMID: 37398405 PMCID: PMC10312686 DOI: 10.1101/2023.06.15.545159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Small RNAs (sRNAs) of the fungal pathogen Botrytis cinerea can enter plant cells and hijack host Argonaute protein 1 (AGO1) to silence host immunity genes. However, the mechanism by which these fungal sRNAs are secreted and enter host cells remains unclear. Here, we demonstrate that B. cinerea utilizes extracellular vesicles (EVs) to secrete Bc-sRNAs, which are then internalized by plant cells through clathrin-mediated endocytosis (CME). The B. cinerea tetraspanin protein, Punchless 1 (BcPLS1), serves as an EV biomarker and plays an essential role in fungal pathogenicity. We observe numerous Arabidopsis clathrin-coated vesicles (CCVs) around B. cinerea infection sites and the colocalization of B. cinerea EV marker BcPLS1 and Arabidopsis CLATHRIN LIGHT CHAIN 1, one of the core components of CCV. Meanwhile, BcPLS1 and the B. cinerea-secreted sRNAs are detected in purified CCVs after infection. Arabidopsis knockout mutants and inducible dominant-negative mutants of key components of CME pathway exhibit increased resistance to B. cinerea infection. Furthermore, Bc-sRNA loading into Arabidopsis AGO1 and host target gene suppression are attenuated in those CME mutants. Together, our results demonstrate that fungi secrete sRNAs via EVs, which then enter host plant cells mainly through CME.
Collapse
Affiliation(s)
- Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Huan Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Guosheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Angela Chen
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alejandra Calvo
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
11
|
Wang Y, Yan X, Xu M, Qi W, Shi C, Li X, Ma J, Tian D, Shou J, Wu H, Pan J, Li B, Wang C. Transmembrane kinase 1-mediated auxin signal regulates membrane-associated clathrin in Arabidopsis roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:82-99. [PMID: 36114789 DOI: 10.1111/jipb.13366] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in eukaryotic cells that directly regulates abundance of plasma membrane proteins. Clathrin triskelia are composed of clathrin heavy chains (CHCs) and light chains (CLCs), and the phytohormone auxin differentially regulates membrane-associated CLCs and CHCs, modulating the endocytosis and therefore the distribution of auxin efflux transporter PIN-FORMED2 (PIN2). However, the molecular mechanisms by which auxin regulates clathrin are still poorly understood. Transmembrane kinase (TMKs) family proteins are considered to contribute to auxin signaling and plant development; it remains unclear whether they are involved in PIN transport by CME. We assessed TMKs involvement in the regulation of clathrin by auxin, using genetic, pharmacological, and cytological approaches including live-cell imaging and immunofluorescence. In tmk1 mutant seedlings, auxin failed to rapidly regulate abundance of both CHC and CLC and to inhibit PIN2 endocytosis, leading to an impaired asymmetric distribution of PIN2 and therefore auxin. Furthermore, TMK3 and TMK4 were shown not to be involved in regulation of clathrin by auxin. In summary, TMK1 is essential for auxin-regulated clathrin recruitment and CME. TMK1 therefore plays a critical role in the establishment of an asymmetric distribution of PIN2 and an auxin gradient during root gravitropism.
Collapse
Affiliation(s)
- Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weiyang Qi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chunjie Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dan Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianxin Shou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
12
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:ijms232012495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Correspondence: or
| |
Collapse
|
13
|
ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature 2022; 609:575-581. [PMID: 36071161 DOI: 10.1038/s41586-022-05187-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/03/2022] [Indexed: 12/22/2022]
Abstract
The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.
Collapse
|
14
|
Lehmayer L, Bernauer L, Emmerstorfer-Augustin A. ‘Applying the auxin-based degron system for the inducible, reversible and complete protein degradation in Komagataella phaffii’. iScience 2022; 25:104888. [PMID: 36043049 PMCID: PMC9420516 DOI: 10.1016/j.isci.2022.104888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
The auxin-inducible degron (AID) system is a useful technique to rapidly deplete any protein of interest “on-demand.” In this study, we successfully established the AID system for the “biotech” yeast Komagataella phaffii. First, we tested different expression levels of TIR1 for auxin-induced degradation of the glycerol kinase Gut1. Moderate expression of TIR1 resulted in complete degradation of the target protein within several minutes. Second, we show that the absence of all three Wsc type sensors is detrimental to cell growth, which indicates that these are the dominant cell wall sensors this yeast. Third, down-regulation of Erg1, an essential enzyme of the ergosterol biosynthetic pathway, resulted in quick and efficient accumulation of squalene, a pharmaceutically relevant reagent. We conclude that AID is an extremely powerful tool that, for the first time, enables the analysis of gene essentiality and function in K. phaffii. Conditional AID mutants are generated in Komagataella phaffii expressing OsTIR1 Target proteins fused to AID are depleted rapidly on the addition of auxin The deletion of all three Wsc-type severely reduces the growth of K. phaffii Cells degrading Erg1 quickly and efficiently accumulated squalene
Collapse
Affiliation(s)
- Leonie Lehmayer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/II, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/II, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/II, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- acib - Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria
- Corresponding author
| |
Collapse
|
15
|
Wang R, Himschoot E, Chen J, Boudsocq M, Geelen D, Friml J, Beeckman T, Vanneste S. Constitutive Active CPK30 Interferes With Root Growth and Endomembrane Trafficking in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:862398. [PMID: 35783951 PMCID: PMC9245594 DOI: 10.3389/fpls.2022.862398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Calcium-dependent protein kinases (CPK) are key components of a wide array of signaling pathways, translating stress and nutrient signaling into the modulation of cellular processes such as ion transport and transcription. However, not much is known about CPKs in endomembrane trafficking. Here, we screened for CPKs that impact on root growth and gravitropism, by overexpressing constitutively active forms of CPKs under the control of an inducible promoter in Arabidopsis thaliana. We found that inducible overexpression of an constitutive active CPK30 (CA-CPK30) resulted in a loss of root gravitropism and ectopic auxin accumulation in the root tip. Immunolocalization revealed that CA-CPK30 roots have reduced PIN protein levels, PIN1 polarity defects and impaired Brefeldin A (BFA)-sensitive trafficking. Moreover, FM4-64 uptake was reduced, indicative of a defect in endocytosis. The effects on BFA-sensitive trafficking were not specific to PINs, as BFA could not induce aggregation of ARF1- and CHC-labeled endosomes in CA-CPK30. Interestingly, the interference with BFA-body formation, could be reverted by increasing the extracellular pH, indicating a pH-dependence of this CA-CPK30 effect. Altogether, our data reveal an important role for CPK30 in root growth regulation and endomembrane trafficking in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jian Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Univ. Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, South Korea
| |
Collapse
|
16
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
17
|
Wang R, Himschoot E, Grenzi M, Chen J, Safi A, Krebs M, Schumacher K, Nowack MK, Van Damme D, De Smet I, Geelen D, Beeckman T, Friml J, Costa A, Vanneste S. Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2308-2319. [PMID: 35085386 PMCID: PMC7612644 DOI: 10.1093/jxb/erac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.
Collapse
Affiliation(s)
- Ren Wang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ellie Himschoot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Jian Chen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alaeddine Safi
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Moritz K. Nowack
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Daniёl Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Danny Geelen
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
18
|
Zhang C, Ma Y, Zhang J, Kuo JCT, Zhang Z, Xie H, Zhu J, Liu T. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules 2022; 27:molecules27061943. [PMID: 35335310 PMCID: PMC8949521 DOI: 10.3390/molecules27061943] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Lipid-based nanoparticles (LBNPs) are biocompatible and biodegradable vesicles that are considered to be one of the most efficient drug delivery platforms. Due to the prominent advantages, such as long circulation time, slow drug release, reduced toxicity, high transfection efficiency, and endosomal escape capacity, such synthetic nanoparticles have been widely used for carrying genetic therapeutics, particularly nucleic acids that can be applied in the treatment for various diseases, including congenital diseases, cancers, virus infections, and chronic inflammations. Despite great merits and multiple successful applications, many extracellular and intracellular barriers remain and greatly impair delivery efficacy and therapeutic outcomes. As such, the current state of knowledge and pitfalls regarding the gene delivery and construction of LBNPs will be initially summarized. In order to develop a new generation of LBNPs for improved delivery profiles and therapeutic effects, the modification strategies of LBNPs will be reviewed. On the basis of these developed modifications, the performance of LBNPs as therapeutic nanoplatforms have been greatly improved and extensively applied in immunotherapies, including infectious diseases and cancers. However, the therapeutic applications of LBNPs systems are still limited due to the undesirable endosomal escape, potential aggregation, and the inefficient encapsulation of therapeutics. Herein, we will review and discuss recent advances and remaining challenges in the development of LBNPs for nucleic acid-based immunotherapy.
Collapse
Affiliation(s)
- Chi Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jimmy Chun-Tien Kuo
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Zhongkun Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Haotian Xie
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX 76010, USA
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| |
Collapse
|
19
|
Abstract
The auxin-binding protein 1 (ABP1) has endured a history of undulating prominence as a candidate receptor for this important phytohormone. Its capacity for binding auxin has not been in doubt, a feature adequately explained by its crystal structure, but any relevance of this to auxin signaling and plant development has been far more demanding to define. Over its research lifetime, it has been associated with many auxin-induced activities, including ion fluxes across the plasma membrane, rearrangement of the cytoskeleton and cell shape, and the abundance of PIN proteins at the plasma membrane via control of endocytosis, all of which required its presence in the apoplast. Yet, ABP1 has a KDEL sequence that targets it to the endoplasmic reticulum, where most of it remains. This mismatch has been more than adequately compensated for by the need for an auxin receptor to account for responses far too rapid to be executed through transcription and translation and the TIR1/AuxIAA coreceptor system. However, discoveries showing that abp1-null mutants are not compromised for auxin signaling or development, that TIR1 or AFB1 are necessarily involved with very rapid responses at the plasma membrane, and that these rapid responses are mediated with intracellular auxin all suggest that ABP1's auxin-binding capacity is not physiologically relevant. Nevertheless, ABP1 is ubiquitous in higher plants and throughout plant tissues. We need to complete its history by defining its function inside plant cells.
Collapse
Affiliation(s)
- Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AS, United Kingdom
| |
Collapse
|
20
|
Hu QQ, Shu JQ, Li WM, Wang GZ. Role of Auxin and Nitrate Signaling in the Development of Root System Architecture. FRONTIERS IN PLANT SCIENCE 2021; 12:690363. [PMID: 34858444 PMCID: PMC8631788 DOI: 10.3389/fpls.2021.690363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/25/2021] [Indexed: 06/12/2023]
Abstract
The plant root is an important storage organ that stores indole-3-acetic acid (IAA) from the apical meristem, as well as nitrogen, which is obtained from the external environment. IAA and nitrogen act as signaling molecules that promote root growth to obtain further resources. Fluctuations in the distribution of nitrogen in the soil environment induce plants to develop a set of strategies that effectively improve nitrogen use efficiency. Auxin integrates the information regarding the nitrate status inside and outside the plant body to reasonably distribute resources and sustainably construct the plant root system. In this review, we focus on the main factors involved in the process of nitrate- and auxin-mediated regulation of root structure to better understand how the root system integrates the internal and external information and how this information is utilized to modify the root system architecture.
Collapse
|
21
|
Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J. Cell surface and intracellular auxin signalling for H + fluxes in root growth. Nature 2021; 599:273-277. [PMID: 34707283 PMCID: PMC7612300 DOI: 10.1038/s41586-021-04037-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.
Collapse
Affiliation(s)
- Lanxin Li
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Mark Roosjen
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules, Division of Biological Science, Nagoya University Chikusa, Nagoya, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - Lesia Rodriguez
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Jian Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Wouter Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hong Ren
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, Republic of Korea
- Department of Plants and Crops, HortiCell, Ghent University, Ghent, Belgium
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dolf Weijers
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules, Division of Biological Science, Nagoya University Chikusa, Nagoya, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - William M Gray
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
22
|
Miodek A, Gizińska A, Włoch W, Kojs P. What do we know about growth of vessel elements of secondary xylem in woody plants? Biol Rev Camb Philos Soc 2021; 96:2911-2924. [PMID: 34374202 PMCID: PMC9291787 DOI: 10.1111/brv.12785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
Despite extensive knowledge about vessel element growth and the determination of the axial course of vessels, these processes are still not fully understood. They are usually explained as resulting primarily from hormonal regulation in stems. This review focuses on an increasingly discussed aspect - mechanical conditions in the vascular cambium. Mechanical conditions in cambial tissue are important for the growth of vessel elements, as well as other cambial derivatives. In relation to the type of stress acting on cambial cells (compressive versus tensile stress) we: (i) discuss the shape of the enlarging vessel elements observed in anatomical sections; (ii) present hypotheses regarding the location of intrusive growth of vessel elements and cambial initials; (iii) explain the relationship between the growth of vessel elements and fibres; and (iv) consider the effect of mechanical stress in determining the course of a vessel. We also highlight the relationship between mechanical stress and transport of the most extensively studied plant hormone - auxin. We conclude that the integration of a biomechanical factor with the commonly acknowledged hormonal regulation could significantly enhance the analysis of the formation of vessel elements as well as entire vessels, which transport water and minerals in numerous plant species.
Collapse
Affiliation(s)
- Adam Miodek
- Polish Academy of Sciences Botanical Garden - Centre for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973, Warsaw, Poland.,Institute of Biology, University of Opole, Oleska 22, 45-052, Opole, Poland
| | - Aldona Gizińska
- Polish Academy of Sciences Botanical Garden - Centre for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973, Warsaw, Poland.,Institute of Biology, University of Opole, Oleska 22, 45-052, Opole, Poland
| | - Wiesław Włoch
- Polish Academy of Sciences Botanical Garden - Centre for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973, Warsaw, Poland
| | - Paweł Kojs
- Polish Academy of Sciences Botanical Garden - Centre for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973, Warsaw, Poland
| |
Collapse
|
23
|
Regulation of Glycosylphosphatidylinositol-Anchored Protein (GPI-AP) Expression by F-Box/LRR-Repeat (FBXL) Protein in Wheat ( Triticum aestivum L.). PLANTS 2021; 10:plants10081606. [PMID: 34451651 PMCID: PMC8397982 DOI: 10.3390/plants10081606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022]
Abstract
F-box proteins are substrate recognition components of the Skp1-Cullin-F-box (SCF) complex, which performs many important biological functions including the degradation of numerous proteins via the ubiquitin–26S proteasome system. In this study, we isolated the gene encoding the F-box/LRR-repeat (FBXL) protein from wheat (Triticum aestivum L.) seedlings and validated that the TaFBXL protein is a component of the SCF complex. Yeast two-hybrid assays revealed that TaFBXL interacts with the wheat glycosylphosphatidylinositol-anchored protein (TaGPI-AP). The green fluorescent protein (GFP) fusion protein of TaFBXL was detected in the nucleus and plasma membrane, whereas that of TaGPI-AP was observed in the cytosol and probably also plasma membrane. yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays revealed that TaFBXL specifically interacts with TaGPI-AP in the nucleus and plasma membrane, and TaGPI-AP is targeted by TaFBXL for degradation via the 26S proteasome system. In addition, TaFBXL and TaGPI-AP showed antagonistic expression patterns upon treatment with indole-3-acetic acid (IAA), and the level of TaGPI-AP was higher in tobacco leaves treated with both MG132 (proteasome inhibitor) and IAA than in leaves treated with either MG132 or IAA. Taken together, our data suggest that TaFBXL regulates the TaGPI-AP protein level in response to exogenous auxin application.
Collapse
|
24
|
Abstract
Auxin regulates the transcription of auxin-responsive genes by the TIR1/AFBs-Aux/IAA-ARF signaling pathway, and in this way facilitates plant growth and development. However, rapid, nontranscriptional responses to auxin that cannot be explained by this pathway have been reported. In this review, we focus on several examples of rapid auxin responses: (1) the triggering of changes in plasma membrane potential in various plant species and tissues, (2) inhibition of root growth, which also correlates with membrane potential changes, cytosolic Ca2+ spikes, and a rise of apoplastic pH, (3) the influence on endomembrane trafficking of PIN proteins and other membrane cargoes, and (4) activation of ROPs (Rho of plants) and their downstream effectors such as the cytoskeleton or vesicle trafficking. In most cases, the signaling pathway triggering the response is poorly understood. A role for the TIR1/AFBs in rapid root growth regulation is emerging, as well as the involvement of transmembrane kinases (TMKs) in the activation of ROPs. We discuss similarities and differences among these rapid responses and focus on their physiological significance, which remains an enigma in most cases.
Collapse
|
25
|
Liu S, Jobert F, Rahneshan Z, Doyle SM, Robert S. Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:525-550. [PMID: 34143651 DOI: 10.1146/annurev-arplant-080720-081920] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The plant epidermis serves many essential functions, including interactions with the environment, protection, mechanical strength, and regulation of tissue and organ growth. To achieve these functions, specialized epidermal cells develop into particular shapes. These include the intriguing interdigitated jigsaw puzzle shape of cotyledon and leaf pavement cells seen in many species, the precise functions of which remain rather obscure. Although pavement cell shape regulation is complex and still a long way from being fully understood, the roles of the cell wall, mechanical stresses, cytoskeleton, cytoskeletal regulatory proteins, and phytohormones are becoming clearer. Here, we provide a review of this current knowledge of pavement cell morphogenesis, generated from a wealth of experimental evidence and assisted by computational modeling approaches. We also discuss the evolution and potential functions of pavement cell interdigitation. Throughout the review, we highlight some of the thought-provoking controversies and creative theories surrounding the formation of the curious puzzle shape of these cells.
Collapse
Affiliation(s)
- Sijia Liu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Zahra Rahneshan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Siamsa M Doyle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| |
Collapse
|
26
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
27
|
McLaughlin HM, Ang ACH, Østergaard L. Noncanonical Auxin Signaling. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039917. [PMID: 33431583 PMCID: PMC8091950 DOI: 10.1101/cshperspect.a039917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Auxin influences all aspects of plant growth and development and exerts its function at scales ranging from the subcellular to the whole-organism level. A canonical mechanism for auxin signaling has been elucidated, which is based on derepression of downstream genes via ubiquitin-mediated degradation of transcriptional repressors. While the combinatorial nature of this canonical pathway provides great potential for specificity in the auxin response, alternative noncanonical signaling pathways required to mediate certain processes have been identified. One such pathway affects gene regulation in a manner that is reminiscent of mechanisms employed in animal hormone signaling, while another triggers transcriptional changes through auxin perception at the plasma membrane and the stabilization of transcriptional repressors. In some cases, the exact perception mechanisms and the nature of the receptors involved are yet to be revealed. In this review, we describe and discuss current knowledge on noncanonical auxin signaling and highlight unresolved questions surrounding auxin biology.
Collapse
Affiliation(s)
- Heather Marie McLaughlin
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Aaron Chun Hou Ang
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Lars Østergaard
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
28
|
Conditional destabilization of the TPLATE complex impairs endocytic internalization. Proc Natl Acad Sci U S A 2021; 118:2023456118. [PMID: 33876766 DOI: 10.1073/pnas.2023456118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In plants, endocytosis is essential for many developmental and physiological processes, including regulation of growth and development, hormone perception, nutrient uptake, and defense against pathogens. Our toolbox to modulate this process is, however, rather limited. Here, we report a conditional tool to impair endocytosis. We generated a partially functional TPLATE allele by substituting the most conserved domain of the TPLATE subunit of the endocytic TPLATE complex (TPC). This substitution destabilizes TPC and dampens the efficiency of endocytosis. Short-term heat treatment increases TPC destabilization and reversibly delocalizes TPLATE from the plasma membrane to aggregates in the cytoplasm. This blocks FM uptake and causes accumulation of various known endocytic cargoes at the plasma membrane. Short-term heat treatment therefore transforms the partially functional TPLATE allele into an effective conditional tool to impair endocytosis. Next to their role in endocytosis, several TPC subunits are also implicated in actin-regulated autophagosomal degradation. Inactivating TPC via the WDX mutation, however, does not impair autophagy, thus enabling specific and reversible modulation of endocytosis in planta.
Collapse
|
29
|
Rojek J, Tucker MR, Pinto SC, Rychłowski M, Lichocka M, Soukupova H, Nowakowska J, Bohdanowicz J, Surmacz G, Gutkowska M. Rab-dependent vesicular traffic affects female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:320-340. [PMID: 32939545 PMCID: PMC7853608 DOI: 10.1093/jxb/eraa430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/15/2020] [Indexed: 05/10/2023]
Abstract
Eukaryotic cells rely on the accuracy and efficiency of vesicular traffic. In plants, disturbances in vesicular trafficking are well studied in quickly dividing root meristem cells or polar growing root hairs and pollen tubes. The development of the female gametophyte, a unique haploid reproductive structure located in the ovule, has received far less attention in studies of vesicular transport. Key molecules providing the specificity of vesicle formation and its subsequent recognition and fusion with the acceptor membrane are Rab proteins. Rabs are anchored to membranes by covalently linked geranylgeranyl group(s) that are added by the Rab geranylgeranyl transferase (RGT) enzyme. Here we show that Arabidopsis plants carrying mutations in the gene encoding the β-subunit of RGT (rgtb1) exhibit severely disrupted female gametogenesis and this effect is of sporophytic origin. Mutations in rgtb1 lead to internalization of the PIN1 and PIN3 proteins from the basal membranes to vesicles in provascular cells of the funiculus. Decreased transport of auxin out of the ovule is accompanied by auxin accumulation in tissue surrounding the growing gametophyte. In addition, female gametophyte development arrests at the uni- or binuclear stage in a significant portion of the rgtb1 ovules. These observations suggest that communication between the sporophyte and the developing female gametophyte relies on Rab-dependent vesicular traffic of the PIN1 and PIN3 transporters and auxin efflux out of the ovule.
Collapse
Affiliation(s)
- Joanna Rojek
- Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
| | - Sara C Pinto
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
- LAQV REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n Porto, Portugal
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, Gdansk, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Hana Soukupova
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Praha 6 Lysolaje, Czech Republic
| | - Julita Nowakowska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, Poland
| | - Jerzy Bohdanowicz
- Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Gabriela Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Małgorzata Gutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
- Correspondence:
| |
Collapse
|
30
|
Gelová Z, Gallei M, Pernisová M, Brunoud G, Zhang X, Glanc M, Li L, Michalko J, Pavlovičová Z, Verstraeten I, Han H, Hajný J, Hauschild R, Čovanová M, Zwiewka M, Hoermayer L, Fendrych M, Xu T, Vernoux T, Friml J. Developmental roles of Auxin Binding Protein 1 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110750. [PMID: 33487339 DOI: 10.1016/j.plantsci.2020.110750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.
Collapse
Affiliation(s)
- Zuzana Gelová
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michelle Gallei
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Markéta Pernisová
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France; Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Géraldine Brunoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Xixi Zhang
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Matouš Glanc
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Lanxin Li
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jaroslav Michalko
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Zlata Pavlovičová
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jakub Hajný
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Robert Hauschild
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Milada Čovanová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukas Hoermayer
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matyáš Fendrych
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tongda Xu
- FAFU-Joint Centre, Horticulture and Metabolic Biology Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, People's Republic of China
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Jiří Friml
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
31
|
Randall RS. The plant AlcR-pAlcA ethanol-inducible system displays gross growth artefacts independently of downstream pAlcA-regulated inducible constructs. Sci Rep 2021; 11:2142. [PMID: 33495493 PMCID: PMC7835360 DOI: 10.1038/s41598-020-80903-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022] Open
Abstract
The AlcR fungal protein responds to ethanol and binds to the fungal pAlcA promoter in its presence. This system was transferred to plants over twenty years ago and was claimed to function in the same manner in plants. However, never has the control experiment with plants containing the AlcR gene alone, with no downstream inducible construct, been made. In this paper, I conduct several experiments with this control, growing p35:AlcR plants in the presence or absence of ethanol. I found that when these plants were grown in the presence of ethanol, growth in several tissues and several stages of growth was retarded. This demonstrates that this system is not suitable for use in the plant sciences, and casts doubt on the conclusions of papers that have published phenotypes using this system.
Collapse
Affiliation(s)
- Ricardo S Randall
- Department of Plant Developmental Genetics, IPMB, The University of Zürich, Zürich, Switzerland.
| |
Collapse
|
32
|
Tan S, Luschnig C, Friml J. Pho-view of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling. MOLECULAR PLANT 2021; 14:151-165. [PMID: 33186755 DOI: 10.1016/j.molp.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 05/24/2023]
Abstract
The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
33
|
Ke M, Ma Z, Wang D, Sun Y, Wen C, Huang D, Chen Z, Yang L, Tan S, Li R, Friml J, Miao Y, Chen X. Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropic growth via Remorin-dependent lipid nanodomain organisation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:963-978. [PMID: 32901934 PMCID: PMC7821329 DOI: 10.1111/nph.16915] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/23/2020] [Indexed: 05/20/2023]
Abstract
To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.
Collapse
Affiliation(s)
- Meiyu Ke
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zhiming Ma
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Deyan Wang
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yanbiao Sun
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Chenjin Wen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Dingquan Huang
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zichen Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Liang Yang
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
| | - Shutang Tan
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Ruixi Li
- Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Yansong Miao
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Xu Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| |
Collapse
|
34
|
Marquès-Bueno MM, Armengot L, Noack LC, Bareille J, Rodriguez L, Platre MP, Bayle V, Liu M, Opdenacker D, Vanneste S, Möller BK, Nimchuk ZL, Beeckman T, Caño-Delgado AI, Friml J, Jaillais Y. Auxin-Regulated Reversible Inhibition of TMK1 Signaling by MAKR2 Modulates the Dynamics of Root Gravitropism. Curr Biol 2020; 31:228-237.e10. [PMID: 33157019 PMCID: PMC7809621 DOI: 10.1016/j.cub.2020.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/04/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root architecture.1 Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribution of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin distribution back to the original pre-gravistimulation situation.1, 2, 3 Differential auxin accumulation during the gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux carriers.1, 2, 3, 4 In particular, the timing of this dynamic response is regulated by PIN2,5,6 but the underlying molecular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGULATOR2 (MAKR2) controls the pace of the root gravitropic response. We found that MAKR2 is required for the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling mediated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).2,7, 8, 9, 10 Furthermore, we show that the MAKR2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 membrane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface. MAKR2 is co-expressed with PIN2 and regulates the pace of root gravitropism MAKR2 controls PIN2 asymmetric accumulation at the root level during gravitropism MAKR2 binds to and is a negative regulator of the TMK1 receptor kinase Auxin antagonizes the MAKR2 inhibition of TMK1 by delocalizing MAKR2 in the cytosol
Collapse
Affiliation(s)
- Maria Mar Marquès-Bueno
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France; Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Joseph Bareille
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Lesia Rodriguez
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Mengying Liu
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Davy Opdenacker
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Barbara K Möller
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tom Beeckman
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France.
| |
Collapse
|
35
|
Oka M, Kamada M, Inoue R, Miyamoto K, Uheda E, Yamazaki C, Shimazu T, Sano H, Kasahara H, Suzuki T, Higashibata A, Ueda J. Altered localisation of ZmPIN1a proteins in plasma membranes responsible for enhanced-polar auxin transport in etiolated maize seedlings under microgravity conditions in space. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1062-1072. [PMID: 32635987 DOI: 10.1071/fp20133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
In the International Space Station experiment 'Auxin Transport', polar auxin transport (PAT) in shoots of etiolated maize (Zea mays L. cv. Golden Cross Bantam) grown under microgravity in space was substantially enhanced compared with those grown on Earth. To clarify the mechanism, the effects of microgravity on expression of ZmPIN1a encoding essential auxin efflux carrier and cellular localisation of its products were investigated. The amounts of ZmPIN1a mRNA in the coleoptiles and the mesocotyls in space-grown seedlings were almost the same as those in 1 g-grown seedlings, but its products were not. Immunohistochemical analysis with anti-ZmPIN1a antibody revealed a majority of ZmPIN1a localised in the basal side of plasma membranes of endodermal cells in the coleoptiles and the mesocotyls, and in the basal and lateral sides of plasma membranes in coleoptile parenchymatous cells, in which it directed towards the radial direction, but not towards the vascular bundle direction. Microgravity dramatically altered ZmPIN1a localisation in plasma membranes in coleoptile parenchymatous cells, shifting mainly towards the vascular bundle direction. These results suggest that mechanism of microgravity-enhanced PAT in maize shoots is more likely to be due to the enhanced ZmPIN1a accumulation and the altered ZmPIN1a localisation in parenchymatous cells of the coleoptiles.
Collapse
Affiliation(s)
- Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan; and Corresponding authors. ;
| | - Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd, 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | - Riko Inoue
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
| | - Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Uheda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chiaki Yamazaki
- JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Toru Shimazu
- Technology and Research Promotion Department, Japan Space Forum, Shin-Otemachi Bldg., 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiromi Sano
- Utilization Engineering Department, Japan Manned Space Systems Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Haruo Kasahara
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Tomomi Suzuki
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Akira Higashibata
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan; and Corresponding authors. ;
| |
Collapse
|
36
|
Tran TM, Ma Z, Triebl A, Nath S, Cheng Y, Gong BQ, Han X, Wang J, Li JF, Wenk MR, Torta F, Mayor S, Yang L, Miao Y. The bacterial quorum sensing signal DSF hijacks Arabidopsis thaliana sterol biosynthesis to suppress plant innate immunity. Life Sci Alliance 2020; 3:e202000720. [PMID: 32788227 PMCID: PMC7425213 DOI: 10.26508/lsa.202000720] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023] Open
Abstract
Quorum sensing (QS) is a recognized phenomenon that is crucial for regulating population-related behaviors in bacteria. However, the direct specific effect of QS molecules on host biology is largely understudied. In this work, we show that the QS molecule DSF (cis-11-methyl-dodecenoic acid) produced by Xanthomonas campestris pv. campestris can suppress pathogen-associated molecular pattern-triggered immunity (PTI) in Arabidopsis thaliana, mediated by flagellin-induced activation of flagellin receptor FLS2. The DSF-mediated attenuation of innate immunity results from the alteration of FLS2 nanoclusters and endocytic internalization of plasma membrane FLS2. DSF altered the lipid profile of Arabidopsis, with a particular increase in the phytosterol species, which impairs the general endocytosis pathway mediated by clathrin and FLS2 nano-clustering on the plasma membrane. The DSF effect on receptor dynamics and host immune responses could be entirely reversed by sterol removal. Together, our results highlighted the importance of sterol homeostasis to plasma membrane organization and demonstrate a novel mechanism by which pathogenic bacteria use their communicating molecule to manipulate pathogen-associated molecular pattern-triggered host immunity.
Collapse
Affiliation(s)
- Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sangeeta Nath
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ben-Qiang Gong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Junqi Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Feng Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Markus R Wenk
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
37
|
Tran TM, Ma Z, Triebl A, Nath S, Cheng Y, Gong BQ, Han X, Wang J, Li JF, Wenk MR, Torta F, Mayor S, Yang L, Miao Y. The bacterial quorum sensing signal DSF hijacks Arabidopsis thaliana sterol biosynthesis to suppress plant innate immunity. Life Sci Alliance 2020. [PMID: 32788227 DOI: 10.1101/927731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Quorum sensing (QS) is a recognized phenomenon that is crucial for regulating population-related behaviors in bacteria. However, the direct specific effect of QS molecules on host biology is largely understudied. In this work, we show that the QS molecule DSF (cis-11-methyl-dodecenoic acid) produced by Xanthomonas campestris pv. campestris can suppress pathogen-associated molecular pattern-triggered immunity (PTI) in Arabidopsis thaliana, mediated by flagellin-induced activation of flagellin receptor FLS2. The DSF-mediated attenuation of innate immunity results from the alteration of FLS2 nanoclusters and endocytic internalization of plasma membrane FLS2. DSF altered the lipid profile of Arabidopsis, with a particular increase in the phytosterol species, which impairs the general endocytosis pathway mediated by clathrin and FLS2 nano-clustering on the plasma membrane. The DSF effect on receptor dynamics and host immune responses could be entirely reversed by sterol removal. Together, our results highlighted the importance of sterol homeostasis to plasma membrane organization and demonstrate a novel mechanism by which pathogenic bacteria use their communicating molecule to manipulate pathogen-associated molecular pattern-triggered host immunity.
Collapse
Affiliation(s)
- Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sangeeta Nath
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ben-Qiang Gong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Junqi Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Feng Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Markus R Wenk
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
38
|
Endosidin 2 accelerates PIN2 endocytosis and disturbs intracellular trafficking of PIN2, PIN3, and PIN4 but not of SYT1. PLoS One 2020; 15:e0237448. [PMID: 32790800 PMCID: PMC7425933 DOI: 10.1371/journal.pone.0237448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
We established that Endosidin2 (ES2) affected the trafficking routes of both newly synthesized and endocytic pools of PIN-FORMED2 (PIN2) in Arabidopsis root epidermal cells. PIN2 populations accumulated in separated patches, which gradually merged into large and compact ES2 aggregates (ES2As). FM4-64 endocytic tracer labeled ES2As as well. Both PIN2 pools also appeared in vacuoles. Accelerated endocytosis of PIN2, its aggregation in the cytoplasm, and redirection of PIN2 flows to vacuoles led to a substantial reduction of the abundance of this protein in the plasma membrane. Whereas PIN-FORMED3 and PIN-FORMED4 also aggregated in the cytoplasm, SYT1 was not sensitive to ES2 treatment and did not appear either in the cytoplasmic aggregates or vacuoles. Ultrastructural analysis revealed that ES2 affects the Golgi apparatus so that stacks acquired cup-shape and even circular shape surrounded by several vesicles. Abnormally shaped Golgi stacks, stack remnants, multi-lamellar structures, separated Golgi cisterna rings, tubular structures, and vesicles formed discrete clusters.
Collapse
|
39
|
Johnson A, Gnyliukh N, Kaufmann WA, Narasimhan M, Vert G, Bednarek SY, Friml J. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. J Cell Sci 2020; 133:jcs248062. [PMID: 32616560 DOI: 10.1242/jcs.248062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and intercellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how CME functions in planta To facilitate the direct quantitative study of plant CME, we review current routinely used methods and present refined, standardized quantitative imaging protocols that allow the detailed characterization of CME at multiple scales in plant tissues. These protocols include: (1) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultrastructure of clathrin-coated vesicles; (2) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (3) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (4) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nataliia Gnyliukh
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | | | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
40
|
Zhang J, Mazur E, Balla J, Gallei M, Kalousek P, Medveďová Z, Li Y, Wang Y, Prát T, Vasileva M, Reinöhl V, Procházka S, Halouzka R, Tarkowski P, Luschnig C, Brewer PB, Friml J. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nat Commun 2020; 11:3508. [PMID: 32665554 PMCID: PMC7360611 DOI: 10.1038/s41467-020-17252-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Ewa Mazur
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032, Katowice, Poland
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), 62500, Brno, Czech Republic
| | - Jozef Balla
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
- Department of Plant Biology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Petr Kalousek
- Department of Plant Biology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Zuzana Medveďová
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Yang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaping Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tomáš Prát
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Mina Vasileva
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Vilém Reinöhl
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Stanislav Procházka
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Rostislav Halouzka
- Central Laboratories and Research Support, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Petr Tarkowski
- Central Laboratories and Research Support, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Wien, Austria
| | - Philip B Brewer
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria.
| |
Collapse
|
41
|
Wang J, Mylle E, Johnson A, Besbrugge N, De Jaeger G, Friml J, Pleskot R, Van Damme D. High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits. PLANT PHYSIOLOGY 2020; 183:986-997. [PMID: 32321842 PMCID: PMC7333705 DOI: 10.1104/pp.20.00178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits (AtEH1/Pan1 and AtEH2/Pan1) which, although cytoplasmic proteins, are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live-cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with colocalization analysis of different TPC subunits, allow us to conclude that the TPC in plant cells is not recruited to the PM sequentially but as an octameric complex.
Collapse
Affiliation(s)
- Jie Wang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Evelien Mylle
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alexander Johnson
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nienke Besbrugge
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Roman Pleskot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Daniel Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
42
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
43
|
Paponov IA, Budnyk V, Paponov M, Teale W, Palme K. Butylated Hydroxytoluene (BHT) Inhibits PIN1 Exocytosis From BFA Compartments in Arabidopsis Roots. FRONTIERS IN PLANT SCIENCE 2020; 11:393. [PMID: 32322261 PMCID: PMC7156591 DOI: 10.3389/fpls.2020.00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/18/2020] [Indexed: 05/04/2023]
Abstract
The activity of polarly localized PIN-FORMED (PIN) auxin efflux carriers contributes to the formation of auxin gradients which guide plant growth, development, and tropic responses. Both the localization and abundance of PIN proteins in the plasma membrane depend on the regulation of PIN trafficking through endocytosis and exocytosis and are influenced by many external and internal stimuli, such as reactive oxygen species, auxin transport inhibitors, flavonoids and plant hormones. Here, we investigated the regulation of endosomal PIN cycling by using a Brefeldin A (BFA) assay to study the effect of a phenolic antioxidant ionol, butylated hydroxytoluene (BHT), on the endocytosis and exocytosis of PIN1 and PIN2. BHT is one of the most widely used antioxidants in the food and feed industries, and as such is commonly released into the environment; however, the effect of BHT on plants remains poorly characterized. Preincubation of Arabidopsis seedlings with BHT before BFA treatment strongly enhanced the internalization of PIN1 into BFA compartments. After the simultaneous application of BHT and NAA, the NAA effect dominated PIN internalization suggesting the BHT effect occurred downstream to that of NAA. Washing seedlings with BHT after BFA treatment prevented the release of PIN1 from BFA compartments back to the plasma membrane, indicating that BHT application inhibited PIN1 exocytosis. Overall rates of PIN2 internalization were less pronounced than those of PIN1 in seedlings pre-incubated with BHT before BFA treatment, and PIN2 exocytosis was not inhibited by BHT, indicating a specific activity of BHT on PIN1 exocytosis. Comparison of BHT activity with other potential stimuli of PIN1 and PIN2 trafficking [e.g., H2O2 (ROS), salt stress, reduced glutathione (GSH), dithiothreitol (DTT), and flavonoids] showed that BHT has a new activity distinct from the activities of other regulators of PIN trafficking. The findings support BHT as a potentially interesting pharmacological tool for dissecting PIN trafficking and auxin transport.
Collapse
Affiliation(s)
- Ivan A. Paponov
- Institute of Biology II/Botany, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Vadym Budnyk
- Institute of Biology II/Botany, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martina Paponov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - William Teale
- Institute of Biology II/Botany, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Klaus Palme
- Institute of Biology II/Botany, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Centre of Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Mazur E, Gallei M, Adamowski M, Han H, Robert HS, Friml J. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110414. [PMID: 32081263 DOI: 10.1016/j.plantsci.2020.110414] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
The flexible development of plants is characterized by a high capacity for post-embryonic organ formation and tissue regeneration, processes, which require tightly regulated intercellular communication and coordinated tissue (re-)polarization. The phytohormone auxin, the main driver for these processes, is able to establish polarized auxin transport channels, which are characterized by the expression and polar, subcellular localization of the PIN1 auxin transport proteins. These channels are demarcating the position of future vascular strands necessary for organ formation and tissue regeneration. Major progress has been made in the last years to understand how PINs can change their polarity in different contexts and thus guide auxin flow through the plant. However, it still remains elusive how auxin mediates the establishment of auxin conducting channels and the formation of vascular tissue and which cellular processes are involved. By the means of sophisticated regeneration experiments combined with local auxin applications in Arabidopsis thaliana inflorescence stems we show that (i) PIN subcellular dynamics, (ii) PIN internalization by clathrin-mediated trafficking and (iii) an intact actin cytoskeleton required for post-endocytic trafficking are indispensable for auxin channel formation, de novo vascular formation and vascular regeneration after wounding. These observations provide novel insights into cellular mechanism of coordinated tissue polarization during auxin canalization.
Collapse
Affiliation(s)
- Ewa Mazur
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Michelle Gallei
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Maciek Adamowski
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Huibin Han
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Hélène S Robert
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
45
|
Gallei M, Luschnig C, Friml J. Auxin signalling in growth: Schrödinger's cat out of the bag. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:43-49. [PMID: 31760231 DOI: 10.1016/j.pbi.2019.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin acts as an amazingly versatile coordinator of plant growth and development. With its morphogen-like properties, auxin controls sites and timing of differentiation and/or growth responses both, in quantitative and qualitative terms. Specificity in the auxin response depends largely on distinct modes of signal transmission, by which individual cells perceive and convert auxin signals into a remarkable diversity of responses. The best understood, or so-called canonical mechanism of auxin perception ultimately results in variable adjustments of the cellular transcriptome, via a short, nuclear signal transduction pathway. Additional findings that accumulated over decades implied that an additional, presumably, cell surface-based auxin perception mechanism mediates very rapid cellular responses and decisively contributes to the cell's overall hormonal response. Recent investigations into both, nuclear and cell surface auxin signalling challenged this assumed partition of roles for different auxin signalling pathways and revealed an unexpected complexity in transcriptional and non-transcriptional cellular responses mediated by auxin.
Collapse
Affiliation(s)
- Michelle Gallei
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
46
|
Allen HR, Ptashnyk M. Mathematical Modelling of Auxin Transport in Plant Tissues: Flux Meets Signalling and Growth. Bull Math Biol 2020; 82:17. [PMID: 31970524 PMCID: PMC6976557 DOI: 10.1007/s11538-019-00685-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/02/2019] [Indexed: 11/25/2022]
Abstract
Plant hormone auxin has critical roles in plant growth, dependent on its heterogeneous distribution in plant tissues. Exactly how auxin transport and developmental processes such as growth coordinate to achieve the precise patterns of auxin observed experimentally is not well understood. Here we use mathematical modelling to examine the interplay between auxin dynamics and growth and their contribution to formation of patterns in auxin distribution in plant tissues. Mathematical models describing the auxin-related signalling pathway, PIN and AUX1 dynamics, auxin transport, and cell growth in plant tissues are derived. A key assumption of our models is the regulation of PIN proteins by the auxin-responsive ARF-Aux/IAA signalling pathway, with upregulation of PIN biosynthesis by ARFs. Models are analysed and solved numerically to examine the long-time behaviour and auxin distribution. Changes in auxin-related signalling processes are shown to be able to trigger transition between passage- and spot-type patterns in auxin distribution. The model was also shown to be able to generate isolated cells with oscillatory dynamics in levels of components of the auxin signalling pathway which could explain oscillations in levels of ARF targets that have been observed experimentally. Cell growth was shown to have influence on PIN polarisation and determination of auxin distribution patterns. Numerical simulation results indicate that auxin-related signalling processes can explain the different patterns in auxin distributions observed in plant tissues, whereas the interplay between auxin transport and growth can explain the ‘reverse-fountain’ pattern in auxin distribution observed at plant root tips.
Collapse
Affiliation(s)
- Henry R Allen
- Department of Mathematics, Fulton Building, University of Dundee, Dundee, DD1 4HN, UK
| | - Mariya Ptashnyk
- Department of Mathematics, Colin Maclaurin Building, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
47
|
Qiao Z, Zogli P, Libault M. Plant Hormones Differentially Control the Sub-Cellular Localization of Plasma Membrane Microdomains during the Early Stage of Soybean Nodulation. Genes (Basel) 2019; 10:E1012. [PMID: 31817452 PMCID: PMC6947267 DOI: 10.3390/genes10121012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/31/2023] Open
Abstract
Phytohormones regulate the mutualistic symbiotic interaction between legumes and rhizobia, nitrogen-fixing soil bacteria, notably by controlling the formation of the infection thread in the root hair (RH). At the cellular level, the formation of the infection thread is promoted by the translocation of plasma membrane microdomains at the tip of the RH. We hypothesize that phytohormones regulate the translocation of plasma membrane microdomains to regulate infection thread formation. Accordingly, we treated with hormone and hormone inhibitors transgenic soybean roots expressing fusions between the Green Fluorescent Protein (GFP) and GmFWL1 or GmFLOT2/4, two microdomain-associated proteins translocated at the tip of the soybean RH in response to rhizobia. Auxin and cytokinin treatments are sufficient to trigger or inhibit the translocation of GmFWL1 and GmFLOT2/4 to the RH tip independently of the presence of rhizobia, respectively. Unexpectedly, the application of salicylic acid, a phytohormone regulating the plant defense system, also promotes the translocation of GmFWL1 and GmFLOT2/4 to the RH tip regardless of the presence of rhizobia. These results suggest that phytohormones are playing a central role in controlling the early stages of rhizobia infection by regulating the translocation of plasma membrane microdomains. They also support the concept of crosstalk of phytohormones to control nodulation.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Prince Zogli
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| |
Collapse
|
48
|
Kim YA, Moon H, Park CJ. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2019; 12:67. [PMID: 31446506 PMCID: PMC6708514 DOI: 10.1186/s12284-019-0325-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/13/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Genome editing tools are important for functional genomics research and biotechnology applications. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) system for gene knockout has emerged as the most effective genome-editing tool. It has previously been reported that, in rice plants, knockdown of the Os8N3 gene resulted in enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), while displaying abnormal pollen development. RESULTS The CRISPR/Cas9 system was employed to knockout rice Os8N3, in order to confer enhanced resistance to Xoo. Analysis of the genotypes and edited Os8N3 in T0, T1, T2, and T3 transgenic rice plants showed that the mutations were transmitted to subsequent generations, and homozygous mutants displayed significantly enhanced resistance to Xoo. Stable transmission of CRISPR/Cas9-mediated Os8N3 gene editing without the transferred DNA (T-DNA) was confirmed by segregation in the T1 generation. With respect to many investigated agronomic traits including pollen development, there was no significant difference between homozygous mutants and non-transgenic control plants under greenhouse growth conditions. CONCLUSION Data from this study indicate that the CRISPR/Cas9-mediated Os8N3 edition can be successfully employed for non-transgenic crop improvements.
Collapse
Affiliation(s)
- Young-Ah Kim
- Department of Plant Biotechnology, Sejong University, Seoul, 05006 South Korea
| | - Hyeran Moon
- Department of Molecular Biology, Sejong University, Seoul, 05006 South Korea
| | - Chang-Jin Park
- Department of Plant Biotechnology, Sejong University, Seoul, 05006 South Korea
- Department of Molecular Biology, Sejong University, Seoul, 05006 South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 05006 South Korea
| |
Collapse
|
49
|
Gao J, Chaudhary A, Vaddepalli P, Nagel MK, Isono E, Schneitz K. The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3881-3894. [PMID: 31107531 PMCID: PMC6685663 DOI: 10.1093/jxb/erz190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis requires the atypical receptor kinase STRUBBELIG (SUB). Here, we studied the endocytic mechanism of SUB. Our data revealed that a functional SUB-enhanced green fluorescent protein (EGFP) fusion is ubiquitinated in vivo. We further showed that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also found that SUB:EGFP associates with the trans-Golgi network and accumulates in multivesicular bodies and the vacuole. Co-immunoprecipitation experiments revealed that SUB:EGFP and clathrin are present within the same protein complex. Our genetic analysis showed that SUB and CLATHRIN HEAVY CHAIN (CHC) 2 regulate root hair patterning. By contrast, genetic reduction of CHC activity ameliorates the floral defects of sub mutants. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not rely on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue-specific manner.
Collapse
Affiliation(s)
- Jin Gao
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Ajeet Chaudhary
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Present address: Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Marie-Kristin Nagel
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Correspondence:
| |
Collapse
|
50
|
Doyle SM, Rigal A, Grones P, Karady M, Barange DK, Majda M, Pařízková B, Karampelias M, Zwiewka M, Pěnčík A, Almqvist F, Ljung K, Novák O, Robert S. A role for the auxin precursor anthranilic acid in root gravitropism via regulation of PIN-FORMED protein polarity and relocalisation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:1420-1432. [PMID: 31038751 DOI: 10.1111/nph.15877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
distribution of auxin within plant tissues is of great importance for developmental plasticity, including root gravitropic growth. Auxin flow is directed by the subcellular polar distribution and dynamic relocalisation of auxin transporters such as the PIN-FORMED (PIN) efflux carriers, which can be influenced by the main natural plant auxin indole-3-acetic acid (IAA). Anthranilic acid (AA) is an important early precursor of IAA and previously published studies with AA analogues have suggested that AA may also regulate PIN localisation. Using Arabidopsis thaliana as a model species, we studied an AA-deficient mutant displaying agravitropic root growth, treated seedlings with AA and AA analogues and transformed lines to over-produce AA while inhibiting its conversion to downstream IAA precursors. We showed that AA rescues root gravitropic growth in the AA-deficient mutant at concentrations that do not rescue IAA levels. Overproduction of AA affects root gravitropism without affecting IAA levels. Treatments with, or deficiency in, AA result in defects in PIN polarity and gravistimulus-induced PIN relocalisation in root cells. Our results revealed a previously unknown role for AA in the regulation of PIN subcellular localisation and dynamics involved in root gravitropism, which is independent of its better known role in IAA biosynthesis.
Collapse
Affiliation(s)
- Siamsa M Doyle
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Adeline Rigal
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Peter Grones
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Michal Karady
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Deepak K Barange
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Department of Chemistry, Umeå University, 90736, Umeå, Sweden
| | - Mateusz Majda
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Barbora Pařízková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany at The Czech Academy of Sciences and Faculty of Science at Palacký University, 78371, Olomouc, Czech Republic
| | - Michael Karampelias
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Marta Zwiewka
- Central European Institute of Technology (CEITEC), Masaryk University, 62500, Brno, Czech Republic
| | - Aleš Pěnčík
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Department of Chemistry, Umeå University, 90736, Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Department of Chemistry, Umeå University, 90736, Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|