1
|
Zunjarrao S, Gambetta MC. Principles of long-range gene regulation. Curr Opin Genet Dev 2025; 91:102323. [PMID: 39947017 DOI: 10.1016/j.gde.2025.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Transcription from gene promoters occurs in specific spatiotemporal patterns in multicellular organisms, controlled by genomic regulatory elements. The communication between a regulatory element and a promoter requires a certain degree of physical proximity between them; hence, most gene regulation occurs locally in the genome. However, recent discoveries have revealed long-range gene regulation strategies that enhance interactions between regulatory elements and promoters by overcoming the distances between them in the linear genome. These new findings challenge the traditional view of how gene expression patterns are controlled. This review examines long-range gene regulation strategies recently reported in Drosophila and mammals, offering insights into their mechanisms and evolution.
Collapse
Affiliation(s)
- Sanyami Zunjarrao
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
2
|
Gemeinhardt TM, Regy RM, Phan TM, Pal N, Sharma J, Senkovich O, Mendiola AJ, Ledterman HJ, Henrickson A, Lopes D, Kapoor U, Bihani A, Sihou D, Kim YC, Jeruzalmi D, Demeler B, Kim CA, Mittal J, Francis NJ. How a disordered linker in the Polycomb protein Polyhomeotic tunes phase separation and oligomerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.26.564264. [PMID: 37961422 PMCID: PMC10634872 DOI: 10.1101/2023.10.26.564264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Biomolecular condensates are increasingly appreciated for their function in organizing and regulating biochemical processes in cells, including chromatin function. Condensate formation and properties are encoded in protein sequence but the mechanisms linking sequence to macroscale properties are incompletely understood. Cross species comparisons can reveal mechanisms either because they identify conserved functions or because they point to important differences. Here we use in vitro reconstitution and molecular dynamics simulations to compare Drosophila and human sequences that regulate condensate formation driven by the sterile alpha motif (SAM) oligomerization domain in the Polyhomeotic (Ph) subunit of the chromatin regulatory complex PRC1. We discover evolutionarily diverged contacts between the conserved SAM and the disordered linker that connects it to the rest of Ph. Linker-SAM interactions increase oligomerization and regulate formation and properties of reconstituted condensates. Oligomerization affects condensate dynamics but, in most cases, has little effect on their formation. Linker-SAM interactions also affect condensate formation in Drosophila and human cells, and growth in Drosophila imaginal discs. Our data show how evolutionary sequence changes in linkers connecting conserved structured domains can alter condensate properties.
Collapse
|
3
|
Fitz-James MH, Sabarís G, Sarkies P, Bantignies F, Cavalli G. Interchromosomal contacts between regulatory regions trigger stable transgenerational epigenetic inheritance in Drosophila. Mol Cell 2025; 85:677-691.e6. [PMID: 39667935 DOI: 10.1016/j.molcel.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/19/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Non-genetic information can be inherited across generations in a process known as transgenerational epigenetic inheritance (TEI). In Drosophila, hemizygosity of the Fab-7 regulatory element triggers inheritance of the histone mark H3K27me3 at a homologous locus on another chromosome, resulting in heritable epigenetic differences in eye color. Here, by mutating transcription factor binding sites within the Fab-7 element, we demonstrate the importance of the proteins pleiohomeotic and GAGA factor in the establishment and maintenance of TEI. We show that these proteins function by recruiting the polycomb repressive complex 2 and by mediating interchromosomal chromatin contacts between Fab-7 and its homologous locus, respectively. Using an in vivo synthetic biology system to induce them, we then show that chromatin contacts alone can establish TEI, providing a mechanism by which hemizygosity of one locus can establish epigenetic memory at another distant locus in trans through chromatin contacts.
Collapse
Affiliation(s)
- Maximilian H Fitz-James
- Institute of Human Genetics, CNRS and University of Montpellier, 141 Rue de la Cardonille, 34094 Montpellier, France; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gonzalo Sabarís
- Institute of Human Genetics, CNRS and University of Montpellier, 141 Rue de la Cardonille, 34094 Montpellier, France
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Frédéric Bantignies
- Institute of Human Genetics, CNRS and University of Montpellier, 141 Rue de la Cardonille, 34094 Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, 141 Rue de la Cardonille, 34094 Montpellier, France.
| |
Collapse
|
4
|
Lucas T, Wang LI, Glass-Klaiber J, Quiroz E, Patra S, Molotkova N, Kohwi M. Gene mobility elements mediate cell type specific genome organization and radial gene movement in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626181. [PMID: 39651303 PMCID: PMC11623685 DOI: 10.1101/2024.11.30.626181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Understanding the level of genome organization that governs gene regulation remains a challenge despite advancements in chromatin profiling techniques. Cell type specific chromatin architectures may be obscured by averaging heterogeneous cell populations. Here we took a reductionist perspective, starting with the relocation of the hunchback gene to the nuclear lamina in Drosophila neuroblasts. We previously found that this event terminates competence to produce early-born neurons and is mediated by an intronic 250 base-pair element, which we term gene mobility element (GME). Here we found over 800 putative GMEs globally that are chromatin accessible and are Polycomb (PcG) target sites. GMEs appear to be distinct from PcG response elements, however, which are largely chromatin inaccessible in neuroblasts. Performing in situ Hi-C of purified neuroblasts, we found that GMEs form megabase-scale chromatin interactions, spanning multiple topologically associated domain borders, preferentially contacting other GMEs. These interactions are cell type and stage-specific. Notably, GMEs undergo developmentally- timed mobilization to/from the neuroblast nuclear lamina, and domain swapping a GFP reporter transgene intron with a GME relocates the transgene to the nuclear lamina in embryos. We propose that GMEs constitute a genome organizational framework and mediate gene-to-lamina mobilization during progenitor competence state transitions in vivo .
Collapse
|
5
|
Hanafiah A, Geng Z, Liu T, Tai YT, Cai W, Wang Q, Christensen N, Liu Y, Yue F, Gao Z. PRC1 and CTCF-Mediated Transition from Poised to Active Chromatin Loops Drives Bivalent Gene Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623456. [PMID: 39605346 PMCID: PMC11601310 DOI: 10.1101/2024.11.13.623456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Polycomb Repressive Complex 1 (PRC1) and CCCTC-binding factor (CTCF) are critical regulators of 3D chromatin architecture that influence cellular transcriptional programs. Spatial chromatin structures comprise conserved compartments, topologically associating domains (TADs), and dynamic, cell-type-specific chromatin loops. Although the role of CTCF in chromatin organization is well-known, the involvement of PRC1 is less understood. In this study, we identified an unexpected, essential role for the canonical Pcgf2-containing PRC1 complex (cPRC1.2), a known transcriptional repressor, in activating bivalent genes during differentiation. Our Hi-C analysis revealed that cPRC1.2 forms chromatin loops at bivalent promoters, rendering them silent yet poised for activation. Using mouse embryonic stem cells (ESCs) with CRISPR/Cas9-mediated gene editing, we found that the loss of Pcgf2, though not affecting the global level of H2AK119ub1, disrupts these cPRC1.2 loops in ESCs and impairs the transcriptional induction of crucial target genes necessary for neuronal differentiation. Furthermore, we identified CTCF enrichment at cPRC1.2 loop anchors and at Polycomb group (PcG) bodies, nuclear foci with concentrated PRC1 and its tethered chromatin domains, suggesting that PRC1 and CTCF cooperatively shape chromatin loop structures. Through virtual 4C and other genomic analyses, we discovered that establishing neuronal progenitor cell (NPC) identity involves a switch from cPRC1.2-mediated chromatin loops to CTCF-mediated active loops, enabling the expression of critical lineage-specific factors. This study uncovers a novel mechanism by which pre-formed PRC1 and CTCF loops at lineage-specific genes maintain a poised state for subsequent gene activation, advancing our understanding of the role of chromatin architecture in controlling cell fate transitions.
Collapse
Affiliation(s)
- Aflah Hanafiah
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Yen Teng Tai
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Neil Christensen
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA 17033
| | - Yan Liu
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| |
Collapse
|
6
|
Dekker J, Mirny LA. The chromosome folding problem and how cells solve it. Cell 2024; 187:6424-6450. [PMID: 39547207 PMCID: PMC11569382 DOI: 10.1016/j.cell.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Every cell must solve the problem of how to fold its genome. We describe how the folded state of chromosomes is the result of the combined activity of multiple conserved mechanisms. Homotypic affinity-driven interactions lead to spatial partitioning of active and inactive loci. Molecular motors fold chromosomes through loop extrusion. Topological features such as supercoiling and entanglements contribute to chromosome folding and its dynamics, and tethering loci to sub-nuclear structures adds additional constraints. Dramatically diverse chromosome conformations observed throughout the cell cycle and across the tree of life can be explained through differential regulation and implementation of these basic mechanisms. We propose that the first functions of chromosome folding are to mediate genome replication, compaction, and segregation and that mechanisms of folding have subsequently been co-opted for other roles, including long-range gene regulation, in different conditions, cell types, and species.
Collapse
Affiliation(s)
- Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Wensveen MR, Dixit AA, van Schendel R, Kendek A, Lambooij JP, Tijsterman M, Colmenares SU, Janssen A. Double-strand breaks in facultative heterochromatin require specific movements and chromatin changes for efficient repair. Nat Commun 2024; 15:8984. [PMID: 39419979 PMCID: PMC11487122 DOI: 10.1038/s41467-024-53313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
DNA double-strand breaks (DSBs) must be properly repaired within diverse chromatin domains to maintain genome stability. Whereas euchromatin has an open structure and is associated with transcription, facultative heterochromatin is essential to silence developmental genes and forms compact nuclear condensates, called polycomb bodies. Whether the specific chromatin properties of facultative heterochromatin require distinct DSB repair mechanisms remains unknown. Here, we integrate single DSB systems in euchromatin and facultative heterochromatin in Drosophila melanogaster and find that heterochromatic DSBs rapidly move outside polycomb bodies. These DSB movements coincide with a break-proximal reduction in the canonical heterochromatin mark histone H3 Lysine 27 trimethylation (H3K27me3). We demonstrate that DSB movement and loss of H3K27me3 at heterochromatic DSBs depend on the histone demethylase dUtx. Moreover, loss of dUtx specifically disrupts completion of homologous recombination at heterochromatic DSBs. We conclude that DSBs in facultative heterochromatin require dUtx-mediated loss of H3K27me3 to promote DSB movement and repair.
Collapse
Affiliation(s)
- Marieke R Wensveen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands
| | - Aditya A Dixit
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands
| | - Robin van Schendel
- Human Genetics Department, Leiden University Medical Center, Leiden, the Netherlands
| | - Apfrida Kendek
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands
| | - Jan-Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands
| | - Marcel Tijsterman
- Human Genetics Department, Leiden University Medical Center, Leiden, the Netherlands
| | - Serafin U Colmenares
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
9
|
Lv Z, Wang Z, Hu J, Su H, Liu B, Lang Y, Yu Q, Liu Y, Fan X, Yang M, Shen N, Zhang D, Zhang X, Wang R. LncRNA PVT1 induces mitochondrial dysfunction of podocytes via TRIM56 in diabetic kidney disease. Cell Death Dis 2024; 15:697. [PMID: 39349450 PMCID: PMC11442824 DOI: 10.1038/s41419-024-07107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Mitochondrial dysfunction is a significant contributor to podocyte injury in diabetic kidney disease (DKD). While previous studies have shown that PVT1 might play a vital role in DKD, the precise molecular mechanisms are largely unknown. By analyzing the plasma and kidney tissues of DKD patients, we observed a significant upregulation of PVT1 expression, which exhibited a positive correlation with albumin/creatinine ratios and serum creatinine levels. Then, we generated mice with podocyte-specific deletion of PVT1 (Nphs2-Cre/Pvt1flox/flox) and confirmed that the deletion of PVT1 suppressed podocyte mitochondrial dysfunction and inflammation in addition to ameliorating diabetes-induced podocyte injury, glomerulopathy, and proteinuria. Subsequently, we cultured podocytes in vitro and observed that PVT1 expression was upregulated under hyperglycemic conditions. Mechanistically, we demonstrated that PVT1 was involved in mitochondrial dysfunction by interacting with TRIM56 post-transcriptionally to modulate the ubiquitination of AMPKα, leading to aberrant mitochondrial biogenesis and fission. Additionally, the release of mtDNA and mtROS from damaged mitochondria triggered inflammation in podocytes. Subsequently, we verified the important role of TRIM56 in vivo by constructing Nphs2-Cre/Trim56flox/flox mice, consistently with the results of Nphs2-Cre/Pvt1flox/flox mice. Together, our results revealed that upregulation of PVT1 could promote mitochondrial dysfunction and inflammation of podocyte by modulating TRIM56, highlighting a potential novel therapeutic target for DKD.
Collapse
Affiliation(s)
- Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Jinxiu Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bing Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Dongdong Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xia Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
10
|
Dhillon N, Kamakaka RT. Transcriptional silencing in Saccharomyces cerevisiae: known unknowns. Epigenetics Chromatin 2024; 17:28. [PMID: 39272151 PMCID: PMC11401328 DOI: 10.1186/s13072-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
11
|
Li N, Dong R, Zeng H, Zhang Y, Huang R, Liu W, Cao F, Yu J, Liao M, Chen J, Zhang W, Huang Z, Wang J, Li L, Zhu S, Huang D, Li Z, Zhang X, Yuan D, Chen N, Fan Y, Wang G, Schal C, Pan Y, Li S. Two sex pheromone receptors for sexual communication in the American cockroach. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1455-1467. [PMID: 38523236 DOI: 10.1007/s11427-023-2548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/06/2024] [Indexed: 03/26/2024]
Abstract
Volatile sex pheromones are vital for sexual communication between males and females. Females of the American cockroach, Periplaneta americana, produce and emit two sex pheromone components, periplanone-A (PA) and periplanone-B (PB). Although PB is the major sex attractant and can attract males, how it interacts with PA in regulating sexual behaviors is still unknown. In this study, we found that in male cockroaches, PA counteracted PB attraction. We identified two odorant receptors (ORs), OR53 and OR100, as PB/PA and PA receptors, respectively. OR53 and OR100 were predominantly expressed in the antennae of sexually mature males, and their expression levels were regulated by the sex differentiation pathway and nutrition-responsive signals. Cellular localization of OR53 and OR100 in male antennae further revealed that two types of sensilla coordinate a complex two-pheromone-two-receptor pathway in regulating cockroach sexual behaviors. These findings indicate distinct functions of the two sex pheromone components, identify their receptors and possible regulatory mechanisms underlying the male-specific and age-dependent sexual behaviors, and can guide novel strategies for pest management.
Collapse
Affiliation(s)
- Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514589, China.
| | - Renke Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514589, China
| | - Huanchao Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514589, China
| | - Yan Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Run Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Liu
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Fengming Cao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jincong Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jingyou Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenlei Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zejian Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiahui Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Li Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514589, China
| | - Danyan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zining Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yongliang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Guirong Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, 27695, USA
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514589, China.
| |
Collapse
|
12
|
Gurgo J, Walter JC, Fiche JB, Houbron C, Schaeffer M, Cavalli G, Bantignies F, Nollmann M. Multiplexed chromatin imaging reveals predominantly pairwise long-range coordination between Drosophila Polycomb genes. Cell Rep 2024; 43:114167. [PMID: 38691452 DOI: 10.1016/j.celrep.2024.114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
Polycomb (Pc) group proteins are transcriptional regulators with key roles in development, cell identity, and differentiation. Pc-bound chromatin regions form repressive domains that interact in 3D to assemble repressive nuclear compartments. Here, we use multiplexed chromatin imaging to investigate whether Pc compartments involve the clustering of multiple Pc domains during Drosophila development. Notably, 3D proximity between Pc targets is rare and involves predominantly pairwise interactions. These 3D proximities are particularly enhanced in segments where Pc genes are co-repressed. In addition, segment-specific expression of Hox Pc targets leads to their spatial segregation from Pc-repressed genes. Finally, non-Hox Pc targets are more proximal in regions where they are co-expressed. These results indicate that long-range Pc interactions are temporally and spatially regulated during differentiation and development but do not induce frequent clustering of multiple distant Pc genes.
Collapse
Affiliation(s)
- Julian Gurgo
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Christophe Houbron
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Marie Schaeffer
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Giacomo Cavalli
- Institut de Génétique Humaine, CNRS UMR 9002, Université de Montpellier, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Frédéric Bantignies
- Institut de Génétique Humaine, CNRS UMR 9002, Université de Montpellier, 141 rue de la Cardonille, 34396 Montpellier, France.
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
13
|
Zagirova D, Kononkova A, Vaulin N, Khrameeva E. From compartments to loops: understanding the unique chromatin organization in neuronal cells. Epigenetics Chromatin 2024; 17:18. [PMID: 38783373 PMCID: PMC11112951 DOI: 10.1186/s13072-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
The three-dimensional organization of the genome plays a central role in the regulation of cellular functions, particularly in the human brain. This review explores the intricacies of chromatin organization, highlighting the distinct structural patterns observed between neuronal and non-neuronal brain cells. We integrate findings from recent studies to elucidate the characteristics of various levels of chromatin organization, from differential compartmentalization and topologically associating domains (TADs) to chromatin loop formation. By defining the unique chromatin landscapes of neuronal and non-neuronal brain cells, these distinct structures contribute to the regulation of gene expression specific to each cell type. In particular, we discuss potential functional implications of unique neuronal chromatin organization characteristics, such as weaker compartmentalization, neuron-specific TAD boundaries enriched with active histone marks, and an increased number of chromatin loops. Additionally, we explore the role of Polycomb group (PcG) proteins in shaping cell-type-specific chromatin patterns. This review further emphasizes the impact of variations in chromatin architecture between neuronal and non-neuronal cells on brain development and the onset of neurological disorders. It highlights the need for further research to elucidate the details of chromatin organization in the human brain in order to unravel the complexities of brain function and the genetic mechanisms underlying neurological disorders. This research will help bridge a significant gap in our comprehension of the interplay between chromatin structure and cell functions.
Collapse
Affiliation(s)
- Diana Zagirova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Build.1, Moscow, 121205, Russia
- Research and Training Center on Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute) RAS, Bolshoy Karetny per. 19, Build.1, Moscow, 127051, Russia
| | - Anna Kononkova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Build.1, Moscow, 121205, Russia
| | - Nikita Vaulin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Build.1, Moscow, 121205, Russia
| | - Ekaterina Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Build.1, Moscow, 121205, Russia.
| |
Collapse
|
14
|
Meschichi A, Rosa S. Plant chromatin on the move: an overview of chromatin mobility during transcription and DNA repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:953-962. [PMID: 36811211 DOI: 10.1111/tpj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
It has become increasingly clear in recent years that chromosomes are highly dynamic entities. Chromatin mobility and re-arrangement are involved in many biological processes, including gene regulation and the maintenance of genome stability. Despite extensive studies on chromatin mobility in yeast and animal systems, up until recently, not much had been investigated at this level in plants. For plants to achieve proper growth and development, they need to respond rapidly and appropriately to environmental stimuli. Therefore, understanding how chromatin mobility can support plant responses may offer profound insights into the functioning of plant genomes. In this review, we discuss the state of the art related to chromatin mobility in plants, including the available technologies for their role in various cellular processes.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| |
Collapse
|
15
|
Rouches MN, Machta BB. Polymer Collapse & Liquid-Liquid Phase-Separation are Coupled in a Generalized Prewetting Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591767. [PMID: 38746247 PMCID: PMC11092468 DOI: 10.1101/2024.04.29.591767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The three-dimensional organization of chromatin is thought to play an important role in controlling gene expression. Specificity in expression is achieved through the interaction of transcription factors and other nuclear proteins with particular sequences of DNA. At unphysiological concentrations many of these nuclear proteins can phase-separate in the absence of DNA, and it has been hypothesized that, in vivo, the thermodynamic forces driving these phases help determine chromosomal organization. However it is unclear how DNA, itself a long polymer subject to configurational transitions, interacts with three-dimensional protein phases. Here we show that a long compressible polymer can be coupled to interacting protein mixtures, leading to a generalized prewetting transition where polymer collapse is coincident with a locally stabilized liquid droplet. We use lattice Monte-Carlo simulations and a mean-field theory to show that these phases can be stable even in regimes where both polymer collapse and coexisting liquid phases are unstable in isolation, and that these new transitions can be either abrupt or continuous. For polymers with internal linear structure we further show that changes in the concentration of bulk components can lead to changes in three-dimensional polymer structure. In the nucleus there are many distinct proteins that interact with many different regions of chromatin, potentially giving rise to many different Prewet phases. The simple systems we consider here highlight chromatin's role as a lower-dimensional surface whose interactions with proteins are required for these novel phases.
Collapse
Affiliation(s)
- Mason N. Rouches
- Department of Molecular Biophysics & Biochemistry, Yale University and Quantitative Biology Institute, Yale University
| | - Benjamin B. Machta
- Department of Physics, Yale University and Quantitative Biology Institute, Yale University
| |
Collapse
|
16
|
Guo JK, Blanco MR, Walkup WG, Bonesteele G, Urbinati CR, Banerjee AK, Chow A, Ettlin O, Strehle M, Peyda P, Amaya E, Trinh V, Guttman M. Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo. Mol Cell 2024; 84:1271-1289.e12. [PMID: 38387462 PMCID: PMC10997485 DOI: 10.1016/j.molcel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Polycomb repressive complex 2 (PRC2) is reported to bind to many RNAs and has become a central player in reports of how long non-coding RNAs (lncRNAs) regulate gene expression. Yet, there is a growing discrepancy between the biochemical evidence supporting specific lncRNA-PRC2 interactions and functional evidence demonstrating that PRC2 is often dispensable for lncRNA function. Here, we revisit the evidence supporting RNA binding by PRC2 and show that many reported interactions may not occur in vivo. Using denaturing purification of in vivo crosslinked RNA-protein complexes in human and mouse cell lines, we observe a loss of detectable RNA binding to PRC2 and chromatin-associated proteins previously reported to bind RNA (CTCF, YY1, and others), despite accurately mapping bona fide RNA-binding sites across others (SPEN, TET2, and others). Taken together, these results argue for a critical re-evaluation of the broad role of RNA binding to orchestrate various chromatin regulatory mechanisms.
Collapse
Affiliation(s)
- Jimmy K Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ward G Walkup
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grant Bonesteele
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carl R Urbinati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Olivia Ettlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Parham Peyda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Enrique Amaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Vickie Trinh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
17
|
Murphy SE, Boettiger AN. Polycomb repression of Hox genes involves spatial feedback but not domain compaction or phase transition. Nat Genet 2024; 56:493-504. [PMID: 38361032 DOI: 10.1038/s41588-024-01661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Polycomb group proteins have a critical role in silencing transcription during development. It is commonly proposed that Polycomb-dependent changes in genome folding, which compact chromatin, contribute directly to repression by blocking the binding of activating complexes. Recently, it has also been argued that liquid-liquid demixing of Polycomb proteins facilitates this compaction and repression by phase-separating target genes into a membraneless compartment. To test these models, we used Optical Reconstruction of Chromatin Architecture to trace the Hoxa gene cluster, a canonical Polycomb target, in thousands of single cells. Across multiple cell types, we find that Polycomb-bound chromatin frequently explores decompact states and partial mixing with neighboring chromatin, while remaining uniformly repressed, challenging the repression-by-compaction or phase-separation models. Using polymer simulations, we show that these observed flexible ensembles can be explained by 'spatial feedback'-transient contacts that contribute to the propagation of the epigenetic state (epigenetic memory), without inducing a globular organization.
Collapse
Affiliation(s)
- Sedona Eve Murphy
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
18
|
Seif E, Francis NJ. A Two-Step Mechanism for Creating Stable, Condensed Chromatin with the Polycomb Complex PRC1. Molecules 2024; 29:323. [PMID: 38257239 PMCID: PMC10821450 DOI: 10.3390/molecules29020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The Drosophila PRC1 complex regulates gene expression by modifying histone proteins and chromatin architecture. Two PRC1 subunits, PSC and Ph, are most implicated in chromatin architecture. In vitro, PRC1 compacts chromatin and inhibits transcription and nucleosome remodeling. The long disordered C-terminal region of PSC (PSC-CTR) is important for these activities, while Ph has little effect. In cells, Ph is important for condensate formation, long-range chromatin interactions, and gene regulation, and its polymerizing sterile alpha motif (SAM) is implicated in these activities. In vitro, truncated Ph containing the SAM and two other conserved domains (mini-Ph) undergoes phase separation with chromatin, suggesting a mechanism for SAM-dependent condensate formation in vivo. How the distinct activities of PSC and Ph on chromatin function together in PRC1 is not known. To address this question, we analyzed structures formed with large chromatin templates and PRC1 in vitro. PRC1 bridges chromatin into extensive fibrillar networks. Ph, its SAM, and SAM polymerization activity have little effect on these structures. Instead, the PSC-CTR controls their growth, and is sufficient for their formation. To understand how phase separation driven by Ph SAM intersects with the chromatin bridging activity of the PSC-CTR, we used mini-Ph to form condensates with chromatin and then challenged them with PRC1 lacking Ph (PRC1ΔPh). PRC1ΔPh converts mini-Ph chromatin condensates into clusters of small non-fusing condensates and bridged fibers. These condensates retain a high level of chromatin compaction and do not intermix. Thus, phase separation of chromatin by mini-Ph, followed by the action of the PSC-CTR, creates a unique chromatin organization with regions of high nucleosome density and extraordinary stability. We discuss how this coordinated sequential activity of two proteins found in the same complex may occur and the possible implications of stable chromatin architectures in maintaining transcription states.
Collapse
Affiliation(s)
- Elias Seif
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada;
| | - Nicole J. Francis
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada;
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
19
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Bsteh D, Moussa HF, Michlits G, Yelagandula R, Wang J, Elling U, Bell O. Loss of cohesin regulator PDS5A reveals repressive role of Polycomb loops. Nat Commun 2023; 14:8160. [PMID: 38071364 PMCID: PMC10710464 DOI: 10.1038/s41467-023-43869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Polycomb Repressive Complexes 1 and 2 (PRC1, PRC2) are conserved epigenetic regulators that promote transcriptional gene silencing. PRC1 and PRC2 converge on shared targets, catalyzing repressive histone modifications. Additionally, a subset of PRC1/PRC2 targets engage in long-range interactions whose functions in gene silencing are poorly understood. Using a CRISPR screen in mouse embryonic stem cells, we found that the cohesin regulator PDS5A links transcriptional silencing by Polycomb and 3D genome organization. PDS5A deletion impairs cohesin unloading and results in derepression of a subset of endogenous PRC1/PRC2 target genes. Importantly, derepression is not linked to loss of Polycomb chromatin domains. Instead, PDS5A removal causes aberrant cohesin activity leading to ectopic insulation sites, which disrupt the formation of ultra-long Polycomb loops. We show that these loops are important for robust silencing at a subset of PRC1/PRC2 target genes and that maintenance of cohesin-dependent genome architecture is critical for Polycomb regulation.
Collapse
Affiliation(s)
- Daniel Bsteh
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Medical Oncology, Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hagar F Moussa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- JLP Health GmbH, Himmelhofgasse 62, 1130, Vienna, Austria
| | - Ramesh Yelagandula
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Laboratory of Epigenetics, Cell Fate & Disease, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, 500039, India
| | - Jingkui Wang
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Krug B, Hu B, Chen H, Ptack A, Chen X, Gretarsson KH, Deshmukh S, Kabir N, Andrade AF, Jabbour E, Harutyunyan AS, Lee JJY, Hulswit M, Faury D, Russo C, Xu X, Johnston MJ, Baguette A, Dahl NA, Weil AG, Ellezam B, Dali R, Blanchette M, Wilson K, Garcia BA, Soni RK, Gallo M, Taylor MD, Kleinman CL, Majewski J, Jabado N, Lu C. H3K27me3 spreading organizes canonical PRC1 chromatin architecture to regulate developmental programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.567931. [PMID: 38116029 PMCID: PMC10729739 DOI: 10.1101/2023.11.28.567931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.
Collapse
|
22
|
Brown K, Chew PY, Ingersoll S, Espinosa JR, Aguirre A, Espinoza A, Wen J, Astatike K, Kutateladze TG, Collepardo-Guevara R, Ren X. Principles of assembly and regulation of condensates of Polycomb repressive complex 1 through phase separation. Cell Rep 2023; 42:113136. [PMID: 37756159 PMCID: PMC10862386 DOI: 10.1016/j.celrep.2023.113136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) undergoes phase separation to form Polycomb condensates that are multi-component hubs for silencing Polycomb target genes. In this study, we demonstrate that formation and regulation of PRC1 condensates are consistent with the scaffold-client model, where the Chromobox 2 (CBX2) protein behaves as the scaffold while the other PRC1 proteins are clients. Such clients induce a re-entrant phase transition of CBX2 condensates. The composition of the multi-component PRC1 condensates (1) determines the dynamic properties of the scaffold protein; (2) selectively promotes the formation of CBX4-PRC1 condensates while dissolving condensates of CBX6-, CBX7-, and CBX8-PRC1; and (3) controls the enrichment of CBX4-, CBX7-, and CBX8-PRC1 in CBX2-PRC1 condensates and the exclusion of CBX6-PRC1 from CBX2-PRC1 condensates. Our findings uncover how multi-component PRC1 condensates are assembled via an intricate scaffold-client mechanism whereby the properties of the PRC1 condensates are sensitively regulated by its composition and stoichiometry.
Collapse
Affiliation(s)
- Kyle Brown
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Steven Ingersoll
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Jorge R Espinosa
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Anne Aguirre
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Axel Espinoza
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Joey Wen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Kalkidan Astatike
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA; Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364, USA.
| |
Collapse
|
23
|
Chen F, Hou W, Yu X, Wu J, Li Z, Xu J, Deng Z, Chen G, Liu B, Yin X, Yu W, Zhang L, Xu G, Ji H, Liang C, Wang Z. CBX4 deletion promotes tumorigenesis under Kras G12D background by inducing genomic instability. Signal Transduct Target Ther 2023; 8:343. [PMID: 37696812 PMCID: PMC10495400 DOI: 10.1038/s41392-023-01623-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Chromobox protein homolog 4 (CBX4) is a component of the Polycomb group (PcG) multiprotein Polycomb repressive complexes 1 (PRC1), which is participated in several processes including growth, senescence, immunity, and tissue repair. CBX4 has been shown to have diverse, even opposite functions in different types of tissue and malignancy in previous studies. In this study, we found that CBX4 deletion promoted lung adenocarcinoma (LUAD) proliferation and progression in KrasG12D mutated background. In vitro, over 50% Cbx4L/L, KrasG12D mouse embryonic fibroblasts (MEFs) underwent apoptosis in the initial period after Adeno-Cre virus treatment, while a small portion of survival cells got increased proliferation and transformation abilities, which we called selected Cbx4-/-, KrasG12D cells. Karyotype analysis and RNA-seq data revealed chromosome instability and genome changes in selected Cbx4-/-, KrasG12D cells compared with KrasG12D cells. Further study showed that P15, P16 and other apoptosis-related genes were upregulated in the primary Cbx4-/-, KrasG12D cells due to chromosome instability, which led to the large population of cell apoptosis. In addition, multiple pathways including Hippo pathway and basal cell cancer-related signatures were altered in selected Cbx4-/-, KrasG12D cells, ultimately leading to cancer. We also found that low expression of CBX4 in LUAD was associated with poorer prognosis under Kras mutation background from the human clinical data. To sum up, CBX4 deletion causes genomic instability to induce tumorigenesis under KrasG12D background. Our study demonstrates that CBX4 plays an emerging role in tumorigenesis, which is of great importance in guiding the clinical treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fangzhen Chen
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Wulei Hou
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Xiangtian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jietian Xu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Zimu Deng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Gaobin Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxing Yin
- Department of General Surgery, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Yu
- Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Guoliang Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chunmin Liang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
24
|
Sun L, Cao Y, Li Z, Liu Y, Yin X, Deng XW, He H, Qian W. Conserved H3K27me3-associated chromatin looping mediates physical interactions of gene clusters in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1966-1982. [PMID: 37154484 DOI: 10.1111/jipb.13502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Higher-order chromatin organization is essential for transcriptional regulation, genome stability maintenance, and other genome functions. Increasing evidence has revealed significant differences in 3D chromatin organization between plants and animals. However, the extent, pattern, and rules of chromatin organization in plants are still unclear. In this study, we systematically identified and characterized long-range chromatin loops in the Arabidopsis 3D genome. We identified hundreds of long-range cis chromatin loops and found their anchor regions are closely associated with H3K27me3 epigenetic modifications. Furthermore, we demonstrated that these chromatin loops are dependent on Polycomb group (PcG) proteins, suggesting that the Polycomb repressive complex 2 (PRC2) complex is essential for establishing and maintaining these novel loops. Although most of these PcG-medicated chromatin loops are stable, many of these loops are tissue-specific or dynamically regulated by different treatments. Interestingly, tandemly arrayed gene clusters and metabolic gene clusters are enriched in anchor regions. Long-range H3K27me3-marked chromatin interactions are associated with the coregulation of specific gene clusters. Finally, we also identified H3K27me3-associated chromatin loops associated with gene clusters in Oryza sativa and Glycine max, indicating that these long-range chromatin loops are conserved in plants. Our results provide novel insights into genome evolution and transcriptional coregulation in plants.
Collapse
Affiliation(s)
- Linhua Sun
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China
| | - Yuxin Cao
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China
| | - Zhu Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yi Liu
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China
| | - Xiaochang Yin
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China
| | - Weiqiang Qian
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
25
|
Kim JJ, Steinson ER, Lau MS, de Rooij DG, Page DC, Kingston RE. Cell type-specific role of CBX2 and its disordered region in spermatogenesis. Genes Dev 2023; 37:640-660. [PMID: 37553262 PMCID: PMC10499018 DOI: 10.1101/gad.350393.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Polycomb group (PcG) proteins maintain the repressed state of lineage-inappropriate genes and are therefore essential for embryonic development and adult tissue homeostasis. One critical function of PcG complexes is modulating chromatin structure. Canonical Polycomb repressive complex 1 (cPRC1), particularly its component CBX2, can compact chromatin and phase-separate in vitro. These activities are hypothesized to be critical for forming a repressed physical environment in cells. While much has been learned by studying these PcG activities in cell culture models, it is largely unexplored how cPRC1 regulates adult stem cells and their subsequent differentiation in living animals. Here, we show in vivo evidence of a critical nonenzymatic repressive function of cPRC1 component CBX2 in the male germline. CBX2 is up-regulated as spermatogonial stem cells differentiate and is required to repress genes that were active in stem cells. CBX2 forms condensates (similar to previously described Polycomb bodies) that colocalize with target genes bound by CBX2 in differentiating spermatogonia. Single-cell analyses of mosaic Cbx2 mutant testes show that CBX2 is specifically required to produce differentiating A1 spermatogonia. Furthermore, the region of CBX2 responsible for compaction and phase separation is needed for the long-term maintenance of male germ cells in the animal. These results emphasize that the regulation of chromatin structure by CBX2 at a specific stage of spermatogenesis is critical, which distinguishes this from a mechanism that is reliant on histone modification.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology, MGH Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Emma R Steinson
- Department of Molecular Biology, MGH Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Mei Sheng Lau
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore 138673, Republic of Singapore
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert E Kingston
- Department of Molecular Biology, MGH Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
26
|
Zhang Y, Zhang J, Zhang W, Wang M, Wang S, Xu Y, Zhao L, Li X, Li G. Mapping Multi-factor-mediated Chromatin Interactions to Assess Dysregulation of Lung Cancer-related Genes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:573-588. [PMID: 36702236 PMCID: PMC10787015 DOI: 10.1016/j.gpb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Studies on the lung cancer genome are indispensable for developing a cure for lung cancer. Whole-genome resequencing, genome-wide association studies, and transcriptome sequencing have greatly improved our understanding of the cancer genome. However, dysregulation of long-range chromatin interactions in lung cancer remains poorly described. To better understand the three-dimensional (3D) genomic interaction features of the lung cancer genome, we used the A549 cell line as a model system and generated high-resolution chromatin interactions associated with RNA polymerase II (RNAPII), CCCTC-binding factor (CTCF), enhancer of zeste homolog 2 (EZH2), and histone 3 lysine 27 trimethylation (H3K27me3) using long-read chromatin interaction analysis by paired-end tag sequencing (ChIA-PET). Analysis showed that EZH2/H3K27me3-mediated interactions further repressed target genes, either through loops or domains, and their distributions along the genome were distinct from and complementary to those associated with RNAPII. Cancer-related genes were highly enriched with chromatin interactions, and chromatin interactions specific to the A549 cell line were associated with oncogenes and tumor suppressor genes, such as additional repressive interactions on FOXO4 and promoter-promoter interactions between NF1 and RNF135. Knockout of an anchor associated with chromatin interactions reversed the dysregulation of cancer-related genes, suggesting that chromatin interactions are essential for proper expression of lung cancer-related genes. These findings demonstrate the 3D landscape and gene regulatory relationships of the lung cancer genome.
Collapse
Affiliation(s)
- Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohan Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangqi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Xu
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Hafner A, Park M, Berger SE, Murphy SE, Nora EP, Boettiger AN. Loop stacking organizes genome folding from TADs to chromosomes. Mol Cell 2023; 83:1377-1392.e6. [PMID: 37146570 PMCID: PMC10167645 DOI: 10.1016/j.molcel.2023.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Although population-level analyses revealed significant roles for CTCF and cohesin in mammalian genome organization, their contributions at the single-cell level remain incompletely understood. Here, we used a super-resolution microscopy approach to measure the effects of removal of CTCF or cohesin in mouse embryonic stem cells. Single-chromosome traces revealed cohesin-dependent loops, frequently stacked at their loop anchors forming multi-way contacts (hubs), bridging across TAD boundaries. Despite these bridging interactions, chromatin in intervening TADs was not intermixed, remaining separated in distinct loops around the hub. At the multi-TAD scale, steric effects from loop stacking insulated local chromatin from ultra-long range (>4 Mb) contacts. Upon cohesin removal, the chromosomes were more disordered and increased cell-cell variability in gene expression. Our data revise the TAD-centric understanding of CTCF and cohesin and provide a multi-scale, structural picture of how they organize the genome on the single-cell level through distinct contributions to loop stacking.
Collapse
Affiliation(s)
- Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Minhee Park
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Scott E Berger
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Sedona E Murphy
- Department of Developmental Biology, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
28
|
Zhang B, Powers JD, McCulloch AD, Chi NC. Nuclear mechanosignaling in striated muscle diseases. Front Physiol 2023; 14:1126111. [PMID: 36960155 PMCID: PMC10027932 DOI: 10.3389/fphys.2023.1126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Mechanosignaling describes processes by which biomechanical stimuli are transduced into cellular responses. External biophysical forces can be transmitted via structural protein networks that span from the cellular membrane to the cytoskeleton and the nucleus, where they can regulate gene expression through a series of biomechanical and/or biochemical mechanosensitive mechanisms, including chromatin remodeling, translocation of transcriptional regulators, and epigenetic factors. Striated muscle cells, including cardiac and skeletal muscle myocytes, utilize these nuclear mechanosignaling mechanisms to respond to changes in their intracellular and extracellular mechanical environment and mediate gene expression and cell remodeling. In this brief review, we highlight and discuss recent experimental work focused on the pathway of biomechanical stimulus propagation at the nucleus-cytoskeleton interface of striated muscles, and the mechanisms by which these pathways regulate gene regulation, muscle structure, and function. Furthermore, we discuss nuclear protein mutations that affect mechanosignaling function in human and animal models of cardiomyopathy. Furthermore, current open questions and future challenges in investigating striated muscle nuclear mechanosignaling are further discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
| | - Neil C. Chi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
29
|
Vermunt MW, Luan J, Zhang Z, Thrasher AJ, Huang A, Saari MS, Khandros E, Beagrie RA, Zhang S, Vemulamada P, Brilleman M, Lee K, Yano JA, Giardine BM, Keller CA, Hardison RC, Blobel GA. Gene silencing dynamics are modulated by transiently active regulatory elements. Mol Cell 2023; 83:715-730.e6. [PMID: 36868189 PMCID: PMC10719944 DOI: 10.1016/j.molcel.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Josephine Thrasher
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert A Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pranay Vemulamada
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matilda Brilleman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer A Yano
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Salzler HR, Vandadi V, McMichael BD, Brown JC, Boerma SA, Leatham-Jensen MP, Adams KM, Meers MP, Simon JM, Duronio RJ, McKay DJ, Matera AG. Distinct roles for canonical and variant histone H3 lysine-36 in Polycomb silencing. SCIENCE ADVANCES 2023; 9:eadf2451. [PMID: 36857457 PMCID: PMC9977188 DOI: 10.1126/sciadv.adf2451] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/31/2023] [Indexed: 05/26/2023]
Abstract
Polycomb complexes regulate cell type-specific gene expression programs through heritable silencing of target genes. Trimethylation of histone H3 lysine 27 (H3K27me3) is essential for this process. Perturbation of H3K36 is thought to interfere with H3K27me3. We show that mutants of Drosophila replication-dependent (H3.2K36R) or replication-independent (H3.3K36R) histone H3 genes generally maintain Polycomb silencing and reach later stages of development. In contrast, combined (H3.3K36RH3.2K36R) mutants display widespread Hox gene misexpression and fail to develop past the first larval stage. Chromatin profiling revealed that the H3.2K36R mutation disrupts H3K27me3 levels broadly throughout silenced domains, whereas these regions are mostly unaffected in H3.3K36R animals. Analysis of H3.3 distributions showed that this histone is enriched at presumptive Polycomb response elements located outside of silenced domains but relatively depleted from those inside. We conclude that H3.2 and H3.3 K36 residues collaborate to repress Hox genes using different mechanisms.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - John C. Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Sally A. Boerma
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Mary P. Leatham-Jensen
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kirsten M. Adams
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael P. Meers
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel J. McKay
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
31
|
The Drosophila Fab-7 boundary modulates Abd-B gene activity by guiding an inversion of collinear chromatin organization and alternate promoter use. Cell Rep 2023; 42:111967. [PMID: 36640345 DOI: 10.1016/j.celrep.2022.111967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Hox genes encode transcription factors that specify segmental identities along the anteroposterior body axis. These genes are organized in clusters, where their order corresponds to their activity along the body axis, a feature known as collinearity. In Drosophila, the BX-C cluster contains the three most posterior Hox genes, where their collinear activation incorporates progressive changes in histone modifications, chromatin architecture, and use of boundary elements and cis-regulatory regions. To dissect functional hierarchies, we compare chromatin organization in cell lines and larvae, with a focus on the Abd-B gene. Our work establishes the importance of the Fab-7 boundary for insulation between 3D domains carrying different histone modifications. Interestingly, we detect a non-canonical inversion of collinear chromatin dynamics at Abd-B, with the domain of active histone modifications progressively decreasing in size. This dynamic chromatin organization differentially activates the alternative promoters of the Abd-B gene, thereby expanding the possibilities for fine-tuning of transcriptional output.
Collapse
|
32
|
Rosti V, Gorini F, Santarelli P, Sarnicola ML, Magnani S, Lanzuolo C. Polycomb Bodies Detection in Murine Fibromuscular Stroma from Skin, Skeletal Muscles, and Aortic Tissues. Methods Mol Biol 2023; 2655:125-146. [PMID: 37212994 DOI: 10.1007/978-1-0716-3143-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of chromatin structure depends on a dynamic, multiple mechanisms that modulate gene expression and constitute the epigenome. The Polycomb group (PcG) of proteins are epigenetic factors involved in the transcriptional repression. Among their multilevel, chromatin-associated functions, PcG proteins mediate the establishment and maintenance of higher-order structures at target genes, allowing the transmission of transcriptional programs throughout the cell cycle.In the nucleus, PcG proteins localize close to the pericentric heterochromatin forming microscopically foci, called Polycomb bodies. Here, to visualize the tissue-specific PcG distribution in the aorta, dorsal skin and hindlimb muscles, we combine a fluorescence-activated cell sorter (FACS)-based method with an immunofluorescence staining.
Collapse
Affiliation(s)
- Valentina Rosti
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy
| | - Francesca Gorini
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy
| | - Philina Santarelli
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy
| | - Maria Lucia Sarnicola
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy
| | | | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", INGM, Milan, Italy.
| |
Collapse
|
33
|
Cardamone F, Zhan Y, Iovino N, Zenk F. Chromosome Conformation Capture Followed by Genome-Wide Sequencing (Hi-C) in Drosophila Embryos. Methods Mol Biol 2023; 2655:41-55. [PMID: 37212987 DOI: 10.1007/978-1-0716-3143-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This protocol provides specific details on how to perform Hi-C, the genome-wide version of Chromosome Conformation Capture (3C) followed by high-throughput sequencing, in Drosophila embryos. Hi-C provides a genome-wide population-averaged snapshot of the 3D genome organization within nuclei. In Hi-C, formaldehyde-cross-linked chromatin is enzymatically digested using restriction enzymes; digested fragments are biotinylated and subjected to proximity ligation; ligated fragments are purified using streptavidin followed by paired-end sequencing. Hi-C allows the detection of higher order folding structures such as topologically associated domains (TADs) and active/inactive compartments (A/B compartments, respectively). Performing this assay in developing embryos gives the unique opportunity to investigate dynamic chromatin changes when 3D chromatin structure is established in embryogenesis.
Collapse
Affiliation(s)
- Francesco Cardamone
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- University of Freiburg, Faculty of Biology, Freiburg im Breisgau, Germany
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| | - Fides Zenk
- Department of Biosystems Science and Engineering ETH (D-BSSE ETH Zürich), Basel, Switzerland.
| |
Collapse
|
34
|
Abstract
Hox genes encode evolutionarily conserved transcription factors that are essential for the proper development of bilaterian organisms. Hox genes are unique because they are spatially and temporally regulated during development in a manner that is dictated by their tightly linked genomic organization. Although their genetic function during embryonic development has been interrogated, less is known about how these transcription factors regulate downstream genes to direct morphogenetic events. Moreover, the continued expression and function of Hox genes at postnatal and adult stages highlights crucial roles for these genes throughout the life of an organism. Here, we provide an overview of Hox genes, highlighting their evolutionary history, their unique genomic organization and how this impacts the regulation of their expression, what is known about their protein structure, and their deployment in development and beyond.
Collapse
Affiliation(s)
- Katharine A. Hubert
- Program in Genetics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
35
|
Ling X, Liu X, Jiang S, Fan L, Ding J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:42. [PMID: 36539553 PMCID: PMC9768101 DOI: 10.1186/s13619-022-00145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Cell fate transition is a fascinating process involving complex dynamics of three-dimensional (3D) chromatin organization and phase separation, which play an essential role in cell fate decision by regulating gene expression. Phase separation is increasingly being considered a driving force of chromatin folding. In this review, we have summarized the dynamic features of 3D chromatin and phase separation during physiological and pathological cell fate transitions and systematically analyzed recent evidence of phase separation facilitating the chromatin structure. In addition, we discuss current advances in understanding how phase separation contributes to physical and functional enhancer-promoter contacts. We highlight the functional roles of 3D chromatin organization and phase separation in cell fate transitions, and more explorations are required to study the regulatory relationship between 3D chromatin organization and phase separation. 3D chromatin organization (shown by Hi-C contact map) and phase separation are highly dynamic and play functional roles during early embryonic development, cell differentiation, somatic reprogramming, cell transdifferentiation and pathogenetic process. Phase separation can regulate 3D chromatin organization directly, but whether 3D chromatin organization regulates phase separation remains unclear.
Collapse
Affiliation(s)
- Xiaoru Ling
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xinyi Liu
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Shaoshuai Jiang
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lili Fan
- grid.258164.c0000 0004 1790 3548Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong China
| | - Junjun Ding
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.410737.60000 0000 8653 1072Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China ,grid.13291.380000 0001 0807 1581West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
36
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
37
|
Pang B, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer elements and their regulation of gene expression. Nat Rev Mol Cell Biol 2022; 24:383-395. [DOI: 10.1038/s41580-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
|
38
|
Dimitrova E, Feldmann A, van der Weide RH, Flach KD, Lastuvkova A, de Wit E, Klose RJ. Distinct roles for CKM-Mediator in controlling Polycomb-dependent chromosomal interactions and priming genes for induction. Nat Struct Mol Biol 2022; 29:1000-1010. [PMID: 36220895 PMCID: PMC9568430 DOI: 10.1038/s41594-022-00840-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Precise control of gene expression underpins normal development. This relies on mechanisms that enable communication between gene promoters and other regulatory elements. In embryonic stem cells (ESCs), the cyclin-dependent kinase module Mediator complex (CKM-Mediator) has been reported to physically link gene regulatory elements to enable gene expression and also prime genes for induction during differentiation. Here, we show that CKM-Mediator contributes little to three-dimensional genome organization in ESCs, but it has a specific and essential role in controlling interactions between inactive gene regulatory elements bound by Polycomb repressive complexes (PRCs). These interactions are established by the canonical PRC1 (cPRC1) complex but rely on CKM-Mediator, which facilitates binding of cPRC1 to its target sites. Importantly, through separation-of-function experiments, we reveal that this collaboration between CKM-Mediator and cPRC1 in creating long-range interactions does not function to prime genes for induction during differentiation. Instead, we discover that priming relies on an interaction-independent mechanism whereby the CKM supports core Mediator engagement with gene promoters during differentiation to enable gene activation.
Collapse
Affiliation(s)
| | - Angelika Feldmann
- Department of Biochemistry, University of Oxford, Oxford, UK
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robin H van der Weide
- Division of Gene Regulation, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Hubrecht Institute KNAW, Utrecht, The Netherlands
| | - Koen D Flach
- Division of Gene Regulation, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Verma A, Arya R, Brahmachari V. Identification of a polycomb responsive region in human HoxA cluster and its long-range interaction with polycomb enriched genomic regions. Gene 2022; 845:146832. [PMID: 36007803 DOI: 10.1016/j.gene.2022.146832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
Polycomb and Trithorax group proteins (PcG, TrxG) epigenetically regulate developmental genes. These proteins bind with specific DNA elements, the Polycomb Response Element (PRE). Apart from mutations in polycomb/ trithorax proteins, altered cis-elements like PRE underlie the modified function and thus disease etiology. PREs are well studied in Drosophila, while only a few human PREs have been reported. We have identified a polycomb responsive DNA element, hPRE-HoxA3, in the intron of the HoxA3 gene. The hPRE-HoxA3 represses luciferase reporter activity in a PcG-dependent manner. The endogenous hPRE-HoxA3 element recruits PcG proteins and is enriched with repressive H3K27me3 marks, demonstrating that hPRE-HoxA3 is a part of the PcG-dependent gene regulatory network. Furthermore, it interacts with D11-12, the well-known PRE in the human Hox cluster. hPRE-Hox3 is a part of the 3-dimensional chromosomal domain organization as it is involved in the long-range interaction with other PcG enriched regions of Hox A, B, C, and D clusters.
Collapse
Affiliation(s)
- Akanksha Verma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India.
| | - Richa Arya
- Current address- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| |
Collapse
|
40
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
41
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
42
|
Avdeyev P, Zhou J. Computational Approaches for Understanding Sequence Variation Effects on the 3D Genome Architecture. Annu Rev Biomed Data Sci 2022; 5:183-204. [PMID: 35537461 DOI: 10.1146/annurev-biodatasci-102521-012018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Decoding how genomic sequence and its variations affect 3D genome architecture is indispensable for understanding the genetic architecture of various traits and diseases. The 3D genome organization can be significantly altered by genome variations and in turn impact the function of the genomic sequence. Techniques for measuring the 3D genome architecture across spatial scales have opened up new possibilities for understanding how the 3D genome depends upon the genomic sequence and how it can be altered by sequence variations. Computational methods have become instrumental in analyzing and modeling the sequence effects on 3D genome architecture, and recent development in deep learning sequence models have opened up new opportunities for studying the interplay between sequence variations and the 3D genome. In this review, we focus on computational approaches for both the detection and modeling of sequence variation effects on the 3D genome, and we discuss the opportunities presented by these approaches. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pavel Avdeyev
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
43
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
44
|
Zhao C, Liu T, Wang Z. Functional Similarities of Protein-Coding Genes in Topologically Associating Domains and Spatially-Proximate Genomic Regions. Genes (Basel) 2022; 13:genes13030480. [PMID: 35328034 PMCID: PMC8951421 DOI: 10.3390/genes13030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/26/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Topologically associating domains (TADs) are the structural and functional units of the genome. However, the functions of protein-coding genes existing in the same or different TADs have not been fully investigated. We compared the functional similarities of protein-coding genes existing in the same TAD and between different TADs, and also in the same gap region (the region between two consecutive TADs) and between different gap regions. We found that the protein-coding genes from the same TAD or gap region are more likely to share similar protein functions, and this trend is more obvious with TADs than the gap regions. We further created two types of gene–gene spatial interaction networks: the first type is based on Hi-C contacts, whereas the second type is based on both Hi-C contacts and the relationship of being in the same TAD. A graph auto-encoder was applied to learn the network topology, reconstruct the two types of networks, and predict the functions of the central genes/nodes based on the functions of the neighboring genes/nodes. It was found that better performance was achieved with the second type of network. Furthermore, we detected long-range spatially-interactive regions based on Hi-C contacts and calculated the functional similarities of the gene pairs from these regions.
Collapse
|
45
|
Hafer TL, Patra S, Tagami D, Kohwi M. Enhancer of trithorax/polycomb, Corto, regulates timing of hunchback gene relocation and competence in Drosophila neuroblasts. Neural Dev 2022; 17:3. [PMID: 35177098 PMCID: PMC8855600 DOI: 10.1186/s13064-022-00159-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Background Neural progenitors produce diverse cells in a stereotyped birth order, but can specify each cell type for only a limited duration. In the Drosophila embryo, neuroblasts (neural progenitors) specify multiple, distinct neurons by sequentially expressing a series of temporal identity transcription factors with each division. Hunchback (Hb), the first of the series, specifies early-born neuronal identity. Neuroblast competence to generate early-born neurons is terminated when the hb gene relocates to the neuroblast nuclear lamina, rendering it refractory to activation in descendent neurons. Mechanisms and trans-acting factors underlying this process are poorly understood. Here we identify Corto, an enhancer of Trithorax/Polycomb (ETP) protein, as a new regulator of neuroblast competence. Methods We used the GAL4/UAS system to drive persistent misexpression of Hb in neuroblast 7–1 (NB7-1), a model lineage for which the early competence window has been well characterized, to examine the role of Corto in neuroblast competence. We used immuno-DNA Fluorescence in situ hybridization (DNA FISH) in whole embryos to track the position of the hb gene locus specifically in neuroblasts across developmental time, comparing corto mutants to control embryos. Finally, we used immunostaining in whole embryos to examine Corto’s role in repression of Hb and a known target gene, Abdominal B (Abd-B). Results We found that in corto mutants, the hb gene relocation to the neuroblast nuclear lamina is delayed and the early competence window is extended. The delay in gene relocation occurs after hb transcription is already terminated in the neuroblast and is not due to prolonged transcriptional activity. Further, we find that Corto genetically interacts with Posterior Sex Combs (Psc), a core subunit of polycomb group complex 1 (PRC1), to terminate early competence. Loss of Corto does not result in derepression of Hb or its Hox target, Abd-B, specifically in neuroblasts. Conclusions These results show that in neuroblasts, Corto genetically interacts with PRC1 to regulate timing of nuclear architecture reorganization and support the model that distinct mechanisms of silencing are implemented in a step-wise fashion during development to regulate cell fate gene expression in neuronal progeny. Supplementary Information The online version contains supplementary material available at 10.1186/s13064-022-00159-3.
Collapse
Affiliation(s)
- Terry L Hafer
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY, 10027, USA.,Present Address: Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Sofiya Patra
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY, 10027, USA
| | - Daiki Tagami
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY, 10027, USA
| | - Minoree Kohwi
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY, 10027, USA. .,Kavli Institute for Brain Science, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
46
|
Li W, Jiang C, Zhang E. Advances in the phase separation-organized membraneless organelles in cells: a narrative review. Transl Cancer Res 2022; 10:4929-4946. [PMID: 35116344 PMCID: PMC8797891 DOI: 10.21037/tcr-21-1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Membraneless organelles (MLOs) are micro-compartments that lack delimiting membranes, concentrating several macro-molecules with a high local concentration in eukaryotic cells. Recent studies have shown that MLOs have pivotal roles in multiple biological processes, including gene transcription, RNA metabolism, translation, protein modification, and signal transduction. These biological processes in cells have essential functions in many diseases, such as cancer, neurodegenerative diseases, and virus-related diseases. The liquid-liquid phase separation (LLPS) microenvironment within cells is thought to be the driving force for initiating the formation of micro-compartments with a liquid-like property, becoming an important organizing principle for MLOs to mediate organism responses. In this review, we comprehensively elucidated the formation of these MLOs and the relationship between biological functions and associated diseases. The mechanisms underlying the influence of protein concentration and valency on phase separation in cells are also discussed. MLOs undergoing the LLPS process have diverse functions, including stimulation of some adaptive and reversible responses to alter the transcriptional or translational processes, regulation of the concentrations of biomolecules in living cells, and maintenance of cell morphogenesis. Finally, we highlight that the development of this field could pave the way for developing novel therapeutic strategies for the treatment of LLPS-related diseases based on the understanding of phase separation in the coming years.
Collapse
Affiliation(s)
- Weihan Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Chenwei Jiang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.,Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
47
|
Ma L, Yu L, Jiang BC, Wang J, Guo X, Huang Y, Ren J, Sun N, Gao DS, Ding H, Lu J, Zhou H, Zou L, Gao Y, Wang L, Sun K, Ming Y, Meng Z, Tao YX, Yan M. ZNF382 controls mouse neuropathic pain via silencer-based epigenetic inhibition of Cxcl13 in DRG neurons. J Exp Med 2021; 218:e20210920. [PMID: 34762123 PMCID: PMC8590274 DOI: 10.1084/jem.20210920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve injury-induced changes of gene expression in dorsal root ganglion (DRG) are critical for neuropathic pain genesis. However, how these changes occur remains elusive. Here we report the down-regulation of zinc finger protein 382 (ZNF382) in injured DRG neurons after nerve injury. Rescuing this down-regulation attenuates nociceptive hypersensitivity. Conversely, mimicking this down-regulation produces neuropathic pain symptoms, which are alleviated by C-X-C motif chemokine 13 (CXCL13) knockdown or its receptor CXCR5 knockout. Mechanistically, an identified cis-acting silencer at distal upstream of the Cxcl13 promoter suppresses Cxcl13 transcription via binding to ZNF382. Blocking this binding or genetically deleting this silencer abolishes the ZNF382 suppression on Cxcl13 transcription and impairs ZNF382-induced antinociception. Moreover, ZNF382 down-regulation disrupts the repressive epigenetic complex containing histone deacetylase 1 and SET domain bifurcated 1 at the silencer-promoter loop, resulting in Cxcl13 transcriptional activation. Thus, ZNF382 down-regulation is required for neuropathic pain likely through silencer-based epigenetic disinhibition of CXCL13, a key neuropathic pain player, in DRG neurons.
Collapse
Affiliation(s)
- Longfei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Jingkai Wang
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yangyuxin Huang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dave Schwinn Gao
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Ding
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lijing Zou
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yibo Gao
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lieju Wang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Sun
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Ming
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Meng
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Min Yan
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Blackledge NP, Klose RJ. The molecular principles of gene regulation by Polycomb repressive complexes. Nat Rev Mol Cell Biol 2021; 22:815-833. [PMID: 34400841 PMCID: PMC7612013 DOI: 10.1038/s41580-021-00398-y] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Precise control of gene expression is fundamental to cell function and development. Although ultimately gene expression relies on DNA-binding transcription factors to guide the activity of the transcription machinery to genes, it has also become clear that chromatin and histone post-translational modification have fundamental roles in gene regulation. Polycomb repressive complexes represent a paradigm of chromatin-based gene regulation in animals. The Polycomb repressive system comprises two central protein complexes, Polycomb repressive complex 1 (PRC1) and PRC2, which are essential for normal gene regulation and development. Our early understanding of Polycomb function relied on studies in simple model organisms, but more recently it has become apparent that this system has expanded and diverged in mammals. Detailed studies are now uncovering the molecular mechanisms that enable mammalian PRC1 and PRC2 to identify their target sites in the genome, communicate through feedback mechanisms to create Polycomb chromatin domains and control transcription to regulate gene expression. In this Review, we discuss and contextualize the emerging principles that define how this fascinating chromatin-based system regulates gene expression in mammals.
Collapse
Affiliation(s)
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Titelbaum M, Brant B, Baumel D, Burstein-Willensky A, Perez S, Barsheshet Y, Avni O. Ezh2 harnesses the intranuclear actin cytoskeleton to remodel chromatin in differentiating Th cells. iScience 2021; 24:103093. [PMID: 34622148 PMCID: PMC8479699 DOI: 10.1016/j.isci.2021.103093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/20/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Following their first interaction with the antigen, quiescent naive T-helper (Th; CD4+) cells enlarge, differentiate, and proliferate; these processes are accompanied by substantial epigenetic alterations. We showed previously that the epigenetic regulators the polycomb-group (PcG) proteins have a dual function as both positive and negative transcriptional regulators; however, the underlying mechanisms remain poorly understood. Here, we demonstrate that during Th cell differentiation the methyltransferase activity of the PcG protein Ezh2 regulates post-transcriptionally inducible assembly of intranuclear actin filaments. These filaments are colocalized with the actin regulators Vav1 and WASp, vertically oriented to the T cell receptor, and intermingle with the chromatin fibers. Ezh2 and Vav1 are observed together at chromatin-actin intersections. Furthermore, the inducible assembly of nuclear actin filaments is required for chromatin spreading and nuclear growth. Altogether these findings delineate a model in which the epigenetic machinery orchestrates the dynamic mechanical force of the intranuclear cytoskeleton to reorganize chromatin during differentiation. Ezh2 regulates post-transcriptionally the inducible assembly of intranuclear F-actin F-actin is oriented toward the TCR and intermingled with the chromatin fibers F-actin is required for chromatin spreading and nuclear growth The epigenetic machinery harnesses intranuclear cytoskeleton to reorganize chromatin
Collapse
Affiliation(s)
- Moran Titelbaum
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Boris Brant
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Daniel Baumel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Shira Perez
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Orly Avni
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
50
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|