1
|
Yang X, Ma Y, Chen J, Huang M, Qi M, Han N, Bian H, Qiu T, Yan Q, Wang J. Sextuple knockouts of a highly conserved and coexpressed AUXIN/INDOLE-3-ACETIC ACID gene set confer shade avoidance-like responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:4483-4497. [PMID: 39012193 DOI: 10.1111/pce.15039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
AUXIN/INDOLE-3-ACETIC ACIDs are transcriptional repressors for auxin signalling. Aux/IAAs of Arabidopsis thaliana display some functional redundancy. The IAA3/SHY2 clade (IAA1, IAA2, IAA3 and IAA4) show strong sequence similarity, but no higher-order mutants have been reported. Here, through CRISPR/Cas9 genome editing, we generated loss-of-function iaa1/2/3/4 mutants. The quadruple mutants only exhibited a weak phenotype. Thus, we additionally knocked out IAA7/AXR2 and IAA16, which are coexpressed with IAA1/2/3/4. Remarkably, under white light control conditions, the iaa1/2/3/4/7/16 mutants exhibited a shade avoidance-like phenotype with over-elongated hypocotyls and petioles and hyponastic leaves. The sextuple mutants were highly sensitive to low light intensity, and the hypocotyl cells of the mutants were excessively elongated. Transcriptome profiling and qRT-PCR analyses revealed that the sextuple mutation upregulated IAA19/MSG2 and IAA29, two shared shade/auxin signalling targets. Besides, genes encoding cell wall-remodelling proteins and shade-responsive transcription regulators were upregulated. Using dual-luciferase reporter assays, we verified that IAA2/IAA7 targeted the promoters of cell wall-remodelling genes to inhibit their transcription. Our work indicates that the IAA1/2/3/4/7/16 gene set is required for the optimal integration of auxin and shade signalling. The mutants generated here should be valuable for exploring the complex interactions among signal sensors, transcription activators and transcription repressors during hormone/environmental responses.
Collapse
Affiliation(s)
- Xinxing Yang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Minhua Huang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mengyuan Qi
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Qingfeng Yan
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Jiang B. Light-induced cryptochrome 2 liquid-liquid phase separation and mRNA methylation. THE NEW PHYTOLOGIST 2024. [PMID: 39434460 DOI: 10.1111/nph.20201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Light is essential not only for photosynthesis but also for the regulation of various physiological and developmental processes in plants. While the mechanisms by which light regulates transcription and protein stability are well established, the effects of light on RNA methylation and their subsequent impact on plant growth and development are less understood. Upon exposure to blue light, the photoreceptor cryptochromes form nuclear speckles or nuclear bodies, termed CRY photobodies. The CRY2 photobodies undergo light-induced homo-oligomerization and liquid-liquid phase separation (LLPS), which are crucial for their physiological activity. Recent studies have proposed that blue light-induced CRY2 LLPS increases the local concentration or directly enhances the biochemical activities of RNA N6-methyladenosine (m6A) methyltransferases, thus, to regulate circadian clock and maintain Chl homeostasis through processes of RNA decay or translation. This review aimed to elucidate the functions of CRY2 and LLPS in RNA methylation, focusing on the light-controlled reversible phase transitions regulon and the outstanding questions that remain in RNA methylation.
Collapse
Affiliation(s)
- Bochen Jiang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Sycamore Research Institute of Life Sciences, Shanghai, 201203, China
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
3
|
Verma N, Singh D, Mittal L, Banerjee G, Noryang S, Sinha AK. MPK4-mediated phosphorylation of PHYTOCHROME INTERACTING FACTOR4 controls thermosensing by regulating histone variant H2A.Z deposition. THE PLANT CELL 2024; 36:4535-4556. [PMID: 39102893 PMCID: PMC11449107 DOI: 10.1093/plcell/koae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 08/07/2024]
Abstract
Plants can perceive a slight upsurge in ambient temperature and respond by undergoing morphological changes, such as elongated hypocotyls and early flowering. The dynamic functioning of PHYTOCHROME INTERACTING FACTOR4 (PIF4) in thermomorphogenesis is well established, although the complete regulatory pathway involved in thermosensing remains elusive. We establish that an increase in temperature from 22 to 28 °C induces upregulation and activation of MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) in Arabidopsis (Arabidopsis thaliana), subsequently leading to the phosphorylation of PIF4. Phosphorylated PIF4 represses the expression of ACTIN-RELATED PROTEIN 6 (ARP6), which is required for mediating the deposition of histone variant H2A.Z at its target loci. Furthermore, we demonstrate that variations in ARP6 expression in PIF4 phosphor-null and phosphor-mimetic seedlings affect hypocotyl growth at 22 and 28 °C by modulating the regulation of ARP6-mediated H2A.Z deposition at the loci of genes involved in elongating hypocotyl cells. Interestingly, the expression of MPK4 is also controlled by H2A.Z deposition in a temperature-dependent manner. Taken together, these findings highlight the regulatory mechanism of thermosensing by which MPK4-mediated phosphorylation of PIF4 affects ARP6-mediated H2A.Z deposition at the genes involved in hypocotyl cell elongation.
Collapse
Affiliation(s)
- Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lavanya Mittal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Stanzin Noryang
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
4
|
Zimmermann MJ, Jathar VD, Baskin TI. Thermomorphogenesis of the Arabidopsis thaliana Root: Flexible Cell Division, Constrained Elongation and the Role of Cryptochrome. PLANT & CELL PHYSIOLOGY 2024; 65:1434-1449. [PMID: 39030707 DOI: 10.1093/pcp/pcae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Understanding how plants respond to temperature is relevant for agriculture in a warming world. Responses to temperature in the shoot have been characterized more fully than those in the root. Previous work on thermomorphogenesis in roots established that for Arabidopsis thaliana (Columbia) seedlings grown continuously at a given temperature, the root meristem produces cells at the same rate at 15°C as at 25°C and the root's growth zone is the same length. To uncover the pathway(s) underlying this constancy, we screened 34 A. thaliana genotypes for parameters related to growth and division. No line failed to respond to temperature. Behavior was little affected by mutations in phytochrome or other genes that underly thermomorphogenesis in shoots. However, a mutant in cryptochrome 2 was disrupted substantially in both cell division and elongation, specifically at 15°C. Among the 34 lines, cell production rate varied extensively and was associated only weakly with root growth rate; in contrast, parameters relating to elongation were stable. Our data are consistent with models of root growth that invoke cell non-autonomous regulation for establishing boundaries between meristem, elongation zone and mature zone.
Collapse
Affiliation(s)
- Maura J Zimmermann
- Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Vikram D Jathar
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Chen L, Liu M, Li Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Arabidopsis cryptochromes interact with SOG1 to promote the repair of DNA double-strand breaks. Biochem Biophys Res Commun 2024; 724:150233. [PMID: 38865814 DOI: 10.1016/j.bbrc.2024.150233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Cryptochromes (CRYs) are blue light (BL) photoreceptors to regulate a variety of physiological processes including DNA double-strand break (DSB) repair. SUPPRESSOR OF GAMMA RADIATION 1 (SOG1) acts as the central transcription factor of DNA damage response (DDR) to induce the transcription of downstream genes, including DSB repair-related genes BRCA1 and RAD51. Whether CRYs regulate DSB repair by directly modulating SOG1 is unknown. Here, we demonstrate that CRYs physically interact with SOG1. Disruption of CRYs and SOG1 leads to increased sensitivity to DSBs and reduced DSB repair-related genes' expression under BL. Moreover, we found that CRY1 enhances SOG1's transcription activation of DSB repair-related gene BRCA1. These results suggest that the mechanism by which CRYs promote DSB repair involves positive regulation of SOG1's transcription of its target genes, which is likely mediated by CRYs-SOG1 interaction.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
6
|
Chen L, Cao X, Li Y, Liu M, Liu Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Photoexcited Cryptochrome 1 Interacts With SPCHLESS to Regulate Stomatal Development in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253954 DOI: 10.1111/pce.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Stomata are epidermal openings that facilitate plant-atmosphere gas and water exchange during photosynthesis, respiration and water evaporation. SPEECHLESS (SPCH) is a master basic helix-loop-helix (bHLH) transcription factor that determines the initiation of stomatal development. It is known that blue light promotes stomatal development through the blue light photoreceptor cryptochromes (CRYs, CRY1 and CRY2). Whether CRYs regulate stomatal development through directly modulating SPCH is unknown. Here, we demonstrate by biochemical studies that CRY1 physically interacts with SPCH in a blue light-dependent manner. Genetic studies show that SPCH acts downstream of CRY1 to promote stomatal development in blue light. Furthermore, we show that CRY1 enhances the DNA-binding activity of SPCH and promotes the expression of its target genes in blue light. These results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH, which is likely mediated by blue light-induced CRY1-SPCH interaction. The precise regulation of SPCH DNA-binding activity by CRY1 may allow plants to optimize stomatal density and pattern according to ambient light conditions.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
7
|
Li L, Wonder J, Helming T, van Asselt G, Pantazopoulou CK, van de Kaa Y, Kohlen W, Pierik R, Kajala K. Evaluation of the roles of brassinosteroid, gibberellin and auxin for tomato internode elongation in response to low red:far-red light. PHYSIOLOGIA PLANTARUM 2024; 176:e14558. [PMID: 39360434 DOI: 10.1111/ppl.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
In this study, we explore the interplay between the plant hormones gibberellins (GA), brassinosteroids (BR), and Indole-3-Acetic Acid (IAA) in their collective impact on plant shade avoidance elongation under varying light conditions. We focus particularly on low Red:Far-red (R:FR) light conditions achieved by supplementing the background light with FR. We characterized the tomato internode response to low R:FR and, with RNA-seq analysis, we were able to identify some of the potential regulatory hormonal pathways. Through a series of exogenous pharmacological modulations of GA, IAA, and BR, we demonstrate that GA and BR are sufficient but also necessary for inducing stem elongation under low R:FR light conditions. Intriguingly, while IAA alone shows limited effects, its combination with GA yields significant elongation, suggesting a nuanced hormonal balance. Furthermore, we unveil the complex interplay of these hormones under light with low R:FR, where the suppression of one hormone's effect can be compensated by the others. This study provides insights into the hormonal mechanisms governing plant adaptation to light, highlighting the intricate and adaptable nature of plant growth responses. Our findings have far-reaching implications for agricultural practices, offering potential strategies for optimizing plant growth and productivity in various lighting environments.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Jesse Wonder
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ticho Helming
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Gijs van Asselt
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Chrysoula K Pantazopoulou
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Yorrit van de Kaa
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster Plant Developmental Biology, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Song Z, Ye W, Jiang Q, Lin H, Hu Q, Xiao Y, Bian Y, Zhao F, Dong J, Xu D. BBX9 forms feedback loops with PIFs and BBX21 to promote photomorphogenic development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1934-1952. [PMID: 39041924 DOI: 10.1111/jipb.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Light is one of the most essential environmental factors that tightly and precisely control various physiological and developmental processes in plants. B-box CONTAINING PROTEINs (BBXs) play central roles in the regulation of light-dependent development. In this study, we report that BBX9 is a positive regulator of light signaling. BBX9 interacts with the red light photoreceptor PHYTOCHROME B (phyB) and transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs). phyB promotes the stabilization of BBX9 in light, while BBX9 inhibits the transcriptional activation activity of PIFs. In turn, PIFs directly bind to the promoter of BBX9 to repress its transcription. On the other hand, BBX9 associates with the positive regulator of light signaling, BBX21, and enhances its biochemical activity. BBX21 associates with the promoter regions of BBX9 and transcriptionally up-regulates its expression. Collectively, this study unveiled that BBX9 forms a negative feedback loop with PIFs and a positive one with BBX21 to ensure that plants adapt to fluctuating light conditions.
Collapse
Affiliation(s)
- Zhaoqing Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanying Ye
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuntao Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengyue Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
9
|
Song P, Yang Z, Wang H, Wan F, Kang D, Zheng W, Gong Z, Li J. Regulation of cryptochrome-mediated blue light signaling by the ABI4-PIF4 module. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39185941 DOI: 10.1111/jipb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
ABSCISIC ACID-INSENSITIVE 4 (ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses. ABI4 has been shown to be involved in regulating seedling photomorphogenesis; however, the underlying mechanism remains elusive. Here, we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose, but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue (B) light under all tested sucrose concentrations. We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a well-characterized growth-promoting transcription factor, and post-translationally promotes PIF4 protein accumulation under B light. Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes (CRYs) and inhibits the interactions between CRYs and PIF4, thus relieving CRY-mediated repression of PIF4 protein accumulation. In addition, while ABI4 could directly activate its own expression, CRYs enhance, whereas PIF4 inhibits, ABI4-mediated activation of the ABI4 promoter. Together, our study demonstrates that the ABI4-PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.
Collapse
Affiliation(s)
- Pengyu Song
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zidan Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644000, China
| | - Huaichang Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Wan
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingming Kang
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhizhong Gong
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Sun Y, Yang X, Wu R, Lv S, Li Y, Jia H, Yang Y, Li B, Chen W, Allan AC, Jiang G, Shi YN, Chen K. DNA methylation controlling abscisic acid catabolism responds to light to mediate strawberry fruit ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1718-1734. [PMID: 38896078 DOI: 10.1111/jipb.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
Phytohormones, epigenetic regulation and environmental factors regulate fruit ripening but their interplay during strawberry fruit ripening remains to be determined. In this study, bagged strawberry fruit exhibited delayed ripening compared with fruit grown in normal light, correlating with reduced abscisic acid (ABA) accumulation. Transcription of the key ABA catabolism gene, ABA 8'-hydroxylase FaCYP707A4, was induced in bagged fruit. With light exclusion whole genome DNA methylation levels were up-regulated, corresponding to a delayed ripening process, while DNA methylation levels in the promoter of FaCYP707A4 were suppressed, correlating with increases in transcript and decreased ABA content. Experiments indicated FaCRY1, a blue light receptor repressed in bagged fruit and FaAGO4, a key protein involved in RNA-directed DNA methylation, could bind to the promoter of FaCYP707A4. The interaction between FaCRY1 and FaAGO4, and an increased enrichment of FaAGO4 directed to the FaCYP707A4 promoter in fruit grown under light suggests FaCRY1 may influence FaAGO4 to modulate the DNA methylation status of the FaCYP707A4 promoter. Furthermore, transient overexpression of FaCRY1, or an increase in FaCRY1 transcription by blue light treatment, increases the methylation level of the FaCYP707A4 promoter, while transient RNA interference of FaCRY1 displayed opposite phenotypes. These findings reveal a mechanism by which DNA methylation influences ABA catabolism, and participates in light-mediated strawberry ripening.
Collapse
Affiliation(s)
- Yunfan Sun
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiaofang Yang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Rongrong Wu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Shouzheng Lv
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yunduan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Haoran Jia
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yuying Yang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Baijun Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wenbo Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Guihua Jiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yan-Na Shi
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
11
|
Martínez-Vasallo C, Cole B, Pérez-Alemany J, Ortiz-Ramírez CI, Gallego-Bartolomé J, Chory J, Kay SA, Nohales MA. GIGANTEA adjusts the response to shade at dusk by directly impinging on PHYTOCHROME INTERACTING FACTOR 7 function. Proc Natl Acad Sci U S A 2024; 121:e2315778121. [PMID: 39012827 PMCID: PMC11287147 DOI: 10.1073/pnas.2315778121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here, we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that this circuit primarily operates in epidermal cells, highlighting the relevance of tissue-specific clock-output connections for the regulation of plant development in resonance with the environment.
Collapse
Affiliation(s)
- Carlos Martínez-Vasallo
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Benjamin Cole
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Jaime Pérez-Alemany
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Clara I. Ortiz-Ramírez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
- HHMI, La Jolla, CA92037
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Maria A. Nohales
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| |
Collapse
|
12
|
Chen L, Ruan J, Li Y, Liu M, Liu Y, Guan Y, Mao Z, Wang W, Yang HQ, Guo T. ADA2b acts to positively regulate blue light-mediated photomorphogenesis in Arabidopsis. Biochem Biophys Res Commun 2024; 717:150050. [PMID: 38718571 DOI: 10.1016/j.bbrc.2024.150050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
13
|
Lyu J, Wang D, Sun N, Yang F, Li X, Mu J, Zhou R, Zheng G, Yang X, Zhang C, Han C, Xia G, Li G, Fan M, Xiao J, Bai M. The TaSnRK1-TabHLH489 module integrates brassinosteroid and sugar signalling to regulate the grain length in bread wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1989-2006. [PMID: 38412139 PMCID: PMC11182588 DOI: 10.1111/pbi.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.
Collapse
Affiliation(s)
- Jinyang Lyu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Na Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Fan Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Xuepeng Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Junyi Mu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Runxiang Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Guolan Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Xin Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Chenxuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Guang‐Min Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Genying Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Centre of Excellence for Plant and Microbial Science (CEPAMS)JIC‐CASBeijingChina
| | - Ming‐Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| |
Collapse
|
14
|
Huai J, Gao N, Yao Y, Du Y, Guo Q, Lin R. JASMONATE ZIM-domain protein 3 regulates photomorphogenesis and thermomorphogenesis through inhibiting PIF4 in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2274-2288. [PMID: 38487893 DOI: 10.1093/plphys/kiae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 06/30/2024]
Abstract
Light and temperature are 2 major environmental factors that affect the growth and development of plants during their life cycle. Plants have evolved complex mechanisms to adapt to varying external environments. Here, we show that JASMONATE ZIM-domain protein 3 (JAZ3), a jasmonic acid signaling component, acts as a factor to integrate light and temperature in regulating seedling morphogenesis. JAZ3 overexpression transgenic lines display short hypocotyls under red, far-red, and blue light and warm temperature (28 °C) conditions compared to the wild type in Arabidopsis (Arabidopsis thaliana). We show that JAZ3 interacts with the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4). Interestingly, JAZ3 spontaneously undergoes liquid-liquid phase separation (LLPS) in vitro and in vivo and promotes LLPS formation of PIF4. Moreover, transcriptomic analyses indicate that JAZ3 regulates the expression of genes involved in many biological processes, such as response to auxin, auxin-activated signaling pathway, regulation of growth, and response to red light. Finally, JAZ3 inhibits the transcriptional activation activity and binding ability of PIF4. Collectively, our study reveals a function and molecular mechanism of JAZ3 in regulating plant growth in response to environmental factors such as light and temperature.
Collapse
Affiliation(s)
- Junling Huai
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
| | - Nan Gao
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Yao
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Du
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Guo
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Saura-Sánchez M, Gomez-Ocampo G, Pereyra ME, Barraza CE, Rossi AH, Córdoba JP, Botto JF. B-Box transcription factor BBX28 requires CONSTITUTIVE PHOTOMORPHOGENESIS1 to induce shade-avoidance response in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:2443-2455. [PMID: 38620015 DOI: 10.1093/plphys/kiae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Shade avoidance syndrome is an important adaptive strategy. Under shade, major transcriptional rearrangements underlie the reallocation of resources to elongate vegetative structures and redefine the plant architecture to compete for photosynthesis. BBX28 is a B-box transcription factor involved in seedling de-etiolation and flowering in Arabidopsis (Arabidopsis thaliana), but its function in shade-avoidance response is completely unknown. Here, we studied the function of BBX28 using two mutant and two transgenic lines of Arabidopsis exposed to white light and simulated shade conditions. We found that BBX28 promotes hypocotyl growth under shade through the phytochrome system by perceiving the reduction of red photons but not the reduction of photosynthetically active radiation or blue photons. We demonstrated that hypocotyl growth under shade is sustained by the protein accumulation of BBX28 in the nuclei in a CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1)-dependent manner at the end of the photoperiod. BBX28 up-regulates the expression of transcription factor- and auxin-related genes, thereby promoting hypocotyl growth under prolonged shade. Overall, our results suggest the role of BBX28 in COP1 signaling to sustain the shade-avoidance response and extend the well-known participation of other members of BBX transcription factors for fine-tuning plant growth under shade.
Collapse
Affiliation(s)
- Maite Saura-Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Gomez-Ocampo
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Ezequiel Pereyra
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Carla Eliana Barraza
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés H Rossi
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Juan P Córdoba
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Javier Francisco Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
16
|
Abraham M, Dhanuka J, Som S, Pandey MK, Das S. A highly efficient deep red-emitting Mn 4+-powered oxyfluoride nanophosphor developed for plant growth and optical thermometric applications. NANOSCALE 2024; 16:10690-10705. [PMID: 38695807 DOI: 10.1039/d4nr00787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This research mainly highlighted an intense deep red-emitting and Mn4+-powered oxyfluoride nanophosphor, Mg14Ge4.99O16F8:0.01Mn4+ (MGOF:Mn), which was synthesized via adopting a scalable synthesis route for commercial temperature sensing and artificial plant growth applications. The electron microscopic analysis confirmed the formation of nanosized particles without any defined shape or size distribution. The obtained nanophosphor exhibited sharp emission peaks at 659 nm and 631 nm under UV (317 nm) and blue excitation (417 nm) owing to Mn4+:2Eg → 4A2g and Mn4+:2T1g → 4A2g transitions, respectively. The emission spectrum is situated in the deep red region of the CIE color diagram where the red color purity approached 100% under both the excitations. The absorption efficiency and the internal and external quantum efficiencies of this red-emitting system were calculated to be 53%, ∼77%, and ∼41%, respectively, under blue excitation of 417 nm, which indicated its potential for indoor plant cultivation. A prototype red LED was fabricated by pasting the red-emitting MGOF:Mn4+ nanophosphor powder on a 410 nm blue LED chip. The resulting electroluminescence spectrum overlapped with those of the important organic pigments of normal plants. Importantly, the thermometric properties of the nanophosphor were evaluated in detail for FIR and lifetime-based thermometry applications. The examined nanophosphor showed an extreme absolute sensitivity of 0.00326 K-1 at 373 K with excellent reproducibility and temperature resolution. Because of the small particle size and high luminescence efficiency, the nanophosphor could be implemented in various nano-devices where non-contact optical thermometry is necessary for high performance.
Collapse
Affiliation(s)
- Malini Abraham
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jatin Dhanuka
- School of Science and Humanities, Shiv Nadar University Chennai, Tamil Nadu 603110, India.
| | - Sudipta Som
- School of Science and Humanities, Shiv Nadar University Chennai, Tamil Nadu 603110, India.
| | - Mukesh K Pandey
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Subrata Das
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
17
|
Chen X, Fan Y, Guo Y, Li S, Zhang B, Li H, Liu LJ. Blue light photoreceptor cryptochrome 1 promotes wood formation and anthocyanin biosynthesis in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:2044-2057. [PMID: 38392920 DOI: 10.1111/pce.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.
Collapse
Affiliation(s)
- Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Yiting Fan
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyi Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Bo Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Hao Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
18
|
Shor E, Vainstein A. Petunia PHYTOCHROME INTERACTING FACTOR 4/5 transcriptionally activates key regulators of floral scent. PLANT MOLECULAR BIOLOGY 2024; 114:66. [PMID: 38816626 PMCID: PMC11139750 DOI: 10.1007/s11103-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024]
Abstract
Floral scent emission of petunia flowers is regulated by light conditions, circadian rhythms, ambient temperature and the phytohormones GA and ethylene, but the mechanisms underlying sensitivity to these factors remain obscure. PHYTOCHROME INTERACTING FACTORs (PIFs) have been well studied as components of the regulatory machinery for numerous physiological processes. Acting redundantly, they serve as transmitters of light, circadian, metabolic, thermal and hormonal signals. Here we identified and characterized the phylogenetics of petunia PIF family members (PhPIFs). PhPIF4/5 was revealed as a positive regulator of floral scent: TRV-based transient suppression of PhPIF4/5 in petunia petals reduced emission of volatiles, whereas transient overexpression increased scent emission. The mechanism of PhPIF4/5-mediated regulation of volatile production includes activation of the expression of genes encoding biosynthetic enzymes and a key positive regulator of the pathway, EMISSION OF BENZENOIDS II (EOBII). The PIF-binding motif on the EOBII promoter (G-box) was shown to be needed for this activation. As PhPIF4/5 homologues are sensors of dawn and expression of EOBII also peaks at dawn, the prior is proposed to be part of the diurnal control of the volatile biosynthetic machinery. PhPIF4/5 was also found to transcriptionally activate PhDELLAs; a similar positive effect of PIFs on DELLA expression was further confirmed in Arabidopsis seedlings. The PhPIF4/5-PhDELLAs feedback is proposed to fine-tune GA signaling for regulation of floral scent production.
Collapse
Affiliation(s)
- Ekaterina Shor
- Institute of Plant Sciences, ARO, Volcani Institute, Rishon Lezion, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
19
|
Fu Y, Zhu W, Zhou Y, Su Y, Li Z, Zhang D, Zhang D, Shen J, Liang J. RACK1A promotes hypocotyl elongation by scaffolding light signaling components in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:956-972. [PMID: 38558526 DOI: 10.1111/jipb.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.
Collapse
Affiliation(s)
- Yajuan Fu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujing Su
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dayan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinyu Shen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Qu GP, Jiang B, Lin C. The dual-action mechanism of Arabidopsis cryptochromes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:883-896. [PMID: 37902426 DOI: 10.1111/jipb.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the "Lock-and-Key" and the "Liquid-Liquid Phase Separation (LLPS)" mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
Collapse
Affiliation(s)
- Gao-Ping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
21
|
Park YJ, Nam BE, Park CM. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:865-882. [PMID: 38116738 DOI: 10.1111/jipb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Bo Eun Nam
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
22
|
Li Y, Guo Y, Cao Y, Xia P, Xu D, Sun N, Jiang L, Dong J. Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:928-942. [PMID: 37929685 DOI: 10.1111/jipb.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
Precise responses to changes in light quality are crucial for plant growth and development. For example, hypocotyls of shade-avoiding plants typically elongate under shade conditions. Although this typical shade-avoidance response (TSR) has been studied in Arabidopsis (Arabidopsis thaliana), the molecular mechanisms underlying shade tolerance are poorly understood. Here we report that B. napus (Brassica napus) seedlings exhibit dual shade responses. In addition to the TSR, B. napus seedlings also display an atypical shade response (ASR), with shorter hypocotyls upon perception of early-shade cues. Genome-wide selective sweep analysis indicated that ASR is associated with light and auxin signaling. Moreover, genetic studies demonstrated that phytochrome A (BnphyA) promotes ASR, whereas BnphyB inhibits it. During ASR, YUCCA8 expression is activated by early-shade cues, leading to increased auxin biosynthesis. This inhibits hypocotyl elongation, as young B. napus seedlings are highly sensitive to auxin. Notably, two non-canonical AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor genes, BnIAA32 and BnIAA34, are expressed during this early stage. BnIAA32 and BnIAA34 inhibit hypocotyl elongation under shade conditions, and mutations in BnIAA32 and BnIAA34 suppress ASR. Collectively, our study demonstrates that the temporal expression of BnIAA32 and BnIAA34 determines the behavior of B. napus seedlings following shade-induced auxin biosynthesis.
Collapse
Affiliation(s)
- Yafei Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yiyi Guo
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yue Cao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
23
|
Huq E, Lin C, Quail PH. Light signaling in plants-a selective history. PLANT PHYSIOLOGY 2024; 195:213-231. [PMID: 38431282 PMCID: PMC11060691 DOI: 10.1093/plphys/kiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.
Collapse
Affiliation(s)
- Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
24
|
Kimura I, Kanegae T. A phytochrome/phototropin chimeric photoreceptor promotes growth of fern gametophytes under limited light conditions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2403-2416. [PMID: 38189579 DOI: 10.1093/jxb/erae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/06/2024] [Indexed: 01/09/2024]
Abstract
Many ferns thrive even in low-light niches such as under an angiosperm forest canopy. However, the shade adaptation strategy of ferns is not well understood. Phytochrome 3/neochrome (phy3/neo) is an unconventional photoreceptor, found in the fern Adiantum capillus-veneris, that controls both red and blue light-dependent phototropism and chloroplast photorelocation, which are considered to improve photosynthetic efficiency in ferns. Here we show that phy3/neo localizes not only at the plasma membrane but also in the nucleus. Since both phototropism and chloroplast photorelocation are mediated by membrane-associated phototropin photoreceptors, we speculated that nucleus-localized phy3/neo possesses a previously undescribed biological function. We reveal that phy3/neo directly interacts with Adiantum cryptochrome 3 (cry3) in the nucleus. Plant cryptochromes are blue light receptors that transcriptionally regulate photomorphogenesis; therefore, phy3/neo may function via cry3 to synchronize light-mediated development with phototropism and chloroplast photorelocation to promote fern growth under low-light conditions. Furthermore, we demonstrate that phy3/neo regulates the expression of the Cyclin-like gene AcCyc1 and promotes prothallium expansion growth. These findings provide insight into the shade adaptation strategy of ferns and suggest that phy3/neo plays a substantial role in the survival and growth of ferns during the tiny gametophytic stage under low-light conditions, such as those on the forest floor.
Collapse
Affiliation(s)
- Izumi Kimura
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Takeshi Kanegae
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
25
|
Cao H, Wang R, Zhao J, Shi L, Huang Y, Wu T, Zhang C. Genome-wide identification and expression analysis of the cryptochromes reveal the CsCRY1 role under low-light-stress in cucumber. FRONTIERS IN PLANT SCIENCE 2024; 15:1371435. [PMID: 38660445 PMCID: PMC11040678 DOI: 10.3389/fpls.2024.1371435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Introduction Low-light-stress is a common meteorological disaster that can result in slender seedlings. The photoreceptors play a crucial role in perceiving and regulating plants' tolerance to low-light-stress. However, the low-light-stress tolerance of cucumber has not been effectively evaluated, and the functions of these photoreceptor genes in cucumber, particularly under low-light-stress conditions, are not clear. Methods Herein, we evaluated the growth characteristics of cucumber seedlings under various LED light treatment. The low-light-stress tolerant cucumber CR and intolerant cucumber CR were used as plant materials for gene expression analysis, and then the function of CsCRY1 was analyzed. Results The results revealed that light treatment below 40 μmol m-2 s-1 can quickly and effectively induce low-light-stress response. Then, cucumber CR exhibited remarkable tolerance to low-light-stress was screened. Moreover, a total of 11 photoreceptor genes were identified and evaluated. Among them, the cryptochrome 1 (CRY1) had the highest expression level and was only induced in the low-light sensitive cucumber CS. The transcript CsaV3_3G047490.1 is predicted to encode a previously unknown CsCRY1 protein, which lacks 70 amino acids at its C-terminus due to alternative 5' splice sites within the final intron of the CsCRY1 gene. Discussion CRY1 is a crucial photoreceptor that plays pivotal roles in regulating plants' tolerance to low-light stress. In this study, we discovered that alternative splicing of CsCRY1 generates multiple transcripts encoding distinct CsCRY1 protein variants, providing valuable insights for future exploration and utilization of CsCRY1 in cucumber.
Collapse
Affiliation(s)
- Haishun Cao
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rui Wang
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junhong Zhao
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Liangliang Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tingquan Wu
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Changyuan Zhang
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
26
|
Trofimov K, Gratz R, Ivanov R, Stahl Y, Bauer P, Brumbarova T. FER-like iron deficiency-induced transcription factor (FIT) accumulates in nuclear condensates. J Cell Biol 2024; 223:e202311048. [PMID: 38393070 PMCID: PMC10890924 DOI: 10.1083/jcb.202311048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The functional importance of nuclear protein condensation remains often unclear. The bHLH FER-like iron deficiency-induced transcription factor (FIT) controls iron acquisition and growth in plants. Previously described C-terminal serine residues allow FIT to interact and form active transcription factor complexes with subgroup Ib bHLH factors such as bHLH039. FIT has lower nuclear mobility than mutant FITmSS271AA. Here, we show that FIT undergoes a light-inducible subnuclear partitioning into FIT nuclear bodies (NBs). Using quantitative and qualitative microscopy-based approaches, we characterized FIT NBs as condensates that were reversible and likely formed by liquid-liquid phase separation. FIT accumulated preferentially in NBs versus nucleoplasm when engaged in protein complexes with itself and with bHLH039. FITmSS271AA, instead, localized to NBs with different dynamics. FIT colocalized with splicing and light signaling NB markers. The NB-inducing light conditions were linked with active FIT and elevated FIT target gene expression in roots. FIT condensation may affect nuclear mobility and be relevant for integrating environmental and Fe nutrition signals.
Collapse
Affiliation(s)
- Ksenia Trofimov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Sénéchal F, Robinson S, Van Schaik E, Trévisan M, Saxena P, Reinhardt D, Fankhauser C. Pectin methylesterification state and cell wall mechanical properties contribute to neighbor proximity-induced hypocotyl growth in Arabidopsis. PLANT DIRECT 2024; 8:e584. [PMID: 38646567 PMCID: PMC11033045 DOI: 10.1002/pld3.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024]
Abstract
Plants growing with neighbors compete for light and consequently increase the growth of their vegetative organs to enhance access to sunlight. This response, called shade avoidance syndrome (SAS), involves photoreceptors such as phytochromes as well as phytochrome interacting factors (PIFs), which regulate the expression of growth-mediating genes. Numerous cell wall-related genes belong to the putative targets of PIFs, and the importance of cell wall modifications for enabling growth was extensively shown in developmental models such as dark-grown hypocotyl. However, the contribution of the cell wall in the growth of de-etiolated seedlings regulated by shade cues remains poorly established. Through analyses of mechanical and biochemical properties of the cell wall coupled with transcriptomic analysis of cell wall-related genes from previously published data, we provide evidence suggesting that cell wall modifications are important for neighbor proximity-induced elongation. Further analysis using loss-of-function mutants impaired in the synthesis and remodeling of the main cell wall polymers corroborated this. We focused on the cgr2cgr3 double mutant that is defective in methylesterification of homogalacturonan (HG)-type pectins. By following hypocotyl growth kinetically and spatially and analyzing the mechanical and biochemical properties of cell walls, we found that methylesterification of HG-type pectins was required to enable global cell wall modifications underlying neighbor proximity-induced hypocotyl growth. Collectively, our work suggests that plant competition for light induces changes in the expression of numerous cell wall genes to enable modifications in biochemical and mechanical properties of cell walls that contribute to neighbor proximity-induced growth.
Collapse
Affiliation(s)
- Fabien Sénéchal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
UMR INRAE 1158 BioEcoAgro, Plant Biology and InnovationUniversity of Picardie Jules VerneAmiensFrance
| | - Sarah Robinson
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Evert Van Schaik
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Present address:
University of Applied Sciences LeidenLeidenNetherlands
| | - Martine Trévisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| | - Prashant Saxena
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
James Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | | | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
28
|
He W, Chai Q, Zhao C, Yu A, Fan Z, Yin W, Hu F, Fan H, Sun Y, Wang F. Blue light regulated lignin and cellulose content of soybean petioles and stems under low light intensity. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23091. [PMID: 38669458 DOI: 10.1071/fp23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/10/2024] [Indexed: 04/28/2024]
Abstract
To improve light harvest and plant structural support under low light intensity, it is useful to investigate the effects of different ratios of blue light on petiole and stem growth. Two true leaves of soybean seedlings were exposed to a total light intensity of 200μmolm-2 s-1 , presented as either white light or three levels of blue light (40μmolm-2 s-1 , 67μmolm-2 s-1 and 100μmolm-2 s-1 ) for 15days. Soybean petioles under the low blue light treatment upregulated expression of genes relating to lignin metabolism, enhancing lignin content compared with the white light treatment. The low blue light treatment had high petiole length, increased plant height and improved petiole strength arising from high lignin content, thus significantly increasing leaf dry weight relative to the white light treatment. Compared with white light, the treatment with the highest blue light ratio reduced plant height and enhanced plant support through increased cellulose and hemicellulose content in the stem. Under low light intensity, 20% blue light enhanced petiole length and strength to improve photosynthate biomass; whereas 50% blue light lowered plants' centre of gravity, preventing lodging and conserving carbohydrate allocation.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Qiang Chai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Cai Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Aizhong Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Zhilong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Wen Yin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Falong Hu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Hong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yali Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
29
|
Han R, Ma L, Terzaghi W, Guo Y, Li J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1893-1913. [PMID: 38289877 DOI: 10.1111/tpj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
30
|
Sun S, Liu Z, Wang X, Song J, Fang S, Kong J, Li R, Wang H, Cui X. Genetic control of thermomorphogenesis in tomato inflorescences. Nat Commun 2024; 15:1472. [PMID: 38368437 PMCID: PMC10874430 DOI: 10.1038/s41467-024-45722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
Understanding how plants alter their development and architecture in response to ambient temperature is crucial for breeding resilient crops. Here, we identify the quantitative trait locus qMULTIPLE INFLORESCENCE BRANCH 2 (qMIB2), which modulates inflorescence branching in response to high ambient temperature in tomato (Solanum lycopersicum). The non-functional mib2 allele may have been selected in large-fruited varieties to ensure larger and more uniform fruits under varying temperatures. MIB2 gene encodes a homolog of the Arabidopsis thaliana transcription factor SPATULA; its expression is induced in meristems at high temperature. MIB2 directly binds to the promoter of its downstream gene CONSTANS-Like1 (SlCOL1) by recognizing the conserved G-box motif to activate SlCOL1 expression in reproductive meristems. Overexpressing SlCOL1 rescue the reduced inflorescence branching of mib2, suggesting how the MIB2-SlCOL1 module helps tomato inflorescences adapt to high temperature. Our findings reveal the molecular mechanism underlying inflorescence thermomorphogenesis and provide a target for breeding climate-resilient crops.
Collapse
Affiliation(s)
- Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Siyu Fang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jisheng Kong
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Xia Cui
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
31
|
Su P, Wang D, Wang P, Gao Y, Jia H, Hou J, Wu L. In vitro regeneration, photomorphogenesis and light signaling gene expression in Hydrangea quercifolia cv. 'Harmony' under different LED environments. PLANTA 2024; 259:71. [PMID: 38353793 DOI: 10.1007/s00425-024-04335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024]
Abstract
MAIN CONCLUSION Plant growth regulators, sucrose concentration, and light quality significantly impact in vitro regeneration of 'Harmony'. Blue light promotes photomorphogenesis by enhancing light energy utilization, adjusting transcription of light signal genes, and altering hormone levels. Hydrangea quercifolia cv. 'Harmony', celebrated for lush green foliage and clusters of white flowers, has been extensively researched for its regenerative properties. Regeneration in stem segments, leaves, and petioles is facilitated by exogenous auxin and cytokinins (CTKs), with the concentration of sucrose (SC) being a key determinant for shoot regeneration from leaves. The study also highlights the significant impact of light conditions on photomorphogenesis. With an increase in the proportion of red (R) light, there is an inhibitory effect, leading to a reduction in leaf area, a decrease in the quantum yield of PSII (ΦPSII), and an increase in non-photochemical quenching (ΦNPQ) and non-regulated energy dissipation in PSII (ΦNO). Conversely, blue (B) light enhances growth, characterized by an increase in leaf area, elevated ΦPSII, and stable ΦNPQ and ΦNO levels. Additionally, B light induces the upregulation of HqCRYs, HqHY5-like, HqXTH27-like, and HqPHYs genes, along with an increase in endogenous CTKs levels, which positively influence photomorphogenesis independent of HqHY5-like regulation. This light condition also suppresses the synthesis of endogenous gibberellins (GA) and brassinosteroids (BR), further facilitating photomorphogenesis. In essence, B light is fundamental in expediting photomorphogenesis in 'Harmony', demonstrating the vital role in plant growth and development.
Collapse
Affiliation(s)
- Pengfei Su
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Ping Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Yameng Gao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Huiling Jia
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Jinyan Hou
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
- Zhongke Taihe Experimental Station, Taihe, 236626, Anhui, China.
| |
Collapse
|
32
|
Song Z, Zhao F, Chu L, Lin H, Xiao Y, Fang Z, Wang X, Dong J, Lyu X, Yu D, Liu B, Gai J, Xu D. The GmSTF1/2-GmBBX4 negative feedback loop acts downstream of blue-light photoreceptors to regulate isoflavonoid biosynthesis in soybean. PLANT COMMUNICATIONS 2024; 5:100730. [PMID: 37817409 PMCID: PMC10873893 DOI: 10.1016/j.xplc.2023.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
Isoflavonoids, secondary metabolites derived from the phenylalanine pathway, are predominantly biosynthesized in legumes, especially soybean (Glycine max). They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health. In this study, we report that light signaling controls isoflavonoid biosynthesis in soybean. Blue-light photoreceptors (GmCRY1s, GmCRY2s, GmPHOT1s, and GmPHOT2s) and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation, whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis. GmPHOT1s and GmPHOT2s stabilize GmSTF1/2, whereas GmCOP1b promotes the degradation of these two proteins in soybean. GmSTF1/2 regulate the expression of approximately 27.9% of the genes involved in soybean isoflavonoid biosynthesis, including GmPAL2.1, GmPAL2.3, and GmUGT2. They also repress the expression of GmBBX4, a negative regulator of isoflavonoid biosynthesis in soybean. In addition, GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis. Thus, GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis. Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.
Collapse
Affiliation(s)
- Zhaoqing Song
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengyue Zhao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Chu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Lin
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuntao Xiao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Fang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environmentally Friendly Management of Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Junyi Gai
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dongqing Xu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Li Z, Lyu X, Li H, Tu Q, Zhao T, Liu J, Liu B. The mechanism of low blue light-induced leaf senescence mediated by GmCRY1s in soybean. Nat Commun 2024; 15:798. [PMID: 38280892 PMCID: PMC10821915 DOI: 10.1038/s41467-024-45086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Leaf senescence is a crucial trait that has a significant impact on crop quality and yield. Previous studies have demonstrated that light is a key factor in modulating the senescence process. However, the precise mechanism by which plants sense light and control senescence remains largely unknown, particularly in crop species. In this study, we reveal that the reduction in blue light under shading conditions can efficiently induce leaf senescence in soybean. The blue light receptors GmCRY1s rather than GmCRY2s, primarily regulate leaf senescence in response to blue light signals. Our results show that GmCRY1s interact with DELLA proteins under light-activated conditions, stabilizing them and consequently suppressing the transcription of GmWRKY100 to delay senescence. Conversely, LBL reduces the interaction between GmCRY1s and the DELLA proteins, leading to their degradation and premature senescence of leaves. Our findings suggest a GmCRY1s-GmDELLAs-GmWRKY100 regulatory cascade that is involved in mediating LBL-induced leaf senescence in soybean, providing insight into the mechanism of how light signals regulate leaf senescence. Additionally, we generate GmWRKY100 knockout soybeans that show delayed leaf senescence and improved yield under natural field conditions, indicating potential applications in enhancing soybean production by manipulating the leaf senescence trait.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qichao Tu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
34
|
Zhang Y, Sun X, Aphalo PJ, Zhang Y, Cheng R, Li T. Ultraviolet-A1 radiation induced a more favorable light-intercepting leaf-area display than blue light and promoted plant growth. PLANT, CELL & ENVIRONMENT 2024; 47:197-212. [PMID: 37743709 DOI: 10.1111/pce.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
Plants adjust their morphology in response to light environment by sensing an array of light cues. Though the wavelengths of ultraviolet-A1 radiation (UV-A1, 350-400 nm) are close to blue light (B, 400-500 nm) and share same flavoprotein photoreceptors, it remains poorly understood how plant responses to UV-A1 radiation could differ from those to B. We initially grown tomato plants under monochromatic red light (R, 660 nm) as control, subsequently transferred them to four dichromatic light treatments containing ~20 µmol m-2 s-1 of UV-A1 radiation, peaking at 370 nm (UV-A370 ) or 400 nm (V400 ), or B (450 nm, at ~20 or 1.5 µmol m-2 s-1 ), with same total photon irradiance (~200 μmol m-2 s-1 ). We show that UV-A370 radiation was the most effective in inducing light-intercepting leaf-area display formation, resulting in larger leaf area and more shoot biomass, while it triggered weaker and later transcriptome-wide responses than B. Mechanistically, UV-A370 -promoted leaf-area display response was apparent in less than 12 h and appeared as very weakly related to transcriptome level regulation, which likely depended on the auxin transportation and cell wall acidification. This study revealed wavelength-specific responses within UV-A/blue region challenging usual assumptions that the role of UV-A1 radiation function similarly as blue light in mediating plant processes.
Collapse
Affiliation(s)
- Yating Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xuguang Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruifeng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Zhang Y, Ma Y, Zhang H, Xu J, Gao X, Zhang T, Liu X, Guo L, Zhao D. Environmental F actors coordinate circadian clock function and rhythm to regulate plant development. PLANT SIGNALING & BEHAVIOR 2023; 18:2231202. [PMID: 37481743 PMCID: PMC10364662 DOI: 10.1080/15592324.2023.2231202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Changes in the external environment necessitate plant growth plasticity, with environmental signals such as light, temperature, and humidity regulating growth and development. The plant circadian clock is a biological time keeper that can be "reset" to adjust internal time to changes in the external environment. Exploring the regulatory mechanisms behind plant acclimation to environmental factors is important for understanding how plant growth and development are shaped and for boosting agricultural production. In this review, we summarize recent insights into the coordinated regulation of plant growth and development by environmental signals and the circadian clock, further discussing the potential of this knowledge.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yuru Ma
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Hao Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jiahui Xu
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaokuan Gao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
| | - Tengteng Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xigang Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Lin Guo
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Dan Zhao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
36
|
Huang C, Jin X, Lin H, He J, Chen Y. Comparative Transcriptome Sequencing and Endogenous Phytohormone Content of Annual Grafted Branches of Zelkova schneideriana and Its Dwarf Variety HenTianGao. Int J Mol Sci 2023; 24:16902. [PMID: 38069226 PMCID: PMC10706849 DOI: 10.3390/ijms242316902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Zelkova schneideriana is a fast-growing tree species endemic to China. Recent surveys and reports have highlighted a continued decline in its natural populations; therefore, it is included in the Red List of Threatened Species by The International Union for Conservation of Nature. A new variety "HenTianGao" (H) has been developed with smaller plant height, slow growth, and lower branching points. In this study, we attempted to understand the differences in plant height of Z. schneideriana (J) and its dwarf variety H. We determined the endogenous hormone content in the annual grafted branches of both J and H. J exhibited higher gibberellic acid (GA)-19 and trans-Zeatin (tZ) levels, whereas H had higher levels of indole-3-acetic acid (IAA) catabolite 2-oxindole-3-acetic acid (OxIAA), IAA-Glu conjugate, and jasmonic acid (JA) (and its conjugate JA-Ile). The transcriptome comparison showed differential regulation of 20,944 genes enriched in growth and development, signaling, and metabolism-related pathways. The results show that the differential phytohormone level (IAA, JA, tZ, and GA) was consistent with the expression of the genes associated with their biosynthesis. The differences in relative OxIAA, IAA-Glu, GA19, trans-Zeatin, JA, and JA-Ile levels were linked to changes in respective signaling-related genes. We also observed significant differences in the expression of cell size, number, proliferation, cell wall biosynthesis, and remodeling-related genes in J and H. The differences in relative endogenous hormone levels, expression of biosynthesis, and signaling genes provide a theoretical basis for understanding the plant height differences in Z. schneideriana.
Collapse
Affiliation(s)
- Chenfei Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Xiaoling Jin
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Haiyan Lin
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jinsong He
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Yan Chen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| |
Collapse
|
37
|
He X, Solis CA, Chavan SG, Maier C, Wang Y, Liang W, Klause N, Ghannoum O, Cazzonelli CI, Tissue DT, Chen ZH. Novel transcriptome networks are associated with adaptation of capsicum fruit development to a light-blocking glasshouse film. FRONTIERS IN PLANT SCIENCE 2023; 14:1280314. [PMID: 38023880 PMCID: PMC10658010 DOI: 10.3389/fpls.2023.1280314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Light-blocking films (LBFs) can contribute to significant energy savings for protected cropping via altering light transmitting, such as UVA, photosynthetically active radiation, blue and red spectra affecting photosynthesis, and capsicum yield. Here, we investigated the effects of LBF on orange color capsicum (O06614, Capsicum annuum L.) fruit transcriptome at 35 (mature green) and 65 (mature ripe) days after pollination (DAP) relative to untreated control in a high-technology glasshouse. The results of targeted metabolites showed that LBF significantly promotes the percentage of lutein but decreased the percentage of zeaxanthin and neoxanthin only at 35 DAP. At 35 DAP, fruits were less impacted by LBF treatment (versus control) with a total of 1,192 differentially expressed genes (DEGs) compared with that at 65 DAP with 2,654 DEGs. Response to stress and response to light stimulus in biological process of Gene Ontology were found in 65-DAP fruits under LBF vs. control, and clustering analysis revealed a predominant role of light receptors and phytohormone signaling transduction as well as starch and sucrose metabolism in LBF adaptation. The light-signaling DEGs, UV light receptor UVR8, transcription factors phytochrome-interacting factor 4 (PIF4), and an E3 ubiquitin ligase (COP1) were significantly downregulated at 65 DAP. Moreover, key DEGs in starch and sucrose metabolism (SUS, SUC, and INV), carotenoid synthesis (PSY2 and BCH1), ascorbic acid biosynthesis (VTC2, AAO, and GME), abscisic acid (ABA) signaling (NCED3, ABA2, AO4, and PYL2/4), and phenylpropanoid biosynthesis (PAL and DFR) are important for the adaptation of 65-DAP fruits to LBF. Our results provide new candidate genes for improving quality traits of low-light adaptation of capsicum in protected cropping.
Collapse
Affiliation(s)
- Xin He
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Celymar A. Solis
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Sachin G. Chavan
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Chelsea Maier
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiguang Liang
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Norbert Klause
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Oula Ghannoum
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Christopher I. Cazzonelli
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David T. Tissue
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Richmond, NSW, Australia
| | - Zhong-Hua Chen
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
38
|
Tan W, Chen J, Yue X, Chai S, Liu W, Li C, Yang F, Gao Y, Gutiérrez Rodríguez L, Resco de Dios V, Zhang D, Yao Y. The heat response regulators HSFA1s promote Arabidopsis thermomorphogenesis via stabilizing PIF4 during the day. SCIENCE ADVANCES 2023; 9:eadh1738. [PMID: 37922351 PMCID: PMC10624354 DOI: 10.1126/sciadv.adh1738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
During summer, plants often experience increased light inputs and high temperatures, two major environmental factors with contrasting effects on thermomorphological traits. The integration of light and temperature signaling to control thermomorphogenesis in plants is critical for their acclimation in such conditions, but the underlying mechanisms remain largely unclear. We found that heat shock transcription factor 1d (HSFA1d) and its homologs are necessary for plant thermomorphogenesis during the day. In response to warm daytime temperature, HSFA1s markedly accumulate and move into the nucleus where they interact with phytochrome-interacting factor 4 (PIF4) and stabilize PIF4 by interfering with phytochrome B-PIF4 interaction. Moreover, we found that the HSFA1d nuclear localization under warm daytime temperature is mediated by constitutive photomorphogenic 1-repressed GSK3-like kinase BIN2. These results support a regulatory mechanism for thermomorphogenesis in the daytime mediated by the HSFA1s-PIF4 module and uncover HSFA1s as critical regulators integrating light and temperature signaling for a better acclimation of plants to the summer high temperature.
Collapse
Affiliation(s)
- Wenrong Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Junhua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaolan Yue
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Shuli Chai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wei Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chenglin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Lucas Gutiérrez Rodríguez
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Leida, Spain
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
39
|
Nguyen NH, Sng BJR, Chin HJ, Choi IKY, Yeo HC, Jang IC. HISTONE DEACETYLASE 9 promotes hypocotyl-specific auxin response under shade. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:804-822. [PMID: 37522556 DOI: 10.1111/tpj.16410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Vegetative shade causes an array of morphological changes in plants called shade avoidance syndrome, which includes hypocotyl and petiole elongation, leaf hyponasty, reduced leaf growth, early flowering and rapid senescence. Here, we show that loss-of-function mutations in HISTONE DEACETYLASE 9 (HDA9) attenuated the shade-induced hypocotyl elongation in Arabidopsis. However, the hda9 cotyledons and petioles under shade were not significantly different from those in wild-type, suggesting a specific function of HDA9 in hypocotyl elongation in response to shade. HDA9 expression levels were stable under shade and its protein was ubiquitously detected in cotyledon, hypocotyl and root. Organ-specific transcriptome analysis unraveled that shade induced a set of auxin-responsive genes, such as SMALL AUXIN UPREGULATED RNAs (SAURs) and AUXIN/INDOLE-3-ACETIC ACIDs (AUX/IAAs) and their induction was impaired in hda9-1 hypocotyls. In addition, HDA9 binding to loci of SAUR15/65, IAA5/6/19 and ACS4 was increased under shade. The genetic and organ-specific gene expression analyses further revealed that HDA9 may cooperate with PHYTOCHROME-INTERACTING FACTOR 4/7 in the regulation of shade-induced hypocotyl elongation. Furthermore, HDA9 and PIF7 proteins were found to interact together and thus it is suggested that PIF7 may recruit HDA9 to regulate the shade/auxin responsive genes in response to shade. Overall, our study unravels that HDA9 can work as one component of a hypocotyl-specific transcriptional regulatory machinery that activates the auxin response at the hypocotyl leading to the elongation of this organ under shade.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Benny Jian Rong Sng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Hui Jun Chin
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Ian Kin Yuen Choi
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Hock Chuan Yeo
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
40
|
Lindbäck LN, Ji Y, Cervela-Cardona L, Jin X, Pedmale UV, Strand Å. An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:1082-1096. [PMID: 37602940 PMCID: PMC10592178 DOI: 10.1111/nph.19219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
The development of a seedling into a photosynthetically active plant is a crucial process. Despite its importance, we do not fully understand the regulatory mechanisms behind the establishment of functional chloroplasts. We herein provide new insight into the early light response by identifying the function of three basic region/leucine zipper (bZIP) transcription factors: bZIP16, bZIP68, and GBF1. These proteins are involved in the regulation of key components required for the establishment of photosynthetically active chloroplasts. The activity of these bZIPs is dependent on the redox status of a conserved cysteine residue, which provides a mechanism to finetune light-responsive gene expression. The blue light cryptochrome (CRY) photoreceptors provide one of the major light-signaling pathways, and bZIP target genes overlap with one-third of CRY-regulated genes with an enrichment for photosynthesis/chloroplast-associated genes. bZIP16, bZIP68, and GBF1 were demonstrated as novel interaction partners of CRY1. The interaction between CRY1 and bZIP16 was stimulated by blue light. Furthermore, we demonstrate a genetic link between the bZIP proteins and cryptochromes as the cry1cry2 mutant is epistatic to the cry1cry2bzip16bzip68gbf1 mutant. bZIP16, bZIP68, and GBF1 regulate a subset of photosynthesis associated genes in response to blue light critical for a proper greening process in Arabidopsis.
Collapse
Affiliation(s)
- Louise Norén Lindbäck
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Yan Ji
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Luis Cervela-Cardona
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Xu Jin
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
41
|
Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Commun Biol 2023; 6:1055. [PMID: 37853112 PMCID: PMC10584869 DOI: 10.1038/s42003-023-05435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Biosynthesis of specialized metabolites (SM), including phenolics, terpenoids, and alkaloids, is stimulated by many environmental factors including light. In recent years, significant progress has been made in understanding the regulatory mechanisms involved in light-stimulated SM biosynthesis at the transcriptional, posttranscriptional, and posttranslational levels of regulation. While several excellent recent reviews have primarily focused on the impacts of general environmental factors, including light, on biosynthesis of an individual class of SM, here we highlight the regulation of three major SM biosynthesis pathways by light-responsive gene expression, microRNA regulation, and posttranslational modification of regulatory proteins. In addition, we present our future perspectives on this topic.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Hongxia Wang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences Chenshan Botanical Garden, 3888 Chenhua Road, 201602, Songjiang, Shanghai, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
42
|
Rodríguez Del Río Á, Monteagudo A, Contreras-Moreira B, Kiss T, Mayer M, Karsai I, Igartua E, Casas AM. Diversity of gene expression responses to light quality in barley. Sci Rep 2023; 13:17143. [PMID: 37816785 PMCID: PMC10564772 DOI: 10.1038/s41598-023-44263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Light quality influence on barley development is poorly understood. We exposed three barley genotypes with either sensitive or insensitive response to two light sources producing different light spectra, fluorescent bulbs, and metal halide lamps, keeping constant light intensity, duration, and temperature. Through RNA-seq, we identified the main genes and pathways involved in the genotypic responses. A first analysis identified genotypic differences in gene expression of development-related genes, including photoreceptors and flowering time genes. Genes from the vernalization pathway of light quality-sensitive genotypes were affected by fluorescent light. In particular, vernalization-related repressors reacted differently: HvVRN2 did not experience relevant changes, whereas HvOS2 expression increased under fluorescent light. To identify the genes primarily related to light quality responses, and avoid the confounding effect of plant developmental stage, genes influenced by development were masked in a second analysis. Quantitative expression levels of PPD-H1, which influenced HvVRN1 and HvFT1, explained genotypic differences in development. Upstream mechanisms (light signaling and circadian clock) were also altered, but no specific genes linking photoreceptors and the photoperiod pathway were identified. The variety of light-quality sensitivities reveals the presence of possible mechanisms of adaptation of winter and facultative barley to latitudinal variation in light quality, which deserves further research.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA-CSIC, Madrid, Spain
| | - Arantxa Monteagudo
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Tibor Kiss
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
- Center for Research and Development, Food and Wine Center of Excellence, Eszterházy Károly Catholic University, Eger, Hungary
| | - Marianna Mayer
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ildikó Karsai
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ernesto Igartua
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain.
| | - Ana M Casas
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| |
Collapse
|
43
|
Gao J, Zhang R, Zheng L, Song L, Ji M, Li S, Wang J, Yang J, Kang G, Zhang P, Shi Y, Jiao Y, Pincus D, Zheng X. Blue light receptor CRY1 regulates HSFA1d nuclear localization to promote plant thermotolerance. Cell Rep 2023; 42:113117. [PMID: 37703177 PMCID: PMC10591714 DOI: 10.1016/j.celrep.2023.113117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Temperature increases as light intensity rises, but whether light signals can be directly linked to high temperature response in plants is unclear. Here, we find that light pre-treatment enables plants to survive better under high temperature, designated as light-induced thermotolerance (LIT). With short-term light treatment, plants induce light-signaling pathway genes and heat shock genes. Blue light photoreceptor cryptochrome 1 (CRY1) is required for LIT. We also find that CRY1 physically interacts with the heat shock transcription factor A1d (HsfA1d) and that HsfA1d is involved in thermotolerance under light treatment. Furthermore, CRY1 promotes HsfA1d nuclear localization through importin alpha 1 (IMPα1). Consistent with this, CRY1 shares more than half of the chromatin binding sites with HsfA1d. Mutation of CRY1 (cry1-304) diminishes a large number of HsfA1d binding sites that are shared with CRY1. We present a model where, by coupling light sensing to high-temperature stress, CRY1 confers thermotolerance in plants via HsfA1d.
Collapse
Affiliation(s)
- Jie Gao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Runcong Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Lanjie Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Linhu Song
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Manchun Ji
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinxi Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Guozhang Kang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Paifeng Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yong Shi
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yongqing Jiao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Molecular Genetics and Cell Biology and Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA.
| | - Xu Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
44
|
Li H, Zhou Y, Qin X, Peng J, Han R, Lv Y, Li C, Qi L, Qu GP, Yang L, Li Y, Terzaghi W, Li Z, Qin F, Gong Z, Deng XW, Li J. Reconstitution of phytochrome A-mediated light modulation of the ABA signaling pathways in yeast. Proc Natl Acad Sci U S A 2023; 120:e2302901120. [PMID: 37590408 PMCID: PMC10450666 DOI: 10.1073/pnas.2302901120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023] Open
Abstract
Abscisic acid (ABA), a classical plant hormone, plays an essential role in plant adaptation to environmental stresses. The ABA signaling mechanisms have been extensively investigated, and it was shown that the PYR1 (PYRABACTIN RESISTANCE1)/PYL (PYR1-LIKE)/RCAR (REGULATORY COMPONENT OF ABA RECEPTOR) ABA receptors, the PP2C coreceptors, and the SnRK2 protein kinases constitute the core ABA signaling module responsible for ABA perception and initiation of downstream responses. We recently showed that ABA signaling is modulated by light signals, but the underlying molecular mechanisms remain largely obscure. In this study, we established a system in yeast cells that was not only successful in reconstituting a complete ABA signaling pathway, from hormone perception to ABA-responsive gene expression, but also suitable for functionally characterizing the regulatory roles of additional factors of ABA signaling. Using this system, we analyzed the roles of several light signaling components, including the red and far-red light photoreceptors phytochrome A (phyA) and phyB, and the photomorphogenic central repressor COP1, in the regulation of ABA signaling. Our results showed that both phyA and phyB negatively regulated ABA signaling, whereas COP1 positively regulated ABA signaling in yeast cells. Further analyses showed that photoactivated phyA interacted with the ABA coreceptors ABI1 and ABI2 to decrease their interactions with the ABA receptor PYR1. Together, data from our reconstituted yeast ABA signaling system provide evidence that photoactivated photoreceptors attenuate ABA signaling by directly interacting with the key components of the core ABA signaling module, thus conferring enhanced ABA tolerance to light-grown plants.
Collapse
Affiliation(s)
- Hong Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Yangyang Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong261325, China
| | - Xinyan Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Jing Peng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Yang Lv
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Cong Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Lijuan Qi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Gao-Ping Qu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Li Yang
- Department of Plant Pathology, China Agricultural University, Beijing100193, China
| | - Yanjie Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| | | | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong261325, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing100193, China
| |
Collapse
|
45
|
Wang W, Gao L, Zhao T, Chen J, Chen T, Lin W. Arabidopsis NF-YC7 Interacts with CRY2 and PIF4/5 to Repress Blue Light-Inhibited Hypocotyl Elongation. Int J Mol Sci 2023; 24:12444. [PMID: 37569819 PMCID: PMC10419918 DOI: 10.3390/ijms241512444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 08/13/2023] Open
Abstract
Light is an important environmental factor. Plants adapt to their light environment by developing the optimal phenotypes. Light-mediated hypocotyl growth is an ideal phenotype for studying how plants respond to light. Thus far, many signaling components in light-mediated hypocotyl growth have been reported. Here, we focused on identifying the transcription factors (TFs) involved in blue light-mediated hypocotyl growth. We analyzed the blue-light-mediated hypocotyl lengths of Arabidopsis TF-overexpressing lines and identified three NF-YC proteins, NF-YC7, NF-YC5, and NF-YC8 (NF-YCs being the short name), as the negative regulators in blue light-inhibited hypocotyl elongation. NF-YC-overexpressing lines developed longer hypocotyls than those of the wild type under blue light, while the deficient mutants nf-yc5nf-yc7 and nf-yc7nf-yc8 failed to exhibit hypocotyl elongation under blue light. NF-YCs physically interacted with CRY2 (cryptochrome 2) and PIF4/5 (phytochrome interacting factor 4 or 5), while the NF-YCs-PIF4/5 interactions were repressed by CRY2. Moreover, the overexpression of CRY2 or deficiency of PIF4/5 repressed NF-YC7-induced hypocotyl elongation under blue light. Further investigation revealed that NF-YC7 may increase CRY2 degradation and regulate PIF4/5 activities under blue light. Taken together, this study will provide new insight into the mechanism of how blue light inhibits hypocotyl elongation.
Collapse
Affiliation(s)
- Wei Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Ningde Normal University, Ningde 352100, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Gao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianliang Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamei Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
46
|
Han R, Ma L, Lv Y, Qi L, Peng J, Li H, Zhou Y, Song P, Duan J, Li J, Li Z, Terzaghi W, Guo Y, Li J. SALT OVERLY SENSITIVE2 stabilizes phytochrome-interacting factors PIF4 and PIF5 to promote Arabidopsis shade avoidance. THE PLANT CELL 2023; 35:2972-2996. [PMID: 37119311 PMCID: PMC10396385 DOI: 10.1093/plcell/koad119] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Sun-loving plants trigger the shade avoidance syndrome (SAS) to compete against their neighbors for sunlight. Phytochromes are plant red (R) and far-red (FR) light photoreceptors that play a major role in perceiving the shading signals and triggering SAS. Shade induces a reduction in the level of active phytochrome B (phyB), thus increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs), a group of growth-promoting transcription factors. However, whether other factors are involved in modulating PIF activity in the shade remains largely obscure. Here, we show that SALT OVERLY SENSITIVE2 (SOS2), a protein kinase essential for salt tolerance, positively regulates SAS in Arabidopsis thaliana. SOS2 directly phosphorylates PIF4 and PIF5 at a serine residue close to their conserved motif for binding to active phyB. This phosphorylation thus decreases their interaction with phyB and posttranslationally promotes PIF4 and PIF5 protein accumulation. Notably, the role of SOS2 in regulating PIF4 and PIF5 protein abundance and SAS is more prominent under salt stress. Moreover, phyA and phyB physically interact with SOS2 and promote SOS2 kinase activity in the light. Collectively, our study uncovers an unexpected role of salt-activated SOS2 in promoting SAS by modulating the phyB-PIF module, providing insight into the coordinated response of plants to salt stress and shade.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Lv
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lijuan Qi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Peng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yangyang Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pengyu Song
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Duan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianfang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
Guo T, Liu M, Chen L, Liu Y, Li L, Li Y, Cao X, Mao Z, Wang W, Yang HQ. Photoexcited cryptochromes interact with ADA2b and SMC5 to promote the repair of DNA double-strand breaks in Arabidopsis. NATURE PLANTS 2023; 9:1280-1290. [PMID: 37488265 DOI: 10.1038/s41477-023-01461-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cryptochromes (CRYs) act as blue-light photoreceptors that regulate development and circadian rhythms in plants and animals and as navigating magnetoreceptors in migratory birds. DNA double-strand breaks (DSBs) are the most serious type of DNA damage and threaten genome stability in all organisms. Although CRYs have been shown to respond to DNA damage, whether and how they participate in DSB repair is not well understood. Here we report that Arabidopsis CRYs promote the repair of DSBs through direct interactions with ADA2b and SMC5 in a blue-light-dependent manner to enhance their interaction. Mutations in CRYs and in ADA2b lead to similar enhanced DNA damage accumulation. In response to DNA damage, CRYs are localized at DSBs, and the recruitment of SMC5 to DSBs is dependent on CRYs. These results suggest that CRY-enhanced ADA2b-SMC5 interaction promotes ADA2b-mediated recruitment of SMC5 to DSBs, leading to DSB repair.
Collapse
Affiliation(s)
- Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
48
|
Zhu Y, Zhang Q, Li Y, Pan Z, Liu C, Lin D, Gao J, Tang Z, Li Z, Wang R, Sun J. Role of Soil and Foliar-Applied Carbon Dots in Plant Iron Biofortification and Cadmium Mitigation by Triggering Opposite Iron Signaling in Roots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301137. [PMID: 37119405 DOI: 10.1002/smll.202301137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Indexed: 06/19/2023]
Abstract
In China, iron (Fe) availability is low in most soils but cadmium (Cd) generally exceeds regulatory soil pollution limits. Thus, biofortification of Fe along with mitigation of Cd in edible plant parts is important for human nutrition and health. Carbon dots (CDs) are considered as potential nanomaterials for agricultural applications. Here, Salvia miltiorrhiza-derived CDs are an efficient modulator of Fe, manganese (Mn), zinc (Zn), and Cd accumulation in plants. CDs irrigation (1 mg mL-1 , performed every week starting at the jointing stage for 12 weeks) increased Fe content by 18% but mitigated Cd accumulation by 20% in wheat grains. This finding was associated with the Fe3+ -mobilizing properties of CDs from the soil and root cell wall, as well as endocytosis-dependent internalization in roots. The resulting excess Fe signaling mitigated Cd uptake via inhibiting TaNRAMP5 expression. Foliar spraying of CDs enhanced Fe (44%), Mn (30%), and Zn (19%) content with an unchanged Cd accumulation in wheat grains. This result is attributed to CDs-enhanced light signaling, which triggered shoot-to-root Fe deficiency response. This study not only reveals the molecular mechanism underlying CDs modulation of Fe signaling in plants but also provides useful strategies for concurrent Fe biofortification and Cd mitigation in plant-based foods.
Collapse
Affiliation(s)
- Yixia Zhu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qian Zhang
- Agro-Environmental Pollution Remediation Research Center, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yanjuan Li
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Zhiyuan Pan
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Chong Liu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Dasong Lin
- Agro-Environmental Pollution Remediation Research Center, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jia Gao
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Zhonghou Tang
- Department of Sweetpotato Physiology Cultivation, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu Province, 221122, China
| | - Zongyun Li
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Ruigang Wang
- Agro-Environmental Pollution Remediation Research Center, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jian Sun
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| |
Collapse
|
49
|
Wei Y, Wang S, Yu D. The Role of Light Quality in Regulating Early Seedling Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:2746. [PMID: 37514360 PMCID: PMC10383958 DOI: 10.3390/plants12142746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
It is well-established that plants are sessile and photoautotrophic organisms that rely on light throughout their entire life cycle. Light quality (spectral composition) is especially important as it provides energy for photosynthesis and influences signaling pathways that regulate plant development in the complex process of photomorphogenesis. During previous years, significant progress has been made in light quality's physiological and biochemical effects on crops. However, understanding how light quality modulates plant growth and development remains a complex challenge. In this review, we provide an overview of the role of light quality in regulating the early development of plants, encompassing processes such as seed germination, seedling de-etiolation, and seedling establishment. These insights can be harnessed to improve production planning and crop quality by producing high-quality seedlings in plant factories and improving the theoretical framework for modern agriculture.
Collapse
Affiliation(s)
- Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuwei Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Dashi Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
50
|
Lee N, Ozaki Y, Hempton AK, Takagi H, Purusuwashi S, Song YH, Endo M, Kubota A, Imaizumi T. The FLOWERING LOCUS T gene expression is controlled by high-irradiance response and external coincidence mechanism in long days in Arabidopsis. THE NEW PHYTOLOGIST 2023; 239:208-221. [PMID: 37084001 PMCID: PMC10244125 DOI: 10.1111/nph.18932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
In natural long days, the florigen gene FLOWERING LOCUS T (FT) shows a bimodal expression pattern with morning and dusk peaks in Arabidopsis. This pattern differs from the one observed in the laboratory, and little is known about underlying mechanisms. A red : far-red (R : FR) ratio difference between sunlight and fluorescent light causes this FT pattern mismatch. We showed that bimodal FT expression patterns were induced in a day longer than 14 h with sunlight R : FR (= c. 1) conditions. By circadian gating experiments, we found that cumulative exposure of R : FR-adjusted light (R : FR ratio was adjusted to 1 with FR supplement) spanning from the afternoon to the next morning required full induction of FT in the morning. Conversely, only 2 h of R : FR adjustment in the late afternoon was sufficient for FT induction at dusk. We identified that phytochrome A (phyA) is required for the morning FT expression in response to the R : FR adjustment on the previous day. As a part of this mechanism, we showed that PHYTOCHROME-INTERACTING FACTOR 7 contributes to FT regulation. Our results suggest that phyA-mediated high-irradiance response and the external coincidence mechanism contribute to morning FT induction under natural long-day conditions.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yusuke Ozaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Savita Purusuwashi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Young Hun Song
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|