1
|
Sim J, Park CE, Cho I, Min K, Eom M, Han S, Jeon H, Cho ES, Lee Y, Yun YH, Lee S, Cheon DH, Kim J, Kim M, Cho HJ, Park JW, Kumar A, Chong Y, Kang JS, Piatkevich KD, Jung EE, Kang DS, Kwon SK, Kim J, Yoon KJ, Lee JS, Kim CH, Choi M, Kim JW, Song MR, Choi HJ, Boyden ES, Yoon YG, Chang JB. Nanoscale Resolution Imaging of Whole Mouse Embryos Using Expansion Microscopy. ACS NANO 2025; 19:7910-7927. [PMID: 39964913 DOI: 10.1021/acsnano.4c14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Nanoscale imaging of whole vertebrates is essential for the systematic understanding of human diseases, yet this goal has not yet been achieved. Expansion microscopy (ExM) is an attractive option for accomplishing this aim; however, the expansion of even mouse embryos at mid- and late-developmental stages, which have fewer calcified body parts than adult mice, is yet to be demonstrated due to the challenges of expanding calcified tissues. Here, we introduce a state-of-the-art ExM technique, termed whole-body ExM, that utilizes cyclic digestion. This technique allows for the super-resolution, volumetric imaging of anatomical structures, proteins, and endogenous fluorescent proteins (FPs) within embryonic and neonatal mice by expanding them 4-fold. The key feature of whole-body ExM is the alternating application of two enzyme compositions repeated multiple times. Through the simple repetition of this digestion process with an increasing number of cycles, mouse embryos of various stages up to E18.5, and even neonatal mice, which display a dramatic difference in the content of calcified tissues compared to embryos, are expanded without further laborious optimization. Furthermore, the whole-body ExM's ability to retain FP signals allows the visualization of various neuronal structures in transgenic mice. Whole-body ExM could facilitate studies of molecular changes in various vertebrates.
Collapse
Affiliation(s)
- Jueun Sim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chan E Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyeongbae Min
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 21102, Republic of Korea
| | - Minho Eom
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seungjae Han
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyungju Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Eun-Seo Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Hyun Yun
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Deok-Hyeon Cheon
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Museong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji-Won Park
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ajeet Kumar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yosep Chong
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Republic of Korea
| | - Jeong Seuk Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Erica E Jung
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Du-Seock Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seok-Kyu Kwon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyung Jin Choi
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Edward S Boyden
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, United States
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Young-Gyu Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Bioimaging Data Curation Center, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Villalba A, Gitton Y, Aiello V, Toupin M, Mazaud-Guittot S, Chédotal A, Scharfmann R. Imaging Human Pancreatic Endocrinogenesis During Early Prenatal Life. Diabetes 2025; 74:368-375. [PMID: 39602451 PMCID: PMC11842602 DOI: 10.2337/db24-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Murine pancreatic endocrinogenesis has been extensively studied, but human data remain scarce due to limited sample availability. Here, we first built a large collection of human embryonic and fetal pancreases covering the first trimester of pregnancy to explore human endocrinogenesis. Using an experimental pipeline combining in toto staining, tissue clearing, and light-sheet fluorescence microscopy, we show that insulin-, glucagon-, and somatostatin-positive cells appear simultaneously at Carnegie stage (CS) 16. This contrasts with rodents, in which glucagon-positive cells appear first, followed by insulin-positive and, finally, somatostatin-positive cells and highlights interspecies differences. We also detected bihormonal endocrine cells in 7 of 9 human pancreases between CS16 and CS18, which were no longer detected at later stages. We observed that cell distribution within human fetal islets resembles adult mouse islets, with a core of β-cells surrounded by α- and δ-cells, differing from a more complex arrangement in adult human islets. This, in connection with the small size of human fetal islets when compared with adult islets, suggests that adult human islets may form by fusion of preexisting islets, in contrast to the mouse fission model. Together, our study provides a detailed and comprehensive description of the spatiotemporal dynamics of human pancreatic endocrinogenesis. ARTICLE HIGHLIGHTS Data on human pancreas development are limited and derived from two-dimensional staining. We overcome this using in toto staining, tissue clearing, and light-sheet imaging. We sought to understand when and where endocrine cells first emerge and how they cluster. First, endocrine cell types appear simultaneously, and early pancreases contain bihormonal cells. There are morphometric differences between fetal and adult islets. We propose a mechanism of adult islet formation by fusion: a new base to reconstitute in vitro islet neogenesis.
Collapse
Affiliation(s)
- Adrian Villalba
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Yorick Gitton
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Virginie Aiello
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Maryne Toupin
- Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail, UMR_S 1085, Université Rennes, Rennes, France
| | - Séverine Mazaud-Guittot
- Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail, UMR_S 1085, Université Rennes, Rennes, France
| | - Alain Chédotal
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- MeLiS (Mechanisms in Integrated Life Sciences), CNRS UMR5284, INSERM U1314, University Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
3
|
Szentkirályi-Tóth S, Göcz B, Takács S, Sárvári M, Farkas I, Skrapits K, Rumpler É, Póliska S, Rácz G, Matolcsy A, Ternier G, Fernandois D, Giacobini P, Prévot V, Colledge WH, Wittmann G, Kádár A, Mohácsik P, Gereben B, Fekete C, Hrabovszky E. Estrogen-Regulated Lateral Septal Kisspeptin Neurons Abundantly Project to GnRH Neurons and the Hypothalamic Supramammillary Nucleus. J Neurosci 2025; 45:e1307242024. [PMID: 39746822 PMCID: PMC11841763 DOI: 10.1523/jneurosci.1307-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
While hypothalamic kisspeptin (KP) neurons play well-established roles in the estrogen-dependent regulation of reproduction, little is known about extrahypothalamic KP-producing (KPLS) neurons of the lateral septum. As established previously, Kiss1 expression in this region is low and regulated by estrogen receptor- and GABAB receptor-dependent mechanisms. Our present experiments on Kiss1-Cre/ZsGreen knock-in mice revealed that transgene expression in the LS begins at Postnatal Day (P)33-36 in females and P40-45 in males and is stimulated by estrogen receptor signaling. Fluorescent cell numbers continue to increase in adulthood and are higher in females. Viral tracing uncovered that the bulk of KPLS fibers joins the medial forebrain bundle and terminates in the hypothalamic supramammillary nucleus. Smaller subsets innervate the medial amygdala or project to other limbic structures. One-quarter of gonadotropin-releasing hormone (GnRH)-immunoreactive perikarya in the preoptic area and their dendrites receive appositions from KPLS axons. OVX adult Kiss1-Cre/ZsGreen mice treated for 4 d with 17β-estradiol or vehicle were used for RNA sequencing studies of laser-microdissected KPLS neurons. The transcriptome included markers of GABAergic and neuropeptidergic (Penk, Cartpt, Vgf) cotransmission and 571 estrogen-regulated transcripts. Estrogen treatment upregulated the acetylcholine receptor transcript Chrm2 and, in slice electrophysiology experiments, caused enhanced muscarinic inhibition of KPLS neurons. Finally, we provided immunohistochemical evidence for homologous neurons in the postmortem human brain, suggesting that KPLS neurons may contribute to evolutionarily conserved regulatory mechanisms. Future studies will need to investigate the putative roles of KPLS neurons in the estrogen-dependent control of GnRH neurons and/or various hypothalamic/limbic functions.
Collapse
Affiliation(s)
- Soma Szentkirályi-Tóth
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Miklós Sárvári
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest 1083, Hungary
| | - András Matolcsy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest 1083, Hungary
| | - Gaëtan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille F-59000, France
| | - Daniela Fernandois
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille F-59000, France
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille F-59000, France
| | - Vincent Prévot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille F-59000, France
| | - William H Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Gábor Wittmann
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Andrea Kádár
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Petra Mohácsik
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| |
Collapse
|
4
|
Lin Q, Cao M, Xu Z, Fei H, Jin Y, Liu J, Jiang H. Effects of Gonadotropin-Releasing Hormone Analogues on Ovarian Function and Embryogenesis: A Cyclophosphamide-Induced Mouse Model Study. BJOG 2025. [PMID: 39973029 DOI: 10.1111/1471-0528.18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/06/2025] [Accepted: 01/26/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE To clarify the protective effects of gonadotropin-releasing hormone analogues (GnRHas) on cyclophosphamide (CTX)-induced oocyte number loss and development of potential damage. DESIGN Mice model study. SETTING Laboratory-based animal study conducted in controlled research facilities. POPULATION Female C57/BL6 mice subjected to CTX-induced ovarian damage. METHODS The effects of GnRHa on CTX mice were evaluated in terms of hormones, oocyte count on slices, oocyte count in established three-dimensional-constructed ovaries, in vitro fertilisation, RNA sequencing and microinjection. MAIN OUTCOME MEASURES The main outcome measures were the number of oocytes in intact mouse ovaries and oocyte quality, evaluated using three-dimensional (3D) tissue-clearing methods, oxidative stress markers (reactive oxygen species [ROS] and malondialdehyde [MDT]), mitochondrial function (ATP levels), and embryogenesis rates at the two-cell, four-cell and blastocyst stages. RESULTS In CTX mice, GnRHa pretreatment did not protect endocrine hormone changes, but protected loss of oocyte number on slice counting. A tissue-clearing technique, CUBIC (Clear, Unobstructed Body Imaging Cocktails), was a suitable method for ovaries clearing, and a 3D method for oocyte counting was validated with accuracy of 105.22% ± 3.48%. By this method, GnRHa was also found to protect the loss of oocyte number (597 ± 28 vs. 222 ± 15, p < 0.0001), which may be mediated by upregulated anti-Müllerian hormone (AMH) levels inhibiting primordial follicle development approved by in vitro culture of ovaries. GnRHa also increased the number of retrieved oocytes in CTX mice (19.4 ± 2.1 vs. 15.0 ± 1.6, p < 0.0001) and developmental ability of oocytes (65.0 ± 4.6 vs. 48.1 ± 4.2 for blastocyst, p < 0.0001). RNA sequencing revealed GnRHa pretreatment downregulated pathways of exogenous drug metabolism, oxidative stress and cytochrome P450, validated by detection of adenosine triphosphate (ATP), MDA and ROS levels. The up-expression of Cox17 (cytochrome c oxidase copper chaperone 17) after GnRHa pretreatment was confirmed by PCR and microinjection of siCox17 increased the embryogenesis from CTX mice. CONCLUSIONS GnRHa was associated with reduced oocyte loss and improved embryogenesis, likely mediated by AMH and Cox17 upregulation.
Collapse
Affiliation(s)
- Qiwang Lin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Mingzhu Cao
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Zijin Xu
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - He Fei
- Department of Obstetrics and Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Jiang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Yun DH, Park YG, Cho JH, Kamentsky L, Evans NB, DiNapoli N, Xie K, Choi SW, Albanese A, Tian Y, Sohn CH, Zhang Q, Kim ME, Swaney J, Guan W, Park J, Drummond G, Choi H, Ruelas L, Feng G, Chung K. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat Biotechnol 2025:10.1038/s41587-024-02533-4. [PMID: 39856430 DOI: 10.1038/s41587-024-02533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Extending single-cell analysis to intact tissues while maintaining organ-scale spatial information poses a major challenge due to unequal chemical processing of densely packed cells. Here we introduce Continuous Redispersion of Volumetric Equilibrium (CuRVE) in nanoporous matrices, a framework to address this challenge. CuRVE ensures uniform processing of all cells in organ-scale tissues by perpetually maintaining dynamic equilibrium of the tissue's gradually shifting chemical environment. The tissue chemical reaction environment changes at a continuous, slow rate, allowing redispersion of unevenly distributed chemicals and preserving chemical equilibrium tissue wide at any given moment. We implemented CuRVE to immunologically label whole mouse and rat brains and marmoset and human tissue blocks within 1 day. We discovered highly variable regionalized reduction of parvalbumin immunoreactive cells in wild-type adult mice, a phenotype missed by the commonly used genetic labeling. We envision that our platform will advance volumetric single-cell processing and analysis, facilitating comprehensive single-cell level investigations within their spatial context in organ-scale tissues.
Collapse
Affiliation(s)
- Dae Hee Yun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Young-Gyun Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lee Kamentsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas B Evans
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas DiNapoli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Katherine Xie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Seo Woo Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Alexandre Albanese
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Yuxuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Chang Ho Sohn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyoung E Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Juhyuk Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Gabi Drummond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Heejin Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luzdary Ruelas
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Yu T, Zhong X, Li D, Zhu J, Tuchin VV, Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo. Adv Drug Deliv Rev 2024; 215:115470. [PMID: 39481483 DOI: 10.1016/j.addr.2024.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields. With future efforts on the even distribution of both clearing agents and probes, excavation of more effective clearing agents, and automation of tissue clearing processes, tissue optical clearing should provide more insights into the fundamental questions in biological events clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov 410012, Russia; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk 634050, Russia; Institute of Precision Mechanics and Control, FRS "Saratov Scientific Centre of the RAS", Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
7
|
Mac TT, Fauquier T, Jullien N, Romanet P, Etchevers H, Barlier A, Castinetti F, Brue T. Modeling corticotroph deficiency with pituitary organoids supports the functional role of NFKB2 in human pituitary differentiation. eLife 2024; 12:RP90875. [PMID: 39607428 PMCID: PMC11604219 DOI: 10.7554/elife.90875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.
Collapse
Affiliation(s)
- Thi Thom Mac
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Hanoi Medical University HospitalHanoiViet Nam
| | - Teddy Fauquier
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
| | - Nicolas Jullien
- Aix-Marseille University, CNRS, UMR7051, Institut de NeuroPhysiopathologieMarseilleFrance
| | - Pauline Romanet
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix-Marseille University, APHM, INSERM, MMG, Laboratory of Molecular Biology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| | - Heather Etchevers
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
| | - Anne Barlier
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix-Marseille University, APHM, INSERM, MMG, Laboratory of Molecular Biology, La Conception Hospital, Institut MarMaRaMarseilleFrance
- Aix Marseille University, APHM, INSERM, MMG, Department of Endocrinology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| | - Frederic Castinetti
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix Marseille University, APHM, INSERM, MMG, Department of Endocrinology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| | - Thierry Brue
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix Marseille University, APHM, INSERM, MMG, Department of Endocrinology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| |
Collapse
|
8
|
Yang L, Liu Q, Kumar P, Sengupta A, Farnoud A, Shen R, Trofimova D, Ziegler S, Davoudi N, Doryab A, Yildirim AÖ, Diefenbacher ME, Schiller HB, Razansky D, Piraud M, Burgstaller G, Kreyling WG, Isensee F, Rehberg M, Stoeger T, Schmid O. LungVis 1.0: an automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages. Nat Commun 2024; 15:10138. [PMID: 39604430 PMCID: PMC11603200 DOI: 10.1038/s41467-024-54267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Targeted (nano-)drug delivery is essential for treating respiratory diseases, which are often confined to distinct lung regions. However, spatio-temporal profiling of drugs or nanoparticles (NPs) and their interactions with lung macrophages remains unresolved. Here, we present LungVis 1.0, an AI-powered imaging ecosystem that integrates light sheet fluorescence microscopy with deep learning-based image analysis pipelines to map NP deposition and dosage holistically and quantitatively across bronchial and alveolar (acinar) regions in murine lungs for widely-used bulk-liquid and aerosol-based delivery methods. We demonstrate that bulk-liquid delivery results in patchy NP distribution with elevated bronchial doses, whereas aerosols achieve uniform deposition reaching distal alveoli. Furthermore, we reveal that lung tissue-resident macrophages (TRMs) are dynamic, actively patrolling and redistributing NPs within alveoli, contesting the conventional paradigm of TRMs as static entities. LungVis 1.0 provides an advanced framework for exploring pulmonary delivery dynamics and deepening insights into TRM-mediated lung immunity.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pramod Kumar
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Arunima Sengupta
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Farnoud
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruolin Shen
- Helmholtz AI, Helmholtz Munich, Munich, Germany
| | - Darya Trofimova
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Ziegler
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Neda Davoudi
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ali Doryab
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Markus E Diefenbacher
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Ludwig Maximilian University Munich, Munich, Germany
- DKTK Munich, Munich, Germany
| | - Herbert B Schiller
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Research Unit for Precision Regenerative Medicine (PRM), Helmholtz Munich, Munich, Germany
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Wolfgang G Kreyling
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology (EPI), Helmholtz Munich, Munich, Germany
| | - Fabian Isensee
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
9
|
Zhang B, He P, Lawrence JEG, Wang S, Tuck E, Williams BA, Roberts K, Kleshchevnikov V, Mamanova L, Bolt L, Polanski K, Li T, Elmentaite R, Fasouli ES, Prete M, He X, Yayon N, Fu Y, Yang H, Liang C, Zhang H, Blain R, Chedotal A, FitzPatrick DR, Firth H, Dean A, Bayraktar OA, Marioni JC, Barker RA, Storer MA, Wold BJ, Zhang H, Teichmann SA. A human embryonic limb cell atlas resolved in space and time. Nature 2024; 635:668-678. [PMID: 38057666 PMCID: PMC7616500 DOI: 10.1038/s41586-023-06806-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.
Collapse
Affiliation(s)
- Bao Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Peng He
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Trauma and Orthopaedics, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Shuaiyu Wang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Genomics England, London, UK
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Eirini S Fasouli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nadav Yayon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Yixi Fu
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chen Liang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alain Chedotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut de pathologie, groupe hospitalier Est, hospices civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | | | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew Dean
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | | | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mekayla A Storer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongbo Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Roostalu U, Hansen HH, Hecksher-Sørensen J. 3D light-sheet fluorescence microscopy in preclinical and clinical drug discovery. Drug Discov Today 2024; 29:104196. [PMID: 39368696 DOI: 10.1016/j.drudis.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Light-sheet fluorescence microscopy (LSFM) combined with tissue clearing has emerged as a powerful technology in drug discovery. LSFM is applicable to a variety of samples, from rodent organs to clinical tissue biopsies, and has been used for characterizing drug targets in tissues, demonstrating the biodistribution of pharmaceuticals and determining their efficacy and mode of action. LSFM is scalable to high-throughput analysis and provides resolution down to the single cell level. In this review, we describe the advantages of implementing LSFM into the drug discovery pipeline and highlight recent advances in this field.
Collapse
|
11
|
Jacobs K, Langenbach GEJ, Docter D, Cordewener PAM, van de Beek BJ, Korfage JAM, Visser SC, Peters JJ, Hagoort J, Lobbezoo F, de Bakker BS. Imaging the development of the human craniofacial arterial system - an experimental study. Pediatr Radiol 2024:10.1007/s00247-024-06044-x. [PMID: 39254856 DOI: 10.1007/s00247-024-06044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND The process of vascular development is essential for shaping complex craniofacial structures. Investigating the interplay between vascular development and orofacial morphogenesis holds critical importance in clinical practice and contributes to advancing our comprehension of (vascular) developmental biology. New insights into specific vascular developmental pathways will have far-reaching implications across various medical disciplines, enhancing clinical understanding, refining surgical techniques, and elucidating the origins of congenital abnormalities. Embryonic development of the craniofacial vasculature remains, however, under-exposed in the current literature. We imaged and created 3-dimensional (D) reconstructed images of the craniofacial arterial system from two early-stage human embryonic samples. OBJECTIVE The aim of this study was to investigate the vascular development of the craniofacial region in early-stage human embryos, with a focus on understanding the interplay between vascular development and orofacial morphogenesis. MATERIALS AND METHODS Reconstructions (3-D) were generated from high-resolution diffusible iodine-based contrast-enhanced computed tomography (diceCT) images, enabling visualization of the orofacial arterial system in human embryonic samples of Carnegie stages (CS) 14 and 18 from the Dutch Fetal Biobank, corresponding to weeks 7 and 8.5 of gestation. RESULTS From two human embryonic samples (ages CS 14 and 18), the vascular development of the orofacial region at two different stages of development was successfully stained with B-Lugol and imaged using a micro-computed tomography (micro-CT) scanner with resolutions of 2.5-μm and 9-μm voxel sizes, respectively. Additionally, educational 3-D reconstructions of the orofacial vascular system were generated using AMIRA 2021.2 software. CONCLUSION Micro-CT imaging is an effective strategy for high-resolution visualization of vascular development of the orofacial region in human embryonic samples. The generated interactive 3-D educational models facilitate better understanding of the development of orofacial structures.
Collapse
Affiliation(s)
- K Jacobs
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands.
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - G E J Langenbach
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - D Docter
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pediatric Surgery, Emma Children's Hospital, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - P A M Cordewener
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - B J van de Beek
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - J A M Korfage
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - S C Visser
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | - J J Peters
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | - J Hagoort
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - F Lobbezoo
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - B S de Bakker
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Decoster L, Trova S, Zucca S, Bulk J, Gouveia A, Ternier G, Lhomme T, Legrand A, Gallet S, Boehm U, Wyatt A, Wahl V, Wartenberg P, Hrabovszky E, Rácz G, Luzzati F, Nato G, Fogli M, Peretto P, Schriever SC, Bernecker M, Pfluger PT, Steculorum SM, Bovetti S, Rasika S, Prevot V, Silva MSB, Giacobini P. A GnRH neuronal population in the olfactory bulb translates socially relevant odors into reproductive behavior in male mice. Nat Neurosci 2024; 27:1758-1773. [PMID: 39095587 DOI: 10.1038/s41593-024-01724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate fertility and integrate hormonal status with environmental cues to ensure reproductive success. Here we show that GnRH neurons in the olfactory bulb (GnRHOB) of adult mice can mediate social recognition. Specifically, we show that GnRHOB neurons extend neurites into the vomeronasal organ and olfactory epithelium and project to the median eminence. GnRHOB neurons in males express vomeronasal and olfactory receptors, are activated by female odors and mediate gonadotropin release in response to female urine. Male preference for female odors required the presence and activation of GnRHOB neurons, was impaired after genetic inhibition or ablation of these cells and relied on GnRH signaling in the posterodorsal medial amygdala. GnRH receptor expression in amygdala kisspeptin neurons appear to be required for GnRHOB neurons' actions on male mounting behavior. Taken together, these results establish GnRHOB neurons as regulating fertility, sex recognition and mating in male mice.
Collapse
Affiliation(s)
- Laurine Decoster
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Sara Trova
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
- Centro CMP3VdA, Istituto Italiano di Tecnologia (IIT), Aosta, Italy
| | - Stefano Zucca
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Janice Bulk
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany
| | - Ayden Gouveia
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Tori Lhomme
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Amandine Legrand
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Sarah Gallet
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Vanessa Wahl
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Hun-Ren Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Federico Luzzati
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Giulia Nato
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Marco Fogli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Miriam Bernecker
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Paul T Pfluger
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Sowmyalakshmi Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Mauro S B Silva
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.
| |
Collapse
|
13
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
14
|
Ertürk A. Deep 3D histology powered by tissue clearing, omics and AI. Nat Methods 2024; 21:1153-1165. [PMID: 38997593 DOI: 10.1038/s41592-024-02327-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/28/2024] [Indexed: 07/14/2024]
Abstract
To comprehensively understand tissue and organism physiology and pathophysiology, it is essential to create complete three-dimensional (3D) cellular maps. These maps require structural data, such as the 3D configuration and positioning of tissues and cells, and molecular data on the constitution of each cell, spanning from the DNA sequence to protein expression. While single-cell transcriptomics is illuminating the cellular and molecular diversity across species and tissues, the 3D spatial context of these molecular data is often overlooked. Here, I discuss emerging 3D tissue histology techniques that add the missing third spatial dimension to biomedical research. Through innovations in tissue-clearing chemistry, labeling and volumetric imaging that enhance 3D reconstructions and their synergy with molecular techniques, these technologies will provide detailed blueprints of entire organs or organisms at the cellular level. Machine learning, especially deep learning, will be essential for extracting meaningful insights from the vast data. Further development of integrated structural, molecular and computational methods will unlock the full potential of next-generation 3D histology.
Collapse
Affiliation(s)
- Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany.
- School of Medicine, Koç University, İstanbul, Turkey.
- Deep Piction GmbH, Munich, Germany.
| |
Collapse
|
15
|
Mahmoudi N, Roque M, Paiva Dos Santos B, Oliveira H, Siadous R, Rey S, Garanger E, Lecommandoux S, Catros S, Garbay B, Amédée Vilamitjana J. An Elastin-Derived Composite Matrix for Enhanced Vascularized and Innervated Bone Tissue Reconstruction: From Material Development to Preclinical Evaluation. Adv Healthc Mater 2024; 13:e2303765. [PMID: 38651610 DOI: 10.1002/adhm.202303765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Despite progress in bone tissue engineering, reconstruction of large bone defects remains an important clinical challenge. Here, a biomaterial designed to recruit bone cells, endothelial cells, and neuronal fibers within the same matrix is developed, enabling bone tissue regeneration. The bioactive matrix is based on modified elastin-like polypeptides (ELPs) grafted with laminin-derived adhesion peptides IKVAV and YIGSR, and the SNA15 peptide for retention of hydroxyapatite (HA) particles. The composite matrix shows suitable porosity, interconnectivity, biocompatibility for endothelial cells, and the ability to support neurites outgrowth by sensory neurons. Subcutaneous implantation leads to the formation of osteoid tissue, characterized by the presence of bone cells, vascular networks, and neuronal structures, while minimizing inflammation. Using a rat femoral condyle defect model, longitudinal micro-CT analysis is performed, which demonstrates a significant increase in the volume of mineralized tissue when using the ELP-based matrix compared to empty defects and a commercially available control (Collapat). Furthermore, visible blood vessel networks and nerve fibers are observed within the lesions after a period of two weeks. By incorporating multiple key components that support cell growth, mineralization, and tissue integration, this ELP-based composite matrix provides a holistic and versatile solution to enhance bone tissue regeneration.
Collapse
Affiliation(s)
- Nadia Mahmoudi
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Micaela Roque
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Bruno Paiva Dos Santos
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Hugo Oliveira
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Robin Siadous
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Sylvie Rey
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | | | | | - Sylvain Catros
- CHU Bordeaux, Dentistry and Oral Health Department, Bordeaux, 33076, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR, Pessac, 5629, France
| | | |
Collapse
|
16
|
Kaltenecker D, Al-Maskari R, Negwer M, Hoeher L, Kofler F, Zhao S, Todorov M, Rong Z, Paetzold JC, Wiestler B, Piraud M, Rueckert D, Geppert J, Morigny P, Rohm M, Menze BH, Herzig S, Berriel Diaz M, Ertürk A. Virtual reality-empowered deep-learning analysis of brain cells. Nat Methods 2024; 21:1306-1315. [PMID: 38649742 PMCID: PMC11239522 DOI: 10.1038/s41592-024-02245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.
Collapse
Affiliation(s)
- Doris Kaltenecker
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Rami Al-Maskari
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
- Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany
| | - Moritz Negwer
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Luciano Hoeher
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Florian Kofler
- Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Helmholtz AI, Helmholtz Munich, Neuherberg, Germany
| | - Shan Zhao
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Mihail Todorov
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Zhouyi Rong
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Johannes Christian Paetzold
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany
- Department of Computing, Imperial College London, London, United Kingdom
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marie Piraud
- Helmholtz AI, Helmholtz Munich, Neuherberg, Germany
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, United Kingdom
| | - Julia Geppert
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Pauline Morigny
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maria Rohm
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bjoern H Menze
- Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany
- Department for Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair Molecular Metabolic Control, TU Munich, Munich, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.
- School of Medicine, Koç University, İstanbul, Turkey.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Deep Piction, Munich, Germany.
| |
Collapse
|
17
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
18
|
Lundgaard Riis M, Delpouve G, Nielsen JE, Melau C, Langhoff Thuesen L, Juul Hare K, Dreisler E, Aaboe K, Tutein Brenøe P, Albrethsen J, Frederiksen H, Juul A, Giacobini P, Jørgensen A. Inhibition of WNT/β-catenin signalling during sex-specific gonadal differentiation is essential for normal human fetal testis development. Cell Commun Signal 2024; 22:330. [PMID: 38879537 PMCID: PMC11180390 DOI: 10.1186/s12964-024-01704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Sex-specific gonadal differentiation is directed by complex signalling promoting development in either male or female direction, while simultaneously inhibiting the opposite pathway. In mice, the WNT/β-catenin pathway promotes ovarian development and the importance of actively inhibiting this pathway to ensure normal testis development has been recognised. However, the implications of alterations in the tightly regulated WNT/β-catenin signalling during human fetal gonad development has not yet been examined in detail. Thus, the aim of this study was to examine the consequences of dysregulating the WNT/β-catenin signalling pathway in the supporting cell lineage during sex-specific human fetal gonad development using an established and extensively validated ex vivo culture model. Inhibition of WNT/β-catenin signalling in human fetal ovary cultures resulted in only minor effects, including reduced secretion of RSPO1 and reduced cell proliferation although this was not consistently found in all treatment groups. In contrast, promotion of WNT/β-catenin signalling in testes severely affected development and function. This included disrupted seminiferous cord structures, reduced cell proliferation, reduced expression of SOX9/AMH, reduced secretion of Inhibin B and AMH as well as loss of the germ cell population. Additionally, Leydig cell function was markedly impaired with reduced secretion of testosterone, androstenedione and INSL3. Together, this study suggests that dysregulated WNT/β-catenin signalling during human fetal gonad development severely impairs testicular development and function. Importantly, our study highlights the notion that sufficient inhibition of the opposite pathway during sex-specific gonadal differentiation is essential to ensure normal development and function also applies to human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Gaspard Delpouve
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, University of Lille, CHU Lille, UMR-S 1172, FHU 1000 days for health, Inserm, Lille, France
| | - John E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Cecilie Melau
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lea Langhoff Thuesen
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Kristine Juul Hare
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Eva Dreisler
- Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kasper Aaboe
- Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Pia Tutein Brenøe
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Jakob Albrethsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, University of Lille, CHU Lille, UMR-S 1172, FHU 1000 days for health, Inserm, Lille, France
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.
| |
Collapse
|
19
|
Folts L, Martinez AS, McKey J. Tissue clearing and imaging approaches for in toto analysis of the reproductive system†. Biol Reprod 2024; 110:1041-1054. [PMID: 38159104 PMCID: PMC11180619 DOI: 10.1093/biolre/ioad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
New microscopy techniques in combination with tissue clearing protocols and emerging analytical approaches have presented researchers with the tools to understand dynamic biological processes in a three-dimensional context. This paves the road for the exploration of new research questions in reproductive biology, for which previous techniques have provided only approximate resolution. These new methodologies now allow for contextualized analysis of far-larger volumes than was previously possible. Tissue optical clearing and three-dimensional imaging techniques posit the bridging of molecular mechanisms, macroscopic morphogenic development, and maintenance of reproductive function into one cohesive and comprehensive understanding of the biology of the reproductive system. In this review, we present a survey of the various tissue clearing techniques and imaging systems, as they have been applied to the developing and adult reproductive system. We provide an overview of tools available for analysis of experimental data, giving particular attention to the emergence of artificial intelligence-assisted methods and their applicability to image analysis. We conclude with an evaluation of how novel image analysis approaches that have been applied to other organ systems could be incorporated into future experimental evaluation of reproductive biology.
Collapse
Affiliation(s)
- Lillian Folts
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Anthony S Martinez
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Jennifer McKey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
20
|
Hopwood N. Species Choice and Model Use: Reviving Research on Human Development. JOURNAL OF THE HISTORY OF BIOLOGY 2024; 57:231-279. [PMID: 39075321 PMCID: PMC11341657 DOI: 10.1007/s10739-024-09775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 07/31/2024]
Abstract
While model organisms have had many historians, this article places studies of humans, and particularly our development, in the politics of species choice. Human embryos, investigated directly rather than via animal surrogates, have gone through cycles of attention and neglect. In the past 60 years they moved from the sidelines to center stage. Research was resuscitated in anatomy, launched in reproductive biomedicine, molecular genetics, and stem-cell science, and made attractive in developmental biology. I explain this surge of interest in terms of rivalry with models and reliance on them. The greater involvement of medicine in human reproduction, especially through in vitro fertilization, gave access to fresh sources of material that fed critiques of extrapolation from mice and met demands for clinical relevance or "translation." Yet much of the revival depended on models. Supply infrastructures and digital standards, including biobanks and virtual atlases, emulated community resources for model organisms. Novel culture, imaging, molecular, and postgenomic methods were perfected on less precious samples. Toing and froing from the mouse affirmed the necessity of the exemplary mammal and its insufficiency justified inquiries into humans. Another kind of model-organoids and embryo-like structures derived from stem cells-enabled experiments that encouraged the organization of a new field, human developmental biology. Research on humans has competed with and counted on models.
Collapse
Affiliation(s)
- Nick Hopwood
- Department of History and Philosophy of Science, University of Cambridge, Free School Lane, Cambridge, CB2 3RH, UK.
| |
Collapse
|
21
|
Villalba A, Gitton Y, Inoue M, Aiello V, Blain R, Toupin M, Mazaud-Guittot S, Rachdi L, Semb H, Chédotal A, Scharfmann R. A 3D atlas of the human developing pancreas to explore progenitor proliferation and differentiation. Diabetologia 2024; 67:1066-1078. [PMID: 38630142 PMCID: PMC11058870 DOI: 10.1007/s00125-024-06143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 04/30/2024]
Abstract
AIMS/HYPOTHESIS Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases. METHODS We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules. RESULTS We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors. CONCLUSIONS/INTERPRETATION This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development.
Collapse
Affiliation(s)
- Adrian Villalba
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Yorick Gitton
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Megumi Inoue
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Virginie Aiello
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Raphaël Blain
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Maryne Toupin
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Université Rennes, Rennes, France
| | - Séverine Mazaud-Guittot
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Université Rennes, Rennes, France
| | - Latif Rachdi
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Henrik Semb
- Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany
| | - Alain Chédotal
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France.
- Institut de pathologie, groupe hospitalier Est, hospices civils de Lyon, Lyon, France.
- MeLiS, CNRS UMR5284, Inserm U1314, University Claude Bernard Lyon 1, Lyon, France.
| | | |
Collapse
|
22
|
Mai H, Luo J, Hoeher L, Al-Maskari R, Horvath I, Chen Y, Kofler F, Piraud M, Paetzold JC, Modamio J, Todorov M, Elsner M, Hellal F, Ertürk A. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat Biotechnol 2024; 42:617-627. [PMID: 37430076 PMCID: PMC11021200 DOI: 10.1038/s41587-023-01846-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/26/2023] [Indexed: 07/12/2023]
Abstract
Whole-body imaging techniques play a vital role in exploring the interplay of physiological systems in maintaining health and driving disease. We introduce wildDISCO, a new approach for whole-body immunolabeling, optical clearing and imaging in mice, circumventing the need for transgenic reporter animals or nanobody labeling and so overcoming existing technical limitations. We identified heptakis(2,6-di-O-methyl)-β-cyclodextrin as a potent enhancer of cholesterol extraction and membrane permeabilization, enabling deep, homogeneous penetration of standard antibodies without aggregation. WildDISCO facilitates imaging of peripheral nervous systems, lymphatic vessels and immune cells in whole mice at cellular resolution by labeling diverse endogenous proteins. Additionally, we examined rare proliferating cells and the effects of biological perturbations, as demonstrated in germ-free mice. We applied wildDISCO to map tertiary lymphoid structures in the context of breast cancer, considering both primary tumor and metastases throughout the mouse body. An atlas of high-resolution images showcasing mouse nervous, lymphatic and vascular systems is accessible at http://discotechnologies.org/wildDISCO/atlas/index.php .
Collapse
Affiliation(s)
- Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Medical Centre of the University of Munich, Ludwig-Maximilians University of Munich, Munich, Germany
- Munich Medical Research School, Munich, Germany
- Deep Piction GmbH, Munich, Germany
| | - Jie Luo
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Medical Centre of the University of Munich, Ludwig-Maximilians University of Munich, Munich, Germany
- Deep Piction GmbH, Munich, Germany
| | - Luciano Hoeher
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
| | - Rami Al-Maskari
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Izabela Horvath
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Ying Chen
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Medical Centre of the University of Munich, Ludwig-Maximilians University of Munich, Munich, Germany
- Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Florian Kofler
- Helmholtz Al, Helmholtz Center Munich, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marie Piraud
- Helmholtz Al, Helmholtz Center Munich, Neuherberg, Germany
| | - Johannes C Paetzold
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
- Department of Computing, Imperial College London, London, UK
| | - Jennifer Modamio
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
| | - Mihail Todorov
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Medical Centre of the University of Munich, Ludwig-Maximilians University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Elsner
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
| | - Farida Hellal
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Medical Centre of the University of Munich, Ludwig-Maximilians University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Center Munich, Neuherberg, Germany.
- Institute for Stroke and Dementia Research, Medical Centre of the University of Munich, Ludwig-Maximilians University of Munich, Munich, Germany.
- Deep Piction GmbH, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Graduate School of Neuroscience (GSN), Munich, Germany.
| |
Collapse
|
23
|
Wang J, Xu X, Ye H, Zhang X, Shi G. Interferometric modulation for generating extended light sheet: improving field of view. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:046501. [PMID: 38629030 PMCID: PMC11020319 DOI: 10.1117/1.jbo.29.4.046501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Significance Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful and versatile imaging technique renowned for its remarkable features, including high-speed 3D tomography, minimal photobleaching, and low phototoxicity. The interference light-sheet fluorescence microscope, with its larger field of view (FOV) and more uniform axial resolution, possesses significant potential for a wide range of applications in biology and medicine. Aim The aim of this study is to investigate the interference behavior among multiple light sheets (LSs) in LSFM and optimize the FOV and resolution of the light-sheet fluorescence microscope. Approach We conducted a detailed investigation of the interference effects among LSs through theoretical derivation and numerical simulations, aiming to find optimal parameters. Subsequently, we constructed a customized system of multi-LSFM that incorporates both interference light sheets (ILS) and noninterference light-sheet configurations. We performed beam imaging and microsphere imaging tests to evaluate the FOV and axial resolution of these systems. Results Using our custom-designed light-sheet fluorescence microscope, we captured the intensity distribution profiles of both interference and noninterference light sheets (NILS). Additionally, we conducted imaging tests on microspheres to assess their imaging outcomes. The ILS not only exhibits a larger FOV compared to the NILS but also demonstrates a more uniform axial resolution. Conclusions By effectively modulating the interference among multiple LSs, it is possible to optimize the intensity distribution of the LSs, expand the FOV, and achieve a more uniform axial resolution.
Collapse
Affiliation(s)
- Jixiang Wang
- University of Science and Technology of China, School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, Hefei, China
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Xin Xu
- University of Science and Technology of China, School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, Hefei, China
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Hong Ye
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Xin Zhang
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| | - Guohua Shi
- University of Science and Technology of China, School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, Hefei, China
- Chinese Academy of Science, Suzhou Institute of Biomedical Engineering and Technology, Jiangsu Key Laboratory of Medical Optics, Suzhou, China
| |
Collapse
|
24
|
Vladimirov N, Voigt FF, Naert T, Araujo GR, Cai R, Reuss AM, Zhao S, Schmid P, Hildebrand S, Schaettin M, Groos D, Mateos JM, Bethge P, Yamamoto T, Aerne V, Roebroeck A, Ertürk A, Aguzzi A, Ziegler U, Stoeckli E, Baudis L, Lienkamp SS, Helmchen F. Benchtop mesoSPIM: a next-generation open-source light-sheet microscope for cleared samples. Nat Commun 2024; 15:2679. [PMID: 38538644 PMCID: PMC10973490 DOI: 10.1038/s41467-024-46770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
In 2015, we launched the mesoSPIM initiative, an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of such microscopes. Here, we introduce the next-generation mesoSPIM ("Benchtop") with a significantly increased field of view, improved resolution, higher throughput, more affordable cost, and simpler assembly compared to the original version. We develop an optical method for testing detection objectives that enables us to select objectives optimal for light-sheet imaging with large-sensor cameras. The improved mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, magnification up to 20×, and supports sample sizes ranging from sub-mm up to several centimeters while being compatible with multiple clearing techniques. The microscope serves a broad range of applications in neuroscience, developmental biology, pathology, and even physics.
Collapse
Grants
- U01 NS090475 NINDS NIH HHS
- This work was supported by the University Research Priority Program (URPP) “Adaptive Brain Circuits in Development and Learning (AdaBD)” of the University of Zurich (N.V., E.S. and F.H.). Additionally, F.F.V. is supported by an HFSP fellowship (LT00687), T.N. received funding from H2020 Marie Skłodowska-Curie Actions (xenCAKUT - 891127), A.R. and S.H. were supported by a Dutch Science Foundation VIDI Grant (14637), and A.R. was supported by an ERC Starting Grant (MULTICONNECT, 639938). Further funding support came from the Swiss National Science Foundation (SNF grant nos. 31003B-170269, 310030_192617 and CRSII5-18O316 to F.H., 310030_189102 to S.S.L., 200020_204950 to L.B., G.R.A, and V.A.); from an ERC Starting Grant by the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 804474, DiRECT, S.S.L); and the US Brain Initiative (1U01NS090475-01, F.H.).
Collapse
Affiliation(s)
- Nikita Vladimirov
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland.
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Thomas Naert
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | | | - Ruiyao Cai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anna Maria Reuss
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Shan Zhao
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Patricia Schmid
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Sven Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Martina Schaettin
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dominik Groos
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - José María Mateos
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Philipp Bethge
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Taiyo Yamamoto
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Valentino Aerne
- Department of Physics, University of Zurich, Zurich, Switzerland
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Adriano Aguzzi
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Esther Stoeckli
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Laura Baudis
- Department of Physics, University of Zurich, Zurich, Switzerland
| | - Soeren S Lienkamp
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Taelman J, Czukiewska SM, Moustakas I, Chang YW, Hillenius S, van der Helm T, van der Meeren LE, Mei H, Fan X, Chuva de Sousa Lopes SM. Characterization of the human fetal gonad and reproductive tract by single-cell transcriptomics. Dev Cell 2024; 59:529-544.e5. [PMID: 38295793 PMCID: PMC10898717 DOI: 10.1016/j.devcel.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
During human fetal development, sex differentiation occurs not only in the gonads but also in the adjacent developing reproductive tract. However, while the cellular composition of male and female human fetal gonads is well described, that of the adjacent developing reproductive tract remains poorly characterized. Here, we performed single-cell transcriptomics on male and female human fetal gonads together with the adjacent developing reproductive tract from first and second trimesters, highlighting the morphological and molecular changes during sex differentiation. We validated different cell populations of the developing reproductive tract and gonads and compared the molecular signatures between the first and second trimesters, as well as between sexes, to identify conserved and sex-specific features. Together, our study provides insights into human fetal sex-specific gonadogenesis and development of the reproductive tract beyond the gonads.
Collapse
Affiliation(s)
- Jasin Taelman
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Sylwia M Czukiewska
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Ioannis Moustakas
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Yolanda W Chang
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Sanne Hillenius
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Talia van der Helm
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Lotte E van der Meeren
- Department of Pathology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands; Department of Pathology, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands.
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands; Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| |
Collapse
|
26
|
Kunieda K, Makihara K, Yamada S, Yamaguchi M, Nakamura T, Terada Y. Brain Structures in a Human Embryo Imaged with MR Microscopy. Magn Reson Med Sci 2024:mp.2023-0110. [PMID: 38369336 DOI: 10.2463/mrms.mp.2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
PURPOSE To delineate brain microstructures in human embryos during the formation of the various major primordia by MR microscopy, with different contrasts appropriate for each target. METHODS We focused mainly on the internal structures in the cerebral cortex and the accessory nerves of the brain. To find appropriate sequence parameters, we measured nuclear magnetic resonance (NMR) parameters and created kernel density plots of T1 and T2 values. We performed T1-weighted gradient echo imaging with parameters similar to those used in the previous studies. We performed T2*-weighted gradient echo imaging to delineate the target structures with the appropriate sequence parameters according to the NMR parameter and flip angle measurements. We also performed high-resolution imaging with both T1- and T2*-weighted sequences. RESULTS T1, T2, and T2* values of the target tissues were positively correlated and shorter than those of the surrounding tissues. In T1-weighted images with a voxel size of (30 µm)3 and (20 µm)3, various organs and tissues and the agarose gel were differentiated as in previous studies, and the structure of approximately 40 µm in size was depicted, but the detailed structures within the cerebral cortex and the accessory nerves were not delineated. In T2*-weighted images with a voxel size of (30 µm)3, the layered structure within the cerebral cortex and the accessory nerves were clearly visualized. Overall, T1-weighted images provided more information than T2*-weighted images, but important internal brain structures of interest were visible only in T2*-weighted images. Therefore, it is essential to perform MR microscopy with different contrasts. CONCLUSION We have visualized brain structures in a human embryo that had not previously been delineated by MR microscopy. We discussed pulse sequences appropriate for the structures of interest. This methodology would provide a way to visualize crucial embryological information about the anatomical structure of human embryos.
Collapse
Affiliation(s)
- Kazuki Kunieda
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyuki Makihara
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Masayuki Yamaguchi
- Department of Diagnostic Radiology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Takashi Nakamura
- Molecular Characterization Unit, Center for Sustainable Resource Research, RIKEN, Wako, Saitama, Japan
| | - Yasuhiko Terada
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
28
|
Nakata H, Iseki S, Mizokami A. Three-dimensional analysis of junctions between efferent and epididymal ducts in the human caput epididymis. Andrology 2024; 12:87-97. [PMID: 37129932 DOI: 10.1111/andr.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Due to the scarcity of studies using human tissues, the limited information is currently available on the gross structure of the caput epididymis in humans, at which efferent ducts connect to the epididymal duct. OBJECTIVE The present study investigated the three-dimensional structures of efferent and caput epididymal ducts in humans, with a focus on junctions between the former and the latter. MATERIALS AND METHODS We examined three sets of human efferent and caput epididymal ducts in specimens obtained from prostatic carcinoma patients. They were reconstructed from serial paraffin sections using a segmentation model created by a deep learning protocol and high-performance three-dimensional reconstruction software. RESULTS Serial sections and three-dimensional images of human efferent and caput epididymal ducts were combined to obtain the detailed anatomical information. When a single efferent duct was defined as a duct connecting to both the extra-testicular rete testis and epididymal duct, there were 14.7 efferent ducts with a total length of 3.0 m per specimen on average. The cranial portion of the efferent ducts joined to a single duct and terminated at the end of the epididymal duct, whereas other efferent ducts terminated independently on the side of the epididymal duct. These two types of junctions between the efferent and epididymal ducts differed in the patterns of the epithelial-type switch. The epididymal duct consisted of multiple segments, which were separated by a minimal amount of connective tissue septa or even without them. Efferent ducts occupied most of the volume of the caput epididymis. DISCUSSION AND CONCLUSIONS By utilizing deep learning, we reconstructed human efferent and caput epididymal ducts and revealed their precise three-dimensional structures, which differed from those of rodents in several aspects. The present results may be useful for analyzing anatomical abnormalities related to some types of male infertility.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shoichi Iseki
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
29
|
Blain R, Couly G, Shotar E, Blévinal J, Toupin M, Favre A, Abjaghou A, Inoue M, Hernández-Garzón E, Clarençon F, Chalmel F, Mazaud-Guittot S, Giacobini P, Gitton Y, Chédotal A. A tridimensional atlas of the developing human head. Cell 2023; 186:5910-5924.e17. [PMID: 38070509 PMCID: PMC10783631 DOI: 10.1016/j.cell.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
The evolution and development of the head have long captivated researchers due to the crucial role of the head as the gateway for sensory stimuli and the intricate structural complexity of the head. Although significant progress has been made in understanding head development in various vertebrate species, our knowledge of early human head ontogeny remains limited. Here, we used advanced whole-mount immunostaining and 3D imaging techniques to generate a comprehensive 3D cellular atlas of human head embryogenesis. We present detailed developmental series of diverse head tissues and cell types, including muscles, vasculature, cartilage, peripheral nerves, and exocrine glands. These datasets, accessible through a dedicated web interface, provide insights into human embryogenesis. We offer perspectives on the branching morphogenesis of human exocrine glands and unknown features of the development of neurovascular and skeletomuscular structures. These insights into human embryology have important implications for understanding craniofacial defects and neurological disorders and advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gérard Couly
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Eimad Shotar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | | | - Maryne Toupin
- INSERM, EHESP, Univ Rennes, Institut de recherche en santé, environnement et travail (Irset), UMR_S 1085, Rennes, France
| | - Anais Favre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ali Abjaghou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Megumi Inoue
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Frédéric Clarençon
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Frédéric Chalmel
- INSERM, EHESP, Univ Rennes, Institut de recherche en santé, environnement et travail (Irset), UMR_S 1085, Rennes, France
| | - Séverine Mazaud-Guittot
- INSERM, EHESP, Univ Rennes, Institut de recherche en santé, environnement et travail (Irset), UMR_S 1085, Rennes, France
| | - Paolo Giacobini
- University of Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
| | - Yorick Gitton
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Institut de pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France; University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, 69008 Lyon, France.
| |
Collapse
|
30
|
Dawood Y, Buijtendijk MFJ, Bohly D, Gunst QD, Docter D, Pajkrt E, Oostra RJ, Hennekam RC, van den Hoff MJB, de Bakker BS. Human embryonic and fetal biobanking: Establishing the Dutch Fetal Biobank and a framework for standardization. Dev Cell 2023; 58:2826-2835. [PMID: 38113849 DOI: 10.1016/j.devcel.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Recent studies of human embryos and fetuses have advanced our understanding not only of basic biology but also of health and disease, through a combination of detailed three-dimensional (3D) morphology and processes such as gene expression, cellular decision-making and differentiation, and epigenetics during the various phases of human development and growth. Large-scale research initiatives focusing on these topics have been initiated during the last decade, all of which depend on biobanks that provide high-quality images of human embryonic and fetal morphology, as well as on high-quality collections of tissue samples that are obtained and stored appropriately. In this perspective, we describe our experience in establishing the Dutch Fetal Biobank to present the framework and workflow of the biobank, provide a brief discussion of the main legal and ethical aspects involved in establishing a pre-natal tissue bank, and present the preliminary data on the first 329 donated specimens.
Collapse
Affiliation(s)
- Yousif Dawood
- Amsterdam UMC Location University of Amsterdam, Department of Obstetrics and Gynaecology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Marieke F J Buijtendijk
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Doriane Bohly
- University Côte d'Azur, MSc Biobanks and Complex Data Management, FHU OncoAge, Nice, France; University Hospital of Nice, Pasteur Hospital, Biobank BB-0033-00025, FHU OncoAge, Nice, France
| | - Quinn D Gunst
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Daniel Docter
- Amsterdam UMC Location University of Amsterdam, Department of Obstetrics and Gynaecology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Eva Pajkrt
- Amsterdam UMC Location University of Amsterdam, Department of Obstetrics and Gynaecology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Roelof-Jan Oostra
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Raoul C Hennekam
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Paediatrics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maurice J B van den Hoff
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.
| | - Bernadette S de Bakker
- Amsterdam UMC Location University of Amsterdam, Department of Obstetrics and Gynaecology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatric Surgery, Rotterdam, the Netherlands.
| |
Collapse
|
31
|
Vladimirov N, Voigt FF, Naert T, Araujo GR, Cai R, Reuss AM, Zhao S, Schmid P, Hildebrand S, Schaettin M, Groos D, Mateos JM, Bethge P, Yamamoto T, Aerne V, Roebroeck A, Ertürk A, Aguzzi A, Ziegler U, Stoeckli E, Baudis L, Lienkamp SS, Helmchen F. The Benchtop mesoSPIM: a next-generation open-source light-sheet microscope for large cleared samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545256. [PMID: 38168219 PMCID: PMC10760166 DOI: 10.1101/2023.06.16.545256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In 2015, we launched the mesoSPIM initiative (www.mesospim.org), an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of light-sheet microscopy. Here, we introduce the next-generation mesoSPIM ("Benchtop") with significantly increased field of view, improved resolution, higher throughput, more affordable cost and simpler assembly compared to the original version. We developed a new method for testing objectives, enabling us to select detection objectives optimal for light-sheet imaging with large-sensor sCMOS cameras. The new mesoSPIM achieves high spatial resolution (1.5 μm laterally, 3.3 μm axially) across the entire field of view, a magnification up to 20x, and supports sample sizes ranging from sub-mm up to several centimetres, while being compatible with multiple clearing techniques. The new microscope serves a broad range of applications in neuroscience, developmental biology, and even physics.
Collapse
Affiliation(s)
- Nikita Vladimirov
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Fabian F. Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Present address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Thomas Naert
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | | | - Ruiyao Cai
- Present address: Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, German
| | - Anna Maria Reuss
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Shan Zhao
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Patricia Schmid
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Sven Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Martina Schaettin
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dominik Groos
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - José María Mateos
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Philipp Bethge
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Taiyo Yamamoto
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Valentino Aerne
- Department of Physics, University of Zurich, Zurich, Switzerland
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, German
| | - Adriano Aguzzi
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Esther Stoeckli
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Laura Baudis
- Department of Physics, University of Zurich, Zurich, Switzerland
| | - Soeren S. Lienkamp
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Cicero J, Trouvilliez S, Palma M, Ternier G, Decoster L, Happernegg E, Barois N, Van Outryve A, Dehouck L, Bourette RP, Adriaenssens E, Lagadec C, Tarhan CM, Collard D, Souguir Z, Vandenhaute E, Maubon G, Sipieter F, Borghi N, Shimizu F, Kanda T, Giacobini P, Gosselet F, Maubon N, Le Bourhis X, Van Seuningen I, Mysiorek C, Toillon RA. ProNGF promotes brain metastasis through TrkA/EphA2 induced Src activation in triple negative breast cancer cells. Exp Hematol Oncol 2023; 12:104. [PMID: 38072918 PMCID: PMC10710730 DOI: 10.1186/s40164-023-00463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/29/2023] [Indexed: 10/16/2024] Open
Abstract
BACKGROUND Triple-Negative Breast Cancer is particularly aggressive, and its metastasis to the brain has a significant psychological impact on patients' quality of life, in addition to reducing survival. The development of brain metastases is particularly harmful in triple-negative breast cancer (TNBC). To date, the mechanisms that induce brain metastasis in TNBC are poorly understood. METHODS Using a human blood-brain barrier (BBB) in vitro model, an in vitro 3D organotypic extracellular matrix, an ex vivo mouse brain slices co-culture and in an in vivo xenograft experiment, key step of brain metastasis were recapitulated to study TNBC behaviors. RESULTS In this study, we demonstrated for the first time the involvement of the precursor of Nerve Growth Factor (proNGF) in the development of brain metastasis. More importantly, our results showed that proNGF acts through TrkA independent of its phosphorylation to induce brain metastasis in TNBC. In addition, we found that proNGF induces BBB transmigration through the TrkA/EphA2 signaling complex. More importantly, our results showed that combinatorial inhibition of TrkA and EphA2 decreased TBNC brain metastasis in a preclinical model. CONCLUSIONS These disruptive findings provide new insights into the mechanisms underlying brain metastasis with proNGF as a driver of brain metastasis of TNBC and identify TrkA/EphA2 complex as a potential therapeutic target.
Collapse
Affiliation(s)
- Julien Cicero
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), University of Artois, UR 2465, F-62300, Lens, France
- GdR2082 APPICOM- « Approche Intégrative Pour Une Compréhension Multi-Échelles de La Fonction Des Protéines Membranaires », Paris, France
| | - Sarah Trouvilliez
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
- GdR2082 APPICOM- « Approche Intégrative Pour Une Compréhension Multi-Échelles de La Fonction Des Protéines Membranaires », Paris, France
| | - Martine Palma
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
- GdR2082 APPICOM- « Approche Intégrative Pour Une Compréhension Multi-Échelles de La Fonction Des Protéines Membranaires », Paris, France
| | - Gaetan Ternier
- UMR-S1172, University of Lille, Inserm, CHU Lille, Équipe Développement et Plasticité du cerveau neuroendocrine, Lille Neuroscience et Cognition, 1 Place de Verdun, 59000, Lille Cedex, France
| | - Laurine Decoster
- UMR-S1172, University of Lille, Inserm, CHU Lille, Équipe Développement et Plasticité du cerveau neuroendocrine, Lille Neuroscience et Cognition, 1 Place de Verdun, 59000, Lille Cedex, France
| | - Eloise Happernegg
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), University of Artois, UR 2465, F-62300, Lens, France
- GdR2082 APPICOM- « Approche Intégrative Pour Une Compréhension Multi-Échelles de La Fonction Des Protéines Membranaires », Paris, France
| | - Nicolas Barois
- University of Lille, CNRS, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000, Lille, Inserm, France
| | - Alexandre Van Outryve
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
- GdR2082 APPICOM- « Approche Intégrative Pour Une Compréhension Multi-Échelles de La Fonction Des Protéines Membranaires », Paris, France
- UMR 8520 -IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, University of Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, 59000, Lille, France
| | - Lucie Dehouck
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), University of Artois, UR 2465, F-62300, Lens, France
| | - Roland P Bourette
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
| | - Eric Adriaenssens
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
| | - Chann Lagadec
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
- GdR2082 APPICOM- « Approche Intégrative Pour Une Compréhension Multi-Échelles de La Fonction Des Protéines Membranaires », Paris, France
| | - Cagatay Mehmet Tarhan
- UMR 8520 -IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, University of Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, 59000, Lille, France
- LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan
| | - Dominique Collard
- LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan
- CNRS, IIS, University of Lille SMMiL-E Project, 59000, Lille, COL, France
| | | | | | | | - François Sipieter
- Université Paris Cité, Centre National de La Recherche Scientifique (CNRS), Institut Jacques Monod, 15 rue Hélène Brion, 75013, Paris, France
| | - Nicolas Borghi
- Université Paris Cité, Centre National de La Recherche Scientifique (CNRS), Institut Jacques Monod, 15 rue Hélène Brion, 75013, Paris, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Paolo Giacobini
- UMR-S1172, University of Lille, Inserm, CHU Lille, Équipe Développement et Plasticité du cerveau neuroendocrine, Lille Neuroscience et Cognition, 1 Place de Verdun, 59000, Lille Cedex, France
| | - Fabien Gosselet
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), University of Artois, UR 2465, F-62300, Lens, France
| | | | - Xuefen Le Bourhis
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
| | - Isabelle Van Seuningen
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France
| | - Caroline Mysiorek
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), University of Artois, UR 2465, F-62300, Lens, France
| | - Robert-Alain Toillon
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, Boulevard du Professeur Jules Leclercq, 59000, Lille, France.
- GdR2082 APPICOM- « Approche Intégrative Pour Une Compréhension Multi-Échelles de La Fonction Des Protéines Membranaires », Paris, France.
| |
Collapse
|
33
|
Balasubramanian H, Hobson CM, Chew TL, Aaron JS. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun Biol 2023; 6:1096. [PMID: 37898673 PMCID: PMC10613274 DOI: 10.1038/s42003-023-05468-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
The optical microscope has revolutionized biology since at least the 17th Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges. Here, we delve into the current state of live imaging to explore the barriers that must be overcome and the possibilities that lie ahead. We venture to envision a future where we can visualize and study everything, everywhere, all at once - from the intricate inner workings of a single cell to the dynamic interplay across entire organisms, and a world where scientists could access the necessary microscopy technologies anywhere.
Collapse
Affiliation(s)
| | - Chad M Hobson
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA.
| |
Collapse
|
34
|
Sauve F, Nampoothiri S, Clarke SA, Fernandois D, Ferreira Coêlho CF, Dewisme J, Mills EG, Ternier G, Cotellessa L, Iglesias-Garcia C, Mueller-Fielitz H, Lebouvier T, Perbet R, Florent V, Baroncini M, Sharif A, Ereño-Orbea J, Mercado-Gómez M, Palazon A, Mattot V, Pasquier F, Catteau-Jonard S, Martinez-Chantar M, Hrabovszky E, Jourdain M, Deplanque D, Morelli A, Guarnieri G, Storme L, Robil C, Trottein F, Nogueiras R, Schwaninger M, Pigny P, Poissy J, Chachlaki K, Maurage CA, Giacobini P, Dhillo W, Rasika S, Prevot V. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine 2023; 96:104784. [PMID: 37713808 PMCID: PMC10507138 DOI: 10.1016/j.ebiom.2023.104784] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND We have recently demonstrated a causal link between loss of gonadotropin-releasing hormone (GnRH), the master molecule regulating reproduction, and cognitive deficits during pathological aging, including Down syndrome and Alzheimer's disease. Olfactory and cognitive alterations, which persist in some COVID-19 patients, and long-term hypotestosteronaemia in SARS-CoV-2-infected men are also reminiscent of the consequences of deficient GnRH, suggesting that GnRH system neuroinvasion could underlie certain post-COVID symptoms and thus lead to accelerated or exacerbated cognitive decline. METHODS We explored the hormonal profile of COVID-19 patients and targets of SARS-CoV-2 infection in post-mortem patient brains and human fetal tissue. FINDINGS We found that persistent hypotestosteronaemia in some men could indeed be of hypothalamic origin, favouring post-COVID cognitive or neurological symptoms, and that changes in testosterone levels and body weight over time were inversely correlated. Infection of olfactory sensory neurons and multifunctional hypothalamic glia called tanycytes highlighted at least two viable neuroinvasion routes. Furthermore, GnRH neurons themselves were dying in all patient brains studied, dramatically reducing GnRH expression. Human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, and fetal GnRH neurons also appeared susceptible to infection. INTERPRETATION Putative GnRH neuron and tanycyte dysfunction following SARS-CoV-2 neuroinvasion could be responsible for serious reproductive, metabolic, and mental health consequences in long-COVID and lead to an increased risk of neurodevelopmental and neurodegenerative pathologies over time in all age groups. FUNDING European Research Council (ERC) grant agreements No 810331, No 725149, No 804236, the European Union Horizon 2020 research and innovation program No 847941, the Fondation pour la Recherche Médicale (FRM) and the Agence Nationale de la Recherche en Santé (ANRS) No ECTZ200878 Long Covid 2021 ANRS0167 SIGNAL, Agence Nationale de la recherche (ANR) grant agreements No ANR-19-CE16-0021-02, No ANR-11-LABEX-0009, No. ANR-10-LABEX-0046, No. ANR-16-IDEX-0004, Inserm Cross-Cutting Scientific Program HuDeCA, the CHU Lille Bonus H, the UK Medical Research Council (MRC) and National Institute of Health and care Research (NIHR).
Collapse
Affiliation(s)
- Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sophie A Clarke
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Julie Dewisme
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Helge Mueller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Romain Perbet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Vincent Florent
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Marc Baroncini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - June Ereño-Orbea
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Maria Mercado-Gómez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Asis Palazon
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Virginie Mattot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Gynecology and Obstetrics, Jeanne de Flandres Hospital, F-59000, Lille, France
| | - Maria Martinez-Chantar
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mercé Jourdain
- Univ. Lille, Inserm, CHU Lille, Service de Médecine Intensive Réanimation, U1190, EGID, F-59000 Lille, France
| | - Dominique Deplanque
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; University Lille, Inserm, CHU Lille, Centre d'investigation Clinique (CIC) 1403, F-59000, Lille, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Laurent Storme
- CHU Lille, Department of Neonatology, Hôpital Jeanne de Flandre, FHU 1000 Days for Health, F-59000, France
| | - Cyril Robil
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Trottein
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Pascal Pigny
- CHU Lille, Service de Biochimie et Hormonologie, Centre de Biologie Pathologie, Lille, France
| | - Julien Poissy
- LICORNE Study Group, CHU Lille, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Pôle de Réanimation, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Waljit Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| |
Collapse
|
35
|
Goh I, Botting RA, Rose A, Webb S, Engelbert J, Gitton Y, Stephenson E, Londoño MQ, Mather M, Mende N, Imaz-Rosshandler I, Yang L, Horsfall D, Basurto-Lozada D, Chipampe NJ, Rook V, Lee JTH, Ton ML, Keitley D, Mazin P, Vijayabaskar M, Hannah R, Gambardella L, Green K, Ballereau S, Inoue M, Tuck E, Lorenzi V, Kwakwa K, Alsinet C, Olabi B, Miah M, Admane C, Popescu DM, Acres M, Dixon D, Ness T, Coulthard R, Lisgo S, Henderson DJ, Dann E, Suo C, Kinston SJ, Park JE, Polanski K, Marioni J, van Dongen S, Meyer KB, de Bruijn M, Palis J, Behjati S, Laurenti E, Wilson NK, Vento-Tormo R, Chédotal A, Bayraktar O, Roberts I, Jardine L, Göttgens B, Teichmann SA, Haniffa M. Yolk sac cell atlas reveals multiorgan functions during human early development. Science 2023; 381:eadd7564. [PMID: 37590359 PMCID: PMC7614978 DOI: 10.1126/science.add7564] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/03/2023] [Indexed: 08/19/2023]
Abstract
The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.
Collapse
Affiliation(s)
- Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Rachel A. Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Antony Rose
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Simone Webb
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Yorick Gitton
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Michael Mather
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nicole Mende
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus,
CD2 0QH, UK
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Dave Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Victoria Rook
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Jimmy Tsz Hang Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Mai-Linh Ton
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Daniel Keitley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Zoology, University of Cambridge, Cambridge UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - M.S. Vijayabaskar
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Rebecca Hannah
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Laure Gambardella
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kile Green
- Translational and Clinical Research Institute, Newcastle University,
NE2 4HH, UK
| | - Stephane Ballereau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Megumi Inoue
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kwasi Kwakwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Clara Alsinet
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Centre Nacional d’Analisi Genomica-Centre de Regulacio
Genomica (CNAG-CRG), Barcelona Institute of Science and Technology (BIST),
Barcelona, Spain
| | - Bayanne Olabi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Mohi Miah
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Meghan Acres
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Thomas Ness
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Sarah J. Kinston
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Jong-eun Park
- Korea Advanced Institute of Science and Technology, Daejeon, South
Korea
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - John Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge,
UK
| | - Stijn van Dongen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Marella de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of
Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS,
UK
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center,
Rochester, 14642, NY, USA
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge,
UK
| | - Elisa Laurenti
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Nicola K. Wilson
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Irene Roberts
- Department of Paediatrics, University of Oxford, OX3 9DS, UK
| | - Laura Jardine
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department
of Physics, University of Cambridge, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research
Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP,
UK
| |
Collapse
|
36
|
Wu YC, Moon HG, Bindokas VP, Phillips EH, Park GY, Lee SSY. Multiresolution 3D Optical Mapping of Immune Cell Infiltrates in Mouse Asthmatic Lung. Am J Respir Cell Mol Biol 2023; 69:13-21. [PMID: 37017484 PMCID: PMC10324044 DOI: 10.1165/rcmb.2022-0353ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023] Open
Abstract
Asthma is a chronic inflammatory airway disease driven by various infiltrating immune cell types into the lung. Optical microscopy has been used to study immune infiltrates in asthmatic lungs. Confocal laser scanning microscopy (CLSM) identifies the phenotypes and locations of individual immune cells in lung tissue sections by employing high-magnification objectives and multiplex immunofluorescence staining. In contrast, light-sheet fluorescence microscopy (LSFM) can visualize the macroscopic and mesoscopic architecture of whole-mount lung tissues in three dimensions (3D) by adopting an optical tissue-clearing method. Despite each microscopy method producing image data with unique resolution from a tissue sample, CLSM and LSFM have not been applied together because of different tissue-preparation procedures. Here, we introduce a new approach combining LSFM and CLSM into a sequential imaging pipeline. We built a new optical tissue clearing workflow in which the immersion clearing agent can be switched from an organic solvent to an aqueous sugar solution for sequential 3D LSFM and CLSM of mouse lungs. This sequential combination microscopy offered quantitative 3D spatial analyses of the distribution of immune infiltrates in the same mouse asthmatic lung tissue at the organ, tissue, and cell levels. These results show that our method facilitates multiresolution 3D fluorescence microscopy as a new imaging approach providing comprehensive spatial information for a better understanding of inflammatory lung diseases.
Collapse
Affiliation(s)
| | - Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Vytautas P. Bindokas
- Integrated Light Microscopy Facility, The University of Chicago, Chicago, Illinois; and
| | | | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | | |
Collapse
|
37
|
Crozet F, Letort G, Bulteau R, Da Silva C, Eichmuller A, Tortorelli AF, Blévinal J, Belle M, Dumont J, Piolot T, Dauphin A, Coulpier F, Chédotal A, Maître JL, Verlhac MH, Clarke HJ, Terret ME. Filopodia-like protrusions of adjacent somatic cells shape the developmental potential of oocytes. Life Sci Alliance 2023; 6:e202301963. [PMID: 36944420 PMCID: PMC10029974 DOI: 10.26508/lsa.202301963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The oocyte must grow and mature before fertilization, thanks to a close dialogue with the somatic cells that surround it. Part of this communication is through filopodia-like protrusions, called transzonal projections (TZPs), sent by the somatic cells to the oocyte membrane. To investigate the contribution of TZPs to oocyte quality, we impaired their structure by generating a full knockout mouse of the TZP structural component myosin-X (MYO10). Using spinning disk and super-resolution microscopy combined with a machine-learning approach to phenotype oocyte morphology, we show that the lack of Myo10 decreases TZP density during oocyte growth. Reduction in TZPs does not prevent oocyte growth but impairs oocyte-matrix integrity. Importantly, we reveal by transcriptomic analysis that gene expression is altered in TZP-deprived oocytes and that oocyte maturation and subsequent early embryonic development are partially affected, effectively reducing mouse fertility. We propose that TZPs play a role in the structural integrity of the germline-somatic complex, which is essential for regulating gene expression in the oocyte and thus its developmental potential.
Collapse
Affiliation(s)
- Flora Crozet
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Paris, France
| | - Gaëlle Letort
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Paris, France
| | - Rose Bulteau
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Christelle Da Silva
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Adrien Eichmuller
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | | | - Morgane Belle
- Institut de la Vision, UMRS968/UMR7210/UM80, Paris, France
| | - Julien Dumont
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tristan Piolot
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Aurélien Dauphin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | - Fanny Coulpier
- Genomics Core Facility, Institut de Biologie de l'ENS, Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alain Chédotal
- Institut de la Vision, UMRS968/UMR7210/UM80, Paris, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
38
|
Ietto G, Iori V, Gritti M, Inversini D, Costantino A, Izunza Barba S, Jiang ZG, Carcano G, Dalla Gasperina D, Pettinato G. Multicellular Liver Organoids: Generation and Importance of Diverse Specialized Cellular Components. Cells 2023; 12:1429. [PMID: 37408262 PMCID: PMC10217024 DOI: 10.3390/cells12101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Over 40,000 patients in the United States are estimated to suffer from end-stage liver disease and acute hepatic failure, for which liver transplantation is the only available therapy. Human primary hepatocytes (HPH) have not been employed as a therapeutic tool due to the difficulty in growing and expanding them in vitro, their sensitivity to cold temperatures, and tendency to dedifferentiate following two-dimensional culture. The differentiation of human-induced pluripotent stem cells (hiPSCs) into liver organoids (LO) has emerged as a potential alternative to orthotropic liver transplantation (OLT). However, several factors limit the efficiency of liver differentiation from hiPSCs, including a low proportion of differentiated cells capable of reaching a mature phenotype, the poor reproducibility of existing differentiation protocols, and insufficient long-term viability in vitro and in vivo. This review will analyze various methodologies being developed to improve hepatic differentiation from hiPSCs into liver organoids, paying particular attention to the use of endothelial cells as supportive cells for their further maturation. Here, we demonstrate why differentiated liver organoids can be used as a research tool for drug testing and disease modeling, or employed as a bridge for liver transplantation following liver failure.
Collapse
Affiliation(s)
- Giuseppe Ietto
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Valentina Iori
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Mattia Gritti
- Department of General Surgery, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Davide Inversini
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, 95124 Catania, Italy;
| | - Sofia Izunza Barba
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. Gordon Jiang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giulio Carcano
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Infectious Diseases, ASST-Sette Laghi, 21100 Varese, Italy
| | - Giuseppe Pettinato
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
39
|
Kim YS, Yuan J, Dewar A, Borg JP, Threadgill DW, Sun X, Dey SK. An unanticipated discourse of HB-EGF with VANGL2 signaling during embryo implantation. Proc Natl Acad Sci U S A 2023; 120:e2302937120. [PMID: 37155852 PMCID: PMC10193979 DOI: 10.1073/pnas.2302937120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Implantation is the first direct encounter between the embryo and uterus during pregnancy, and Hbegf is the earliest known molecular signaling for embryo-uterine crosstalk during implantation. The downstream effectors of heparin-binding EGF (HB-EGF) in implantation remain elusive due to the complexity of EGF receptor family. This study shows that the formation of implantation chamber (crypt) triggered by HB-EGF is disrupted by uterine deletion of Vangl2, a key planar cell polarity component (PCP). We found that HB-EGF binds to ERBB2 and ERBB3 to recruit VANGL2 for tyrosine phosphorylation. Using in vivo models, we show that uterine VAGL2 tyrosine phosphorylation is suppressed in Erbb2/Erbb3 double conditional knockout mice. In this context, severe implantation defects in these mice lend support to the critical role of HB-EGF-ERBB2/3-VANGL2 in establishing a two-way dialogue between the blastocyst and uterus. In addition, the result addresses an outstanding question how VANGL2 is activated during implantation. Taken together, these observations reveal that HB-EGF regulates the implantation process by influencing uterine epithelial cell polarity comprising VANGL2.
Collapse
Affiliation(s)
- Yeon Sun Kim
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Jia Yuan
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Amanda Dewar
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell Signalling and Cancer - Equipe labellisée Ligue Contre le Cancer, 13009Marseille, France
- Institut Universitaire de France, 73231Paris, France
| | - David W. Threadgill
- Department of Cell Biology and Genetics, Texas A & M University, College Station, TX77843
| | - Xiaofei Sun
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Sudhansu K. Dey
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| |
Collapse
|
40
|
Geier B, Gil-Mansilla E, Liutkevičiūtė Z, Hellinger R, Vanden Broeck J, Oetjen J, Liebeke M, Gruber CW. Multiplexed neuropeptide mapping in ant brains integrating microtomography and three-dimensional mass spectrometry imaging. PNAS NEXUS 2023; 2:pgad144. [PMID: 37215633 PMCID: PMC10194420 DOI: 10.1093/pnasnexus/pgad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, Atta sexdens and Lasius niger. For analyzing the spatial distribution of chemically diverse peptide molecules across the brain in each species, the acquisition of serial mass spectrometry images was essential. As a result, we have comparatively mapped the three-dimensional (3D) distributions of eight conserved neuropeptides throughout the brain microanatomy. We demonstrate that integrating the 3D MSI data into high-resolution anatomy models can be critical for studying organs with high plasticity such as brains of social insects. Several peptides, like the tachykinin-related peptides (TK) 1 and 4, were widely distributed in many brain areas of both ant species, whereas others, for instance myosuppressin, were restricted to specific regions only. Also, we detected differences at the species level; many peptides were identified in the optic lobe of L. niger, but only one peptide (ITG-like) was found in this region in A. sexdens. Building upon MS imaging studies on neuropeptides in invertebrate model systems, our approach leverages correlative MSI and computed microtomography for investigating fundamental neurobiological processes by visualizing the unbiased 3D neurochemistry in its complex anatomic environment.
Collapse
Affiliation(s)
- Benedikt Geier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Pediatrics and Infectious Diseases, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Esther Gil-Mansilla
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Zita Liutkevičiūtė
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Group, Zoological Institute, KU Leuven, Leuven 3000, Belgium
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Life Science Mass Spectrometry, Bremen 28359, Germany
- MALDI Imaging Lab, University of Bremen, Bremen 28359, Germany
| | - Manuel Liebeke
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Metabolomics, Institute of Human Nutrition and Food Science, Kiel University, 24118 Kiel, Germany
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
41
|
Wang F, Ruppell KT, Zhou S, Qu Y, Gong J, Shang Y, Wu J, Liu X, Diao W, Li Y, Xiang Y. Gliotransmission and adenosine signaling promote axon regeneration. Dev Cell 2023; 58:660-676.e7. [PMID: 37028426 PMCID: PMC10173126 DOI: 10.1016/j.devcel.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/18/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
How glia control axon regeneration remains incompletely understood. Here, we investigate glial regulation of regenerative ability differences of closely related Drosophila larval sensory neuron subtypes. Axotomy elicits Ca2+ signals in ensheathing glia, which activates regenerative neurons through the gliotransmitter adenosine and mounts axon regenerative programs. However, non-regenerative neurons do not respond to glial stimulation or adenosine. Such neuronal subtype-specific responses result from specific expressions of adenosine receptors in regenerative neurons. Disrupting gliotransmission impedes axon regeneration of regenerative neurons, and ectopic adenosine receptor expression in non-regenerative neurons suffices to activate regenerative programs and induce axon regeneration. Furthermore, stimulating gliotransmission or activating the mammalian ortholog of Drosophila adenosine receptors in retinal ganglion cells (RGCs) promotes axon regrowth after optic nerve crush in adult mice. Altogether, our findings demonstrate that gliotransmission orchestrates neuronal subtype-specific axon regeneration in Drosophila and suggest that targeting gliotransmission or adenosine signaling is a strategy for mammalian central nervous system repair.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Kendra Takle Ruppell
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Songlin Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yun Qu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiaxin Gong
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ye Shang
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jinglin Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenlin Diao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yi Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; The National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Yang Xiang
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Frenkel N, Poghosyan S, van Wijnbergen JW, van den Bent L, Wiljer L, Verheem A, Borel Rinkes I, Kranenburg O, Hagendoorn J. Tissue clearing and immunostaining to visualize the spatial organization of vasculature and tumor cells in mouse liver. Front Oncol 2023; 13:1062926. [PMID: 37077833 PMCID: PMC10108913 DOI: 10.3389/fonc.2023.1062926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The liver has a complex and hierarchical segmental organization of arteries, portal veins, hepatic veins and lymphatic vessels. In-depth imaging of liver vasculature and malignancies could improve knowledge on tumor micro-environment, local tumor growth, invasion, as well as metastasis. Non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and positron-emission transmission (PET) are routine for clinical imaging, but show inadequate resolution at cellular and subcellular level. In recent years, tissue clearing – a technique rendering tissues optically transparent allowing enhanced microscopy imaging – has made great advances. While mainly used in the neurobiology field, recently more studies have used clearing techniques for imaging other organ systems as well as tumor tissues. In this study, our aim was to develop a reproducible tissue clearing and immunostaining model for visualizing intrahepatic blood microvasculature and tumor cells in murine colorectal liver metastases. CLARITY and 3DISCO/iDISCO+ are two established clearing methods that have been shown to be compatible with immunolabelling, most often in neurobiology research. In this study, CLARITY unfortunately resulted in damaged tissue integrity of the murine liver lobes and no specific immunostaining. Using the 3DISCO/iDISCO+ method, liver samples were successfully rendered optically transparent. After which, successful immunostaining of the intrahepatic microvasculature using panendothelial cell antigen MECA-32 and colorectal cancer cells using epithelial cell adhesion molecule (EpCAM) was established. This approach for tumor micro-environment tissue clearing would be especially valuable for allowing visualization of spatial heterogeneity and complex interactions of tumor cells and their environment in future studies.
Collapse
|
43
|
Utagawa K, Shin T, Yamada H, Ochi H, Sunamura S, Unno A, Akazawa C, Ema M, Takeda S, Okawa A, Sato S. Three-dimensional visualization of neural networks inside bone by Osteo-DISCO protocol and alteration of bone remodeling by surgical nerve ablation. Sci Rep 2023; 13:4674. [PMID: 36949102 PMCID: PMC10033912 DOI: 10.1038/s41598-023-30492-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
Bone is one of the largest organ systems in humans and is considered to regulate whole-body homeostasis in cooperation with other organs. We have previously reported that a sympathetic or sensory nervous system inside bone regulates bone homeostasis. However, the detailed regulatory mechanism, including the distribution of nerves inside bone, remains unknown. Although a two-dimensional histological analysis has been widely used to evaluate the structure of nerves or blood vessels, the actual structure is more complex, suggesting that it should be evaluated three-dimensionally. Here, we established a novel bone tissue clearing technique (Osteo-DISCO) for murine bones which enabled us to visualize the detailed distribution of nerves or blood vessels inside bone. Interestingly, we found that there is a specific nerve entry site in each long bone and that surgical ablation of the specific nerve fibers entering bone tissue led to decreased bone formation and impaired bone regeneration. Furthermore, we revealed that the administration of calcitonin gene-related peptide (CGRP), which is primarily released from sensory nerves, suppressed the bone loss caused by surgical nerve ablation. An in vitro study also indicated that CGRP directly promotes osteoblast activity, suggesting that sensory nerves inside bone can regulate osteogenesis via the secretion of CGRP.
Collapse
Affiliation(s)
- Kurando Utagawa
- Department of Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Takaei Shin
- Faculty of Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8519, Japan
- Japanese Red Cross Ishinomaki Hospital, Miyagi, 986-8522, Japan
| | - Hironori Yamada
- Department of Family Medicine, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8519, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, 359-8555, Japan
| | - Satoko Sunamura
- Department of Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Aiko Unno
- Department of Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, Tokyo, 105-8470, Japan
| | - Atsushi Okawa
- Department of Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Shingo Sato
- Department of Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8519, Japan.
| |
Collapse
|
44
|
Mueller JPJ, Dobosz M, O’Brien N, Abdoush N, Giusti AM, Lechmann M, Osl F, Wolf AK, Arellano-Viera E, Shaikh H, Sauer M, Rosenwald A, Herting F, Umaña P, Colombetti S, Pöschinger T, Beilhack A. ROCKETS - a novel one-for-all toolbox for light sheet microscopy in drug discovery. Front Immunol 2023; 14:1034032. [PMID: 36845124 PMCID: PMC9945347 DOI: 10.3389/fimmu.2023.1034032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advancing novel immunotherapy strategies requires refined tools in preclinical research to thoroughly assess drug targets, biodistribution, safety, and efficacy. Light sheet fluorescence microscopy (LSFM) offers unprecedented fast volumetric ex vivo imaging of large tissue samples in high resolution. Yet, to date laborious and unstandardized tissue processing procedures have limited throughput and broader applications in immunological research. Therefore, we developed a simple and harmonized protocol for processing, clearing and imaging of all mouse organs and even entire mouse bodies. Applying this Rapid Optical Clearing Kit for Enhanced Tissue Scanning (ROCKETS) in combination with LSFM allowed us to comprehensively study the in vivo biodistribution of an antibody targeting Epithelial Cell Adhesion Molecule (EpCAM) in 3D. Quantitative high-resolution scans of whole organs did not only reveal known EpCAM expression patterns but, importantly, uncovered several new EpCAM-binding sites. We identified gustatory papillae of the tongue, choroid plexi in the brain and duodenal papillae as previously unanticipated locations of high EpCAM expression. Subsequently, we confirmed high EpCAM expression also in human tongue and duodenal specimens. Choroid plexi and duodenal papillae may be considered as particularly sensitive sites due to their importance for liquor production or as critical junctions draining bile and digestive pancreatic enzymes into the small bowel, respectively. These newly gained insights appear highly relevant for clinical translation of EpCAM-addressing immunotherapies. Thus, ROCKETS in combination with LSFM may help to set new standards for preclinical evaluation of immunotherapeutic strategies. In conclusion, we propose ROCKETS as an ideal platform for a broader application of LSFM in immunological research optimally suited for quantitative co-localization studies of immunotherapeutic drugs and defined cell populations in the microanatomical context of organs or even whole mice.
Collapse
Affiliation(s)
- Joerg P. J. Mueller
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Dobosz
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nils O’Brien
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nassri Abdoush
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Anna Maria Giusti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Martin Lechmann
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Franz Osl
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ann-Katrin Wolf
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Estibaliz Arellano-Viera
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Frank Herting
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Pablo Umaña
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Thomas Pöschinger
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| |
Collapse
|
45
|
Cai R, Kolabas ZI, Pan C, Mai H, Zhao S, Kaltenecker D, Voigt FF, Molbay M, Ohn TL, Vincke C, Todorov MI, Helmchen F, Van Ginderachter JA, Ertürk A. Whole-mouse clearing and imaging at the cellular level with vDISCO. Nat Protoc 2023; 18:1197-1242. [PMID: 36697871 DOI: 10.1038/s41596-022-00788-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/20/2022] [Indexed: 01/26/2023]
Abstract
Homeostatic and pathological phenomena often affect multiple organs across the whole organism. Tissue clearing methods, together with recent advances in microscopy, have made holistic examinations of biological samples feasible. Here, we report the detailed protocol for nanobody(VHH)-boosted 3D imaging of solvent-cleared organs (vDISCO), a pressure-driven, nanobody-based whole-body immunolabeling and clearing method that renders whole mice transparent in 3 weeks, consistently enhancing the signal of fluorescent proteins, stabilizing them for years. This allows the reliable detection and quantification of fluorescent signal in intact rodents enabling the analysis of an entire body at cellular resolution. Here, we show the high versatility of vDISCO applied to boost the fluorescence signal of genetically expressed reporters and clear multiple dissected organs and tissues, as well as how to image processed samples using multiple fluorescence microscopy systems. The entire protocol is accessible to laboratories with limited expertise in tissue clearing. In addition to its applications in obtaining a whole-mouse neuronal projection map, detecting single-cell metastases in whole mice and identifying previously undescribed anatomical structures, we further show the visualization of the entire mouse lymphatic system, the application for virus tracing and the visualization of all pericytes in the brain. Taken together, our vDISCO pipeline allows systematic and comprehensive studies of cellular phenomena and connectivity in whole bodies.
Collapse
Affiliation(s)
- Ruiyao Cai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Chenchen Pan
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Shan Zhao
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Doris Kaltenecker
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany.,Institute for Diabetes and Cancer, Helmholtz Munich, Munich, Germany
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Muge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Tzu-Lun Ohn
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Mihail I Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany. .,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
46
|
Tsyhykalo OV, Kuzniak NB, Dmytrenko RR, Perebyjnis PP, Oliinyk IY, Fedoniuk LY. FEATURES OF MORPHOGENESIS OF THE BONES OF THE HUMAN ORBIT. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:189-197. [PMID: 36883509 DOI: 10.36740/wlek202301126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The aim: To find out the sources of origin, the chronology of ossification, the peculiarities of age-related topographical and anatomical changes in the bones of the human orbit. PATIENTS AND METHODS Materials and methods: The research was carried out on the specimens of 18 human embryos and prefetuses aged from 4th to 12th weeks of intrauterine development and 12 human fetuses aged from 4th to 9th months which were studied by microscopic examination and 3D reconstruction. RESULTS Results: The first signs of osteogenesis around the main nervous and visceral contents of the orbit rudiment are observed in 6-week-old embryos in the form of seven cartilaginous bone models. The first signs of ossification in the region of the orbit are found in the maxilla. During the 6th month of intrauterine development, intensive processes of ossification of the frontal, sphenoidal, ethmoidal bones and maxilla are noticeable. From the beginning of the fetal pe¬riod of human ontogenesis, the ossification of bone rudiments that form the walls of the orbit continues. The processes of ossification of the structures of the sphenoidal bone continue, which leads to morphological transformations of the orbit in 5-month-old fetuses - it is separated from the sphenopalatine and infratemporal fossae by a bone layer, the optic canal is formed, and in 6-month-old fetuses, processes of ossification of the frontal, sphenoidal and ethmoidal bones and maxilla occur, Müller's muscle changes its structure to a fibrous one. CONCLUSION Conclusions: Critical periods of the orbit development are the 6th month of prenatal ontogenesis and the 8th month.
Collapse
Affiliation(s)
- Oleksandr V Tsyhykalo
- BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
| | - Nataliia B Kuzniak
- BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
| | - Roman R Dmytrenko
- BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
| | - Pavlo P Perebyjnis
- BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
| | - Igor Yu Oliinyk
- BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
| | - Larysa Ya Fedoniuk
- BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
| |
Collapse
|
47
|
Thill B. The fetal pain paradox. FRONTIERS IN PAIN RESEARCH 2023; 4:1128530. [PMID: 37025166 PMCID: PMC10072285 DOI: 10.3389/fpain.2023.1128530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Controversy exists as to when conscious pain perception in the fetus may begin. According to the hypothesis of cortical necessity, thalamocortical connections, which do not form until after 24-28 weeks gestation, are necessary for conscious pain perception. However, anesthesiologists and neonatologists treat age-matched neonates as both conscious and pain-capable due to observable and measurable behavioral, hormonal, and physiologic indicators of pain. In preterm infants, these multimodal indicators of pain are uncontroversial, and their presence, despite occurring prior to functional thalamocortical connections, has guided the use of analgesics in neonatology and fetal surgery for decades. However, some medical groups state that below 24 weeks gestation, there is no pain capacity. Thus, a paradox exists in the disparate acknowledgment of pain capability in overlapping patient populations. Brain networks vary by age. During the first and second trimesters, the cortical subplate, a unique structure that is present only during fetal and early neonatal development, forms the first cortical network. In the third trimester, the cortical plate assumes this function. According to the subplate modulation hypothesis, a network of connections to the subplate and subcortical structures is sufficient to facilitate conscious pain perception in the fetus and the preterm neonate prior to 24 weeks gestation. Therefore, similar to other fetal and neonatal systems that have a transitional phase (i.e., circulatory system), there is now strong evidence for transitional developmental phases of fetal and neonatal pain circuitry.
Collapse
|
48
|
Bhatia HS, Brunner AD, Öztürk F, Kapoor S, Rong Z, Mai H, Thielert M, Ali M, Al-Maskari R, Paetzold JC, Kofler F, Todorov MI, Molbay M, Kolabas ZI, Negwer M, Hoeher L, Steinke H, Dima A, Gupta B, Kaltenecker D, Caliskan ÖS, Brandt D, Krahmer N, Müller S, Lichtenthaler SF, Hellal F, Bechmann I, Menze B, Theis F, Mann M, Ertürk A. Spatial proteomics in three-dimensional intact specimens. Cell 2022; 185:5040-5058.e19. [PMID: 36563667 DOI: 10.1016/j.cell.2022.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Harsharan Singh Bhatia
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Andreas-David Brunner
- Department for Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Str. 65, D-88400 Biberach Riss, Germany
| | - Furkan Öztürk
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Saketh Kapoor
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Zhouyi Rong
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany; Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Hongcheng Mai
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany; Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Marvin Thielert
- Department for Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mayar Ali
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Graduate School of Neuroscience (GSN), 82152 Munich, Germany
| | - Rami Al-Maskari
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany; Center for Translational Cancer Research (TranslaTUM) of the TUM, 81675 Munich, Germany; Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Johannes Christian Paetzold
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Center for Translational Cancer Research (TranslaTUM) of the TUM, 81675 Munich, Germany; Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, 85748 Garching, Germany; Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK
| | - Florian Kofler
- Center for Translational Cancer Research (TranslaTUM) of the TUM, 81675 Munich, Germany; Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, 85748 Garching, Germany; Helmholtz AI, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Neuroradiology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Mihail Ivilinov Todorov
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Muge Molbay
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany; Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Zeynep Ilgin Kolabas
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany; Graduate School of Neuroscience (GSN), 82152 Munich, Germany
| | - Moritz Negwer
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Luciano Hoeher
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Hanno Steinke
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany
| | - Alina Dima
- Center for Translational Cancer Research (TranslaTUM) of the TUM, 81675 Munich, Germany; Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Basavdatta Gupta
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Doris Kaltenecker
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany; Institute for Diabetes and Cancer, Helmholz Zentrum München, 85764 Neuherberg, Germany
| | - Özüm Sehnaz Caliskan
- Institute for Diabetes and Obesity, Helmholz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research, Helmholz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Brandt
- Institute for Diabetes and Obesity, Helmholz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research, Helmholz Zentrum München, 85764 Neuherberg, Germany
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research, Helmholz Zentrum München, 85764 Neuherberg, Germany
| | - Stephan Müller
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Stefan Frieder Lichtenthaler
- Graduate School of Neuroscience (GSN), 82152 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Farida Hellal
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany
| | - Bjoern Menze
- Center for Translational Cancer Research (TranslaTUM) of the TUM, 81675 Munich, Germany; Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, 85748 Garching, Germany; Department for Quantitative Biomedicine, University of Zurich, 8006 Zurich, Switzerland
| | - Fabian Theis
- Institute of Computational Biology, Helmholz Zentrum München, 85764 Neuherberg, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; Department of Mathematics, Technical University of Munich, 85748 Garching, Germany
| | - Matthias Mann
- Department for Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Ali Ertürk
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany; Graduate School of Neuroscience (GSN), 82152 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
49
|
Optical Tissue Clearing Enables Three-Dimensional Morphometry in Experimental Nerve Regeneration Research. Methods Mol Biol 2022; 2593:163-169. [PMID: 36513930 DOI: 10.1007/978-1-0716-2811-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novel optical tissue clearing techniques enable three-dimensional imaging of entire organs at a subcellular resolution while preserving tissue architecture and fluorescence. In conjunction with computational image segmentation and automated analysis, these techniques provide fast and precise three-dimensional morphometry. Here, we present a tissue clearing protocol adapted to nerves and their motor and sensory targets in experimental rat models. Given their rapid processing times, low costs, and wide-ranging applicability, these techniques are likely to be a key technology for future nerve repair studies.
Collapse
|
50
|
van Ineveld RL, Collot R, Román MB, Pagliaro A, Bessler N, Ariese HCR, Kleinnijenhuis M, Kool M, Alieva M, Chuva de Sousa Lopes SM, Wehrens EJ, Rios AC. Multispectral confocal 3D imaging of intact healthy and tumor tissue using mLSR-3D. Nat Protoc 2022; 17:3028-3055. [PMID: 36180532 DOI: 10.1038/s41596-022-00739-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Revealing the 3D composition of intact tissue specimens is essential for understanding cell and organ biology in health and disease. State-of-the-art 3D microscopy techniques aim to capture tissue volumes on an ever-increasing scale, while also retaining sufficient resolution for single-cell analysis. Furthermore, spatial profiling through multi-marker imaging is fast developing, providing more context and better distinction between cell types. Following these lines of technological advance, we here present a protocol based on FUnGI (fructose, urea and glycerol clearing solution for imaging) optical clearing of tissue before multispectral large-scale single-cell resolution 3D (mLSR-3D) imaging, which implements 'on-the-fly' linear unmixing of up to eight fluorophores during a single acquisition. Our protocol removes the need for repetitive illumination, thereby allowing larger volumes to be scanned with better image quality in less time, also reducing photo-bleaching and file size. To aid in the design of multiplex antibody panels, we provide a fast and manageable intensity equalization assay with automated analysis to design a combination of markers with balanced intensities suitable for mLSR-3D. We demonstrate effective mLSR-3D imaging of various tissues, including patient-derived organoids and xenografted tumors, and, furthermore, describe an optimized workflow for mLSR-3D imaging of formalin-fixed paraffin-embedded samples. Finally, we provide essential steps for 3D image data processing, including shading correction that does not require pre-acquired shading references and 3D inhomogeneity correction to correct fluorescence artefacts often afflicting 3D datasets. Together, this provides a one-week protocol for eight-fluorescent-marker 3D visualization and exploration of intact tissue of various origins at single-cell resolution.
Collapse
Affiliation(s)
- Ravian L van Ineveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Raphaël Collot
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mario Barrera Román
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Anna Pagliaro
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Hendrikus C R Ariese
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Michiel Kleinnijenhuis
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, Heidelberg, Germany
| | - Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|