1
|
Fagan KJ, Chillon G, Carrell EM, Waxman EA, Davidson BL. Cas9 editing of ATXN1 in a spinocerebellar ataxia type 1 mice and human iPSC-derived neurons. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102317. [PMID: 39314800 PMCID: PMC11417534 DOI: 10.1016/j.omtn.2024.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by an expansion of the CAG repeat region of the ATXN1 gene. Currently there are no disease-modifying treatments; however, previous work has shown the potential of gene therapy, specifically RNAi, as a potential modality. Cas9 editing offers potential for these patients but has yet to be evaluated in SCA1 models. To test this, we first characterized the number of transgenes harbored in the common B05 mouse model of SCA1. Despite having five copies of the human mutant transgene, a 20% reduction of ATXN1 improved behavior deficits without increases in inflammatory markers. Importantly, the editing approach was confirmed in induced pluripotent stem cell (iPSC) neurons derived from patients with SCA1, promoting the translatability of the approach to patients.
Collapse
Affiliation(s)
- Kelly J. Fagan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillem Chillon
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Bioengineering Graduate Program, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisa A. Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102344. [PMID: 39494147 PMCID: PMC11531618 DOI: 10.1016/j.omtn.2024.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
CRISPR-Cas9-mediated homology-directed repair (HDR) is a versatile platform for creating precise site-specific DNA insertions, deletions, and substitutions. These precise edits are made possible through the use of exogenous donor templates that carry the desired sequence. CRISPR-Cas9-mediated HDR can be widely used to study protein functions, disease modeling, and gene therapy. However, HDR is limited by its low efficiency, especially in postmitotic cells. Here, we review CRISPR-Cas9-mediated HDR, with a focus on methodologies for boosting HDR efficiency, and applications of precise editing via HDR. First, we describe two common mechanisms of DNA repair, non-homologous end joining (NHEJ), and HDR, and discuss their impact on CRISPR-Cas9-mediated precise genome editing. Second, we discuss approaches for improving HDR efficiency through inhibition of the NHEJ pathway, activation of the HDR pathway, modification of donor templates, and delivery of Cas9/sgRNA reagents. Third, we summarize the applications of HDR for protein labeling in functional studies, disease modeling, and ex vivo and in vivo gene therapies. Finally, we discuss alternative precise editing platforms and their limitations, and describe potential avenues to improving CRISPR-Cas9-mediated HDR efficiency and fidelity in future research.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Jiahao Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| |
Collapse
|
3
|
Koo J, Seong CS, Parker RE, Herrera A, Dwivedi B, Arthur RA, Dinasarapu AR, Johnston HR, Claussen H, Tucker-Burden C, Ramalingam SS, Fu H, Zhou W, Marcus AI, Gilbert-Ross M. Live-Cell Invasive Phenotyping Uncovers ALK2 as a Therapeutic Target in LKB1-Mutant Lung Cancer. Cancer Res 2024; 84:3761-3771. [PMID: 39207369 DOI: 10.1158/0008-5472.can-23-2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/26/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that contribute to unique growth properties and therapeutic susceptibilities. Despite this, preclinical strategies designed to exploit growth within the context of invasion are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early 3D invasion phenotypes in different molecular subtypes of KRAS-driven lung adenocarcinoma. Combined live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix and transcriptomic profiling identified mutant LKB1-specific upregulation of BMP6. LKB1 loss increased BMP6 signaling, which induced the canonical iron regulatory hormone hepcidin. Intact LKB1 was necessary to maintain BMP6 signaling homeostasis and restrict ALK2/BMP6-fueled growth. Preclinical studies in a Kras/Lkb1-mutant syngeneic mouse model and in a xenograft model showed potent growth suppression by inhibiting the ALK2/BMP6 signaling axis with single-agent inhibitors that are currently in clinical trials. Lastly, BMP6 expression was elevated in tumors of patients with LKB1-mutant early-stage lung cancer. These results are consistent with those of a model in which LKB1 acts as a "brake" to iron-regulated growth and suggest that ALK2 inhibition can be used for patients with LKB1-mutant tumors. Significance: Three-dimensional invasion-linked gene expression analysis reveals a therapeutic vulnerability to inhibition of ALK2/BMP6 signaling in LKB1-mutant lung cancer that can be rapidly translated to the clinic.
Collapse
Affiliation(s)
- Junghui Koo
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Chang-Soo Seong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Rebecca E Parker
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Cancer Biology Graduate Program, Emory University, Atlanta, Georgia
| | - Amy Herrera
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Bhakti Dwivedi
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, Georgia
| | | | - Henry Richard Johnston
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, Georgia
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, Georgia
| | - Carol Tucker-Burden
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Haian Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Raynor JL, Collins N, Shi H, Guy C, Saravia J, Ah Lim S, Chapman NM, Zhou P, Wang Y, Sun Y, Risch I, Hu H, Kc A, Sun R, Shrestha S, Huang H, Connelly JP, Pruett-Miller SM, Reina-Campos M, Goldrath AW, Belkaid Y, Chi H. CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8 + T cell formation. Immunity 2024; 57:2597-2614.e13. [PMID: 39406246 DOI: 10.1016/j.immuni.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/06/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes-Flcn, Ragulator, and Rag GTPases-inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yan Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Isabel Risch
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haoran Hu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renqiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA; La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
5
|
Shi Y, Mirabdali S, Vetter SW, Guo A. Junctophilin-2 is a double-stranded RNA-binding protein that regulates cardiomyocyte-autonomous innate immune response. Biochem Biophys Res Commun 2024; 733:150725. [PMID: 39317111 PMCID: PMC11530139 DOI: 10.1016/j.bbrc.2024.150725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Junctophilin-2 (JPH2) is traditionally recognized as a cardiomyocyte-enriched structural protein that anchors the junction between the plasma membrane and the endo/sarcoplasmic reticulum, facilitating excitation-induced cardiac contraction. In this study, we uncover a novel function of JPH2 as a double-stranded RNA (dsRNA)-binding protein, which forms complexes with dsRNA both in vitro and in cells. Stimulation by cytosolic dsRNA enhances the interaction of JPH2 with the dsRNA sensor MDA5. Notably, JPH2 inhibits MDA5's binding to its dsRNA ligand, likely by sequestering the dsRNA. Silencing JPH2 in cardiomyocytes increased the interaction between MDA5 and its dsRNA ligands, activated the MAVS/TBK1 signaling, and triggered spontaneous interferon-beta (IFNb1) production in the absence of foreign pathogen. Mouse hearts deficient in JPH2 exhibited upregulation of innate immune signaling cascade. Collectively, these findings identify JPH2 as a regulator of dsRNA sensing and highlight its role in suppressing the automatic activation of innate immune responses in cardiomyocytes, suggesting the cytosolic surface of the endo/sarcoplasmic reticulum as a hub for dsRNA sequestration.
Collapse
MESH Headings
- Animals
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Immunity, Innate
- Interferon-beta/metabolism
- Interferon-beta/immunology
- Interferon-Induced Helicase, IFIH1/metabolism
- Interferon-Induced Helicase, IFIH1/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Inbred C57BL
- Muscle Proteins
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/immunology
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- RNA, Double-Stranded/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Signal Transduction
- Humans
Collapse
Affiliation(s)
- Yun Shi
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, ND, 58102, USA
| | - Seyedsaber Mirabdali
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, ND, 58102, USA
| | - Stefan W Vetter
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, ND, 58102, USA
| | - Ang Guo
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, ND, 58102, USA.
| |
Collapse
|
6
|
Li CMC, Cordes A, Oliphant MUJ, Quinn SA, Thomas M, Selfors LM, Silvestri F, Girnius N, Rinaldi G, Zoeller JJ, Shapiro H, Tsiobikas C, Gupta KP, Pathania S, Regev A, Kadoch SC, Muthuswamy SK, Brugge JS. Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer. Nat Genet 2024:10.1038/s41588-024-01958-6. [PMID: 39528827 DOI: 10.1038/s41588-024-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Germline BRCA1 mutation carriers face a high breast cancer risk; however, the underlying mechanisms for this risk are not completely understood. Using a new genetically engineered mouse model of germline Brca1 heterozygosity, we demonstrate that early tumor onset in a Brca1 heterozygous background cannot be fully explained by the conventional 'two-hit' hypothesis, suggesting the existence of inherent tumor-promoting alterations in the Brca1 heterozygous state. Single-cell RNA sequencing and assay for transposase-accessible chromatin with sequencing analyses uncover a unique set of differentially accessible chromatin regions in ostensibly normal Brca1 heterozygous mammary epithelial cells, distinct from wild-type cells and partially mimicking the chromatin and RNA-level changes in tumor cells. Transcription factor analyses identify loss of ELF5 and gain of AP-1 sites in these epigenetically primed regions; in vivo experiments further implicate AP-1 and Wnt10a as strong promoters of Brca1-related breast cancer. These findings reveal a previously unappreciated epigenetic effect of Brca1 haploinsufficiency in accelerating tumorigenesis, advancing our mechanistic understanding and informing potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Alyssa Cordes
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - S Aidan Quinn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mayura Thomas
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jason J Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hana Shapiro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Kushali P Gupta
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shailja Pathania
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - S Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Singh N, Kizhatil K, Duraikannu D, Choquet H, Saidas Nair K. Structural framework to address variant-gene relationship in primary open-angle glaucoma. Vision Res 2024; 226:108505. [PMID: 39520803 DOI: 10.1016/j.visres.2024.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Primary open-angle glaucoma (POAG) is a complex, multifactorial disease leading to progressive optic neuropathy and irreversible vision loss. Genome-Wide Association Studies (GWAS) have significantly advanced our understanding of the genetic loci associated with POAG. Expanding on these findings, Exome-Wide Association Studies (ExWAS) refine the genetic landscape by identifying rare coding variants with potential functional relevance. Post-GWAS in silico analyses, including fine-mapping, gene-based association testing, and pathway analysis, offer insights into target genes and biological mechanisms underlying POAG. This review aims to provide a comprehensive roadmap for the post-GWAS characterization of POAG genes. We integrate current knowledge from GWAS, ExWAS, and post-GWAS analyses, highlighting key genetic variants and pathways implicated in POAG. Recent advancements in genomics, such as ATAC-seq, CUT&RUN, and Hi-C, are crucial for identifying disease-relevant gene regulatory elements by profiling chromatin accessibility, histone modifications, and three-dimensional chromatin architecture. These approaches help pinpoint regulatory elements that influence gene expression in POAG. Expression Quantitative Trait Loci (eQTL) analysis and Transcriptome-Wide Association Studies (TWAS) elucidate the impact of these elements on gene expression and disease risk, while functional validations like enhancer reporter assays confirm their relevance. The integration of high-resolution genomics with functional assays and the characterization of genes in vivo using animal models provides a robust framework for unraveling the complex genetic architecture of POAG. This roadmap is essential for advancing our understanding and identification of genes and regulatory networks involved in POAG pathogenesis.
Collapse
Affiliation(s)
- Nivedita Singh
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| | - Krishnakumar Kizhatil
- Department of Ophthalmology and Visual Sciences, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | - Durairaj Duraikannu
- Departments of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Hélène Choquet
- Kaiser Permanente, Division of Research, Pleasanton, CA 94588, USA; Department of Health Systems Science Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA.
| | - K Saidas Nair
- Departments of Ophthalmology and Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Degtev D, Bravo J, Emmanouilidi A, Zdravković A, Choong OK, Liz Touza J, Selfjord N, Weisheit I, Francescatto M, Akcakaya P, Porritt M, Maresca M, Taylor D, Sienski G. Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles. Nat Commun 2024; 15:9173. [PMID: 39511150 PMCID: PMC11544209 DOI: 10.1038/s41467-024-53418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Clinical implementation of therapeutic genome editing relies on efficient in vivo delivery and the safety of CRISPR-Cas tools. Previously, we identified PsCas9 as a Type II-B family enzyme capable of editing mouse liver genome upon adenoviral delivery without detectable off-targets and reduced chromosomal translocations. Yet, its efficacy remains insufficient with non-viral delivery, a common challenge for many Cas9 orthologues. Here, we sought to redesign PsCas9 for in vivo editing using lipid nanoparticles. We solve the PsCas9 ribonucleoprotein structure with cryo-EM and characterize it biochemically, providing a basis for its rational engineering. Screening over numerous guide RNA and protein variants lead us to develop engineered PsCas9 (ePsCas9) with up to 20-fold increased activity across various targets and preserved safety advantages. We apply the same design principles to boost the activity of FnCas9, an enzyme phylogenetically relevant to PsCas9. Remarkably, a single administration of mRNA encoding ePsCas9 and its guide formulated with lipid nanoparticles results in high levels of editing in the Pcsk9 gene in mouse liver, a clinically relevant target for hypercholesterolemia treatment. Collectively, our findings introduce ePsCas9 as a highly efficient, and precise tool for therapeutic genome editing, in addition to the engineering strategy applicable to other Cas9 orthologues.
Collapse
Affiliation(s)
- Dmitrii Degtev
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - Jack Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Aikaterini Emmanouilidi
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Aleksandar Zdravković
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Oi Kuan Choong
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Julia Liz Touza
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Niklas Selfjord
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Isabel Weisheit
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Margherita Francescatto
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Michelle Porritt
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - David Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA.
| | - Grzegorz Sienski
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
9
|
Vredevoogd DW, Apriamashvili G, Levy PL, Sinha S, Huinen ZR, Visser NL, de Bruijn B, Boshuizen J, van Hal-van Veen SE, Ligtenberg MA, Bleijerveld OB, Lin CP, Díaz-Gómez J, Sánchez SD, Markovits E, Simon Nieto J, van Vliet A, Krijgsman O, Markel G, Besser MJ, Altelaar M, Ruppin E, Peeper DS. TMED inhibition suppresses cell surface PD-1 expression and overcomes T cell dysfunction. J Immunother Cancer 2024; 12:e010145. [PMID: 39510795 PMCID: PMC11552591 DOI: 10.1136/jitc-2024-010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Blockade of the programmed cell death protein 1 (PD-1) immune checkpoint (ICB) is revolutionizing cancer therapy, but little is known about the mechanisms governing its expression on CD8 T cells. Because PD-1 is induced during activation of T cells, we set out to uncover regulators whose inhibition suppresses PD-1 abundance without adversely impacting on T cell activation. METHODS To identify PD-1 regulators in an unbiased fashion, we performed a whole-genome, fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in primary murine CD8 T cells. A dual-readout design using the activation marker CD137 allowed us to uncouple genes involved in PD-1 regulation from those governing general T cell activation. RESULTS We found that the inactivation of one of several members of the TMED/EMP24/GP25L/p24 family of transport proteins, most prominently TMED10, reduced PD-1 cell surface abundance, thereby augmenting T cell activity. Another client protein was cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which was also suppressed by TMED inactivation. Treatment with TMED inhibitor AGN192403 led to lysosomal degradation of the TMED-PD-1 complex and reduced PD-1 abundance in tumor-infiltrating CD8 T cells (TIL) in mice, thus reversing T cell dysfunction. Clinically corroborating these findings, single-cell RNA analyses revealed a positive correlation between TMED expression in CD8 TIL, and both a T cell dysfunction signature and lack of ICB response. Similarly, patients receiving a TIL product with high TMED expression had a shorter overall survival. CONCLUSION Our results uncover a novel mechanism of PD-1 regulation, and identify a pharmacologically tractable target whose inhibition suppresses PD-1 abundance and T cell dysfunction.
Collapse
Affiliation(s)
- David W Vredevoogd
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Georgi Apriamashvili
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Pierre L Levy
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Zowi R Huinen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Nils L Visser
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Julia Boshuizen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Susan E van Hal-van Veen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Maarten A Ligtenberg
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Onno B Bleijerveld
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Judit Díaz-Gómez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Santiago Duro Sánchez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Tel Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan Simon Nieto
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alex van Vliet
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michal J Besser
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maarten Altelaar
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Daniel S Peeper
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Yu W, Hill SF, Huang Y, Zhu L, Demetriou Y, Ziobro J, Reger F, Jia X, Mattis J, Meisler MH. Allele-Specific Editing of a Dominant SCN8A Epilepsy Variant Protects against Seizures and Lethality in a Murine Model. Ann Neurol 2024; 96:958-969. [PMID: 39158034 PMCID: PMC11496010 DOI: 10.1002/ana.27053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE Developmental and epileptic encephalopathies (DEEs) can result from dominant, gain of function variants of neuronal ion channels. More than 450 de novo missense variants of the sodium channel gene SCN8A have been identified in individuals with DEE. METHODS We studied a mouse model carrying the patient Scn8a variant p.Asn1768Asp. An AAV-PHP.eB virus carrying an allele-specific single guide RNA (sgRNA) was administered by intracerebroventricular injection. Cas9 was provided by an inherited transgene. RESULTS Allele-specific disruption of the reading frame of the pathogenic transcript generated out-of-frame indels in 1/4 to 1/3 of transcripts throughout the brain. This editing efficiency was sufficient to rescue lethality and seizures. Neuronal hyperexcitability was reduced in cells expressing the virus. INTERPRETATION The data demonstrate efficient allele-specific editing of a dominant missense variant and support the feasibility of allele-specific therapy for DEE epilepsy. ANN NEUROL 2024;96:958-969.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Sophie F Hill
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Yumei Huang
- Center for Genomic Technologies, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Limei Zhu
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | - Julie Ziobro
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Faith Reger
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Xiaoyan Jia
- Center for Genomic Technologies, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Joanna Mattis
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Lee JH, Sánchez-Rivera FJ, He L, Basnet H, Chen FX, Spina E, Li L, Torner C, Chan JE, Yarlagadda DVK, Park JS, Sussman C, Rudin CM, Lowe SW, Tammela T, Macias MJ, Koche RP, Massagué J. TGF-β and RAS jointly unmask primed enhancers to drive metastasis. Cell 2024; 187:6182-6199.e29. [PMID: 39243762 DOI: 10.1016/j.cell.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor β (TGF-β) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-β and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-β. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-β gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.
Collapse
Affiliation(s)
- Jun Ho Lee
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lan He
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fei Xavier Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elena Spina
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liangji Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carles Torner
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jason E Chan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dig Vijay Kumar Yarlagadda
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jin Suk Park
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carleigh Sussman
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria J Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
12
|
Tan HL, Yin L, Tan Y, Ivanov J, Plucinska K, Ilanges A, Herb BR, Wang P, Kosse C, Cohen P, Lin D, Friedman JM. Leptin-activated hypothalamic BNC2 neurons acutely suppress food intake. Nature 2024:10.1038/s41586-024-08108-2. [PMID: 39478220 DOI: 10.1038/s41586-024-08108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/24/2024] [Indexed: 11/04/2024]
Abstract
Leptin is an adipose tissue hormone that maintains homeostatic control of adipose tissue mass by regulating the activity of specific neural populations controlling appetite and metabolism1. Leptin regulates food intake by inhibiting orexigenic agouti-related protein (AGRP) neurons and activating anorexigenic pro-opiomelanocortin (POMC) neurons2. However, whereas AGRP neurons regulate food intake on a rapid time scale, acute activation of POMC neurons has only a minimal effect3-5. This has raised the possibility that there is a heretofore unidentified leptin-regulated neural population that rapidly suppresses appetite. Here we report the discovery of a new population of leptin-target neurons expressing basonuclin 2 (Bnc2) in the arcuate nucleus that acutely suppress appetite by directly inhibiting AGRP neurons. Opposite to the effect of AGRP activation, BNC2 neuronal activation elicited a place preference indicative of positive valence in hungry but not fed mice. The activity of BNC2 neurons is modulated by leptin, sensory food cues and nutritional status. Finally, deleting leptin receptors in BNC2 neurons caused marked hyperphagia and obesity, similar to that observed in a leptin receptor knockout in AGRP neurons. These data indicate that BNC2-expressing neurons are a key component of the neural circuit that maintains energy balance, thus filling an important gap in our understanding of the regulation of food intake and leptin action.
Collapse
Affiliation(s)
- Han L Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Luping Yin
- Department of Psychiatry, Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yuqi Tan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica Ivanov
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Kaja Plucinska
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Anoj Ilanges
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Brian R Herb
- Department of Pharmacology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Dayu Lin
- Department of Psychiatry, Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Chen J, Su S, Pickar-Oliver A, Chiarella A, Hahn Q, Goldfarb D, Cloer E, Small G, Sivashankar S, Ramsden D, Major M, Hathaway N, Gersbach C, Liu P. Engineered Cas9 variants bypass Keap1-mediated degradation in human cells and enhance epigenome editing efficiency. Nucleic Acids Res 2024; 52:11536-11551. [PMID: 39228373 PMCID: PMC11514467 DOI: 10.1093/nar/gkae761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
As a potent and convenient genome-editing tool, Cas9 has been widely used in biomedical research and evaluated in treating human diseases. Numerous engineered variants of Cas9, dCas9 and other related prokaryotic endonucleases have been identified. However, as these bacterial enzymes are not naturally present in mammalian cells, whether and how bacterial Cas9 proteins are recognized and regulated by mammalian hosts remain poorly understood. Here, we identify Keap1 as a mammalian endogenous E3 ligase that targets Cas9/dCas9/Fanzor for ubiquitination and degradation in an 'ETGE'-like degron-dependent manner. Cas9-'ETGE'-like degron mutants evading Keap1 recognition display enhanced gene editing ability in cells. dCas9-'ETGE'-like degron mutants exert extended protein half-life and protein retention on chromatin, leading to improved CRISPRa and CRISPRi efficacy. Moreover, Cas9 binding to Keap1 also impairs Keap1 function by competing with Keap1 substrates or binding partners for Keap1 binding, while engineered Cas9 mutants show less perturbation of Keap1 biology. Thus, our study reveals a mammalian specific Cas9 regulation and provides new Cas9 designs not only with enhanced gene regulatory capacity but also with minimal effects on disrupting endogenous Keap1 signaling.
Collapse
Affiliation(s)
- Jianfeng Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Anna M Chiarella
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Quentin Hahn
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University, St. Louis, MO 63110, USA
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Center for Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Smaran Sivashankar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | - Nathaniel A Hathaway
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Duncan GJ, Ingram SD, Emberley K, Hill J, Cordano C, Abdelhak A, McCane M, Jenks JE, Jabassini N, Ananth K, Ferrara SJ, Stedelin B, Sivyer B, Aicher SA, Scanlan TS, Watkins TA, Mishra A, Nelson JW, Green AJ, Emery B. Remyelination protects neurons from DLK-mediated neurodegeneration. Nat Commun 2024; 15:9148. [PMID: 39443516 PMCID: PMC11500002 DOI: 10.1038/s41467-024-53429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Chronic demyelination and oligodendrocyte loss deprive neurons of crucial support. It is the degeneration of neurons and their connections that drives progressive disability in demyelinating disease. However, whether chronic demyelination triggers neurodegeneration and how it may do so remain unclear. We characterize two genetic mouse models of inducible demyelination, one distinguished by effective remyelination and the other by remyelination failure and chronic demyelination. While both demyelinating lines feature axonal damage, mice with blocked remyelination have elevated neuronal apoptosis and altered microglial inflammation, whereas mice with efficient remyelination do not feature neuronal apoptosis and have improved functional recovery. Remyelination incapable mice show increased activation of kinases downstream of dual leucine zipper kinase (DLK) and phosphorylation of c-Jun in neuronal nuclei. Pharmacological inhibition or genetic disruption of DLK block c-Jun phosphorylation and the apoptosis of demyelinated neurons. Together, we demonstrate that remyelination is associated with neuroprotection and identify DLK inhibition as protective strategy for chronically demyelinated neurons.
Collapse
Affiliation(s)
- Greg J Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Sam D Ingram
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Katie Emberley
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jo Hill
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Michael McCane
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jennifer E Jenks
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nora Jabassini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kirtana Ananth
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Skylar J Ferrara
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brittany Stedelin
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Thomas S Scanlan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Trent A Watkins
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ari J Green
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ben Emery
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
15
|
Bindu DS, Savage JT, Brose N, Bradley L, Dimond K, Tan CX, Eroglu C. GEARBOCS: An Adeno Associated Virus Tool for In Vivo Gene Editing in Astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.17.524433. [PMID: 36711516 PMCID: PMC9884502 DOI: 10.1101/2023.01.17.524433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CRISPR/Cas9-based genome engineering enables rapid and precise gene manipulations in the CNS. Here, we developed a non-invasive astrocyte-specific method utilizing a single AAV vector, which we named GEARBOCS (Gene Editing in AstRocytes Based On CRISPR/Cas9 System). We verified GEARBOCS' specificity to mouse cortical astrocytes and demonstrated its utility for three types of gene manipulations: knockout (KO); tagging (TagIn); and reporter knock-in (GeneTrap) strategies. Next, we deployed GEARBOCS in two test cases. First, we determined that astrocytes are a necessary source of the synaptogenic factor Sparcl1 for thalamocortical synapse maintenance in the mouse primary visual cortex. Second, we determined that cortical astrocytes express the synaptic vesicle associated Vamp2 protein and found that it is required for maintaining excitatory and inhibitory synapse numbers in the visual cortex. These results show that the GEARBOCS strategy provides a fast and efficient means to study astrocyte biology in vivo.
Collapse
Affiliation(s)
- Dhanesh Sivadasan Bindu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neonatology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Justin T. Savage
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas Brose
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Luke Bradley
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA
| | - Kylie Dimond
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA
| | - Christabel Xin Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
16
|
Tonsager AJ, Stargell LA. An undergraduate research experience in CRISPR-Cas9 mediated eukaryotic genome editing to teach fundamental biochemistry techniques. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024. [PMID: 39377274 DOI: 10.1002/bmb.21862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
CRISPR-Cas9 technology is an established, powerful tool for genome editing through the ability to target specific DNA sequences of interest for introduction of desired genetic modifications. CRISPR-Cas9 is utilized for a variety of purposes, ranging from a research molecular biology tool to treatment for human diseases. Due to its prominence across a variety of applications, it is critical that undergraduates in the life sciences are educated on CRISPR-Cas9 technology. To this end, we created an intensive eight-week long course-based undergraduate research experience (CURE) designed for students to understand CRISPR-Cas9 genome editing and perform it in Saccharomyces cerevisiae. Students enrolled in the CURE participate in 2, 3-h sessions a week and are engaged in the entire process of CRISPR-Cas9 genome editing, from preparation of genome editing reagents to characterization of mutant yeast strains. During the process, students master fundamental techniques in the life sciences, including sterile technique, Polymerase Chain Reaction (PCR), primer design, sequencing requirements, and data analysis. The course is developed with flexibility in the schedule for repetition of techniques in the event of a failed experiment, providing an authentic research experience for the students. Additionally, we have developed the course to be easily modified for the editing of any yeast gene, offering the potential to expand the course in research-driven classroom or laboratory settings.
Collapse
Affiliation(s)
- Andrew J Tonsager
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
17
|
Stransky LA, Gao W, Schmidt LS, Bi K, Ricketts CJ, Ramesh V, James A, Difilippantonio S, Ileva L, Kalen JD, Karim B, Jeon A, Morgan T, Warner AC, Turan S, Unite J, Tran B, Choudhari S, Zhao Y, Linn DE, Yun C, Dhandapani S, Parab V, Pinheiro EM, Morris N, He L, Vigeant SM, Pignon JC, Sticco-Ivins M, Signoretti S, Van Allen EM, Linehan WM, Kaelin WG. Toward a CRISPR-based mouse model of Vhl-deficient clear cell kidney cancer: Initial experience and lessons learned. Proc Natl Acad Sci U S A 2024; 121:e2408549121. [PMID: 39365820 PMCID: PMC11474080 DOI: 10.1073/pnas.2408549121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
CRISPR is revolutionizing the ability to do somatic gene editing in mice for the purpose of creating new cancer models. Inactivation of the VHL tumor suppressor gene is the signature initiating event in the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). Such tumors are usually driven by the excessive HIF2 activity that arises when the VHL gene product, pVHL, is defective. Given the pressing need for a robust immunocompetent mouse model of human ccRCC, we directly injected adenovirus-associated viruses (AAVs) encoding sgRNAs against VHL and other known/suspected ccRCC tumor suppressor genes into the kidneys of C57BL/6 mice under conditions where Cas9 was under the control of one of two different kidney-specific promoters (Cdh16 or Pax8) to induce kidney tumors. An AAV targeting Vhl, Pbrm1, Keap1, and Tsc1 reproducibly caused macroscopic ccRCCs that partially resembled human ccRCC tumors with respect to transcriptome and cell of origin and responded to a ccRCC standard-of-care agent, axitinib. Unfortunately, these tumors, like those produced by earlier genetically engineered mouse ccRCCs, are HIF2 independent.
Collapse
Affiliation(s)
- Laura A. Stransky
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Wenhua Gao
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kevin Bi
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Vijyendra Ramesh
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Amy James
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Simone Difilippantonio
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lilia Ileva
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Albert Jeon
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Tamara Morgan
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Andrew C. Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Sevilay Turan
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Joanne Unite
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Bao Tran
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Sulbha Choudhari
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Yongmei Zhao
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | | | - Changhong Yun
- Pharmacokinetics, Merck & Co., Inc., Boston, MA02115
| | | | - Vaishali Parab
- Pharmacokinetics, Merck & Co., Inc., South San Francisco, CA94080
| | | | - Nicole Morris
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lixia He
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Sean M. Vigeant
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Jean-Christophe Pignon
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
| | - Maura Sticco-Ivins
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Eliezer M. Van Allen
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - William G. Kaelin
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
18
|
Kudo T, Meireles AM, Moncada R, Chen Y, Wu P, Gould J, Hu X, Kornfeld O, Jesudason R, Foo C, Höckendorf B, Corrada Bravo H, Town JP, Wei R, Rios A, Chandrasekar V, Heinlein M, Chuong AS, Cai S, Lu CS, Coelho P, Mis M, Celen C, Kljavin N, Jiang J, Richmond D, Thakore P, Benito-Gutiérrez E, Geiger-Schuller K, Hleap JS, Kayagaki N, de Sousa E Melo F, McGinnis L, Li B, Singh A, Garraway L, Rozenblatt-Rosen O, Regev A, Lubeck E. Multiplexed, image-based pooled screens in primary cells and tissues with PerturbView. Nat Biotechnol 2024:10.1038/s41587-024-02391-0. [PMID: 39375449 DOI: 10.1038/s41587-024-02391-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
Optical pooled screening (OPS) is a scalable method for linking image-based phenotypes with cellular perturbations. However, it has thus far been restricted to relatively low-plex phenotypic readouts in cancer cell lines in culture due to limitations associated with in situ sequencing of perturbation barcodes. Here, we develop PerturbView, an OPS technology that leverages in vitro transcription to amplify barcodes before in situ sequencing, enabling screens with highly multiplexed phenotypic readouts across diverse systems, including primary cells and tissues. We demonstrate PerturbView in induced pluripotent stem cell-derived neurons, primary immune cells and tumor tissue sections from animal models. In a screen of immune signaling pathways in primary bone marrow-derived macrophages, PerturbView uncovered both known and novel regulators of NF-κB signaling. Furthermore, we combine PerturbView with spatial transcriptomics in tissue sections from a mouse xenograft model, paving the way to in situ screens with rich optical and transcriptomic phenotypes. PerturbView broadens the scope of OPS to a wide range of models and applications.
Collapse
Affiliation(s)
- Takamasa Kudo
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Ana M Meireles
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Reuben Moncada
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Yushu Chen
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Ping Wu
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Joshua Gould
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Xiaoyu Hu
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Opher Kornfeld
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Rajiv Jesudason
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Conrad Foo
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Burkhard Höckendorf
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Hector Corrada Bravo
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Jason P Town
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Runmin Wei
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Antonio Rios
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | | | - Melanie Heinlein
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Amy S Chuong
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Shuangyi Cai
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Cherry Sakura Lu
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
- Faculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Paula Coelho
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Monika Mis
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Cemre Celen
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Noelyn Kljavin
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Jian Jiang
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - David Richmond
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Pratiksha Thakore
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Elia Benito-Gutiérrez
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | | | - Jose Sergio Hleap
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
- Bioinformatics Department, ProCogia, Toronto, Ontario, Canada
| | - Nobuhiko Kayagaki
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | | | - Lisa McGinnis
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Bo Li
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Avtar Singh
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Levi Garraway
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Orit Rozenblatt-Rosen
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Aviv Regev
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA.
| | - Eric Lubeck
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
19
|
Pavešković M, De-Paula RB, Ojelade SA, Tantry EK, Kochukov MY, Bao S, Veeraragavan S, Garza AR, Srivastava S, Song SY, Fujita M, Duong DM, Bennett DA, De Jager PL, Seyfried NT, Dickinson ME, Heaney JD, Arenkiel BR, Shulman JM. Alzheimer's disease risk gene CD2AP is a dose-sensitive determinant of synaptic structure and plasticity. Hum Mol Genet 2024; 33:1815-1832. [PMID: 39146503 PMCID: PMC11458016 DOI: 10.1093/hmg/ddae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/15/2024] [Indexed: 08/17/2024] Open
Abstract
CD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer's disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity. Moreover, in mice harboring either one or two copies of a germline Cd2ap null allele, we noted increased paired-pulse facilitation at hippocampal Schaffer-collateral synapses, consistent with a haploinsufficient requirement for pre-synaptic release. Whereas conditional Cd2ap knockout in the brain revealed no gross behavioral deficits in either 3.5- or 12-month-old mice, Cd2ap heterozygous mice demonstrated subtle impairments in discrimination learning using a touchscreen task. Based on unbiased proteomics, partial or complete loss of Cd2ap triggered perturbation of proteins with roles in protein folding, lipid metabolism, proteostasis, and synaptic function. Overall, our results reveal conserved, dose-sensitive requirements for CD2AP in the maintenance of neuronal structure and function, including synaptic homeostasis and plasticity, and inform our understanding of possible cell-type specific mechanisms in Alzheimer's Disease.
Collapse
Affiliation(s)
- Matea Pavešković
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Ruth B De-Paula
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Quantitative and Computational Biology Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Shamsideen A Ojelade
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Evelyne K Tantry
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Mikhail Y Kochukov
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Suyang Bao
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Surabi Veeraragavan
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Alexandra R Garza
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Snigdha Srivastava
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Si-Yuan Song
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, United States
| | - Duc M Duong
- Departments of Biochemistry and Neurology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 600 S. Paulina Street, Chicago, IL 60612, United States
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, United States
| | - Nicholas T Seyfried
- Departments of Biochemistry and Neurology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Benjamin R Arenkiel
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Joshua M Shulman
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
20
|
Portelinha A, Wang S, Parsa S, Jiang M, Gorelick AN, Mohanty S, Sharma S, de Stanchina E, Berishaj M, Zhao C, Heward J, Aryal NK, Tavana O, Wen J, Fitzgibbon J, Dogan A, Younes A, Melnick AM, Wendel HG. SETD1B mutations confer apoptosis resistance and BCL2 independence in B cell lymphoma. J Exp Med 2024; 221:e20231143. [PMID: 39235528 PMCID: PMC11380151 DOI: 10.1084/jem.20231143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/05/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
The translocation t(14;18) activates BCL2 and is considered the initiating genetic lesion in most follicular lymphomas (FL). Surprisingly, FL patients fail to respond to the BCL2 inhibitor, Venetoclax. We show that mutations and deletions affecting the histone lysine methyltransferase SETD1B (KMT2G) occur in 7% of FLs and 16% of diffuse large B cell lymphomas (DLBCL). Deficiency in SETD1B confers striking resistance to Venetoclax and an experimental MCL-1 inhibitor. SETD1B also acts as a tumor suppressor and cooperates with the loss of KMT2D in lymphoma development in vivo. Consistently, loss of SETD1B in human lymphomas typically coincides with loss of KMT2D. Mechanistically, SETD1B is required for the expression of several proapoptotic BCL2 family proteins. Conversely, inhibitors of the KDM5 histone H3K4 demethylases restore BIM and BIK expression and synergize with Venetoclax in SETD1B-deficient lymphomas. These results establish SETD1B as an epigenetic regulator of cell death and reveal a pharmacological strategy to augment Venetoclax sensitivity in lymphoma.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Ana Portelinha
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Shenqiu Wang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Sara Parsa
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Man Jiang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Alexander N Gorelick
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sagarajit Mohanty
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Soumya Sharma
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Chunying Zhao
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | | | - Neeraj K Aryal
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Omid Tavana
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University and Australian Research Council Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australia
| | | | - Ahmet Dogan
- Departments of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Haematology R&D, AstraZeneca , New York, NY, USA
| | - Ari M Melnick
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| |
Collapse
|
21
|
Liu SJ, Zou C, Pak J, Morse A, Pang D, Casey-Clyde T, Borah AA, Wu D, Seo K, O'Loughlin T, Lim DA, Ozawa T, Berger MS, Kamber RA, Weiss WA, Raleigh DR, Gilbert LA. In vivo perturb-seq of cancer and microenvironment cells dissects oncologic drivers and radiotherapy responses in glioblastoma. Genome Biol 2024; 25:256. [PMID: 39375777 PMCID: PMC11457336 DOI: 10.1186/s13059-024-03404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Genetic perturbation screens with single-cell readouts have enabled rich phenotyping of gene function and regulatory networks. These approaches have been challenging in vivo, especially in adult disease models such as cancer, which include mixtures of malignant and microenvironment cells. Glioblastoma (GBM) is a fatal cancer, and methods of systematically interrogating gene function and therapeutic targets in vivo, especially in combination with standard of care treatment such as radiotherapy, are lacking. RESULTS Here, we iteratively develop a multiplex in vivo perturb-seq CRISPRi platform for single-cell genetic screens in cancer and tumor microenvironment cells that leverages intracranial convection enhanced delivery of sgRNA libraries into mouse models of GBM. Our platform enables potent silencing of drivers of in vivo growth and tumor maintenance as well as genes that sensitize GBM to radiotherapy. We find radiotherapy rewires transcriptional responses to genetic perturbations in an in vivo-dependent manner, revealing heterogenous patterns of treatment sensitization or resistance in GBM. Furthermore, we demonstrate targeting of genes that function in the tumor microenvironment, enabling alterations of ligand-receptor interactions between immune and stromal cells following in vivo CRISPRi perturbations that can affect tumor cell phagocytosis. CONCLUSION In sum, we demonstrate the utility of multiplexed perturb-seq for in vivo single-cell dissection of adult cancer and normal tissue biology across multiple cell types in the context of therapeutic intervention, a platform with potential for broad application.
Collapse
Affiliation(s)
- S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Arc Institute, Palo Alto, CA, 94304, USA
| | - Christopher Zou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Joanna Pak
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alexandra Morse
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Dillon Pang
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Timothy Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ashir A Borah
- Arc Institute, Palo Alto, CA, 94304, USA
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Wu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas O'Loughlin
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY, 10029, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roarke A Kamber
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - William A Weiss
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Departments of Pediatrics, Neurology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
22
|
Serio RN, Scheben A, Lu B, Gargiulo DV, Patruno L, Buckholtz CL, Chaffee RJ, Jibilian MC, Persaud SG, Staklinski SJ, Hassett R, Brault LM, Ramazzotti D, Barbieri CE, Siepel AC, Nowak DG. Clonal Lineage Tracing with Somatic Delivery of Recordable Barcodes Reveals Migration Histories of Metastatic Prostate Cancer. Cancer Discov 2024; 14:1990-2009. [PMID: 38969342 DOI: 10.1158/2159-8290.cd-23-1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The patterns by which primary tumors spread to metastatic sites remain poorly understood. Here, we define patterns of metastatic seeding in prostate cancer using a novel injection-based mouse model-EvoCaP (Evolution in Cancer of the Prostate), featuring aggressive metastatic cancer to bone, liver, lungs, and lymph nodes. To define migration histories between primary and metastatic sites, we used our EvoTraceR pipeline to track distinct tumor clones containing recordable barcodes. We detected widespread intratumoral heterogeneity from the primary tumor in metastatic seeding, with few clonal populations instigating most migration. Metastasis-to-metastasis seeding was uncommon, as most cells remained confined within the tissue. Migration patterns in our model were congruent with human prostate cancer seeding topologies. Our findings support the view of metastatic prostate cancer as a systemic disease driven by waves of aggressive clones expanding their niche, infrequently overcoming constraints that otherwise keep them confined in the primary or metastatic site. Significance: Defining the kinetics of prostate cancer metastasis is critical for developing novel therapeutic strategies. This study uses CRISPR/Cas9-based barcoding technology to accurately define tumor clonal patterns and routes of migration in a novel somatically engineered mouse model (EvoCaP) that recapitulates human prostate cancer using an in-house developed analytical pipeline (EvoTraceR).
Collapse
Affiliation(s)
- Ryan N Serio
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Billy Lu
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | | | - Lucrezia Patruno
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | | | - Ryan J Chaffee
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | | | | | - Stephen J Staklinski
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Rebecca Hassett
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Lise M Brault
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Christopher E Barbieri
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Urology, Weill Cornell Medicine, New York, New York
| | - Adam C Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Dawid G Nowak
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
- Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| |
Collapse
|
23
|
Waarts MR, Mowla S, Boileau M, Benitez ARM, Sango J, Bagish M, Fernández-Maestre I, Shan Y, Eisman SE, Park YC, Wereski M, Csete I, O’Connor K, Romero-Vega AC, Miles LA, Xiao W, Wu X, Koche RP, Armstrong SA, Shih AH, Papapetrou EP, Butler JM, Cai SF, Bowman RL, Levine RL. CRISPR Dependency Screens in Primary Hematopoietic Stem Cells Identify KDM3B as a Genotype-specific Vulnerability in IDH2- and TET2-mutant Cells. Cancer Discov 2024; 14:1860-1878. [PMID: 38819218 PMCID: PMC11452290 DOI: 10.1158/2159-8290.cd-23-1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Clonal hematopoiesis (CH) is a common premalignant state in the blood and confers an increased risk of blood cancers and all-cause mortality. Identification of therapeutic targets in CH has been hindered by the lack of an ex vivo platform amenable for studying primary hematopoietic stem and progenitor cells (HSPCs). Here, we utilize an ex vivo co-culture system of HSPCs with bone marrow endothelial cells to perform CRISPR/Cas9 screens in mutant HSPCs. Our data reveal that loss of the histone demethylase family members Kdm3b and Jmjd1c specifically reduces the fitness of Idh2- and Tet2-mutant HSPCs. Kdm3b loss in mutant cells leads to decreased expression of critical cytokine receptors including Mpl, rendering mutant HSPCs preferentially susceptible to inhibition of downstream JAK2 signaling. Our study nominates an epigenetic regulator and an epigenetically regulated receptor signaling pathway as genotype-specific therapeutic targets and provides a scalable platform to identify genetic dependencies in mutant HSPCs. Significance: Given the broad prevalence, comorbidities, and risk of malignant transformation associated with CH, there is an unmet need to identify therapeutic targets. We develop an ex vivo platform to perform CRISPR/Cas9 screens in primary HSPCs. We identify KDM3B and downstream signaling components as genotype-specific dependencies in CH and myeloid malignancies. See related commentary by Khabusheva and Goodell, p. 1768.
Collapse
Affiliation(s)
- Michael R. Waarts
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Meaghan Boileau
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Junya Sango
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai
| | - Maya Bagish
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Inés Fernández-Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yufan Shan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shira E. Eisman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Young C. Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Matthew Wereski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Isabelle Csete
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Angelica C. Romero-Vega
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Linde A. Miles
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Xiaodi Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan H. Shih
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai
| | - Jason M. Butler
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Sheng F. Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
24
|
Shen W, Liang Y, Lv D, Xie N. Novel insights into the heterogeneity of FOXP3 + Treg cells in drug-induced allergic reactions through single-cell transcriptomics. Immunol Res 2024; 72:1071-1085. [PMID: 39073709 DOI: 10.1007/s12026-024-09509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024]
Abstract
This study uncovers the novel heterogeneity of FOXP3 + regulatory T (Treg) cells and their pivotal role in modulating immune responses during drug-induced allergic reactions, employing cutting-edge single-cell transcriptomics. We established a mouse model for drug-induced allergic reactions and utilized single-cell RNA sequencing (scRNA-seq) to analyze the transcriptomic landscapes of FOXP3 + Treg cells isolated from affected tissues. The study involved both in vitro and in vivo approaches to evaluate the impact of FOXP3 expression levels on the immunoregulatory functions of Treg cells during allergic responses. Techniques included flow cytometry, cluster analysis, principal component analysis (PCA), CCK8 and CSFE assays for cell proliferation, LDH release assays for toxicity, ELISA for cytokine profiling, and CRISPR/Cas9 technology for gene editing. Our findings revealed significant transcriptomic heterogeneity among FOXP3 + Treg cells in the context of drug-induced allergic reactions, with distinct subpopulations exhibiting unique gene expression profiles. This heterogeneity suggests specialized roles in immune regulation. We observed a decrease in the proliferative capacity and cytokine secretion of FOXP3 + Treg cells following allergic stimulation, alongside an increase in reaction toxicity. Manipulating FOXP3 expression levels directly influenced these outcomes, where FOXP3 deletion exacerbated allergic responses, whereas its overexpression mitigated them. Notably, in vivo experiments demonstrated that FOXP3 overexpression significantly reduced the severity of allergic skin reactions in mice. Our study presents novel insights into the heterogeneity and crucial immunoregulatory role of FOXP3 + Treg cells during drug-induced allergic reactions. Overexpression of FOXP3 emerges as a potential therapeutic strategy to alleviate such allergic responses. These findings contribute significantly to our understanding of immune regulation and the development of targeted treatments for drug-induced allergies.
Collapse
Affiliation(s)
- Wei Shen
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China
| | - Yibo Liang
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China
| | - Dong Lv
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China
| | - Nan Xie
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
25
|
Abe P, Lavalley A, Morassut I, Santinha AJ, Roig-Puiggros S, Javed A, Klingler E, Baumann N, Prados J, Platt RJ, Jabaudon D. Molecular programs guiding arealization of descending cortical pathways. Nature 2024; 634:644-651. [PMID: 39261725 DOI: 10.1038/s41586-024-07895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
Layer 5 extratelencephalic (ET) neurons are present across neocortical areas and send axons to multiple subcortical targets1-6. Two cardinal subtypes exist7,8: (1) Slco2a1-expressing neurons (ETdist), which predominate in the motor cortex and project distally to the pons, medulla and spinal cord; and (2) Nprs1- or Hpgd-expressing neurons (ETprox), which predominate in the visual cortex and project more proximally to the pons and thalamus. An understanding of how area-specific ETdist and ETprox emerge during development is important because they are critical for fine motor skills and are susceptible to spinal cord injury and amyotrophic lateral sclerosis9-12. Here, using cross-areal mapping of axonal projections in the mouse neocortex, we identify the subtype-specific developmental dynamics of ET neurons. Whereas subsets of ETprox emerge by pruning of ETdist axons, others emerge de novo. We outline corresponding subtype-specific developmental transcriptional programs using single-nucleus sequencing. Leveraging these findings, we use postnatal in vivo knockdown of subtype-specific transcription factors to reprogram ET neuron connectivity towards more proximal targets. Together, these results show the functional transcriptional programs driving ET neuron diversity and uncover cell subtype-specific gene regulatory networks that can be manipulated to direct target specificity in motor corticofugal pathways.
Collapse
Affiliation(s)
- Philipp Abe
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Adrien Lavalley
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Ilaria Morassut
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Antonio J Santinha
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sergi Roig-Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Awais Javed
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Esther Klingler
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Bioinformatic Support Platform, University of Geneva, Geneva, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Center for Child Health, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
- NCCR Molecular Systems Engineering, Basel, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
- Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
- Université Paris Cité, Imagine Institute, Paris, France.
| |
Collapse
|
26
|
Ruetz TJ, Pogson AN, Kashiwagi CM, Gagnon SD, Morton B, Sun ED, Na J, Yeo RW, Leeman DS, Morgens DW, Tsui CK, Li A, Bassik MC, Brunet A. CRISPR-Cas9 screens reveal regulators of ageing in neural stem cells. Nature 2024; 634:1150-1159. [PMID: 39358505 PMCID: PMC11525198 DOI: 10.1038/s41586-024-07972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing1-4. Several genetic interventions have been found to ameliorate old brain function5-8, but systematic functional testing of genes in old NSCs-and more generally in old cells-has not been done. Here we develop in vitro and in vivo high-throughput CRISPR-Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR-Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of Slc2a4, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.
Collapse
Affiliation(s)
- Tyson J Ruetz
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA
- Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | | | - Bhek Morton
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Jeeyoon Na
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stem Cell Biology & Regenerative Medicine Graduate Program, Stanford University, Stanford, CA, USA
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Dena S Leeman
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Zhong J, Ji X, Zhao Y, Jia Y, Song C, Lv J, Chen Y, Zhou Y, Lv X, Yang Z, Zhang Z, Xu Q, Wang W, Chen H, Cui A, Li Y, Meng ZX. Identification of BAF60b as a Chromatin-Remodeling Checkpoint of Diet-Induced Fatty Liver Disease. Diabetes 2024; 73:1615-1630. [PMID: 39046829 PMCID: PMC11417444 DOI: 10.2337/db24-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Overnutrition has gradually become the primary causative factor in nonalcoholic fatty liver disease (NAFLD). However, how nutritional signals are integrated to orchestrate the transcriptional programs important for NAFLD progression remains poorly understood. We identified hepatic BAF60b as a lipid-sensitive subunit of the switch/sucrose nonfermentable chromatin-remodeling complex that is negatively associated with liver steatosis in mice and humans. Hepatic BAF60b deficiency promotes high-fat diet (HFD)-induced liver steatosis in mice, whereas transgenic expression of BAF60b in the liver attenuates HFD-induced obesity and NAFLD, both accompanied by a marked regulation of peroxisome proliferator-activated receptor γ (PPARγ) expression. Mechanistically, through motif analysis of liver assay for transposase-accessible chromatin sequencing and multiple validation experiments, we identified C/EBPβ as the transcription factor that interacts with BAF60b to suppress Pparγ gene expression, thereby controlling hepatic lipid accumulation and NAFLD progression. This work identifies hepatic BAF60b as a negative regulator of liver steatosis through C/EBPβ-dependent chromatin remodeling. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jing Zhong
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Xiuyu Ji
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yali Zhao
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Yihe Jia
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Churui Song
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghuan Lv
- Department of Pathology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yuying Chen
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Yanping Zhou
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xue Lv
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhuoyin Yang
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheyu Zhang
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiyao Xu
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihong Wang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Haiyan Chen
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Aoyuan Cui
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhuo-Xian Meng
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Wang Y, Zhou J, Yang Q, Li X, Qiu Y, Zhang Y, Liu M, Zhu AJ. Therapeutic siRNA targeting PLIN2 ameliorates steatosis, inflammation, and fibrosis in steatotic liver disease models. J Lipid Res 2024; 65:100635. [PMID: 39187042 PMCID: PMC11440260 DOI: 10.1016/j.jlr.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide. If left untreated, MASLD can progress from simple hepatic steatosis to metabolic dysfunction-associated steatohepatitis, which is characterized by inflammation and fibrosis. Current treatment options for MASLD remain limited, leaving substantial unmet medical needs for innovative therapeutic approaches. Here, we show that PLIN2, a lipid droplet protein inhibiting hepatic lipolysis, serves as a promising therapeutic target for MASLD. Hepatic PLIN2 levels were markedly elevated in multiple MASLD mouse models induced by diverse nutritional and genetic factors. The liver-specific deletion of Plin2 exhibited significant anti-MASLD effects in these models. To translate this discovery into a therapeutic application, we developed a GalNAc-siRNA conjugate with enhanced stabilization chemistry and validated its potent and sustained efficacy in suppressing Plin2 expression in mouse livers. This siRNA therapeutic, named GalNAc-siPlin2, was shown to be biosafe in mice. Treatment with GalNAc-siPlin2 for 6-8 weeks led to a decrease in hepatic triglyceride levels by approximately 60% in high-fat diet- and obesity-induced MASLD mouse models, accompanied with increased hepatic secretion of VLDL-triglyceride and enhanced thermogenesis in brown adipose tissues. Eight-week treatment with GalNAc-siPlin2 significantly improved hepatic steatosis, inflammation, and fibrosis in high-fat/high fructose-induced metabolic dysfunction-associated steatohepatitis models compared to control group. As a proof of concept, we developed a GalNAc-siRNA therapeutic targeting human PLIN2, which effectively suppressed hepatic PLIN2 expression and ameliorated MASLD in humanized PLIN2 knockin mice. Together, our results highlight the potential of GalNAc-siPLIN2 as a candidate MASLD therapeutic for clinical trials.
Collapse
Affiliation(s)
- Yao Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Jiaxin Zhou
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Qi Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xinmeng Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yifu Qiu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yansong Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Chen X, Perry S, Fan Z, Wang B, Loxterkamp E, Wang S, Hu J, Dickman D, Han C. Tissue-specific knockout in the Drosophila neuromuscular system reveals ESCRT's role in formation of synapse-derived extracellular vesicles. PLoS Genet 2024; 20:e1011438. [PMID: 39388480 PMCID: PMC11495600 DOI: 10.1371/journal.pgen.1011438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Tissue-specific gene knockout by CRISPR/Cas9 is a powerful approach for characterizing gene functions during development. However, this approach has not been successfully applied to most Drosophila tissues, including the Drosophila neuromuscular junction (NMJ). To expand tissue-specific CRISPR to this powerful model system, here we present a CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) toolkit for knocking out genes in motoneurons, muscles, and glial cells. We validated the efficacy of CRISPR-TRiM by knocking out multiple genes in each tissue, demonstrated its orthogonal use with the Gal4/UAS binary expression system, and showed simultaneous knockout of multiple redundant genes. We used CRISPR-TRiM to discover an essential role for SNARE components in NMJ maintenance. Furthermore, we demonstrate that the canonical ESCRT pathway suppresses NMJ bouton growth by downregulating retrograde Gbb signaling. Lastly, we found that axon termini of motoneurons rely on ESCRT-mediated intra-axonal membrane trafficking to release extracellular vesicles at the NMJ. Thus, we have successfully developed an NMJ CRISPR mutagenesis approach which we used to reveal genes important for NMJ structural plasticity.
Collapse
Affiliation(s)
- Xinchen Chen
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Ziwei Fan
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth Loxterkamp
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Shuran Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jiayi Hu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
30
|
Jung YH, Lee YJ, Dao T, Jung KH, Yu J, Oh AR, Jeong Y, Gi H, Kim YU, Ryu D, Carrer M, Pajvani UB, Lee SB, Hong SS, Kim K. KCTD17-mediated Ras stabilization promotes hepatocellular carcinoma progression. Clin Mol Hepatol 2024; 30:895-913. [PMID: 39098817 PMCID: PMC11540369 DOI: 10.3350/cmh.2024.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND/AIMS Potassium channel tetramerization domain containing 17 (KCTD17) protein, an adaptor for the cullin3 (Cul3) ubiquitin ligase complex, has been implicated in various human diseases; however, its role in hepatocellular carcinoma (HCC) remains elusive. Here, we aimed to elucidate the clinical features of KCTD17, and investigate the mechanisms by which KCTD17 affects HCC progression. METHODS We analyzed transcriptomic data from patients with HCC. Hepatocyte-specific KCTD17 deficient mice were treated with diethylnitrosamine (DEN) to assess its effect on HCC progression. Additionally, we tested KCTD17-directed antisense oligonucleotides for their therapeutic potential in vivo. RESULTS Our investigation revealed the upregulation of KCTD17 expression in both tumors from patients with HCC and mouse models of HCC, in comparison to non-tumor controls. We identified the leucine zipper-like transcriptional regulator 1 (Lztr1) protein, a previously identified Ras destabilizer, as a substrate for KCTD17-Cul3 complex. KCTD17-mediated Lztr1 degradation led to Ras stabilization, resulting in increased proliferation, migration, and wound healing in liver cancer cells. Hepatocyte-specific KCTD17 deficient mice or liver cancer xenograft models were less susceptible to carcinogenesis or tumor growth. Similarly, treatment with KCTD17-directed antisense oligonucleotides (ASO) in a mouse model of HCC markedly lowered tumor volume as well as Ras protein levels, compared to those in control ASO-treated mice. CONCLUSION KCTD17 induces the stabilization of Ras and downstream signaling pathways and HCC progression and may represent a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Yun Ji Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Tam Dao
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Junjie Yu
- Department of Medicine, Columbia University, New York, NY, USA
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - HyunJoon Gi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Young Un Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | - Sang Bae Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science & Engineering, College of Medicine, Inha University, Incheon, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
31
|
Hough RF, Alvira CM, Bastarache JA, Erzurum SC, Kuebler WM, Schmidt EP, Shimoda LA, Abman SH, Alvarez DF, Belvitch P, Bhattacharya J, Birukov KG, Chan SY, Cornfield DN, Dudek SM, Garcia JGN, Harrington EO, Hsia CCW, Islam MN, Jonigk DD, Kalinichenko VV, Kolb TM, Lee JY, Mammoto A, Mehta D, Rounds S, Schupp JC, Shaver CM, Suresh K, Tambe DT, Ventetuolo CE, Yoder MC, Stevens T, Damarla M. Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2024; 71:388-406. [PMID: 39189891 PMCID: PMC11450313 DOI: 10.1165/rcmb.2024-0330st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.
Collapse
|
32
|
Hadas R, Rubinstein H, Mittnenzweig M, Mayshar Y, Ben-Yair R, Cheng S, Aguilera-Castrejon A, Reines N, Orenbuch AH, Lifshitz A, Chen DY, Elowitz MB, Zernicka-Goetz M, Hanna JH, Tanay A, Stelzer Y. Temporal BMP4 effects on mouse embryonic and extraembryonic development. Nature 2024; 634:652-661. [PMID: 39294373 PMCID: PMC11485214 DOI: 10.1038/s41586-024-07937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/09/2024] [Indexed: 09/20/2024]
Abstract
The developing placenta, which in mice originates through the extraembryonic ectoderm (ExE), is essential for mammalian embryonic development. Yet unbiased characterization of the differentiation dynamics of the ExE and its interactions with the embryo proper remains incomplete. Here we develop a temporal single-cell model of mouse gastrulation that maps continuous and parallel differentiation in embryonic and extraembryonic lineages. This is matched with a three-way perturbation approach to target signalling from the embryo proper, the ExE alone, or both. We show that ExE specification involves early spatial and transcriptional bifurcation of uncommitted ectoplacental cone cells and chorion progenitors. Early BMP4 signalling from chorion progenitors is required for proper differentiation of uncommitted ectoplacental cone cells and later for their specification towards trophoblast giant cells. We also find biphasic regulation by BMP4 in the embryo. The early ExE-originating BMP4 signal is necessary for proper mesoendoderm bifurcation and for allantois and primordial germ cell specification. However, commencing at embryonic day 7.5, embryo-derived BMP4 restricts the primordial germ cell pool size by favouring differentiation of their extraembryonic mesoderm precursors towards an allantois fate. ExE and embryonic tissues are therefore entangled in time, space and signalling axes, highlighting the importance of their integrated understanding and modelling in vivo and in vitro.
Collapse
Affiliation(s)
- Ron Hadas
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hernan Rubinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Markus Mittnenzweig
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raz Ben-Yair
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Netta Reines
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dong-Yuan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Magdalena Zernicka-Goetz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
34
|
Herms A, Fernandez-Antoran D, Alcolea MP, Kalogeropoulou A, Banerjee U, Piedrafita G, Abby E, Valverde-Lopez JA, Ferreira IS, Caseda I, Bejar MT, Dentro SC, Vidal-Notari S, Ong SH, Colom B, Murai K, King C, Mahbubani K, Saeb-Parsy K, Lowe AR, Gerstung M, Jones PH. Self-sustaining long-term 3D epithelioid cultures reveal drivers of clonal expansion in esophageal epithelium. Nat Genet 2024; 56:2158-2173. [PMID: 39313617 PMCID: PMC11525200 DOI: 10.1038/s41588-024-01875-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
Aging epithelia are colonized by somatic mutations, which are subjected to selection influenced by intrinsic and extrinsic factors. The lack of suitable culture systems has slowed the study of this and other long-term biological processes. Here, we describe epithelioids, a facile, cost-effective method of culturing multiple mouse and human epithelia. Esophageal epithelioids self-maintain without passaging for at least 1 year, maintaining a three-dimensional structure with proliferative basal cells that differentiate into suprabasal cells, which eventually shed and retain genomic stability. Live imaging over 5 months showed that epithelioids replicate in vivo cell dynamics. Epithelioids support genetic manipulation and enable the study of mutant cell competition and selection in three-dimensional epithelia, and show how anti-cancer treatments modulate competition between transformed and wild-type cells. Finally, a targeted CRISPR-Cas9 screen shows that epithelioids recapitulate mutant gene selection in aging human esophagus and identifies additional drivers of clonal expansion, resolving the genetic networks underpinning competitive fitness.
Collapse
Affiliation(s)
- Albert Herms
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - David Fernandez-Antoran
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- ARAID Foundation, Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Maria P Alcolea
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Gabriel Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Inês S Ferreira
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Irene Caseda
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria T Bejar
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sara Vidal-Notari
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Bartomeu Colom
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | | | | | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Alan R Lowe
- Institute for Structural and Molecular Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Oncology, Hutchison Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
35
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024. [PMID: 39324445 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation Trust, London, UK
| |
Collapse
|
36
|
Panichnantakul P, Aguilar LC, Daynard E, Guest M, Peters C, Vogel J, Oeffinger M. Protein UFMylation regulates early events during ribosomal DNA-damage response. Cell Rep 2024; 43:114738. [PMID: 39277864 DOI: 10.1016/j.celrep.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The highly repetitive and transcriptionally active ribosomal DNA (rDNA) genes are exceedingly susceptible to genotoxic stress. Induction of DNA double-strand breaks (DSBs) in rDNA repeats is associated with ataxia-telangiectasia-mutated (ATM)-dependent rDNA silencing and nucleolar reorganization where rDNA is segregated into nucleolar caps. However, the regulatory events underlying this response remain elusive. Here, we identify protein UFMylation as essential for rDNA-damage response in human cells. We further show the only ubiquitin-fold modifier 1 (UFM1)-E3 ligase UFL1 and its binding partner DDRGK1 localize to nucleolar caps upon rDNA damage and that UFL1 loss impairs ATM activation and rDNA transcriptional silencing, leading to reduced rDNA segregation. Moreover, analysis of nuclear and nucleolar UFMylation targets in response to DSB induction further identifies key DNA-repair factors including ATM, in addition to chromatin and actin network regulators. Taken together, our data provide evidence of an essential role for UFMylation in orchestrating rDNA DSB repair.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Lisbeth C Aguilar
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Evan Daynard
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Mackenzie Guest
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Colten Peters
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jackie Vogel
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Département de biochimie et médicine moléculaire, Faculté de Médicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
37
|
Noguchi Y, Maruoka M, Suzuki J. Protocol for in vivo CRISPR screening targeting murine testicular cells. STAR Protoc 2024; 5:103306. [PMID: 39269899 PMCID: PMC11416641 DOI: 10.1016/j.xpro.2024.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
In vivo genome-wide screening elucidates tissue-specific molecular events. Here, we present a protocol for an in vivo genome-wide CRISPR-Cas9 single-guide RNA (sgRNA) library screening technique optimized for mouse testicular cells to investigate spermatogenesis. We describe steps for virus injection, sperm sorting, and primase-based whole-genome amplification. We then detail procedures for library reconstruction using a "revival screening" technique. Our approach reveals intricate spermatogenesis processes and is adaptable for diverse tissue-specific studies. For complete details on the use and execution of this protocol, please refer to Noguchi et al.1.
Collapse
Affiliation(s)
- Yuki Noguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
38
|
Celotti M, Derks LLM, van Es J, van Boxtel R, Clevers H, Geurts MH. Protocol to create isogenic disease models from adult stem cell-derived organoids using next-generation CRISPR tools. STAR Protoc 2024; 5:103189. [PMID: 39003744 PMCID: PMC11298932 DOI: 10.1016/j.xpro.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Isogenic disease models, such as genetically engineered organoids, provide insight into the impact of genetic variants on organ function. Here, we present a protocol to create isogenic disease models from adult stem cell-derived organoids using next-generation CRISPR tools. We describe steps for single guide RNA (sgRNA) design and cloning, electroporation, and selecting electroporated cells. We then detail procedures for clonal line generation. Next-generation CRISPR tools do not require double-stranded break (DSB) induction for their function, thus simplifying in vitro disease model generation. For complete details on the use and execution of this protocol, please refer to Geurts et al.1,2.
Collapse
Affiliation(s)
- Martina Celotti
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| | - Lucca L M Derks
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Maarten H Geurts
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
39
|
Li KX, Fan L, Wang H, Tian Y, Zhang S, Hu Q, Liu F, Chen H, Hou H. A synonymous mutation of rs1137070 cause the mice Maoa gene transcription and translation to decrease. Front Mol Neurosci 2024; 17:1406708. [PMID: 39359688 PMCID: PMC11446106 DOI: 10.3389/fnmol.2024.1406708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 10/04/2024] Open
Abstract
The Monoamine Oxidase-A (MAOA) EcoRV polymorphism (rs1137070) is a unique synonymous mutation (c.1409 T > C) within the MAOA gene, which plays a crucial role in Maoa gene expression and function. This study aimed to explore the relationship between the mouse Maoa rs1137070 genotype and differences in MAOA gene expression. Mice carrying the CC genotype of rs1137070 exhibited a significantly lower Maoa expression level, with an odds ratio of 2.44 compared to the T carriers. Moreover, the wild-type TT genotype of MAOA demonstrated elevated mRNA expression and a longer half-life. We also delved into the significant expression and structural disparities among genotypes. Furthermore, it was evident that different aspartic acid synonymous codons within Maoa influenced both MAOA expression and enzyme activity, highlighting the association between rs1137070 and MAOA. To substantiate these findings, a dual-luciferase reporter assay confirmed that GAC was more efficient than GAT binding. Conversely, the synonymous mutation altered Maoa gene expression in individual mice. An RNA pull-down assay suggested that this alteration could impact the interaction with RNA-binding proteins. In summary, our results illustrate that synonymous mutations can indeed regulate the downregulation of gene expression, leading to changes in MAOA function and their potential association with neurological-related diseases.
Collapse
Affiliation(s)
- Kai Xin Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lei Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| | - Yushan Tian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| | - Sen Zhang
- Department of Bioengineering, School of Chemical Engineering, Northwest University, Xi’an, China
| | - Qingyuan Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Fanglin Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| |
Collapse
|
40
|
Zhang W, Yamamoto K, Chang YH, Yabushita T, Hao Y, Shimura R, Nakahara J, Shikata S, Iida K, Chen Q, Zhang X, Kitamura T, Goyama S. HDAC7 is a potential therapeutic target in acute erythroid leukemia. Leukemia 2024:10.1038/s41375-024-02394-5. [PMID: 39277669 DOI: 10.1038/s41375-024-02394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Acute erythroleukemia (AEL) is a rare subtype of acute myeloid leukemia with a poor prognosis. In this study, we established a novel murine AEL model with Trp53 depletion and ERG overexpression. ERG overexpression in Trp53-deficient mouse bone marrow cells, but not in wild-type bone marrow cells, leads to AEL development within two months after transplantation with 100% penetrance. The established mouse AEL cells expressing Cas9 can be cultured in vitro, induce AEL in vivo even in unirradiated recipient mice, and enable efficient gene ablation using the CRISPR/Cas9 system. We also confirmed the cooperation between ERG overexpression and TP53 inactivation in promoting the growth of immature erythroid cells in human cord blood cells. Mechanistically, ERG antagonizes KLF1 and inhibits erythroid maturation, whereas TP53 deficiency promotes proliferation of erythroid progenitors. Furthermore, we identified HDAC7 as a specific susceptibility in AEL by the DepMap-based two-group comparison analysis. HDAC7 promotes the growth of human and mouse AEL cells both in vitro and in vivo through its non-enzymatic functions. Our study provides experimental evidence that TP53 deficiency and ERG overexpression are necessary and sufficient for the development of AEL and highlights HDAC7 as a promising therapeutic target for this disease.
Collapse
Affiliation(s)
- Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu-Hsuan Chang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yabushita
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yangying Hao
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Ruka Shimura
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Jakushin Nakahara
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiori Shikata
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Iida
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Qianyi Chen
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Xichen Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
41
|
Bugacov H, Der B, Briantseva BM, Guo Q, Kim S, Lindström NO, McMahon AP. Dose-dependent responses to canonical Wnt transcriptional complexes in the regulation of mammalian nephron progenitors. Development 2024; 151:dev202279. [PMID: 39250420 PMCID: PMC11463962 DOI: 10.1242/dev.202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
In vivo and in vitro studies argue that concentration-dependent Wnt signaling regulates mammalian nephron progenitor cell (NPC) programs. Canonical Wnt signaling is regulated through the stabilization of β-catenin, a transcriptional co-activator when complexed with Lef/Tcf DNA-binding partners. Using the GSK3β inhibitor CHIR99021 (CHIR) to block GSK3β-dependent destruction of β-catenin, we examined dose-dependent responses to β-catenin in mouse NPCs, using mRNA transduction to modify gene expression. Low CHIR-dependent proliferation of NPCs was blocked on β-catenin removal, with evidence of NPCs arresting at the G2-M transition. While NPC identity was maintained following β-catenin removal, mRNA-seq identified low CHIR and β-catenin dependent genes. High CHIR activated nephrogenesis. Nephrogenic programming was dependent on Lef/Tcf factors and β-catenin transcriptional activity. Molecular and cellular features of early nephrogenesis were driven in the absence of CHIR by a mutated stabilized form of β-catenin. Chromatin association studies indicate low and high CHIR response genes are likely direct targets of canonical Wnt transcriptional complexes. Together, these studies provide evidence for concentration-dependent Wnt signaling in the regulation of NPCs and provide new insight into Wnt targets initiating mammalian nephrogenesis.
Collapse
Affiliation(s)
- Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 1082, Hungary
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Bohdana-Myroslava Briantseva
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Discovery Biomarkers, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O. Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
42
|
Der B, Bugacov H, Briantseva BM, McMahon AP. Cadherin adhesion complexes direct cell aggregation in the epithelial transition of Wnt-induced nephron progenitor cells. Development 2024; 151:dev202303. [PMID: 39344436 PMCID: PMC11463967 DOI: 10.1242/dev.202303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 06/24/2024] [Indexed: 10/01/2024]
Abstract
In the developing mammalian kidney, nephron formation is initiated by a subset of nephron progenitor cells (NPCs). Wnt input activates a β-catenin (Ctnnb1)-driven, transcriptional nephrogenic program and the mesenchymal to epithelial transition (MET) of NPCs. Using an in vitro mouse NPC culture model, we observed that activation of the Wnt pathway results in the aggregation of induced NPCs, which is an initiating step in the MET program. Genetic removal showed aggregation was dependent on β-catenin. Modulating extracellular Ca2+ levels showed cell-cell contacts were Ca2+ dependent, suggesting a role for cadherin (Cdh)-directed cell adhesion. Molecular analysis identified Cdh2, Cdh4 and Cdh11 in NPCs, and the β-catenin directed upregulation of Cdh3 and Cdh4 accompanying the MET of induced NPCs. Mutational analysis of β-catenin supported a role for a Lef/Tcf-β-catenin-mediated transcriptional response in the cell aggregation process. Genetic removal of all four cadherins, and independent removal of α-catenin or of β-catenin-α-catenin interactions, abolished aggregation, but not the inductive response to Wnt pathway activation. These findings, and data in an accompanying article highlight the role of β-catenin in linking transcriptional programs to the morphogenesis of NPCs in mammalian nephrogenesis.
Collapse
Affiliation(s)
- Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 1082, Hungary
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bohdana-Myroslava Briantseva
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| |
Collapse
|
43
|
Mandalawatta HP, Rajendra K, Fairfax K, Hewitt AW. Emerging trends in virus and virus-like particle gene therapy delivery to the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102280. [PMID: 39206077 PMCID: PMC11350507 DOI: 10.1016/j.omtn.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy and gene-editing techniques offer the very real potential for successful treatment of neurological diseases. However, drug delivery constraints continue to impede viable therapeutic interventions targeting the brain due to its anatomical complexity and highly restrictive microvasculature that is impervious to many molecules. Realizing the therapeutic potential of gene-based therapies requires robust encapsulation and safe and efficient delivery to the target cells. Although viral vectors have been widely used for targeted delivery of gene-based therapies, drawbacks such as host genome integration, prolonged expression, undesired off-target mutations, and immunogenicity have led to the development of alternative strategies. Engineered virus-like particles (eVLPs) are an emerging, promising platform that can be engineered to achieve neurotropism through pseudotyping. This review outlines strategies to improve eVLP neurotropism for therapeutic brain delivery of gene-editing agents.
Collapse
Affiliation(s)
| | - K.C. Rajendra
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kirsten Fairfax
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
44
|
Chen Z, Deng X, Shi C, Jing H, Tian Y, Zhong J, Chen G, Xu Y, Luo Y, Zhu Y. GLP-1R-positive neurons in the lateral septum mediate the anorectic and weight-lowering effects of liraglutide in mice. J Clin Invest 2024; 134:e178239. [PMID: 39225090 PMCID: PMC11364389 DOI: 10.1172/jci178239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is approved for obesity treatment, but the specific neuronal sites that contribute to its therapeutic effects remain elusive. Here, we show that GLP-1 receptor-positive (GLP-1R-positive) neurons in the lateral septum (LSGLP-1R) play a critical role in mediating the anorectic and weight-loss effects of liraglutide. LSGLP-1R neurons were robustly activated by liraglutide, and chemogenetic activation of these neurons dramatically suppressed feeding. Targeted knockdown of GLP-1 receptors within the LS, but not in the hypothalamus, substantially attenuated liraglutide's ability to inhibit feeding and lower body weight. The activity of LSGLP-1R neurons rapidly decreased during naturalistic feeding episodes, while synaptic inactivation of LSGLP-1R neurons diminished the anorexic effects triggered by liraglutide. Together, these findings offer critical insights into the functional role of LSGLP-1R neurons in the physiological regulation of energy homeostasis and delineate their instrumental role in mediating the pharmacological efficacy of liraglutide.
Collapse
Affiliation(s)
- Zijun Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuijie Shi
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Haiyang Jing
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jiafeng Zhong
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Yixiao Luo
- Hunan Province People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
45
|
Zhang L, Wang X, Yang X, Chi Y, Chu Y, Zhang Y, Gong Y, Wang F, Zhao Q, Zhao D. Genome Engineering of Primary and Pluripotent Stem Cell-Derived Hepatocytes for Modeling Liver Tumor Formation. BIOLOGY 2024; 13:684. [PMID: 39336111 PMCID: PMC11428634 DOI: 10.3390/biology13090684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Genome editing has demonstrated its utility in generating isogenic cell-based disease models, enabling the precise introduction of genetic alterations into wild-type cells to mimic disease phenotypes and explore underlying mechanisms. However, its application in liver-related diseases has been limited by challenges in genetic modification of mature hepatocytes in a dish. Here, we conducted a systematic comparison of various methods for primary hepatocyte culture and gene delivery to achieve robust genome editing of hepatocytes ex vivo. Our efforts yielded editing efficiencies of up to 80% in primary murine hepatocytes cultured in monolayer and 20% in organoids. To model human hepatic tumorigenesis, we utilized hepatocytes differentiated from human pluripotent stem cells (hPSCs) as an alternative human hepatocyte source. We developed a series of cellular models by introducing various single or combined oncogenic alterations into hPSC-derived hepatocytes. Our findings demonstrated that distinct mutational patterns led to phenotypic variances, affecting both overgrowth and transcriptional profiles. Notably, we discovered that the PI3KCA E542K mutant, whether alone or in combination with exogenous c-MYC, significantly impaired hepatocyte functions and facilitated cancer metabolic reprogramming, highlighting the critical roles of these frequently mutated genes in driving liver neoplasia. In conclusion, our study demonstrates genome-engineered hepatocytes as valuable cellular models of hepatocarcinoma, providing insights into early tumorigenesis mechanisms.
Collapse
Affiliation(s)
- Lulu Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xunting Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| | - Xuelian Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| | - Yijia Chi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yihang Chu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yi Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| | - Yufan Gong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
| | - Qian Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
| | - Dongxin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| |
Collapse
|
46
|
He M, Zong X, Xu B, Qi W, Huang W, Djekidel MN, Zhang Y, Pagala VR, Li J, Hao X, Guy C, Bai L, Cross R, Li C, Peng J, Feng Y. Dynamic Foxp3-chromatin interaction controls tunable Treg cell function. J Exp Med 2024; 221:e20232068. [PMID: 38935023 PMCID: PMC11211070 DOI: 10.1084/jem.20232068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Nuclear factor Foxp3 determines regulatory T (Treg) cell fate and function via mechanisms that remain unclear. Here, we investigate the nature of Foxp3-mediated gene regulation in suppressing autoimmunity and antitumor immune response. Contrasting with previous models, we find that Foxp3-chromatin binding is regulated by Treg activation states, tumor microenvironment, and antigen and cytokine stimulations. Proteomics studies uncover dynamic proteins within Foxp3 proximity upon TCR or IL-2 receptor signaling in vitro, reflecting intricate interactions among Foxp3, signal transducers, and chromatin. Pharmacological inhibition and genetic knockdown experiments indicate that NFAT and AP-1 protein Batf are required for enhanced Foxp3-chromatin binding in activated Treg cells and tumor-infiltrating Treg cells to modulate target gene expression. Furthermore, mutations at the Foxp3 DNA-binding domain destabilize the Foxp3-chromatin association. These representative settings delineate context-dependent Foxp3-chromatin interaction, suggesting that Foxp3 associates with chromatin by hijacking DNA-binding proteins resulting from Treg activation or differentiation, which is stabilized by direct Foxp3-DNA binding, to dynamically regulate Treg cell function according to immunological contexts.
Collapse
Affiliation(s)
- Minghong He
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xinying Zong
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjie Qi
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjun Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jun Li
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xiaolei Hao
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lu Bai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard Cross
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structure Biology and Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
47
|
Stewart KS, Abdusselamoglu MD, Tierney MT, Gola A, Hur YH, Gonzales KAU, Yuan S, Bonny AR, Yang Y, Infarinato NR, Cowley CJ, Levorse JM, Pasolli HA, Ghosh S, Rothlin CV, Fuchs E. Stem cells tightly regulate dead cell clearance to maintain tissue fitness. Nature 2024; 633:407-416. [PMID: 39169186 PMCID: PMC11390485 DOI: 10.1038/s41586-024-07855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Billions of cells are eliminated daily from our bodies1-4. Although macrophages and dendritic cells are dedicated to migrating and engulfing dying cells and debris, many epithelial and mesenchymal tissue cells can digest nearby apoptotic corpses1-4. How these non-motile, non-professional phagocytes sense and eliminate dying cells while maintaining their normal tissue functions is unclear. Here we explore the mechanisms that underlie their multifunctionality by exploiting the cyclical bouts of tissue regeneration and degeneration during hair cycling. We show that hair follicle stem cells transiently unleash phagocytosis at the correct time and place through local molecular triggers that depend on both lipids released by neighbouring apoptotic corpses and retinoids released by healthy counterparts. We trace the heart of this dual ligand requirement to RARγ-RXRα, whose activation enables tight regulation of apoptotic cell clearance genes and provides an effective, tunable mechanism to offset phagocytic duties against the primary stem cell function of preserving tissue integrity during homeostasis. Finally, we provide functional evidence that hair follicle stem cell-mediated phagocytosis is not simply redundant with professional phagocytes but rather has clear benefits to tissue fitness. Our findings have broad implications for other non-motile tissue stem or progenitor cells that encounter cell death in an immune-privileged niche.
Collapse
Affiliation(s)
- Katherine S Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| | - Merve Deniz Abdusselamoglu
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Matthew T Tierney
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Anita Gola
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yun Ha Hur
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kevin A U Gonzales
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Department of Discovery Technology and Genomics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Shaopeng Yuan
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Altos Labs, Cambridge Institute of Science, Granta Park, Cambridge, UK
| | - Alain R Bonny
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yihao Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Altos Labs, San Diego, CA, USA
| | - Nicole R Infarinato
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- PrecisionScienta, Yardley, PA, USA
| | - Christopher J Cowley
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John M Levorse
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Cardiovascular Research Group, Temple University, Philadelphia, PA, USA
| | - Hilda Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Sourav Ghosh
- Departments of Neurology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
48
|
Tsuruya K, Yokoyama K, Mishima Y, Ida K, Araki T, Ieda S, Ohtsuka M, Inagaki Y, Honda A, Kagawa T, Kamiya A. Abcb4-defect cholangitis mouse model with hydrophobic bile acid composition by in vivo liver-specific gene deletion. J Lipid Res 2024; 65:100616. [PMID: 39111549 PMCID: PMC11407928 DOI: 10.1016/j.jlr.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a liver disease that occurs during childhood and requires liver transplantation. ABCB4 is localized along the canalicular membranes of hepatocytes, transports phosphatidylcholine into bile, and its mutation causes PFIC3. Abcb4 gene-deficient mice established as animal models of PFIC3 exhibit cholestasis-induced liver injury. However, their phenotypes are often milder than those of human PFIC3, partly because of the existence of large amounts of less toxic hydrophilic bile acids synthesized by the rodent-specific enzymes Cyp2c70 and Cyp2a12. Mice with double deletions of Cyp2c70/Cyp2a12 (CYPDKO mice) have a human-like hydrophobic bile acid composition. PFIC-related gene mutations were induced in CYPDKO mice to determine whether these triple-gene-deficient mice are a better model for PFIC. To establish a PFIC3 mouse model using CYPDKO mice, we induced abcb4 gene deletion in vivo using adeno-associated viruses expressing SaCas9 under the control of a liver-specific promoter and abcb4-target gRNAs. Compared to Abcb4-deficient wild-type mice, Abcb4-deficient CYPDKO mice showed more pronounced liver injury along with an elevation of inflammatory and fibrotic markers. The proliferation of intrahepatic bile ductal cells and hematopoietic cell infiltration were also observed. CYPDKO/abcb4-deficient mice show a predominance of taurine-conjugated chenodeoxycholic acid and lithocholic acid in the liver. In addition, phospholipid levels in the gallbladder bile were barely detectable. Mice with both human-like bile acid composition and Abcb4-defect exhibit severe cholestatic liver injury and are useful for studying human cholestatic diseases and developing new treatments.
Collapse
Affiliation(s)
- Kota Tsuruya
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Keiko Yokoyama
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Mishima
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takuma Araki
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Satsuki Ieda
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan; Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| |
Collapse
|
49
|
Duncan GJ, Ingram SD, Emberley K, Hill J, Cordano C, Abdelhak A, McCane M, Jenks JE, Jabassini N, Ananth K, Ferrara SJ, Stedelin B, Sivyer B, Aicher SA, Scanlan T, Watkins TA, Mishra A, Nelson JW, Green AJ, Emery B. Remyelination protects neurons from DLK-mediated neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.30.560267. [PMID: 37873342 PMCID: PMC10592610 DOI: 10.1101/2023.09.30.560267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic demyelination and oligodendrocyte loss deprive neurons of crucial support. It is the degeneration of neurons and their connections that drives progressive disability in demyelinating disease. However, whether chronic demyelination triggers neurodegeneration and how it may do so remain unclear. We characterize two genetic mouse models of inducible demyelination, one distinguished by effective remyelination and the other by remyelination failure and chronic demyelination. While both demyelinating lines feature axonal damage, mice with blocked remyelination have elevated neuronal apoptosis and altered microglial inflammation, whereas mice with efficient remyelination do not feature neuronal apoptosis and have improved functional recovery. Remyelination incapable mice show increased activation of kinases downstream of dual leucine zipper kinase (DLK) and phosphorylation of c-Jun in neuronal nuclei. Pharmacological inhibition or genetic disruption of DLK block c-Jun phosphorylation and the apoptosis of demyelinated neurons. Together, we demonstrate that remyelination is associated with neuroprotection and identify DLK inhibition as protective strategy for chronically demyelinated neurons.
Collapse
Affiliation(s)
- Greg J. Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sam D Ingram
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Katie Emberley
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jo Hill
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Michael McCane
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jennifer E. Jenks
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nora Jabassini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kirtana Ananth
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Skylar J. Ferrara
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brittany Stedelin
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sue A. Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Thomas Scanlan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Trent A. Watkins
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jonathan W. Nelson
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ari J. Green
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ben Emery
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
50
|
Liu Y, Wang F, Peng D, Zhang D, Liu L, Wei J, Yuan J, Zhao L, Jiang H, Zhang T, Li Y, Zhao C, He S, Wu J, Yan Y, Zhang P, Guo C, Zhang J, Li X, Gao H, Li K. Activation and antitumor immunity of CD8 + T cells are supported by the glucose transporter GLUT10 and disrupted by lactic acid. Sci Transl Med 2024; 16:eadk7399. [PMID: 39196962 DOI: 10.1126/scitranslmed.adk7399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 08/30/2024]
Abstract
CD8+ T cell activation leads to the rapid proliferation and differentiation of effector T cells (Teffs), which mediate antitumor immunity. Although aerobic glycolysis is preferentially activated in CD8+ Teffs, the mechanisms that regulate CD8+ T cell glucose uptake in the low-glucose and acidic tumor microenvironment (TME) remain poorly understood. Here, we report that the abundance of the glucose transporter GLUT10 is increased during CD8+ T cell activation and antitumor immunity. Specifically, GLUT10 deficiency inhibited glucose uptake, glycolysis, and antitumor efficiency of tumor-infiltrating CD8+ T cells. Supplementation with glucose alone was insufficient to rescue the antitumor function and glucose uptake of CD8+ T cells in the TME. By analyzing tumor environmental metabolites, we found that high concentrations of lactic acid reduced the glucose uptake, activation, and antitumor effects of CD8+ T cells by directly binding to GLUT10's intracellular motif. Disrupting the interaction of lactic acid and GLUT10 by the mimic peptide PG10.3 facilitated CD8+ T cell glucose utilization, proliferation, and antitumor functions. The combination of PG10.3 and GLUT1 inhibition or anti-programmed cell death 1 antibody treatment showed synergistic antitumor effects. Together, our data indicate that GLUT10 is selectively required for glucose uptake of CD8+ T cells and identify that TME accumulated lactic acid inhibits CD8+ T cell effector function by directly binding to GLUT10 and reducing its glucose transport capacity. Last, our study suggests disrupting lactate-GLUT10 binding as a promising therapeutic strategy to enhance CD8+ T cell-mediated antitumor effects.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Feng Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dongxue Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Luping Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Wei
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Luyao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunxuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenxi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuhua He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yechao Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peitao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chunyi Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiaming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
| | - Huan Gao
- Marine College, Shandong University, Weihai 264200, China
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|