1
|
Zahm AM, Owens WS, Himes SR, Fallon BS, Rondem KE, Gormick AN, Bloom JS, Kosuri S, Chan H, English JG. A massively parallel reporter assay library to screen short synthetic promoters in mammalian cells. Nat Commun 2024; 15:10353. [PMID: 39609378 PMCID: PMC11604768 DOI: 10.1038/s41467-024-54502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Cellular responses to stimuli underpin discoveries in drug development, synthetic biology, and general life sciences. We introduce a library comprising 6144 synthetic promoters, each shorter than 250 bp, designed as transcriptional readouts of cellular stimulus responses in massively parallel reporter assay format. This library facilitates precise detection and amplification of transcriptional activity from our promoters, enabling the systematic development of tunable reporters with dynamic ranges of 50-100 fold. Our library proved functional in numerous cell lines and responsive to a variety of stimuli, including metabolites, mitogens, toxins, and pharmaceutical agents, generating robust and scalable reporters effective in screening assays, biomarkers, and synthetic circuits attuned to endogenous cellular activities. Particularly valuable in therapeutic development, our library excels in capturing candidate reporters to signals mediated by drug targets, a feature we illustrate across nine diverse G-protein coupled receptors (GPCRs), critical targets in drug development. We detail how this tool isolates and defines discrete signaling pathways associated with specific GPCRs, elucidating their transcriptional signatures. With its ease of implementation, broad utility, publicly available data, and comprehensive documentation, our library will be beneficial in synthetic biology, cellular engineering, ligand exploration, and drug development.
Collapse
Affiliation(s)
- Adam M Zahm
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Samuel R Himes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Braden S Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathleen E Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexa N Gormick
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua S Bloom
- Octant Inc., Emeryville, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | | | | | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Artemyev V, Gubaeva A, Paremskaia AI, Dzhioeva AA, Deviatkin A, Feoktistova SG, Mityaeva O, Volchkov PY. Synthetic Promoters in Gene Therapy: Design Approaches, Features and Applications. Cells 2024; 13:1963. [PMID: 39682712 DOI: 10.3390/cells13231963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Gene therapy is a promising approach to the treatment of various inherited diseases, but its development is complicated by a number of limitations of the natural promoters used. The currently used strong ubiquitous natural promoters do not allow for the specificity of expression, while natural tissue-specific promoters have lowactivity. These limitations of natural promoters can be addressed by creating new synthetic promoters that achieve high levels of tissue-specific target gene expression. This review discusses recent advances in the development of synthetic promoters that provide a more precise regulation of gene expression. Approaches to the design of synthetic promoters are reviewed, including manual design and bioinformatic methods using machine learning. Examples of successful applications of synthetic promoters in the therapy of hereditary diseases and cancer are presented, as well as prospects for their clinical use.
Collapse
Affiliation(s)
- Valentin Artemyev
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Anna Gubaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
| | - Anastasiia Iu Paremskaia
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
| | - Amina A Dzhioeva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Andrei Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
| | - Sofya G Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
| | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
- Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Pr., 27, 119991 Moscow, Russia
| | - Pavel Yu Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
- Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Pr., 27, 119991 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
3
|
Catta-Preta R, Lindtner S, Ypsilanti A, Seban N, Price JD, Abnousi A, Su-Feher L, Wang Y, Cichewicz K, Boerma SA, Juric I, Jones IR, Akiyama JA, Hu M, Shen Y, Visel A, Pennacchio LA, Dickel DE, Rubenstein JLR, Nord AS. Combinatorial transcription factor binding encodes cis-regulatory wiring of mouse forebrain GABAergic neurogenesis. Dev Cell 2024:S1534-5807(24)00603-8. [PMID: 39481376 DOI: 10.1016/j.devcel.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Transcription factors (TFs) bind combinatorially to cis-regulatory elements, orchestrating transcriptional programs. Although studies of chromatin state and chromosomal interactions have demonstrated dynamic neurodevelopmental cis-regulatory landscapes, parallel understanding of TF interactions lags. To elucidate combinatorial TF binding driving mouse basal ganglia development, we integrated chromatin immunoprecipitation sequencing (ChIP-seq) for twelve TFs, H3K4me3-associated enhancer-promoter interactions, chromatin and gene expression data, and functional enhancer assays. We identified sets of putative regulatory elements with shared TF binding (TF-pRE modules) that orchestrate distinct processes of GABAergic neurogenesis and suppress other cell fates. The majority of pREs were bound by one or two TFs; however, a small proportion were extensively bound. These sequences had exceptional evolutionary conservation and motif density, complex chromosomal interactions, and activity as in vivo enhancers. Our results provide insights into the combinatorial TF-pRE interactions that activate and repress expression programs during telencephalon neurogenesis and demonstrate the value of TF binding toward modeling developmental transcriptional wiring.
Collapse
Affiliation(s)
- Rinaldo Catta-Preta
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Athena Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicolas Seban
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - James D Price
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Linda Su-Feher
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Yurong Wang
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Karol Cichewicz
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Sally A Boerma
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Ian R Jones
- Institute for Human Genetics, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Yin Shen
- Institute for Human Genetics, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Alex S Nord
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA.
| |
Collapse
|
4
|
Liu Z, Ypsilanti AR, Markenscoff-Papadimitriou E, Dickel DE, Sanders SJ, Dong S, Pennacchio LA, Visel A, Rubenstein JL. Nr2f1 enhancers have distinct functions in controlling Nr2f1 expression during cortical development. Proc Natl Acad Sci U S A 2024; 121:e2402368121. [PMID: 39312666 PMCID: PMC11459158 DOI: 10.1073/pnas.2402368121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
There is evidence that transcription factor (TF) encoding genes, which temporally control development in multiple cell types, can have tens of enhancers that regulate their expression. The NR2F1 TF developmentally promotes caudal and ventral cortical regional fates. Here, we epigenomically compared the activity of Nr2f1's enhancers during mouse cortical development with their activity in a transgenic assay. We identified at least six that are likely to be important in prenatal cortical development, with three harboring de novo mutants identified in ASD individuals. We chose to study the function of two of the most robust enhancers by deleting them singly or together. We found that they have distinct and overlapping functions in driving Nr2f1's regional and laminar expression in the developing cortex. Thus, these two enhancers, probably in combination with the others that we defined epigenetically, precisely tune Nr2f1's regional, cell type, and temporal expression during corticogenesis.
Collapse
Affiliation(s)
- Zhidong Liu
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Athéna R. Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | | | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, OxfordOX3 7TY, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA94158
- New York Genome Center, New York, NY10013
| | - Shan Dong
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- US Department of Energy Joint Genome Institute, Berkeley, CA94720
- Comparative Biochemistry Program, University of California, Berkeley, CA94720
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- US Department of Energy Joint Genome Institute, Berkeley, CA94720
- School of Natural Sciences, University of California, Merced, CA95343
| | - John L. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| |
Collapse
|
5
|
Griffith EC, West AE, Greenberg ME. Neuronal enhancers fine-tune adaptive circuit plasticity. Neuron 2024; 112:3043-3057. [PMID: 39208805 PMCID: PMC11550865 DOI: 10.1016/j.neuron.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Neuronal activity-regulated gene expression plays a crucial role in sculpting neural circuits that underpin adaptive brain function. Transcriptional enhancers are now recognized as key components of gene regulation that orchestrate spatiotemporally precise patterns of gene transcription. We propose that the dynamics of enhancer activation uniquely position these genomic elements to finely tune activity-dependent cellular plasticity. Enhancer specificity and modularity can be exploited to gain selective genetic access to specific cell states, and the precise modulation of target gene expression within restricted cellular contexts enabled by targeted enhancer manipulation allows for fine-grained evaluation of gene function. Mounting evidence also suggests that enduring stimulus-induced changes in enhancer states can modify target gene activation upon restimulation, thereby contributing to a form of cell-wide metaplasticity. We advocate for focused exploration of activity-dependent enhancer function to gain new insight into the mechanisms underlying brain plasticity and cognitive dysfunction.
Collapse
Affiliation(s)
- Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
6
|
Kosicki M, Zhang B, Pampari A, Akiyama JA, Plajzer-Frick I, Novak CS, Tran S, Zhu Y, Kato M, Hunter RD, von Maydell K, Barton S, Beckman E, Kundaje A, Dickel DE, Visel A, Pennacchio LA. Mutagenesis Sensitivity Mapping of Human Enhancers In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611737. [PMID: 39282388 PMCID: PMC11398460 DOI: 10.1101/2024.09.06.611737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Distant-acting enhancers are central to human development. However, our limited understanding of their functional sequence features prevents the interpretation of enhancer mutations in disease. Here, we determined the functional sensitivity to mutagenesis of human developmental enhancers in vivo. Focusing on seven enhancers active in the developing brain, heart, limb and face, we created over 1700 transgenic mice for over 260 mutagenized enhancer alleles. Systematic mutation of 12-basepair blocks collectively altered each sequence feature in each enhancer at least once. We show that 69% of all blocks are required for normal in vivo activity, with mutations more commonly resulting in loss (60%) than in gain (9%) of function. Using predictive modeling, we annotated critical nucleotides at base-pair resolution. The vast majority of motifs predicted by these machine learning models (88%) coincided with changes to in vivo function, and the models showed considerable sensitivity, identifying 59% of all functional blocks. Taken together, our results reveal that human enhancers contain a high density of sequence features required for their normal in vivo function and provide a rich resource for further exploration of human enhancer logic.
Collapse
Affiliation(s)
- Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Boyang Zhang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anusri Pampari
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jennifer A. Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Catherine S. Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Riana D. Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Sarah Barton
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Erik Beckman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Diane E. Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
- U.S. Department of Energy Joint Genome Institute, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, One Cyclotron Road, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Yamamoto K, Estienne P, Bloch S. Does a Vertebrate Morphotype of Pallial Subdivisions Really Exist? BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:230-247. [PMID: 38952102 PMCID: PMC11614313 DOI: 10.1159/000537746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/04/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Comparative neuroanatomists have long sought to determine which part of the pallium in nonmammals is homologous to the mammalian neocortex. A number of similar connectivity patterns across species have led to the idea that the basic organization of the vertebrate brain is relatively conserved; thus, efforts of the last decades have been focused on determining a vertebrate "morphotype" - a model comprising the characteristics believed to have been present in the last common ancestor of all vertebrates. SUMMARY The endeavor to determine the vertebrate morphotype has been riddled with controversies due to the extensive morphological diversity of the pallium among vertebrate taxa. Nonetheless, most proposed scenarios of pallial homology are variants of a common theme where the vertebrate pallium is subdivided into subdivisions homologous to the hippocampus, neocortex, piriform cortex, and amygdala, in a one-to-one manner. We review the rationales of major propositions of pallial homology and identify the source of the discrepancies behind different hypotheses. We consider that a source of discrepancies is the prevailing assumption that there is a single "morphotype of the pallial subdivisions" throughout vertebrates. Instead, pallial subdivisions present in different taxa probably evolved independently in each lineage. KEY MESSAGES We encounter discrepancies when we search for a single morphotype of subdivisions across vertebrates. These discrepancies can be resolved by considering that several subdivisions within the pallium were established after the divergence of the different lineages. The differences of pallial organization are especially remarkable between actinopterygians (including teleost fishes) and other vertebrates. Thus, the prevailing notion of a simple one-to-one homology between the mammalian and teleost pallia needs to be reconsidered.
Collapse
Affiliation(s)
- Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Pierre Estienne
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Solal Bloch
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| |
Collapse
|
8
|
Fazel Darbandi S, An JY, Lim K, Page NF, Liang L, Young DM, Ypsilanti AR, State MW, Nord AS, Sanders SJ, Rubenstein JLR. Five autism-associated transcriptional regulators target shared loci proximal to brain-expressed genes. Cell Rep 2024; 43:114329. [PMID: 38850535 PMCID: PMC11235582 DOI: 10.1016/j.celrep.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/15/2023] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Many autism spectrum disorder (ASD)-associated genes act as transcriptional regulators (TRs). Chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify the regulatory targets of ARID1B, BCL11A, FOXP1, TBR1, and TCF7L2, ASD-associated TRs in the developing human and mouse cortex. These TRs shared substantial overlap in the binding sites, especially within open chromatin. The overlap within a promoter region, 1-2,000 bp upstream of the transcription start site, was highly predictive of brain-expressed genes. This signature was observed in 96 out of 102 ASD-associated genes. In vitro CRISPRi against ARID1B and TBR1 delineated downstream convergent biology in mouse cortical cultures. After 8 days, NeuN+ and CALB+ cells were decreased, GFAP+ cells were increased, and transcriptomic signatures correlated with the postmortem brain samples from individuals with ASD. We suggest that functional convergence across five ASD-associated TRs leads to shared neurodevelopmental outcomes of haploinsufficient disruption.
Collapse
Affiliation(s)
- Siavash Fazel Darbandi
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joon-Yong An
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, South Korea
| | - Kenneth Lim
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas F Page
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lindsay Liang
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David M Young
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Athena R Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew W State
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Stephan J Sanders
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Developmental and Regenerative Medicine, Old Road Campus, Roosevelt Dr., Headington, Oxford OX3 7TY, UK.
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
Rubenstein JL, Nord AS, Ekker M. DLX genes and proteins in mammalian forebrain development. Development 2024; 151:dev202684. [PMID: 38819455 PMCID: PMC11190439 DOI: 10.1242/dev.202684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.
Collapse
Affiliation(s)
- John L. Rubenstein
- UCSF Department of Psychiatry and Behavioral Sciences, Department of UCSF Weill Institute for Neurosciences, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and 20 Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
10
|
Pratt HE, Andrews G, Shedd N, Phalke N, Li T, Pampari A, Jensen M, Wen C, Consortium P, Gandal MJ, Geschwind DH, Gerstein M, Moore J, Kundaje A, Colubri A, Weng Z. Using a comprehensive atlas and predictive models to reveal the complexity and evolution of brain-active regulatory elements. SCIENCE ADVANCES 2024; 10:eadj4452. [PMID: 38781344 PMCID: PMC11114231 DOI: 10.1126/sciadv.adj4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Most genetic variants associated with psychiatric disorders are located in noncoding regions of the genome. To investigate their functional implications, we integrate epigenetic data from the PsychENCODE Consortium and other published sources to construct a comprehensive atlas of candidate brain cis-regulatory elements. Using deep learning, we model these elements' sequence syntax and predict how binding sites for lineage-specific transcription factors contribute to cell type-specific gene regulation in various types of glia and neurons. The elements' evolutionary history suggests that new regulatory information in the brain emerges primarily via smaller sequence mutations within conserved mammalian elements rather than entirely new human- or primate-specific sequences. However, primate-specific candidate elements, particularly those active during fetal brain development and in excitatory neurons and astrocytes, are implicated in the heritability of brain-related human traits. Additionally, we introduce PsychSCREEN, a web-based platform offering interactive visualization of PsychENCODE-generated genetic and epigenetic data from diverse brain cell types in individuals with psychiatric disorders and healthy controls.
Collapse
Affiliation(s)
- Henry E. Pratt
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gregory Andrews
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tongxin Li
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Khoury College of Computer Science, Northeastern University, Boston, MA 02115, USA
| | - Anusri Pampari
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Jensen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Michael J. Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel H. Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Andrés Colubri
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Capauto D, Wang Y, Wu F, Norton S, Mariani J, Inoue F, Crawford GE, Ahituv N, Abyzov A, Vaccarino FM. Characterization of enhancer activity in early human neurodevelopment using Massively Parallel Reporter Assay (MPRA) and forebrain organoids. Sci Rep 2024; 14:3936. [PMID: 38365907 PMCID: PMC10873509 DOI: 10.1038/s41598-024-54302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/11/2024] [Indexed: 02/18/2024] Open
Abstract
Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~ 7000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~ 35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.
Collapse
Affiliation(s)
- Davide Capauto
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Feinan Wu
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Jessica Mariani
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | | | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Moore JR, Nemera MT, D’Souza RD, Hamagami N, Clemens AW, Beard DC, Urman A, Mendoza VR, Gabel HW. Non-CG DNA methylation and MeCP2 stabilize repeated tuning of long genes that distinguish closely related neuron types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577861. [PMID: 38352532 PMCID: PMC10862856 DOI: 10.1101/2024.01.30.577861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The extraordinary diversity of neuron types in the mammalian brain is delineated at the highest resolution by subtle gene expression differences that may require specialized molecular mechanisms to be maintained. Neurons uniquely express the longest genes in the genome and utilize neuron-enriched non-CG DNA methylation (mCA) together with the Rett syndrome protein, MeCP2, to control gene expression, but the function of these unique gene structures and machinery in regulating finely resolved neuron type-specific gene programs has not been explored. Here, we employ epigenomic and spatial transcriptomic analyses to discover a major role for mCA and MeCP2 in maintaining neuron type-specific gene programs at the finest scale of cellular resolution. We uncover differential susceptibility to MeCP2 loss in neuronal populations depending on global mCA levels and dissect methylation patterns and intragenic enhancer repression that drive overlapping and distinct gene regulation between neuron types. Strikingly, we show that mCA and MeCP2 regulate genes that are repeatedly tuned to differentiate neuron types at the highest cellular resolution, including spatially resolved, vision-dependent gene programs in the visual cortex. These repeatedly tuned genes display genomic characteristics, including long length, numerous intragenic enhancers, and enrichment for mCA, that predispose them to regulation by MeCP2. Thus, long gene regulation by the MeCP2 pathway maintains differential gene expression between closely-related neurons to facilitate the exceptional cellular diversity in the complex mammalian brain.
Collapse
Affiliation(s)
- J. Russell Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Mati T. Nemera
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Rinaldo D. D’Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Adam W. Clemens
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Diana C. Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Alaina Urman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Victoria Rodriguez Mendoza
- Opportunities in Genomic Research Program, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Harrison W. Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| |
Collapse
|
13
|
Garza AB, Garcia R, Solis LM, Halfon MS, Girgis HZ. EnhancerTracker: Comparing cell-type-specific enhancer activity of DNA sequence triplets via an ensemble of deep convolutional neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573198. [PMID: 38187673 PMCID: PMC10769370 DOI: 10.1101/2023.12.23.573198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Motivation Transcriptional enhancers - unlike promoters - are unrestrained by distance or strand orientation with respect to their target genes, making their computational identification a challenge. Further, there are insufficient numbers of confirmed enhancers for many cell types, preventing robust training of machine-learning-based models for enhancer prediction for such cell types. Results We present EnhancerTracker , a novel tool that leverages an ensemble of deep separable convolutional neural networks to identify cell-type-specific enhancers with the need of only two confirmed enhancers. EnhancerTracker is trained, validated, and tested on 52,789 putative enhancers obtained from the FANTOM5 Project and control sequences derived from the human genome. Unlike available tools, which accept one sequence at a time, the input to our tool is three sequences; the first two are enhancers active in the same cell type. EnhancerTracker outputs 1 if the third sequence is an enhancer active in the same cell type(s) where the first two enhancers are active. It outputs 0 otherwise. On a held-out set (15%), EnhancerTracker achieved an accuracy of 64%, a specificity of 93%, a recall of 35%, a precision of 84%, and an F1 score of 49%. Availability and implementation https://github.com/BioinformaticsToolsmith/EnhancerTracker. Contact hani.girgis@tamuk.edu.
Collapse
|
14
|
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
15
|
Noack F, Vangelisti S, Ditzer N, Chong F, Albert M, Bonev B. Joint epigenome profiling reveals cell-type-specific gene regulatory programmes in human cortical organoids. Nat Cell Biol 2023; 25:1873-1883. [PMID: 37996647 PMCID: PMC10709149 DOI: 10.1038/s41556-023-01296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Gene expression is regulated by multiple epigenetic mechanisms, which are coordinated in development and disease. However, current multiomics methods are frequently limited to one or two modalities at a time, making it challenging to obtain a comprehensive gene regulatory signature. Here, we describe a method-3D genome, RNA, accessibility and methylation sequencing (3DRAM-seq)-that simultaneously interrogates spatial genome organization, chromatin accessibility and DNA methylation genome-wide and at high resolution. We combine 3DRAM-seq with immunoFACS and RNA sequencing in cortical organoids to map the cell-type-specific regulatory landscape of human neural development across multiple epigenetic layers. Finally, we apply a massively parallel reporter assay to profile cell-type-specific enhancer activity in organoids and to functionally assess the role of key transcription factors for human enhancer activation and function. More broadly, 3DRAM-seq can be used to profile the multimodal epigenetic landscape in rare cell types and different tissues.
Collapse
Affiliation(s)
- Florian Noack
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Silvia Vangelisti
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nora Ditzer
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Faye Chong
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
16
|
Capauto D, Wang Y, Wu F, Norton S, Mariani J, Inoue F, Crawford GE, Ahituv N, Abyzov A, Vaccarino FM. Characterization of enhancer activity in early human neurodevelopment using Massively parallel reporter assay (MPRA) and forebrain organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553170. [PMID: 37645832 PMCID: PMC10461976 DOI: 10.1101/2023.08.14.553170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~7,000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.
Collapse
Affiliation(s)
- Davide Capauto
- Child Study Center, Yale University, New Haven, CT 06520
| | - Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Feinan Wu
- Child Study Center, Yale University, New Haven, CT 06520
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University; Kyoto, Japan
| | | | | | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
17
|
Catta-Preta R, Lindtner S, Ypsilanti A, Price J, Abnousi A, Su-Feher L, Wang Y, Juric I, Jones IR, Akiyama JA, Hu M, Shen Y, Visel A, Pennacchio LA, Dickel D, Rubenstein JLR, Nord AS. Combinatorial transcription factor binding encodes cis-regulatory wiring of forebrain GABAergic neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546894. [PMID: 37425940 PMCID: PMC10327028 DOI: 10.1101/2023.06.28.546894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Transcription factors (TFs) bind combinatorially to genomic cis-regulatory elements (cREs), orchestrating transcription programs. While studies of chromatin state and chromosomal interactions have revealed dynamic neurodevelopmental cRE landscapes, parallel understanding of the underlying TF binding lags. To elucidate the combinatorial TF-cRE interactions driving mouse basal ganglia development, we integrated ChIP-seq for twelve TFs, H3K4me3-associated enhancer-promoter interactions, chromatin and transcriptional state, and transgenic enhancer assays. We identified TF-cREs modules with distinct chromatin features and enhancer activity that have complementary roles driving GABAergic neurogenesis and suppressing other developmental fates. While the majority of distal cREs were bound by one or two TFs, a small proportion were extensively bound, and these enhancers also exhibited exceptional evolutionary conservation, motif density, and complex chromosomal interactions. Our results provide new insights into how modules of combinatorial TF-cRE interactions activate and repress developmental expression programs and demonstrate the value of TF binding data in modeling gene regulatory wiring.
Collapse
Affiliation(s)
- Rinaldo Catta-Preta
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
- Current Address: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Athena Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James Price
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Current Address: NovaSignal, Los Angeles, CA 90064, USA
| | - Linda Su-Feher
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Yurong Wang
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Ian R Jones
- Institute for Human Genetics, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Yin Shen
- Institute for Human Genetics, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Diane Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alex S Nord
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
18
|
Zahm AM, Owens WS, Himes SR, Rondem KE, Fallon BS, Gormick AN, Bloom JS, Kosuri S, Chan H, English JG. Discovery and Validation of Context-Dependent Synthetic Mammalian Promoters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.539703. [PMID: 37214829 PMCID: PMC10197685 DOI: 10.1101/2023.05.11.539703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cellular transcription enables cells to adapt to various stimuli and maintain homeostasis. Transcription factors bind to transcription response elements (TREs) in gene promoters, initiating transcription. Synthetic promoters, derived from natural TREs, can be engineered to control exogenous gene expression using endogenous transcription machinery. This technology has found extensive use in biological research for applications including reporter gene assays, biomarker development, and programming synthetic circuits in living cells. However, a reliable and precise method for selecting minimally-sized synthetic promoters with desired background, amplitude, and stimulation response profiles has been elusive. In this study, we introduce a massively parallel reporter assay library containing 6184 synthetic promoters, each less than 250 bp in length. This comprehensive library allows for rapid identification of promoters with optimal transcriptional output parameters across multiple cell lines and stimuli. We showcase this library's utility to identify promoters activated in unique cell types, and in response to metabolites, mitogens, cellular toxins, and agonism of both aminergic and non-aminergic GPCRs. We further show these promoters can be used in luciferase reporter assays, eliciting 50-100 fold dynamic ranges in response to stimuli. Our platform is effective, easily implemented, and provides a solution for selecting short-length promoters with precise performance for a multitude of applications.
Collapse
Affiliation(s)
- Adam M. Zahm
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Samuel R. Himes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathleen E. Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Braden S. Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexa N. Gormick
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | - Justin G. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Chan YC, Kienle E, Oti M, Di Liddo A, Mendez-Lago M, Aschauer DF, Peter M, Pagani M, Arnold C, Vonderheit A, Schön C, Kreuz S, Stark A, Rumpel S. An unbiased AAV-STARR-seq screen revealing the enhancer activity map of genomic regions in the mouse brain in vivo. Sci Rep 2023; 13:6745. [PMID: 37185990 PMCID: PMC10130037 DOI: 10.1038/s41598-023-33448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Enhancers are important cis-regulatory elements controlling cell-type specific expression patterns of genes. Furthermore, combinations of enhancers and minimal promoters are utilized to construct small, artificial promoters for gene delivery vectors. Large-scale functional screening methodology to construct genomic maps of enhancer activities has been successfully established in cultured cell lines, however, not yet applied to terminally differentiated cells and tissues in a living animal. Here, we transposed the Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) technique to the mouse brain using adeno-associated-viruses (AAV) for the delivery of a highly complex screening library tiling entire genomic regions and covering in total 3 Mb of the mouse genome. We identified 483 sequences with enhancer activity, including sequences that were not predicted by DNA accessibility or histone marks. Characterizing the expression patterns of fluorescent reporters controlled by nine candidate sequences, we observed differential expression patterns also in sparse cell types. Together, our study provides an entry point for the unbiased study of enhancer activities in organisms during health and disease.
Collapse
Affiliation(s)
- Ya-Chien Chan
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Eike Kienle
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Oti
- Institute of Molecular Biology GmbH (IMB), Mainz, Germany
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riß, Germany
| | | | | | - Dominik F Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuel Peter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Cosmas Arnold
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | | | - Christian Schön
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riß, Germany
| | - Sebastian Kreuz
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riß, Germany
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
20
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
21
|
Khatoon H, Raza RZ, Saleem S, Batool F, Arshad S, Abrar M, Ali S, Hussain I, Shubin NH, Abbasi AA. Evolutionary relevance of single nucleotide variants within the forebrain exclusive human accelerated enhancer regions. BMC Mol Cell Biol 2023; 24:13. [PMID: 36991330 PMCID: PMC10053400 DOI: 10.1186/s12860-023-00474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and hs304 (midbrain/forebrain). By including data from archaic hominins, these SNVs were shown to be Homo sapiens-specific, residing within transcriptional factors binding sites (TFBSs) for SOX2 (hs1210), RUNX1/3 (hs563), and FOS/JUND (hs304). Although these findings suggest that the predicted modifications in TFBSs may have some role in present-day brain structure, work is required to verify the extent to which these changes translate into functional variation.
Results
To start to fill this gap, we investigate the SOX2 SNV, with both forebrain expression and strong signal of positive selection in humans. We demonstrate that the HMG box of SOX2 binds in vitro with Homo sapiens-specific derived A-allele and ancestral T-allele carrying DNA sites in BE-HAE hs1210. Molecular docking and simulation analysis indicated highly favourable binding of HMG box with derived A-allele containing DNA site when compared to site carrying ancestral T-allele.
Conclusion
These results suggest that adoptive changes in TF affinity within BE-HAE hs1210 and other HAR enhancers in the evolutionary history of Homo sapiens might.
have brought about changes in gene expression patterns and have functional consequences on forebrain formation and evolution.
Methods
The present study employ electrophoretic mobility shift assays (EMSA) and molecular docking and molecular dynamics simulations approaches.
Collapse
|
22
|
K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. Nat Genet 2022; 54:1865-1880. [PMID: 36471070 PMCID: PMC9742294 DOI: 10.1038/s41588-022-01205-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.
Collapse
|
23
|
Samara A, Spildrejorde M, Sharma A, Falck M, Leithaug M, Modafferi S, Bjørnstad PM, Acharya G, Gervin K, Lyle R, Eskeland R. A multi-omics approach to visualize early neuronal differentiation from hESCs in 4D. iScience 2022; 25:105279. [PMID: 36304110 PMCID: PMC9593815 DOI: 10.1016/j.isci.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.
Collapse
Affiliation(s)
- Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| | - Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Lu T, Ang CE, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 2022; 185:4448-4464.e17. [PMID: 36272405 PMCID: PMC9691621 DOI: 10.1016/j.cell.2022.09.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
The recent development of spatial omics methods has enabled single-cell profiling of the transcriptome and 3D genome organization with high spatial resolution. Expanding the repertoire of spatial omics tools, a spatially resolved single-cell epigenomics method will accelerate understanding of the spatial regulation of cell and tissue functions. Here, we report a method for spatially resolved epigenomic profiling of single cells using in situ tagmentation and transcription followed by multiplexed imaging. We demonstrated the ability to profile histone modifications marking active promoters, putative enhancers, and silent promoters in individual cells, and generated high-resolution spatial atlas of hundreds of active promoters and putative enhancers in embryonic and adult mouse brains. Our results suggested putative promoter-enhancer pairs and enhancer hubs regulating developmentally important genes. We envision this approach will be generally applicable to spatial profiling of epigenetic modifications and DNA-binding proteins, advancing our understanding of how gene expression is spatiotemporally regulated by the epigenome.
Collapse
Affiliation(s)
- Tian Lu
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Cheen Euong Ang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Ni P, Wilson D, Su Z. A map of cis-regulatory modules and constituent transcription factor binding sites in 80% of the mouse genome. BMC Genomics 2022; 23:714. [PMID: 36261804 PMCID: PMC9583556 DOI: 10.1186/s12864-022-08933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mouse is probably the most important model organism to study mammal biology and human diseases. A better understanding of the mouse genome will help understand the human genome, biology and diseases. However, despite the recent progress, the characterization of the regulatory sequences in the mouse genome is still far from complete, limiting its use to understand the regulatory sequences in the human genome. RESULTS Here, by integrating binding peaks in ~ 9,000 transcription factor (TF) ChIP-seq datasets that cover 79.9% of the mouse mappable genome using an efficient pipeline, we were able to partition these binding peak-covered genome regions into a cis-regulatory module (CRM) candidate (CRMC) set and a non-CRMC set. The CRMCs contain 912,197 putative CRMs and 38,554,729 TF binding sites (TFBSs) islands, covering 55.5% and 24.4% of the mappable genome, respectively. The CRMCs tend to be under strong evolutionary constraints, indicating that they are likely cis-regulatory; while the non-CRMCs are largely selectively neutral, indicating that they are unlikely cis-regulatory. Based on evolutionary profiles of the genome positions, we further estimated that 63.8% and 27.4% of the mouse genome might code for CRMs and TFBSs, respectively. CONCLUSIONS Validation using experimental data suggests that at least most of the CRMCs are authentic. Thus, this unprecedentedly comprehensive map of CRMs and TFBSs can be a good resource to guide experimental studies of regulatory genomes in mice and humans.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - David Wilson
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
26
|
Ni P, Moe J, Su Z. Accurate prediction of functional states of cis-regulatory modules reveals common epigenetic rules in humans and mice. BMC Biol 2022; 20:221. [PMID: 36199141 PMCID: PMC9535988 DOI: 10.1186/s12915-022-01426-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Predicting cis-regulatory modules (CRMs) in a genome and their functional states in various cell/tissue types of the organism are two related challenging computational tasks. Most current methods attempt to simultaneously achieve both using data of multiple epigenetic marks in a cell/tissue type. Though conceptually attractive, they suffer high false discovery rates and limited applications. To fill the gaps, we proposed a two-step strategy to first predict a map of CRMs in the genome, and then predict functional states of all the CRMs in various cell/tissue types of the organism. We have recently developed an algorithm for the first step that was able to more accurately and completely predict CRMs in a genome than existing methods by integrating numerous transcription factor ChIP-seq datasets in the organism. Here, we presented machine-learning methods for the second step. RESULTS We showed that functional states in a cell/tissue type of all the CRMs in the genome could be accurately predicted using data of only 1~4 epigenetic marks by a variety of machine-learning classifiers. Our predictions are substantially more accurate than the best achieved so far. Interestingly, a model trained on a cell/tissue type in humans can accurately predict functional states of CRMs in different cell/tissue types of humans as well as of mice, and vice versa. Therefore, epigenetic code that defines functional states of CRMs in various cell/tissue types is universal at least in humans and mice. Moreover, we found that from tens to hundreds of thousands of CRMs were active in a human and mouse cell/tissue type, and up to 99.98% of them were reutilized in different cell/tissue types, while as small as 0.02% of them were unique to a cell/tissue type that might define the cell/tissue type. CONCLUSIONS Our two-step approach can accurately predict functional states in any cell/tissue type of all the CRMs in the genome using data of only 1~4 epigenetic marks. Our approach is also more cost-effective than existing methods that typically use data of more epigenetic marks. Our results suggest common epigenetic rules for defining functional states of CRMs in various cell/tissue types in humans and mice.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Joshua Moe
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
27
|
Wang J, Wang A, Tian K, Hua X, Zhang B, Zheng Y, Kong X, Li W, Xu L, Wang J, Li Z, Liu Y, Zhou Y. A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the abundance of intermediate progenitors. Cell Discov 2022; 8:74. [PMID: 35915089 PMCID: PMC9343459 DOI: 10.1038/s41421-022-00421-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
β-catenin-dependent canonical Wnt signaling plays a plethora of roles in neocortex (Ncx) development, but its function in regulating the abundance of intermediate progenitors (IPs) is elusive. Here we identified neCtnnb1, an evolutionarily conserved cis-regulatory element with typical enhancer features in developing Ncx. neCtnnb1 locates 55 kilobase upstream of and spatially close to the promoter of Ctnnb1, the gene encoding β-catenin. CRISPR/Cas9-mediated activation or interference of the neCtnnb1 locus enhanced or inhibited transcription of Ctnnb1. neCtnnb1 drove transcription predominantly in the subventricular zone of developing Ncx. Knock-out of neCtnnb1 in mice resulted in compromised expression of Ctnnb1 and the Wnt reporter in developing Ncx. Importantly, knock-out of neCtnnb1 lead to reduced production and transit-amplification of IPs, which subsequently generated fewer upper-layer Ncx projection neurons (PNs). In contrast, enhancing the canonical Wnt signaling by stabilizing β-catenin in neCtnnb1-active cells promoted the production of IPs and upper-layer Ncx PNs. ASH2L was identified as the key trans-acting factor that associates with neCtnnb1 and Ctnnb1’s promoter to maintain Ctnnb1’s transcription in both mouse and human Ncx progenitors. These findings advance understanding of transcriptional regulation of Ctnnb1, and provide insights into mechanisms underlying Ncx expansion during development.
Collapse
Affiliation(s)
- Junbao Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Andi Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Kuan Tian
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Hua
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Yue Zheng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiangfei Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Wei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lichao Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Neurology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Ying Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
28
|
Bae T, Fasching L, Wang Y, Shin JH, Suvakov M, Jang Y, Norton S, Dias C, Mariani J, Jourdon A, Wu F, Panda A, Pattni R, Chahine Y, Yeh R, Roberts RC, Huttner A, Kleinman JE, Hyde TM, Straub RE, Walsh CA, Urban AE, Leckman JF, Weinberger DR, Vaccarino FM, Abyzov A. Analysis of somatic mutations in 131 human brains reveals aging-associated hypermutability. Science 2022; 377:511-517. [PMID: 35901164 PMCID: PMC9420557 DOI: 10.1126/science.abm6222] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions. Somatic duplications, likely arising during development, were found in ~5% of normal and diseased brains, reflecting background mutagenesis. Brains with autism were associated with mutations creating putative transcription factor binding motifs in enhancer-like regions in the developing brain. The top-ranked affected motifs corresponded to MEIS (myeloid ectopic viral integration site) transcription factors, suggesting a potential link between their involvement in gene regulation and autism.
Collapse
Affiliation(s)
- Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, CT 06520
| | - Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520
| | - Caroline Dias
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | | | | | - Feinan Wu
- Child Study Center, Yale University, New Haven, CT 06520
| | - Arijit Panda
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Yasmine Chahine
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Rebecca Yeh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham Al, 35294
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT 06520
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Richard E. Straub
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Christopher A. Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Alexander E. Urban
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520
- Department of Neuroscience, Yale University, New Haven, CT 06520
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
29
|
Ni P, Su Z. PCRMS: a database of predicted cis-regulatory modules and constituent transcription factor binding sites in genomes. Database (Oxford) 2022; 2022:6572594. [PMID: 35452518 PMCID: PMC9216522 DOI: 10.1093/database/baac024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 04/12/2022] [Indexed: 01/13/2023]
Abstract
More accurate and more complete predictions of cis-regulatory modules (CRMs) and constituent transcription factor (TF) binding sites (TFBSs) in genomes can facilitate characterizing functions of regulatory sequences. Here, we developed a database predicted cis-regulatory modules (PCRMS) (https://cci-bioinfo.uncc.edu) that stores highly accurate and unprecedentedly complete maps of predicted CRMs and TFBSs in the human and mouse genomes. The web interface allows the user to browse CRMs and TFBSs in an organism, find the closest CRMs to a gene, search CRMs around a gene and find all TFBSs of a TF. PCRMS can be a useful resource for the research community to characterize regulatory genomes. Database URL: https://cci-bioinfo.uncc.edu/.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
30
|
Single cell enhancer activity distinguishes GABAergic and cholinergic lineages in embryonic mouse basal ganglia. Proc Natl Acad Sci U S A 2022; 119:e2108760119. [PMID: 35377797 PMCID: PMC9169651 DOI: 10.1073/pnas.2108760119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During brain development, neurons are generated by spatially and temporally distinct processes that remain to be fully characterized. The ganglionic eminences (GEs) in the embryonic subpallium give rise to GABAergic and cholinergic neuron lineages that form the basal ganglia or migrate to the cerebral cortex. Beyond a limited set of canonical RNA markers, the transcriptional states of GE progenitors and immature neurons cells remain poorly defined. We combine enhancer labeling, single-cell transcriptomics using transcription factor-anchored clustering, and integration with in situ hybridization data to distinguish emerging neuronal populations in embryonic mouse basal ganglia. Our results demonstrate the specificity of enhancer-based labeling at single-cell resolution and reveal developmental origins and specification processes of critical neuronal lineages. Enhancers integrate transcription factor signaling pathways that drive cell fate specification in the developing brain. We paired enhancer labeling and single-cell RNA-sequencing (scRNA-seq) to delineate and distinguish specification of neuronal lineages in mouse medial, lateral, and caudal ganglionic eminences (MGE, LGE, and CGE) at embryonic day (E)11.5. We show that scRNA-seq clustering using transcription factors improves resolution of regional and developmental populations, and that enhancer activities identify specific and overlapping GE-derived neuronal populations. First, we mapped the activities of seven evolutionarily conserved brain enhancers at single-cell resolution in vivo, finding that the selected enhancers had diverse activities in specific progenitor and neuronal populations across the GEs. We then applied enhancer-based labeling, scRNA-seq, and analysis of in situ hybridization data to distinguish transcriptionally distinct and spatially defined subtypes of MGE-derived GABAergic and cholinergic projection neurons and interneurons. Our results map developmental origins and specification paths underlying neurogenesis in the embryonic basal ganglia and showcase the power of scRNA-seq combined with enhancer-based labeling to resolve the complex paths of neuronal specification underlying mouse brain development.
Collapse
|
31
|
Warren TL, Lambert JT, Nord AS. AAV Deployment of Enhancer-Based Expression Constructs In Vivo in Mouse Brain. J Vis Exp 2022:10.3791/62650. [PMID: 35435902 PMCID: PMC10010840 DOI: 10.3791/62650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Enhancers are binding platforms for a diverse array of transcription factors that drive specific expression patterns of tissue- and cell-type-specific genes. Multiple means of assessing non-coding DNA and various chromatin states have proven useful in predicting the presence of enhancer sequences in the genome, but validating the activity of these sequences and finding the organs and developmental stages they are active in is a labor-intensive process. Recent advances in adeno-associated virus (AAV) vectors have enabled the widespread delivery of transgenes to mouse tissues, enabling in vivo enhancer testing without necessitating a transgenic animal. This protocol shows how a reporter construct that expresses EGFP under the control of a minimal promoter, which does not drive significant expression on its own, can be used to study the activity patterns of candidate enhancer sequences in the mouse brain. An AAV-packaged reporter construct is delivered to the mouse brain and incubated for 1-4 weeks, after which the animal is sacrificed, and brain sections are observed under a microscope. EGFP appears in cells in which the tested enhancer is sufficient to initiate gene expression, pinpointing the location and developmental stage in which the enhancer is active in the brain. Standard cloning methods, low-cost AAV packaging, and expanding AAV serotypes and methods for in vivo delivery and standard imaging readout make this an accessible approach for the study of how gene expression is regulated in the brain.
Collapse
Affiliation(s)
- Tracy L Warren
- Department of Psychiatry and Behavioral Sciences, University of California, Davis; Department of Neurobiology, Physiology and Behavior, University of California, Davis
| | - Jason T Lambert
- Department of Psychiatry and Behavioral Sciences, University of California, Davis; Department of Neurobiology, Physiology and Behavior, University of California, Davis;
| | - Alex S Nord
- Department of Psychiatry and Behavioral Sciences, University of California, Davis; Department of Neurobiology, Physiology and Behavior, University of California, Davis;
| |
Collapse
|
32
|
Further Delineation of Duplications of ARX Locus Detected in Male Patients with Varying Degrees of Intellectual Disability. Int J Mol Sci 2022; 23:ijms23063084. [PMID: 35328505 PMCID: PMC8955779 DOI: 10.3390/ijms23063084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
The X-linked gene encoding aristaless-related homeobox (ARX) is a bi-functional transcription factor capable of activating or repressing gene transcription, whose mutations have been found in a wide spectrum of neurodevelopmental disorders (NDDs); these include cortical malformations, paediatric epilepsy, intellectual disability (ID) and autism. In addition to point mutations, duplications of the ARX locus have been detected in male patients with ID. These rearrangements include telencephalon ultraconserved enhancers, whose structural alterations can interfere with the control of ARX expression in the developing brain. Here, we review the structural features of 15 gain copy-number variants (CNVs) of the ARX locus found in patients presenting wide-ranging phenotypic variations including ID, speech delay, hypotonia and psychiatric abnormalities. We also report on a further novel Xp21.3 duplication detected in a male patient with moderate ID and carrying a fully duplicated copy of the ARX locus and the ultraconserved enhancers. As consequences of this rearrangement, the patient-derived lymphoblastoid cell line shows abnormal activity of the ARX-KDM5C-SYN1 regulatory axis. Moreover, the three-dimensional (3D) structure of the Arx locus, both in mouse embryonic stem cells and cortical neurons, provides new insight for the functional consequences of ARX duplications. Finally, by comparing the clinical features of the 16 CNVs affecting the ARX locus, we conclude that—depending on the involvement of tissue-specific enhancers—the ARX duplications are ID-associated risk CNVs with variable expressivity and penetrance.
Collapse
|
33
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
34
|
Su Z, Wang Z, Lindtner S, Yang L, Shang Z, Tian Y, Guo R, You Y, Zhou W, Rubenstein JL, Yang Z, Zhang Z. Dlx1/2-dependent expression of Meis2 promotes neuronal fate determination in the mammalian striatum. Development 2022; 149:dev200035. [PMID: 35156680 PMCID: PMC8918808 DOI: 10.1242/dev.200035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
The striatum is a central regulator of behavior and motor function through the actions of D1 and D2 medium-sized spiny neurons (MSNs), which arise from a common lateral ganglionic eminence (LGE) progenitor. The molecular mechanisms of cell fate specification of these two neuronal subtypes are incompletely understood. Here, we found that deletion of murine Meis2, which is highly expressed in the LGE and derivatives, led to a large reduction in striatal MSNs due to a block in their differentiation. Meis2 directly binds to the Zfp503 and Six3 promoters and is required for their expression and specification of D1 and D2 MSNs, respectively. Finally, Meis2 expression is regulated by Dlx1/2 at least partially through the enhancer hs599 in the LGE subventricular zone. Overall, our findings define a pathway in the LGE whereby Dlx1/2 drives expression of Meis2, which subsequently promotes the fate determination of striatal D1 and D2 MSNs via Zfp503 and Six3.
Collapse
Affiliation(s)
- Zihao Su
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Ziwu Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Susan Lindtner
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lin Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zicong Shang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yu Tian
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Rongliang Guo
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yan You
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - John L. Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhuangzhi Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| |
Collapse
|
35
|
Noack F, Vangelisti S, Raffl G, Carido M, Diwakar J, Chong F, Bonev B. Multimodal profiling of the transcriptional regulatory landscape of the developing mouse cortex identifies Neurog2 as a key epigenome remodeler. Nat Neurosci 2022; 25:154-167. [PMID: 35132236 PMCID: PMC8825286 DOI: 10.1038/s41593-021-01002-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
How multiple epigenetic layers and transcription factors (TFs) interact to facilitate brain development is largely unknown. Here, to systematically map the regulatory landscape of neural differentiation in the mouse neocortex, we profiled gene expression and chromatin accessibility in single cells and integrated these data with measurements of enhancer activity, DNA methylation and three-dimensional genome architecture in purified cell populations. This allowed us to identify thousands of new enhancers, their predicted target genes and the temporal relationships between enhancer activation, epigenome remodeling and gene expression. We characterize specific neuronal transcription factors associated with extensive and frequently coordinated changes across multiple epigenetic modalities. In addition, we functionally demonstrate a new role for Neurog2 in directly mediating enhancer activity, DNA demethylation, increasing chromatin accessibility and facilitating chromatin looping in vivo. Our work provides a global view of the gene regulatory logic of lineage specification in the cerebral cortex. By profiling multiple epigenetic layers and enhancer activity in vivo, the authors show a widespread remodeling of the regulatory landscape during mouse cortical development and identify Neurog2 as a key transcription factor driving this process.
Collapse
Affiliation(s)
- Florian Noack
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Silvia Vangelisti
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gerald Raffl
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Madalena Carido
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jeisimhan Diwakar
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Faye Chong
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany. .,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
36
|
Škorić-Milosavljević D, Tadros R, Bosada FM, Tessadori F, van Weerd JH, Woudstra OI, Tjong FV, Lahrouchi N, Bajolle F, Cordell HJ, Agopian A, Blue GM, Barge-Schaapveld DQ, Gewillig M, Preuss C, Lodder EM, Barnett P, Ilgun A, Beekman L, van Duijvenboden K, Bokenkamp R, Müller-Nurasyid M, Vliegen HW, Konings TC, van Melle JP, van Dijk AP, van Kimmenade RR, Roos-Hesselink JW, Sieswerda GT, Meijboom F, Abdul-Khaliq H, Berger F, Dittrich S, Hitz MP, Moosmann J, Riede FT, Schubert S, Galan P, Lathrop M, Munter HM, Al-Chalabi A, Shaw CE, Shaw PJ, Morrison KE, Veldink JH, van den Berg LH, Evans S, Nobrega MA, Aneas I, Radivojkov-Blagojević M, Meitinger T, Oechslin E, Mondal T, Bergin L, Smythe JF, Altamirano-Diaz L, Lougheed J, Bouma BJ, Chaix MA, Kline J, Bassett AS, Andelfinger G, van der Palen RL, Bouvagnet P, Clur SAB, Breckpot J, Kerstjens-Frederikse WS, Winlaw DS, Bauer UM, Mital S, Goldmuntz E, Keavney B, Bonnet D, Mulder BJ, Tanck MW, Bakkers J, Christoffels VM, Boogerd CJ, Postma AV, Bezzina CR. Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries. Circ Res 2022; 130:166-180. [PMID: 34886679 PMCID: PMC8768504 DOI: 10.1161/circresaha.120.317107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022]
Abstract
RATIONALE Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus.
Collapse
Affiliation(s)
- Doris Škorić-Milosavljević
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
- Department of Human Genetics, Amsterdam University Medical Centers, The Netherlands (D.S.-M., E.M.L., A.V.P.)
| | - Rafik Tadros
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada (R.T., M.-A.C.)
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (F.T., J.B., C.J.B.)
| | - Jan Hendrik van Weerd
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Odilia I. Woudstra
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
- Department of Cardiology, University Medical Center Utrecht, The Netherlands (O.I.W., G.T.S., F.M.)
| | - Fleur V.Y. Tjong
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Najim Lahrouchi
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Fanny Bajolle
- German Heart Center Berlin, Department of Congenital Heart Disease, Pediatric Cardiology, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (F.B., S.S.)
| | - Heather J. Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom (H.J.C.)
| | - A.J. Agopian
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX (A.J.A.)
| | - Gillian M. Blue
- Heart Centre for Children, The Children’s Hospital at Westmead and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Australia (G.M.B., D.S.W.)
| | | | | | - Christoph Preuss
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Québec, Canada (C.P., G.A.)
- The Jackson Laboratory, Bar Harbor, ME (C.P.)
| | - Elisabeth M. Lodder
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
- Department of Human Genetics, Amsterdam University Medical Centers, The Netherlands (D.S.-M., E.M.L., A.V.P.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Aho Ilgun
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Leander Beekman
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Regina Bokenkamp
- Division of Pediatric Cardiology, Department of Pediatrics (R.B., R.L.F.v.d.P.), Leiden University Medical Center, The Netherlands
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany (M.M.-N.)
- IBE, Faculty of Medicine, LMU Munich, Germany (M.M.-N.)
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.M.-N.)
| | - Hubert W. Vliegen
- Department of Cardiology (H.W.V.), Leiden University Medical Center, The Netherlands
| | - Thelma C. Konings
- Department of Cardiology, Amsterdam University Medical Centers, VU Amsterdam, The Netherlands (T.C.K.)
| | - Joost P. van Melle
- Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands (J.P.v.M.)
| | - Arie P.J. van Dijk
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.P.J.v.D., R.R.J.v.K.)
| | - Roland R.J. van Kimmenade
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.P.J.v.D., R.R.J.v.K.)
- Department of Cardiology, Maastricht University Medical Center, The Netherlands (R.R.J.v.K.)
| | - Jolien W. Roos-Hesselink
- Department of Cardiology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands (J.W.R.-H.)
| | - Gertjan T. Sieswerda
- Department of Cardiology, University Medical Center Utrecht, The Netherlands (O.I.W., G.T.S., F.M.)
| | - Folkert Meijboom
- Department of Cardiology, University Medical Center Utrecht, The Netherlands (O.I.W., G.T.S., F.M.)
| | - Hashim Abdul-Khaliq
- Saarland University Medical Center, Department of Pediatric Cardiology, Homburg, Germany (H.A.-K.)
| | - Felix Berger
- Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, Centre de référence Malformations Cardiaques Congénitales Complexes - M3C, Hôpital Necker Enfants Malades, APHP and Université Paris Descartes, Sorbonne Paris Cité, Paris, France (F.B., D.B.)
- Charité, Universitätsmedizin Berlin, Department for Paediatric Cardiology, Germany (F.B.)
| | - Sven Dittrich
- Department of Pediatric Cardiology, Friedrich-Alexander-University of Erlangen-Nuernberg (FAU), Germany (S.D., J.M.)
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein/Campus Kiel, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (M.-P.H.)
- Department of Human Genetics, University Medical Center Schleswig-Holstein, Kiel, Germany (M.-P.H.)
| | - Julia Moosmann
- Department of Pediatric Cardiology, Friedrich-Alexander-University of Erlangen-Nuernberg (FAU), Germany (S.D., J.M.)
| | - Frank-Thomas Riede
- Leipzig Heart Center, Department of Pediatric Cardiology, University of Leipzig, Germany (F.-T.R.)
| | - Stephan Schubert
- German Heart Center Berlin, Department of Congenital Heart Disease, Pediatric Cardiology, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (F.B., S.S.)
- Heart and Diabetes Center NRW, Center of Congenital Heart Disease, Ruhr-University of Bochum, Bad Oeynhausen, Germany (S.S.)
| | - Pilar Galan
- Sorbonne Paris Nord (Paris 13) University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center – University of Paris (CRESS), Bobigny, France (P.G.)
| | - Mark Lathrop
- McGill Genome Centre and Department of Human Genetics, McGill University, Montreal, Québec, Canada (M.L., H.M.M.)
| | - Hans M. Munter
- McGill Genome Centre and Department of Human Genetics, McGill University, Montreal, Québec, Canada (M.L., H.M.M.)
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King’s College London, United Kingdom (A.A.-C.)
| | - Christopher E. Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom (C.E.S.)
- Centre for Brain Research, University of Auckland, New Zealand (C.E.S.)
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield and NIHR Sheffield Biomedical Research Centre for Translational Neuroscience, United Kingdom (P.J.S.)
| | - Karen E. Morrison
- Faculty of Medicine Health & Life Sciences, Queens University Belfast, United Kingdom (K.E.M.)
| | - Jan H. Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands (J.H.V., L.H.v.d.B.)
| | - Leonard H. van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands (J.H.V., L.H.v.d.B.)
| | - Sylvia Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (S.E.)
| | | | - Ivy Aneas
- Department of Human Genetics, University of Chicago, IL (M.A.N., I.A.)
| | | | - Thomas Meitinger
- Helmholtz Zentrum Munich, Institut of Human Genetics, Neuherberg, Germany (M.R.-B., T.M.)
- Division of Cardiology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada (T.M.)
| | - Erwin Oechslin
- Peter Munk Cardiac Center, Toronto Congenital Cardiac Centre for Adults and University of Toronto, Canada (E.O.)
| | - Tapas Mondal
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.M.)
| | - Lynn Bergin
- Division of Cardiology, Department of Medicine, London Health Sciences Centre, ON, Canada (L.B.)
| | - John F. Smythe
- Division of Cardiology, Department of Pediatrics, Kingston General Hospital, ON, Canada (J.F.S.)
| | | | - Jane Lougheed
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Canada (J.L.)
| | - Berto J. Bouma
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Marie-A. Chaix
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada (R.T., M.-A.C.)
| | - Jennie Kline
- Department of Epidemiology, Mailman School of Public Health, Columbia University, NY (J.K.)
| | - Anne S. Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health (A.S.B.)
- Department of Psychiatry, University of Toronto, Toronto General Hospital, University Health Network, Ontario, Canada (A.S.B.)
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Québec, Canada (C.P., G.A.)
| | - Roel L.F. van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics (R.B., R.L.F.v.d.P.), Leiden University Medical Center, The Netherlands
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU Martinique, Fort de France, Martinique, France (P.B.)
| | - Sally-Ann B. Clur
- Department of Pediatric Cardiology, Emma Children’s Hospital Amsterdam University Medical Centers (AMC), The Netherlands (S.-A.B.C.)
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL) (S.-A.B.C.)
| | - Jeroen Breckpot
- Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (F.T., J.B., C.J.B.)
- Center for Human Genetics University Hospitals KU Leuven, Belgium (J.B.)
| | | | - David S. Winlaw
- Heart Centre for Children, The Children’s Hospital at Westmead and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Australia (G.M.B., D.S.W.)
| | - Ulrike M.M. Bauer
- National Register for Congenital Heart Defects, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (U.M.M.B.)
| | - Seema Mital
- Hospital for Sick Children, University of Toronto, Ontario, Canada (S.M.)
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (E.G.)
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, United Kingdom (B.K.)
| | - Damien Bonnet
- Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, Centre de référence Malformations Cardiaques Congénitales Complexes - M3C, Hôpital Necker Enfants Malades, APHP and Université Paris Descartes, Sorbonne Paris Cité, Paris, France (F.B., D.B.)
| | - Barbara J. Mulder
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Michael W.T. Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health (APH), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands (M.W.T.T.)
| | - Jeroen Bakkers
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, the Netherlands (J.B.)
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Cornelis J. Boogerd
- Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (F.T., J.B., C.J.B.)
| | - Alex V. Postma
- Department of Human Genetics, Amsterdam University Medical Centers, The Netherlands (D.S.-M., E.M.L., A.V.P.)
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Connie R. Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| |
Collapse
|
37
|
Closser M, Guo Y, Wang P, Patel T, Jang S, Hammelman J, De Nooij JC, Kopunova R, Mazzoni EO, Ruan Y, Gifford DK, Wichterle H. An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity. Neuron 2022; 110:70-85.e6. [PMID: 34727520 PMCID: PMC8738133 DOI: 10.1016/j.neuron.2021.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
Proper assembly and function of the nervous system requires the generation of a uniquely diverse population of neurons expressing a cell-type-specific combination of effector genes that collectively define neuronal morphology, connectivity, and function. How countless partially overlapping but cell-type-specific patterns of gene expression are controlled at the genomic level remains poorly understood. Here we show that neuronal genes are associated with highly complex gene regulatory systems composed of independent cell-type- and cell-stage-specific regulatory elements that reside in expanded non-coding genomic domains. Mapping enhancer-promoter interactions revealed that motor neuron enhancers are broadly distributed across the large chromatin domains. This distributed regulatory architecture is not a unique property of motor neurons but is employed throughout the nervous system. The number of regulatory elements increased dramatically during the transition from invertebrates to vertebrates, suggesting that acquisition of new enhancers might be a fundamental process underlying the evolutionary increase in cellular complexity.
Collapse
Affiliation(s)
- Michael Closser
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Ping Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Tulsi Patel
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sumin Jang
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jennifer Hammelman
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Joriene C De Nooij
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rachel Kopunova
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
38
|
Osterwalder M, Tran S, Hunter RD, Meky EM, von Maydell K, Harrington AN, Godoy J, Novak CS, Plajzer-Frick I, Zhu Y, Akiyama JA, Afzal V, Kvon EZ, Pennacchio LA, Dickel DE, Visel A. Characterization of Mammalian In Vivo Enhancers Using Mouse Transgenesis and CRISPR Genome Editing. Methods Mol Biol 2022; 2403:147-186. [PMID: 34913122 DOI: 10.1007/978-1-0716-1847-9_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Embryonic morphogenesis is strictly dependent on tight spatiotemporal control of developmental gene expression, which is typically achieved through the concerted activity of multiple enhancers driving cell type-specific expression of a target gene. Mammalian genomes are organized in topologically associated domains, providing a preferred environment and framework for interactions between transcriptional enhancers and gene promoters. While epigenomic profiling and three-dimensional chromatin conformation capture have significantly increased the accuracy of identifying enhancers, assessment of subregional enhancer activities via transgenic reporter assays in mice remains the gold standard for assigning enhancer activity in vivo. Once this activity is defined, the ideal method to explore the functional necessity of a transcriptional enhancer and its contribution to target gene dosage and morphological or physiological processes is deletion of the enhancer sequence from the mouse genome. Here we present detailed protocols for efficient introduction of enhancer-reporter transgenes and CRISPR-mediated genomic deletions into the mouse genome, including a step-by-step guide for pronuclear microinjection of fertilized mouse eggs. We provide instructions for the assembly and genomic integration of enhancer-reporter cassettes that have been used for validation of thousands of putative enhancer sequences accessible through the VISTA enhancer browser, including a recently published method for robust site-directed transgenesis at the H11 safe-harbor locus. Together, these methods enable rapid and large-scale assessment of enhancer activities and sequence variants in mice, which is essential to understand mammalian genome function and genetic diseases.
Collapse
Affiliation(s)
- Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eman M Meky
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kianna von Maydell
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anne N Harrington
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janeth Godoy
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yiwen Zhu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Veena Afzal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Evgeny Z Kvon
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| |
Collapse
|
39
|
Profile of John L. R. Rubenstein. Proc Natl Acad Sci U S A 2021; 118:2120493118. [PMID: 34934007 DOI: 10.1073/pnas.2120493118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Ypsilanti AR, Pattabiraman K, Catta-Preta R, Golonzhka O, Lindtner S, Tang K, Jones IR, Abnousi A, Juric I, Hu M, Shen Y, Dickel DE, Visel A, Pennachio LA, Hawrylycz M, Thompson CL, Zeng H, Barozzi I, Nord AS, Rubenstein JL. Transcriptional network orchestrating regional patterning of cortical progenitors. Proc Natl Acad Sci U S A 2021; 118:e2024795118. [PMID: 34921112 PMCID: PMC8713794 DOI: 10.1073/pnas.2024795118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer-gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse.
Collapse
Affiliation(s)
- Athéna R Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158;
| | - Kartik Pattabiraman
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Rinaldo Catta-Preta
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95618
| | - Olga Golonzhka
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ian R Jones
- Institute for Human Genetics, University of California, San Francisco, CA 94143
- Department of Neurology, University of California, San Francisco, CA 94143
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, CA 94143
- Department of Neurology, University of California, San Francisco, CA 94143
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- School of Natural Sciences, University of California, Merced, CA 95343
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720
| | - Len A Pennachio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720
| | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Iros Barozzi
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London SW7 2AZ, United Kingdom
| | - Alex S Nord
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95618
| | - John L Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158;
| |
Collapse
|
41
|
Nano PR, Nguyen CV, Mil J, Bhaduri A. Cortical Cartography: Mapping Arealization Using Single-Cell Omics Technology. Front Neural Circuits 2021; 15:788560. [PMID: 34955761 PMCID: PMC8707733 DOI: 10.3389/fncir.2021.788560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
The cerebral cortex derives its cognitive power from a modular network of specialized areas processing a multitude of information. The assembly and organization of these regions is vital for human behavior and perception, as evidenced by the prevalence of area-specific phenotypes that manifest in neurodevelopmental and psychiatric disorders. Generations of scientists have examined the architecture of the human cortex, but efforts to capture the gene networks which drive arealization have been hampered by the lack of tractable models of human neurodevelopment. Advancements in "omics" technologies, imaging, and computational power have enabled exciting breakthroughs into the molecular and structural characteristics of cortical areas, including transcriptomic, epigenomic, metabolomic, and proteomic profiles of mammalian models. Here we review the single-omics atlases that have shaped our current understanding of cortical areas, and their potential to fuel a new era of multi-omic single-cell endeavors to interrogate both the developing and adult human cortex.
Collapse
Affiliation(s)
| | | | | | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
42
|
Ziffra RS, Kim CN, Ross JM, Wilfert A, Turner TN, Haeussler M, Casella AM, Przytycki PF, Keough KC, Shin D, Bogdanoff D, Kreimer A, Pollard KS, Ament SA, Eichler EE, Ahituv N, Nowakowski TJ. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 2021; 598:205-213. [PMID: 34616060 PMCID: PMC8494642 DOI: 10.1038/s41586-021-03209-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
During mammalian development, differences in chromatin state coincide with cellular differentiation and reflect changes in the gene regulatory landscape1. In the developing brain, cell fate specification and topographic identity are important for defining cell identity2 and confer selective vulnerabilities to neurodevelopmental disorders3. Here, to identify cell-type-specific chromatin accessibility patterns in the developing human brain, we used a single-cell assay for transposase accessibility by sequencing (scATAC-seq) in primary tissue samples from the human forebrain. We applied unbiased analyses to identify genomic loci that undergo extensive cell-type- and brain-region-specific changes in accessibility during neurogenesis, and an integrative analysis to predict cell-type-specific candidate regulatory elements. We found that cerebral organoids recapitulate most putative cell-type-specific enhancer accessibility patterns but lack many cell-type-specific open chromatin regions that are found in vivo. Systematic comparison of chromatin accessibility across brain regions revealed unexpected diversity among neural progenitor cells in the cerebral cortex and implicated retinoic acid signalling in the specification of neuronal lineage identity in the prefrontal cortex. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.
Collapse
Affiliation(s)
- Ryan S Ziffra
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Jayden M Ross
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Wilfert
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Alex M Casella
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Kathleen C Keough
- Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- University of California, San Francisco, San Francisco, CA, USA
| | - David Shin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Derek Bogdanoff
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Anat Kreimer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
43
|
Niu X, Deng K, Liu L, Yang K, Hu X. A statistical framework for predicting critical regions of p53-dependent enhancers. Brief Bioinform 2021; 22:bbaa053. [PMID: 32392580 PMCID: PMC8138796 DOI: 10.1093/bib/bbaa053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
P53 is the 'guardian of the genome' and is responsible for regulating cell cycle and apoptosis. The genomic p53 binding regions, where activating transcriptional factors and cofactors like p300 simultaneously bind, are called 'p53-dependent enhancers', which play an important role in tumorigenesis. Current experimental assays generally provide a broad peak of each enhancer element, leaving our knowledge about critical enhancer regions (CERs) limited. Under the inspiration of enhancer dissection by CRISPR-Cas9 screen library on genome-wide p53 binding sites, here we introduce a statistical framework called 'Computational CRISPR Strategy' (CCS), to predict whether a given DNA fragment will be a p53-dependent CER by employing 7-mer as feature extractions along with random forest as the regressor. When training on a p53 CRISPR enhancer dataset, CCS not only accurately fitted the top-ranked enriched single guide RNAs (sgRNAs) but also successfully reproduced two known CERs that were validated by experiments. When applying it to an independent testing dataset on a tilling of a 2K-b genomic region of CRISPR-deCDKN1A-Lib, the trained model shows great generalizability by identifying a CER containing five top-ranked sgRNAs. A feature importance analysis further indicates that top-ranked 7-mers are mapped onto informative TF motifs including POU5F1 and SOX5, which are differentially enriched in p53-dependent CERs and are potential factors to make a general p53 binding site to form a p53-dependent CER, providing the interpretability of the trained model. Our results demonstrate that CCS is an alternative way of the CRISPR experiment to screen the genome for mapping p53-dependent CERs.
Collapse
Affiliation(s)
| | | | | | | | - Xuehai Hu
- Corresponding author: Xuehai Hu, College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China. Tel.: +86-18171282783; Fax: +86-27-87288509; E-mail:
| |
Collapse
|
44
|
Vasistha NA, Khodosevich K. The impact of (ab)normal maternal environment on cortical development. Prog Neurobiol 2021; 202:102054. [PMID: 33905709 DOI: 10.1016/j.pneurobio.2021.102054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
45
|
Functional and structural basis of extreme conservation in vertebrate 5' untranslated regions. Nat Genet 2021; 53:729-741. [PMID: 33821006 PMCID: PMC8825242 DOI: 10.1038/s41588-021-00830-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023]
Abstract
The lack of knowledge about extreme conservation in genomes remains a major gap in our understanding of the evolution of gene regulation. Here, we reveal an unexpected role of extremely conserved 5' untranslated regions (UTRs) in noncanonical translational regulation that is linked to the emergence of essential developmental features in vertebrate species. Endogenous deletion of conserved elements within these 5' UTRs decreased gene expression, and extremely conserved 5' UTRs possess cis-regulatory elements that promote cell-type-specific regulation of translation. We further developed in-cell mutate-and-map (icM2), a new methodology that maps RNA structure inside cells. Using icM2, we determined that an extremely conserved 5' UTR encodes multiple alternative structures and that each single nucleotide within the conserved element maintains the balance of alternative structures important to control the dynamic range of protein expression. These results explain how extreme sequence conservation can lead to RNA-level biological functions encoded in the untranslated regions of vertebrate genomes.
Collapse
|
46
|
Mich JK, Graybuck LT, Hess EE, Mahoney JT, Kojima Y, Ding Y, Somasundaram S, Miller JA, Kalmbach BE, Radaelli C, Gore BB, Weed N, Omstead V, Bishaw Y, Shapovalova NV, Martinez RA, Fong O, Yao S, Mortrud M, Chong P, Loftus L, Bertagnolli D, Goldy J, Casper T, Dee N, Opitz-Araya X, Cetin A, Smith KA, Gwinn RP, Cobbs C, Ko AL, Ojemann JG, Keene CD, Silbergeld DL, Sunkin SM, Gradinaru V, Horwitz GD, Zeng H, Tasic B, Lein ES, Ting JT, Levi BP. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep 2021; 34:108754. [PMID: 33789096 PMCID: PMC8163032 DOI: 10.1016/j.celrep.2021.108754] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Viral genetic tools that target specific brain cell types could transform basic neuroscience and targeted gene therapy. Here, we use comparative open chromatin analysis to identify thousands of human-neocortical-subclass-specific putative enhancers from across the genome to control gene expression in adeno-associated virus (AAV) vectors. The cellular specificity of reporter expression from enhancer-AAVs is established by molecular profiling after systemic AAV delivery in mouse. Over 30% of enhancer-AAVs produce specific expression in the targeted subclass, including both excitatory and inhibitory subclasses. We present a collection of Parvalbumin (PVALB) enhancer-AAVs that show highly enriched expression not only in cortical PVALB cells but also in some subcortical PVALB populations. Five vectors maintain PVALB-enriched expression in primate neocortex. These results demonstrate how genome-wide open chromatin data mining and cross-species AAV validation can be used to create the next generation of non-species-restricted viral genetic tools.
Collapse
Affiliation(s)
- John K Mich
- Allen Institute for Brain Science, Seattle, WA, USA.
| | | | - Erik E Hess
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Yoshiko Kojima
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Brian E Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Bryan B Gore
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Natalie Weed
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Peter Chong
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Luke Loftus
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Ali Cetin
- Department of Biology and Applied Physics, Stanford University, Stanford, CA, USA
| | | | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Charles Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Andrew L Ko
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA; Regional Epilepsy Center, Harborview Medical Center, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA; Regional Epilepsy Center, Harborview Medical Center, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Daniel L Silbergeld
- Department of Neurological Surgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
| | | | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gregory D Horwitz
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA; Regional Epilepsy Center, Harborview Medical Center, Seattle, WA, USA
| | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
47
|
Singh G, Mullany S, Moorthy SD, Zhang R, Mehdi T, Tian R, Duncan AG, Moses AM, Mitchell JA. A flexible repertoire of transcription factor binding sites and a diversity threshold determines enhancer activity in embryonic stem cells. Genome Res 2021; 31:564-575. [PMID: 33712417 PMCID: PMC8015845 DOI: 10.1101/gr.272468.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/19/2021] [Indexed: 12/28/2022]
Abstract
Transcriptional enhancers are critical for development and phenotype evolution and are often mutated in disease contexts; however, even in well-studied cell types, the sequence code conferring enhancer activity remains unknown. To examine the enhancer regulatory code for pluripotent stem cells, we identified genomic regions with conserved binding of multiple transcription factors in mouse and human embryonic stem cells (ESCs). Examination of these regions revealed that they contain on average 12.6 conserved transcription factor binding site (TFBS) sequences. Enriched TFBSs are a diverse repertoire of 70 different sequences representing the binding sequences of both known and novel ESC regulators. Using a diverse set of TFBSs from this repertoire was sufficient to construct short synthetic enhancers with activity comparable to native enhancers. Site-directed mutagenesis of conserved TFBSs in endogenous enhancers or TFBS deletion from synthetic sequences revealed a requirement for 10 or more different TFBSs. Furthermore, specific TFBSs, including the POU5F1:SOX2 comotif, are dispensable, despite cobinding the POU5F1 (also known as OCT4), SOX2, and NANOG master regulators of pluripotency. These findings reveal that a TFBS sequence diversity threshold overrides the need for optimized regulatory grammar and individual TFBSs that recruit specific master regulators.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Shanelle Mullany
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Richard Zhang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Tahmid Mehdi
- Department of Computer Science, University of Toronto, Toronto, M5S 2E4, Canada
| | - Ruxiao Tian
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Andrew G Duncan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Department of Computer Science, University of Toronto, Toronto, M5S 2E4, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B3, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| |
Collapse
|
48
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Alonso-Gonzalez A, Calaza M, Amigo J, González-Peñas J, Martínez-Regueiro R, Fernández-Prieto M, Parellada M, Arango C, Rodriguez-Fontenla C, Carracedo A. Exploring the biological role of postzygotic and germinal de novo mutations in ASD. Sci Rep 2021; 11:319. [PMID: 33431980 PMCID: PMC7801448 DOI: 10.1038/s41598-020-79412-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
De novo mutations (DNMs), including germinal and postzygotic mutations (PZMs), are a strong source of causality for Autism Spectrum Disorder (ASD). However, the biological processes involved behind them remain unexplored. Our aim was to detect DNMs (germinal and PZMs) in a Spanish ASD cohort (360 trios) and to explore their role across different biological hierarchies (gene, biological pathway, cell and brain areas) using bioinformatic approaches. For the majority of the analysis, a combined ASD cohort (N = 2171 trios) was created using previously published data by the Autism Sequencing Consortium (ASC). New plausible candidate genes for ASD such as FMR1 and NFIA were found. In addition, genes harboring PZMs were significantly enriched for miR-137 targets in comparison with germinal DNMs that were enriched in GO terms related to synaptic transmission. The expression pattern of genes with PZMs was restricted to early mid-fetal cortex. In contrast, the analysis of genes with germinal DNMs revealed a spatio-temporal window from early to mid-fetal development stages, with expression in the amygdala, cerebellum, cortex and striatum. These results provide evidence of the pathogenic role of PZMs and suggest the existence of distinct mechanisms between PZMs and germinal DNMs that are influencing ASD risk.
Collapse
Affiliation(s)
- A Alonso-Gonzalez
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - M Calaza
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - J Amigo
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - J González-Peñas
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - R Martínez-Regueiro
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - M Fernández-Prieto
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - M Parellada
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - C Arango
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Cristina Rodriguez-Fontenla
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain.
| | - A Carracedo
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica (FPGMX), Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
50
|
Lambert JT, Su-Feher L, Cichewicz K, Warren TL, Zdilar I, Wang Y, Lim KJ, Haigh JL, Morse SJ, Canales CP, Stradleigh TW, Castillo Palacios E, Haghani V, Moss SD, Parolini H, Quintero D, Shrestha D, Vogt D, Byrne LC, Nord AS. Parallel functional testing identifies enhancers active in early postnatal mouse brain. eLife 2021; 10:69479. [PMID: 34605404 PMCID: PMC8577842 DOI: 10.7554/elife.69479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/02/2021] [Indexed: 01/07/2023] Open
Abstract
Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.
Collapse
Affiliation(s)
- Jason T Lambert
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Linda Su-Feher
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Tracy L Warren
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Iva Zdilar
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Yurong Wang
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Kenneth J Lim
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Jessica L Haigh
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Sarah J Morse
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Tyler W Stradleigh
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Erika Castillo Palacios
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Viktoria Haghani
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Spencer D Moss
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Hannah Parolini
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Diana Quintero
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Diwash Shrestha
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Grand Rapids Research Center, Michigan State UniversityGrand RapidsUnited States
| | - Leah C Byrne
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States,Departments of Ophthalmology and Neurobiology, University of PittsburghPittsburghUnited States
| | - Alex S Nord
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| |
Collapse
|