1
|
Colombo S, Michel C, Speroni S, Ruhnow F, Gili M, Brito C, Surrey T. NuMA is a mitotic adaptor protein that activates dynein and connects it to microtubule minus ends. J Cell Biol 2025; 224:e202408118. [PMID: 39932518 PMCID: PMC11812572 DOI: 10.1083/jcb.202408118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Nuclear mitotic apparatus protein (NuMA) is indispensable for the mitotic functions of the major microtubule minus-end directed motor cytoplasmic dynein 1. NuMA and dynein are both essential for correct spindle pole organization. How these proteins cooperate to gather microtubule minus ends at spindle poles remains unclear. Here, we use microscopy-based in vitro reconstitutions to demonstrate that NuMA is a dynein adaptor, activating processive dynein motility together with dynein's cofactors dynactin and Lissencephaly-1 (Lis1). Additionally, we find that NuMA binds and stabilizes microtubule minus ends, allowing dynein/dynactin/NuMA to transport microtubule minus ends as cargo to other minus ends. We further show that the microtubule-nucleating γ-tubulin ring complex (γTuRC) hinders NuMA binding and that NuMA only caps minus ends of γTuRC-nucleated microtubules after γTuRC release. These results provide new mechanistic insight into how dynein, dynactin, NuMA, and Lis1 together with γTuRC and uncapping proteins cooperate to organize spindle poles in cells.
Collapse
Affiliation(s)
- Sabina Colombo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Christel Michel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Speroni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Felix Ruhnow
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Gili
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cláudia Brito
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
2
|
Gillies JP, Little SR, Siva A, Hancock WO, DeSantis ME. Cargo adaptor identity controls the mechanism and kinetics of dynein activation. J Biol Chem 2025:108358. [PMID: 40021125 DOI: 10.1016/j.jbc.2025.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/22/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
Cytoplasmic dynein-1 (dynein), the primary retrograde motor in most eukaryotes, supports the movement of hundreds of distinct cargos, each with specific trafficking requirements. To achieve this functional diversity, dynein must bind to the multi-subunit complex dynactin and one of a family of cargo adaptors to be converted into an active, processive motor complex. Very little is known about the dynamic processes that promote the formation of this complex. To delineate the kinetic steps that lead to dynein activation, we developed a single-molecule fluorescence assay to visualize the real-time formation of dynein-dynactin-adaptor complexes in vitro. We found that dynactin and adaptors bind dynein independently rather than cooperatively. We also found that different dynein adaptors promote dynein-dynactin-adaptor assembly with dramatically different kinetics, which results in complex formation occurring via different assembly pathways. Despite differences in association rates or mechanism of assembly, all adaptors tested can generate a population of tripartite complexes that are very stable. Our work provides a model for how modulating the kinetics of dynein-dynactin-adaptor binding can be harnessed to promote differential dynein activation and reveals a new facet of the functional diversity of the dynein motor.
Collapse
Affiliation(s)
- John P Gillies
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109
| | - Saffron R Little
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109
| | - Aravintha Siva
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109
| | - William O Hancock
- Pennsylvania State University, Departments of Biomedical Engineering and Chemistry, University Park, PA 16802
| | - Morgan E DeSantis
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109.
| |
Collapse
|
3
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2025; 26:86-103. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Rao L, Liu X, Berger F, McKenney RJ, Arnold M, Stengel K, Sidoli S, Gennerich A. The Power of Three: Dynactin associates with three dyneins under load for greater force production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632506. [PMID: 39868132 PMCID: PMC11761377 DOI: 10.1101/2025.01.14.632506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cytoplasmic dynein is an essential microtubule motor protein that powers organelle transport and mitotic spindle assembly. Its activity depends on dynein-dynactin-cargo adaptor complexes, such as dynein-dynactin-BicD2 (DDB), which typically function with two dynein motors. We show that mechanical tension recruits a third dynein motor via an auxiliary BicD adaptor binding the light intermediate chain of the third dynein, stabilizing multi-dynein assemblies and enhancing force generation. Lis1 prevents dynein from transitioning into a force-limiting phi-like conformation, allowing single-dynein DDB to sustain forces up to ~4.5 pN, whereas force generation often ends at ~2.5 pN without Lis1. Complexes with two or three dyneins generate ~7 pN and ~9 pN, respectively, consistent with a staggered motor arrangement that enhances collective output. Under load, DDB primarily takes ~8 nm steps, challenging existing dynein coordination models. These findings reveal adaptive mechanisms that enable robust intracellular transport under varying mechanical demands.
Collapse
|
5
|
Yang J, Zhao Y, Chai P, Yildiz A, Zhang K. Nde1 Promotes Lis1 Binding to Full-Length Autoinhibited Human Dynein-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630764. [PMID: 39803456 PMCID: PMC11722290 DOI: 10.1101/2024.12.30.630764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cytoplasmic dynein-1 (dynein) is the primary motor for the retrograde transport of intracellular cargoes along microtubules. The activation of the dynein transport machinery requires the opening of its autoinhibited Phi conformation by Lis1 and Nde1/Ndel1, but the underlying mechanism remains unclear. Using biochemical reconstitution and cryo-electron microscopy, we show that Nde1 significantly enhances Lis1 binding to autoinhibited dynein and facilitates the opening of Phi. We discover a key intermediate step in the dynein activation pathway where a single Lis1 dimer binds between the Phi-like (PhiL) motor rings of dynein. In this "PhiL-Lis1", Lis1 interacts with one of the motor domains through its canonical interaction sites at the AAA+ ring and stalk and binds to the newly identified AAA5, AAA6, and linker regions of the other motor domain. Mutagenesis and motility assays confirm the critical role of the PhiL-Lis1 interface. This intermediate state is instantly and efficiently formed in the presence of Nde1, but Nde1 is not part of the PhiL-Lis1. These findings provide key insights into the mechanism of how Nde1 promotes the Lis1-mediated opening of Phi dynein.
Collapse
Affiliation(s)
- Jun Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- These authors contributed equally
| | - Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA 94709, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94709, USA
- These authors contributed equally
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- These authors contributed equally
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA 94709, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94709, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
6
|
Chai P, Loustaunau DS, Zheng W, Yang J, Zhang K. DNAHX: a novel, non-motile dynein heavy chain subfamily, identified by cryo-EM endogenously. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633724. [PMID: 39896649 PMCID: PMC11785096 DOI: 10.1101/2025.01.18.633724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Ciliogenesis and cilia motility rely on the coordinated actions of diverse dyneins, yet the complexity of these motor proteins in cilia has posed challenges for understanding their specific roles. Traditional evolutionary analyses often overlook key family members due to technical limitations. Here, we present a cryo-EM-based, bottom-up approach for large-scale, de novo protein identification and functional prediction of endogenous axonemal dynein complexes. This approach led to the identification of a novel dynein heavy chain subfamily (XP_041462850), designated as DNAHX, from sea urchin sperm. Phylogenetic analysis indicates that DNAHX branches from the outer-arm dynein alpha chain during evolution and is found in specific animal lineages with external fertilization. DNAHX contains multiple insertions throughout the protein, locking DNAHX permanently in a pre-powerstroke state. The AAA1 site exhibits poor conservation of essential ATPase motifs, consistent with DNAHX's non-motile nature. DNAHX also forms a heterodimeric dynein complex, which we named dynein-X, with another dynein heavy chain and accessory chains. Furthermore, a subset of dynein-X displays an autoinhibited phi particle conformation, potentially facilitating the intraflagellar transport of axonemal dyneins. Our discovery of the novel, non-motile dynein heavy chain and the dynein-X complex provides valuable insights into the evolution of dyneins and potentially their diverse cellular functions.
Collapse
Affiliation(s)
- Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University
| | | | - Wan Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University
| | - Jun Yang
- Department of Molecular Biophysics and Biochemistry, Yale University
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University
| |
Collapse
|
7
|
Ali MY, Lu H, Fagnant PM, Macfarlane JE, Trybus KM. BicD and MAP7 collaborate to activate homodimeric Drosophila kinesin-1 by complementary mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632512. [PMID: 39868150 PMCID: PMC11761035 DOI: 10.1101/2025.01.11.632512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The folded auto-inhibited state of kinesin-1 is stabilized by multiple weak interactions and binds weakly to microtubules. Here we investigate the extent to which homodimeric Drosophila kinesin-1 lacking light chains is activated by the dynein activating adaptor Drosophila BicD. We show that one or two kinesins can bind to the central region of BicD (CC2), a region distinct from that which binds dynein-dynactin (CC1) and cargo-adaptor proteins (CC3). Kinesin light chain significantly reduces the amount of kinesin bound to BicD and thus regulates this interaction. Binding of kinesin to BicD increases the number of motors bound to the microtubule, the fraction moving processively and the run length, suggesting that BicD relieves kinesin auto-inhibition. In contrast, microtubule-associated protein 7 (MAP7) has minimal impact on the percentage of motors moving processively but enhances both kinesin-1 recruitment to microtubules and run length. BicD relieves auto-inhibition of kinesin, while MAP7 enables activated motors to engage productively with microtubules. When BicD and MAP7 are combined, the most robust activation of kinesin-1 occurs, highlighting the crosstalk between adaptors and microtubule associated proteins in regulating transport. These observations imply that when both dynein and kinesin-1 are simultaneously bound to BicD, the direction the complex moves on MTs will be influenced by MAP7 and the number of bound kinesins.
Collapse
|
8
|
Lei Y, Fukunaga A, Imai H, Yamamoto R, Shimo-Kon R, Kamimura S, Mitsuoka K, Kato-Minoura T, Yagi T, Kon T. Heterodimeric Ciliary Dynein f/I1 Adopts a Distinctive Structure, Providing Insight Into the Autoinhibitory Mechanism Common to the Dynein Family. Cytoskeleton (Hoboken) 2025. [PMID: 39754393 DOI: 10.1002/cm.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins. In contrast, the structures of ciliary dyneins, as well as their regulatory mechanisms, have yet to be fully elucidated. Here, we isolated a heterodimeric ciliary dynein (IDA-f/I1) from Chlamydomonas reinhardtii, a ciliated green alga, and studied its structure in the presence or absence of ATP by negative-stain electron microscopy and single-particle analysis. Surprisingly, a population of IDA-f adopted a distinctive compact structure, which has been scarcely reported for ciliary dyneins but is very similar to the "phi-particle" structure widely recognized as the autoinhibited/inactivated conformation for cytoplasmic/IFT dyneins. Our results suggest that the inactivation mechanism of dimeric dyneins is conserved in all three dynein subfamilies, regardless of their cellular functions, highlighting the intriguing intrinsic regulatory mechanism that may have been acquired at an early stage in the evolution of dynein motors.
Collapse
Affiliation(s)
- Yici Lei
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Akira Fukunaga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Rieko Shimo-Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Takako Kato-Minoura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Toshiki Yagi
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Abid Ali F, Zwetsloot AJ, Stone CE, Morgan TE, Wademan RF, Carter AP, Straube A. KIF1C activates and extends dynein movement through the FHF cargo adapter. Nat Struct Mol Biol 2025:10.1038/s41594-024-01418-z. [PMID: 39747486 DOI: 10.1038/s41594-024-01418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/03/2024] [Indexed: 01/04/2025]
Abstract
Cellular cargos move bidirectionally on microtubules by recruiting opposite polarity motors dynein and kinesin. These motors show codependence, where one requires the activity of the other, although the mechanism is unknown. Here we show that kinesin-3 KIF1C acts as both an activator and a processivity factor for dynein, using in vitro reconstitutions of human proteins. Activation requires only a fragment of the KIF1C nonmotor stalk binding the cargo adapter HOOK3. The interaction site is separate from the constitutive factors FTS and FHIP, which link HOOK3 to small G-proteins on cargos. We provide a structural model for the autoinhibited FTS-HOOK3-FHIP1B (an FHF complex) and explain how KIF1C relieves it. Collectively, we explain codependency by revealing how mutual activation of dynein and kinesin occurs through their shared adapter. Many adapters bind both dynein and kinesins, suggesting this mechanism could be generalized to other bidirectional complexes.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- MRC Laboratory of Molecular Biology, Cambridge, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Alexander J Zwetsloot
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Caroline E Stone
- MRC Laboratory of Molecular Biology, Cambridge, UK
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | - Anne Straube
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
10
|
Rao Q, Chai P, Zhang K. Molecular basis for the assembly of the dynein transport machinery on microtubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630772. [PMID: 39803430 PMCID: PMC11722432 DOI: 10.1101/2024.12.30.630772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cytoplasmic dynein-1, a microtubule-based motor protein, requires dynactin and an adaptor to form the processive dynein-dynactin-adaptor (DDA) complex. The role of microtubules in DDA assembly has been elusive. Here, we reveal detailed structural insights into microtubule-mediated DDA assembly using cryo-electron microscopy. We find that an adaptor-independent dynein-dynactin complex (DD) predominantly forms on microtubules in an intrinsic 2:1 stoichiometry, induced by spontaneous parallelization of dynein upon microtubule binding. Adaptors can squeeze in and exchange within the assembled microtubule-bound DD complex, which is enabled by relative rotations between dynein and dynactin, and further facilitated by dynein light intermediate chains that assist in an adaptor 'search' mechanism. Our findings elucidate the dynamic adaptability of the dynein transport machinery, and reveal a new mode for assembly of the motile complex.
Collapse
Affiliation(s)
- Qinhui Rao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
11
|
Aslan M, d'Amico EA, Cho NH, Taheri A, Zhao Y, Zhong X, Blaauw M, Carter AP, Dumont S, Yildiz A. Structural and functional insights into activation and regulation of the dynein-dynactin-NuMA complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625568. [PMID: 39651296 PMCID: PMC11623564 DOI: 10.1101/2024.11.26.625568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
During cell division, NuMA orchestrates the focusing of microtubule minus-ends in spindle poles and cortical force generation on astral microtubules by interacting with dynein motors, microtubules, and other cellular factors. Here we used in vitro reconstitution, cryo-electron microscopy, and live cell imaging to understand the mechanism and regulation of NuMA. We determined the structure of the processive dynein/dynactin/NuMA complex (DDN) and showed that the NuMA N-terminus drives dynein motility in vitro and facilitates dynein-mediated transport in live cells. The C-terminus of NuMA directly binds to and suppresses the dynamics of the microtubule minus-end. Full-length NuMA is autoinhibited, but mitotically phosphorylated NuMA activates dynein in vitro and interphase cells. Together with dynein, activated full-length NuMA focuses microtubule minus-ends into aster-like structures. The binding of the cortical protein LGN to the NuMA C-terminus results in preferential binding of NuMA to the microtubule plus-end. These results provide critical insights into the activation of NuMA and dynein for their functions in the spindle body and the cell cortex.
Collapse
|
12
|
Black HA, de Proce SM, Campos JL, Meynert A, Halachev M, Marsh JA, Hirst RA, O'Callaghan C, Shoemark A, Toddie‐Moore D, Santoyo‐Lopez J, Murray J, Macleod K, Urquhart DS, Unger S, Aitman TJ, Mill P. Whole genome sequencing enhances molecular diagnosis of primary ciliary dyskinesia. Pediatr Pulmonol 2024; 59:3322-3332. [PMID: 39115449 PMCID: PMC11600997 DOI: 10.1002/ppul.27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a genetic disorder affecting motile cilia. Most cases are inherited recessively, due to variants in >50 genes that result in abnormal or absent motile cilia. This leads to chronic upper and lower airway disease, subfertility, and laterality defects. Given overlapping clinical features and genetic heterogeneity, diagnosis can be difficult and often occurs late. Of those tested an estimated 30% of genetically screened PCD patients still lack a molecular diagnosis. A molecular diagnosis allows for appropriate clinical management including prediction of phenotypic features correlated to genotype. Here, we aimed to identify how readily a genetic diagnosis could be made using whole genome sequencing (WGS) to facilitate identification of pathogenic variants in known genes as well as novel PCD candidate genes. METHODS WGS was used to screen for pathogenic variants in eight patients with PCD. RESULTS 7/8 cases had homozygous or biallelic variants in DNAH5, DNAAF4 or DNAH11 classified as pathogenic or likely pathogenic. Three identified variants were deletions, ranging from 3 to 13 kb, for which WGS identified precise breakpoints, permitting confirmation by Sanger sequencing. WGS yielded identification of a de novo variant in a novel PCD gene TUBB4B. CONCLUSION Here, WGS uplifted genetic diagnosis of PCD by identifying structural variants and novel modes of inheritance in new candidate genes. WGS could be an important component of the PCD diagnostic toolkit, increasing molecular diagnostic yield from current (70%) levels, and enhancing our understanding of fundamental biology of motile cilia and variants in the noncoding genome.
Collapse
Affiliation(s)
- Holly A. Black
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- South East of Scotland Genetics ServiceWestern General HospitalEdinburghUK
| | - Sophie Marion de Proce
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Jose L. Campos
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Mihail Halachev
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Robert A. Hirst
- Department of Respiratory Sciences, Centre for PCD Diagnosis and ResearchUniversity of LeicesterLeicesterUK
| | - Chris O'Callaghan
- Department of Respiratory Sciences, Centre for PCD Diagnosis and ResearchUniversity of LeicesterLeicesterUK
| | - Amelia Shoemark
- School of Medicine, Division of Molecular and Clinical MedicineUniversity of DundeeDundeeUK
| | - Daniel Toddie‐Moore
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | | | | | - Jennie Murray
- South East of Scotland Genetics ServiceWestern General HospitalEdinburghUK
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Kenneth Macleod
- Department of Paediatric Respiratory and Sleep MedicineRoyal Hospital for Sick ChildrenEdinburghUK
| | - Don S. Urquhart
- Department of Paediatric Respiratory and Sleep MedicineRoyal Hospital for Sick ChildrenEdinburghUK
- Department of Child Life and HealthUniversity of EdinburghEdinburghUK
| | - Stefan Unger
- Department of Paediatric Respiratory and Sleep MedicineRoyal Hospital for Sick ChildrenEdinburghUK
- Department of Child Life and HealthUniversity of EdinburghEdinburghUK
| | - Timothy J. Aitman
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
13
|
Matsumura F, Murayama T, Kuriyama R, Matsumura A, Yamashiro S. Myosin phosphatase targeting subunit1 controls localization and motility of Rab7-containing vesicles: Is myosin phosphatase a cytoplasmic dynein regulator? Cytoskeleton (Hoboken) 2024; 81:872-882. [PMID: 38700016 PMCID: PMC11615836 DOI: 10.1002/cm.21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Myosin phosphatase targeting subunit1 (MYPT1) is a critical subunit of myosin phosphatase (MP), which brings PP1Cδ phosphatase and its substrate together. We previously showed that MYPT1 depletion resulted in oblique chromatid segregation. Therefore, we hypothesized that MYPT1 may control microtubule-dependent motor activity. Dynein, a minus-end microtubule motor, is known to be involved in mitotic spindle assembly. We thus examined whether MYPT1 and dynein may interact. Proximity ligation assay and co-immunoprecipitation revealed that MYPT1 and dynein intermediate chain (DIC) were associated. We found that DIC phosphorylation is increased in MYPT1-depleted cells in vivo, and that MP was able to dephosphorylate DIC in vitro. MYPT1 depletion also altered the localization and motility of Rab7-containing vesicles. MYPT1-depletion dispersed the perinuclear Rab7 localization to the peripheral in interphase cells. The dispersed Rab7 localization was rescued by microinjection of a constitutively active, truncated MYPT1 mutant, supporting that MP is responsible for the altered Rab7 localization. Analyses of Rab7 vesicle trafficking also revealed that minus-end transport was reduced in MYPT1-depleted cells. These results suggest an unexpected role of MP: MP controls dynein activity in both mitotic and interphase cells, possibly by dephosphorylating dynein subunits including DIC.
Collapse
Affiliation(s)
- Fumio Matsumura
- Department of Molecular Biology & BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| | - Takashi Murayama
- Department of PharmacologyJuntendo University School of MedicineTokyoJapan
| | - Ryoko Kuriyama
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aya Matsumura
- Department of Molecular Biology & BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| | - Shigeko Yamashiro
- Department of Molecular Biology & BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
14
|
Zhang J, Qiu R, Xie S, Rasmussen M, Xiang X. VezA/vezatin facilitates proper assembly of the dynactin complex in vivo. Cell Rep 2024; 43:114943. [PMID: 39487986 DOI: 10.1016/j.celrep.2024.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, the cellular factors involved in dynactin assembly remain unexplored. Here, we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo-adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components, including p150, p50, and an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with the Arp1 mini-filament either directly or indirectly. Loss of VezA significantly decreases the amount of Arp1 pulled down with pointed-end proteins, as well as the protein levels of p50 and p150 in cell extract. Using various dynactin mutants, we further revealed that the dynactin assembly process must be highly coordinated. Together, these results shed light on dynactin assembly in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Sean Xie
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA; Montgomery Blair High School, Silver Spring, MD, USA
| | - Megan Rasmussen
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
15
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2024:10.1038/s41596-024-01072-1. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Teixeira V, Singh K, Gama JB, Celestino R, Carvalho AX, Pereira P, Abreu CM, Dantas TJ, Carter AP, Gassmann R. CDR2 is a dynein adaptor recruited by kinectin to regulate ER sheet organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622207. [PMID: 39574738 PMCID: PMC11580933 DOI: 10.1101/2024.11.06.622207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The endoplasmic reticulum (ER) relies on the microtubule cytoskeleton for distribution and remodelling of its extended membrane network, but how microtubule-based motors contribute to ER organization remains unclear. Using biochemical and cell-based assays, we identify cerebellar degeneration-related protein 2 (CDR2) and its paralog CDR2-like (CDR2L), onconeural antigens with poorly understood functions, as ER adaptors for cytoplasmic dynein-1 (dynein). We demonstrate that CDR2 is recruited by the integral ER membrane protein kinectin (KTN1) and that double knockout of CDR2 and CDR2L enhances KTN1-dependent ER sheet stacking, reversal of which by exogenous CDR2 requires its dynein-binding CC1 box motif. Exogenous CDR2 expression additionally promotes CC1 box-dependent clustering of ER sheets near centrosomes. CDR2 competes with the eEF1Bβ subunit of translation elongation factor 1 for binding to KTN1, and eEF1Bβ knockdown increases endogenous CDR2 levels on ER sheets, inducing their centrosome-proximal clustering. Our study describes a novel molecular pathway that implicates dynein in ER sheet organization and may be involved in the pathogenesis of paraneoplastic cerebellar degeneration.
Collapse
Affiliation(s)
- Vanessa Teixeira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Kashish Singh
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - José B. Gama
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Ana Xavier Carvalho
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Paulo Pereira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Carla M.C. Abreu
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Tiago J. Dantas
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | | | - Reto Gassmann
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| |
Collapse
|
17
|
Xie P. Modeling of Chemomechanical Coupling of Cytoplasmic Dynein Motors. J Phys Chem B 2024; 128:10063-10074. [PMID: 39382058 DOI: 10.1021/acs.jpcb.4c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cytoplasmic dynein homodimer is a motor protein that can step processively on microtubules (MTs) toward the minus end by hydrolyzing ATP molecules. Some dynein motors show a complicated stepping behavior with variable step sizes and having both hand-overhand and inchworm steps, while some mammalian dynein motors show simplistic stepping behavior with a constant step size and having only hand-overhand steps. Here, a model for the chemomechanical coupling of the dynein is presented, based on which an analytical theory is given on the dynamics of the motor. The theoretical results explain consistently and quantitatively the available experimental data on various aspects of the dynamics of dynein with complicated stepping behavior and the dynamics of dynein with simplistic stepping behavior. The very differences in the dynamic behavior between the two motors are due solely to different elastic coefficients of the linkage connecting the two dynein heads, with the dynein motors of the complicated and simplistic stepping behaviors having small and large coefficients, respectively. Moreover, it is analyzed that the ATPase rate of the dynein head with a docked linker being larger than that with an undocked linker is indispensable for the unidirectional motility of the motor, and the small free energy change for the linker docking in the strong MT-binding state facilitates the unidirectional motility.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Kendrick AA, Nguyen KHV, Ma W, Karasmanis EP, Amaro RE, Reck-Peterson SL, Leschziner AE. Cryo-EM visualizes multiple steps of dynein's activation pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615567. [PMID: 39416051 PMCID: PMC11482813 DOI: 10.1101/2024.09.28.615567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cytoplasmic dynein-1 (dynein) is an essential molecular motor controlled in part by autoinhibition. We recently identified a structure of partially autoinhibited dynein bound to Lis1, a key dynein regulator mutated in the neurodevelopmental disease lissencephaly. This structure provides an intermediate state in dynein's activation pathway; however, other structural information is needed to fully explain Lis1 function in dynein activation. Here, we used cryo-EM and samples incubated with ATP for different times to reveal novel conformations that we propose represent intermediate states in the dynein's activation pathway. We solved sixteen high-resolution structures, including seven distinct dynein and dynein-Lis1 structures from the same sample. Our data also support a model in which Lis1 relieves dynein autoinhibition by increasing its basal ATP hydrolysis rate and promoting conformations compatible with complex assembly and motility. Together, this analysis advances our understanding of dynein activation and the contribution of Lis1 to this process.
Collapse
Affiliation(s)
- Agnieszka A. Kendrick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Current address: Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kendrick H. V. Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, VT, USA
| | - Eva P. Karasmanis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Samara L. Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andres E. Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Gillies JP, Little SR, Hancock WO, DeSantis ME. Cargo adaptor identity controls the mechanism and kinetics of dynein activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617440. [PMID: 39416085 PMCID: PMC11482818 DOI: 10.1101/2024.10.09.617440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cytoplasmic dynein-1 (dynein), the primary retrograde motor in most eukaryotes, supports the movement of hundreds of distinct cargos, each with specific trafficking requirements. To achieve this functional diversity, dynein must bind to the multi-subunit complex dynactin and one of a family of cargo adaptors to be converted into an active, processive motor complex. Very little is known about the dynamic processes that promote the formation of this complex. To delineate the kinetic steps that lead to dynein activation, we developed a single-molecule fluorescence assay to visualize the real-time formation of dynein-dynactin-adaptor complexes in vitro. We found that dynactin and adaptors bind dynein independently rather than cooperatively. We also found that different dynein adaptors promote dynein-dynactin-adaptor assembly with dramatically different kinetics, which results in complex formation occurring via different assembly pathways. Despite differences in association rates or mechanism of assembly, all adaptors tested can generate a population of tripartite complexes that are very stable. Our work provides a model for how modulating the kinetics of dynein-dynactin-adaptor binding can be harnessed to promote differential dynein activation and reveals a new facet of the functional diversity of the dynein motor.
Collapse
Affiliation(s)
- John P. Gillies
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109
| | - Saffron R. Little
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109
| | - William O. Hancock
- Pennsylvania State University, Departments of Biomedical Engineering and Chemistry, University Park, PA 16802
| | - Morgan E. DeSantis
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109
| |
Collapse
|
20
|
Jongsma MLM, Bakker N, Voortman LM, Koning RI, Bos E, Akkermans JJLL, Janssen L, Neefjes J. Systems mapping of bidirectional endosomal transport through the crowded cell. Curr Biol 2024; 34:4476-4494.e11. [PMID: 39276769 PMCID: PMC11466077 DOI: 10.1016/j.cub.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Kinesin and dynein-dynactin motors move endosomes and other vesicles bidirectionally along microtubules, a process mainly studied under in vitro conditions. Here, we provide a physiological bidirectional transport model following color-coded, endogenously tagged transport-related proteins as they move through a crowded cellular environment. Late endosomes (LEs) surf bidirectionally on Protrudin-enriched endoplasmic reticulum (ER) membrane contact sites, while hopping and gliding along microtubules and bypassing cellular obstacles, such as mitochondria. During bidirectional transport, late endosomes do not switch between opposing Rab7 GTPase effectors, RILP and FYCO1, or their associated dynein and KIF5B motor proteins, respectively. In the endogenous setting, far fewer motors associate with endosomal membranes relative to effectors, implying coordination of transport with other aspects of endosome physiology through GTPase-regulated mechanisms. We find that directionality of transport is provided in part by various microtubule-associated proteins (MAPs), including MID1, EB1, and CEP169, which recruit Lis1-activated dynein motors to microtubule plus ends for transport of early and late endosomal populations. At these microtubule plus ends, activated dynein motors encounter the dynactin subunit p150glued and become competent for endosomal capture and minus-end movement in collaboration with membrane-associated Rab7-RILP. We show that endosomes surf over the ER through the crowded cell and move bidirectionally under the control of MAPs for motor activation and through motor replacement and capture by endosomal anchors.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Jimmy J L L Akkermans
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Lennert Janssen
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
21
|
Joshi N, Vaidya B, Sharma SS. Transient receptor potential channels as an emerging target for the treatment of Alzheimer's disease: Unravelling the potential of pharmacological interventions. Basic Clin Pharmacol Toxicol 2024; 135:375-400. [PMID: 39209323 DOI: 10.1111/bcpt.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a devastating disorder with a multifaceted aetiology characterized by dementia, which later progresses to cognitive impairment. Significant efforts have been made to develop pharmacological interventions that slow down the pathogenesis of AD. However, conventional drugs have failed to satisfactorily treat AD and are more focussed towards symptomatic management. Thus, there is a gap in the literature regarding novel targets and modulators targeting them for the effective treatment of AD. Recent studies have demonstrated that modulation of transient receptor potential (TRP) channels has the potential to halt AD pathogenesis at an early stage and rescue hippocampal neurons from death. Amongst several members, TRP channels like TRPA1, TRPC6, TRPM2 and TRPV2 have shown promising results in the attenuation of neurobehavioural cognitive deficits as well as signalling pathways governing such cognitive decline. Furthermore, as these channels govern the ionic balance in the cell, their beneficial effects have also been known to maintain the homeostasis of Ca2+, which is the major culprit eliciting the vicious cycle of excitotoxicity, mitochondrial dysfunction, ROS generation and neurodegeneration. Despite such tremendous potential of TRP channel modulators, their clinical investigation remains elusive. Therefore, in the present review, we have discussed such agents in the light of TRP channels as molecular targets for the amelioration of AD both at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Nishit Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| |
Collapse
|
22
|
Wisner SR, Chlebowski M, Mandal A, Mai D, Stein C, Petralia RS, Wang YX, Drerup CM. An initial HOPS-mediated fusion event is critical for autophagosome transport initiation from the axon terminal. Autophagy 2024; 20:2275-2296. [PMID: 38899385 PMCID: PMC11423661 DOI: 10.1080/15548627.2024.2366122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
In neurons, macroautophagy/autophagy is a frequent and critical process. In the axon, autophagy begins in the axon terminal, where most nascent autophagosomes form. After formation, autophagosomes must initiate transport to exit the axon terminal and move toward the cell body via retrograde transport. During retrograde transport these autophagosomes mature through repetitive fusion events. Complete lysosomal cargo degradation occurs largely in the cell body. The precipitating events to stimulate retrograde autophagosome transport have been debated but their importance is clear: disrupting neuronal autophagy or autophagosome transport is detrimental to neuronal health and function. We have identified the HOPS complex as essential for early autophagosome maturation and consequent initiation of retrograde transport from the axon terminal. In yeast and mammalian cells, HOPS controls fusion between autophagosomes and late endosomes with lysosomes. Using zebrafish strains with loss-of-function mutations in vps18 and vps41, core components of the HOPS complex, we found that disruption of HOPS eliminates autophagosome maturation and disrupts retrograde autophagosome transport initiation from the axon terminal. We confirmed this phenotype was due to loss of HOPS complex formation using an endogenous deletion of the HOPS binding domain in Vps18. Finally, using pharmacological inhibition of lysosomal proteases, we show that initiation of autophagosome retrograde transport requires autophagosome maturation. Together, our data demonstrate that HOPS-mediated fusion events are critical for retrograde autophagosome transport initiation through promoting autophagosome maturation. This reveals critical roles for the HOPS complex in neuronal autophagy which deepens our understanding of the cellular pathology of HOPS-complex linked neurodegenerative diseases.Abbreviations: CORVET: Class C core vacuole/endosome tethering; gRNA: guide RNA; HOPS: homotypic fusion and protein sorting; pLL: posterior lateral line; Vps18: VPS18 core subunit of CORVET and HOPS complexes; Vps41: VPS41 subunit of HOPS complex.
Collapse
Affiliation(s)
- Serena R. Wisner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Madison Chlebowski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amrita Mandal
- National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Don Mai
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald S. Petralia
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Catherine M. Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Anjur-Dietrich MI, Gomez Hererra V, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley MJ, Needleman DJ. Mechanics of spindle orientation in human mitotic cells is determined by pulling forces on astral microtubules and clustering of cortical dynein. Dev Cell 2024; 59:2429-2442.e4. [PMID: 38866013 DOI: 10.1016/j.devcel.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The forces that orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed at which it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ∼5 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
Collapse
Affiliation(s)
- Maya I Anjur-Dietrich
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Vicente Gomez Hererra
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Reza Farhadifar
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Haiyin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Merta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Shirin Bahmanyar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Michael J Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
24
|
Fu DD, Zhang LJ, Tang B, Du L, Li J, Ao J, Zhang ZL, Wang ZG, Liu SL, Pang DW. Quantitatively Dissecting Triple Roles of Dynactin in Dynein-Driven Transport of Influenza Virus by Quantum Dot-Based Single-Virus Tracking. ACS NANO 2024; 18:25893-25905. [PMID: 39214619 DOI: 10.1021/acsnano.4c10564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
After entering host cells by endocytosis, influenza A virus (IAV) is transported along microfilaments and then transported by dynein along microtubules (MTs) to the perinuclear region for genome release. Understanding the mechanisms of dynein-driven transport is significant for a comprehensive understanding of IAV infection. In this work, the roles of dynactin in dynein-driven transport of IAV were quantitatively dissected in situ using quantum dot-based single-virus tracking. It was revealed that dynactin was essential for dynein to transport IAV toward the nucleus. After virus entry, virus-carrying vesicles bound to dynein and dynactin before being delivered to MTs. The attachment of dynein to the vesicles was dependent on dynactin and its subunits, p150Glued and Arp1. Once viruses reached MTs, dynactin-assisted dynein initiates retrograde transport of IAV. Importantly, the retrograde transport of viruses could be initiated at both plus ends (32%) and other regions on MTs (68%). Subsequently, dynactin accompanied and assisted dynein to persistently transport the virus along MTs in the retrograde direction. This study revealed the dynactin-dependent dynein-driven transport process of IAV, enhancing our understanding of IAV infection and providing important insights into the cell's endocytic transport mechanism.
Collapse
Affiliation(s)
- Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Osega CE, Bustos FJ, Arriagada G. From Entry to the Nucleus: How Retroviruses Commute. Annu Rev Virol 2024; 11:89-104. [PMID: 38848600 DOI: 10.1146/annurev-virology-100422-023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.
Collapse
Affiliation(s)
- Camila E Osega
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| |
Collapse
|
26
|
Nagpal S, Swaminathan K, Beaudet D, Verdier M, Wang S, Berger CL, Berger F, Hendricks AG. Optogenetic control of kinesin-1, -2, -3 and dynein reveals their specific roles in vesicular transport. Cell Rep 2024; 43:114649. [PMID: 39159044 PMCID: PMC11416726 DOI: 10.1016/j.celrep.2024.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Each cargo in a cell employs a unique set of motor proteins for its transport. To dissect the roles of each type of motor, we developed optogenetic inhibitors of endogenous kinesin-1, -2, -3 and dynein motors and examined their effect on the transport of early endosomes, late endosomes, and lysosomes. While kinesin-1, -3, and dynein transport vesicles at all stages of endocytosis, kinesin-2 primarily drives late endosomes and lysosomes. Transient optogenetic inhibition of kinesin-1 or dynein causes both early and late endosomes to move more processively by relieving competition with opposing motors. Kinesin-2 and -3 support long-range transport, and optogenetic inhibition reduces the distances that their cargoes move. These results suggest that the directionality of transport is controlled through regulating kinesin-1 and dynein activity. On vesicles transported by several kinesin and dynein motors, modulating the activity of a single type of motor on the cargo is sufficient to direct motility.
Collapse
Affiliation(s)
- Sahil Nagpal
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | | | - Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Maud Verdier
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; Department of Biomedical Engineering and Health, Episen, Université Paris-Est Créteil, 94010 Créteil Cedex, France
| | - Samuel Wang
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405-0075, USA
| | - Florian Berger
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
27
|
Zang JL, Gibson D, Zheng AM, Shi W, Gillies JP, Stein C, Drerup CM, DeSantis ME. CCSer2 gates dynein activity at the cell periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598865. [PMID: 38915497 PMCID: PMC11195223 DOI: 10.1101/2024.06.13.598865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells and of cultured human cells by facilitating the trafficking of cargos that are acted on by cortically localized dynein. CCSer2 inhibits the interaction between dynein and its regulator Ndel1 exclusively at the cell periphery, resulting in localized dynein activation. Our findings suggest that the spatial specificity of dynein is achieved by the localization of proteins that disinhibit Ndel1. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via Ndel1 inhibition.
Collapse
Affiliation(s)
- Juliana L Zang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Daytan Gibson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann-Marie Zheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Wanjing Shi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
28
|
Meißner L, Niese L, Diez S. Helical motion and torque generation by microtubule motors. Curr Opin Cell Biol 2024; 88:102367. [PMID: 38735207 DOI: 10.1016/j.ceb.2024.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Microtubule motors play key roles in cellular functions, such as transport, mitosis and cell motility. Fueled by ATP hydrolysis, they convert chemical energy into mechanical work, which enables their movement on microtubules. While their motion along the long axis of microtubules has been studied extensively, some motors display an off-axis component, which results in helical motion around microtubules and the generation of torque in addition to linear forces. Understanding these nuanced movements expands our comprehension of motor protein dynamics and their impact on cellular processes.
Collapse
Affiliation(s)
- Laura Meißner
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307 Dresden, Germany
| | - Lukas Niese
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307 Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307 Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01062 Dresden, Germany.
| |
Collapse
|
29
|
Straube A, Tanner K. Machines, mechanics and mechanisms of cells and tissues. Curr Opin Cell Biol 2024; 88:102346. [PMID: 38522182 DOI: 10.1016/j.ceb.2024.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Affiliation(s)
- Anne Straube
- Centre for Mechanochemical Cell Biology & Warwick Bio-Medical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
30
|
Ren S, Kong Y, Liu R, Li Q, Shen X, Kong QX. Lissencephaly caused by a de novo mutation in tubulin TUBA1A: a case report and literature review. Front Pediatr 2024; 12:1367305. [PMID: 38813542 PMCID: PMC11135126 DOI: 10.3389/fped.2024.1367305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Tubulin plays an essential role in cortical development, and TUBA1A encodes a major neuronal α-tubulin. Neonatal mutations in TUBA1A are associated with severe brain malformations, and approximately 70% of patients with reported cases of TUBA1A mutations exhibit lissencephaly. We report the case of a 1-year-old boy with the TUBA1A nascent mutation c.1204C >T, p.Arg402Cys, resulting in lissencephaly, developmental delay, and seizures, with a brain MRI showing normal cortical formation in the bilateral frontal lobes, smooth temporo-parieto-occipital gyri and shallow sulcus. This case has not been described in any previous report; thus, the present case provides new insights into the broad disease phenotype and diagnosis associated with TUBA1A mutations. In addition, we have summarized the gene mutation sites, neuroradiological findings, and clinical details of cases previously described in the literature and discussed the differences that exist between individual cases of TUBA1A mutations through a longitudinal comparative analysis of similar cases. The complexity of the disease is revealed, and the importance of confirming the genetic diagnosis from the beginning of the disease is emphasized, which can effectively shorten the diagnostic delay and help clinicians provide genetic and therapeutic counseling.
Collapse
Affiliation(s)
- Sijing Ren
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Neurosciences, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yu Kong
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ruihan Liu
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qiubo Li
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xuehua Shen
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qing-Xia Kong
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Neurosciences, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
31
|
Zhang J, Qiu R, Xie S, Rasmussen M, Xiang X. VezA/vezatin facilitates proper assembly of the dynactin complex in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590248. [PMID: 38659795 PMCID: PMC11042379 DOI: 10.1101/2024.04.19.590248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, cellular factors involved in dynactin assembly remain unexplored. Here we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components including an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with dynactin either directly or indirectly via the Arp1 mini-filament and its pointed-end sub-complex. Loss of VezA causes a defect in dynactin integrity, most likely by affecting the connection between the Arp1 mini-filament and its pointed-end sub-complex. Using various dynactin mutants, we further revealed that assembly of the dynactin complex must be highly coordinated. Together, these results shed important new light on dynactin assembly in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Sean Xie
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
- Montgomery Blair High School, Silver Spring, Maryland, USA
| | - Megan Rasmussen
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| |
Collapse
|
32
|
Mukhopadhyay AG, Toropova K, Daly L, Wells JN, Vuolo L, Mladenov M, Seda M, Jenkins D, Stephens DJ, Roberts AJ. Structure and tethering mechanism of dynein-2 intermediate chains in intraflagellar transport. EMBO J 2024; 43:1257-1272. [PMID: 38454149 PMCID: PMC10987677 DOI: 10.1038/s44318-024-00060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Dynein-2 is a large multiprotein complex that powers retrograde intraflagellar transport (IFT) of cargoes within cilia/flagella, but the molecular mechanism underlying this function is still emerging. Distinctively, dynein-2 contains two identical force-generating heavy chains that interact with two different intermediate chains (WDR34 and WDR60). Here, we dissect regulation of dynein-2 function by WDR34 and WDR60 using an integrative approach including cryo-electron microscopy and CRISPR/Cas9-enabled cell biology. A 3.9 Å resolution structure shows how WDR34 and WDR60 use surprisingly different interactions to engage equivalent sites of the two heavy chains. We show that cilia can assemble in the absence of either WDR34 or WDR60 individually, but not both subunits. Dynein-2-dependent distribution of cargoes depends more strongly on WDR60, because the unique N-terminal extension of WDR60 facilitates dynein-2 targeting to cilia. Strikingly, this N-terminal extension can be transplanted onto WDR34 and retain function, suggesting it acts as a flexible tether to the IFT "trains" that assemble at the ciliary base. We discuss how use of unstructured tethers represents an emerging theme in IFT train interactions.
Collapse
Affiliation(s)
- Aakash G Mukhopadhyay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Katerina Toropova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Lydia Daly
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- Randall Centre of Cell & Molecular Biophysics, King's College London, London, UK
| | - Jennifer N Wells
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- MRC London Institute of Medical Sciences (LMS), London, UK
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Miroslav Mladenov
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Marian Seda
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dagan Jenkins
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Anthony J Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK.
| |
Collapse
|
33
|
Bu W, Di J, Zhao J, Liu R, Wu Y, Ran J, Li T. Dynein Light Intermediate Chains Exhibit Different Arginine Methylation Patterns. J Clin Lab Anal 2024; 38:e25030. [PMID: 38525916 PMCID: PMC11033342 DOI: 10.1002/jcla.25030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.
Collapse
Affiliation(s)
- Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Jie Di
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Junkui Zhao
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Ruming Liu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Yue Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Te Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
34
|
Kusakci E, Htet ZM, Zhao Y, Gillies JP, Reck-Peterson SL, Yildiz A. Lis1 slows force-induced detachment of cytoplasmic dynein from microtubules. Nat Chem Biol 2024; 20:521-529. [PMID: 37919547 PMCID: PMC11164236 DOI: 10.1038/s41589-023-01464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Lis1 is a key cofactor for the assembly of active cytoplasmic dynein complexes that transport cargo along microtubules. Lis1 binds to the AAA+ ring and stalk of dynein and slows dynein motility, but the underlying mechanism has remained unclear. Using single-molecule imaging and optical trapping assays, we investigated how Lis1 binding affects the motility and force generation of yeast dynein in vitro. We showed that Lis1 slows motility by binding to the AAA+ ring of dynein, not by serving as a roadblock or tethering dynein to microtubules. Lis1 binding also does not affect force generation, but it induces prolonged stalls and reduces the asymmetry in the force-induced detachment of dynein from microtubules. The mutagenesis of the Lis1-binding sites on the dynein stalk partially recovers this asymmetry but does not restore dynein velocity. These results suggest that Lis1-stalk interaction slows the detachment of dynein from microtubules by interfering with the stalk sliding mechanism.
Collapse
Affiliation(s)
- Emre Kusakci
- Graduate Group in Biophysics, University of California Berkeley, Berkeley, CA, USA
| | - Zaw Min Htet
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yuanchang Zhao
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Physics Department, University of California Berkeley, Berkeley, CA, USA
| | - John P Gillies
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ahmet Yildiz
- Graduate Group in Biophysics, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Physics Department, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
35
|
Singh K, Lau CK, Manigrasso G, Gama JB, Gassmann R, Carter AP. Molecular mechanism of dynein-dynactin complex assembly by LIS1. Science 2024; 383:eadk8544. [PMID: 38547289 PMCID: PMC7615804 DOI: 10.1126/science.adk8544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024]
Abstract
Cytoplasmic dynein is a microtubule motor vital for cellular organization and division. It functions as a ~4-megadalton complex containing its cofactor dynactin and a cargo-specific coiled-coil adaptor. However, how dynein and dynactin recognize diverse adaptors, how they interact with each other during complex formation, and the role of critical regulators such as lissencephaly-1 (LIS1) protein (LIS1) remain unclear. In this study, we determined the cryo-electron microscopy structure of dynein-dynactin on microtubules with LIS1 and the lysosomal adaptor JIP3. This structure reveals the molecular basis of interactions occurring during dynein activation. We show how JIP3 activates dynein despite its atypical architecture. Unexpectedly, LIS1 binds dynactin's p150 subunit, tethering it along the length of dynein. Our data suggest that LIS1 and p150 constrain dynein-dynactin to ensure efficient complex formation.
Collapse
Affiliation(s)
- Kashish Singh
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Giulia Manigrasso
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - José B. Gama
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrew P. Carter
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| |
Collapse
|
36
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. FASEB J 2024; 38:e23518. [PMID: 38441532 PMCID: PMC10917122 DOI: 10.1096/fj.202301641rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.
Collapse
Affiliation(s)
- Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Meredith G. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Evan R. Boitet
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Seth T. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Anushree Gade
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Bryan W. Jones
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| |
Collapse
|
37
|
Tirumala NA, Redpath GMI, Skerhut SV, Dolai P, Kapoor-Kaushik N, Ariotti N, Vijay Kumar K, Ananthanarayanan V. Single-molecule imaging of stochastic interactions that drive dynein activation and cargo movement in cells. J Cell Biol 2024; 223:e202210026. [PMID: 38240798 PMCID: PMC10798859 DOI: 10.1083/jcb.202210026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/10/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Cytoplasmic dynein 1 (dynein) is the primary minus end-directed motor protein in most eukaryotic cells. Dynein remains in an inactive conformation until the formation of a tripartite complex comprising dynein, its regulator dynactin, and a cargo adaptor. How this process of dynein activation occurs is unclear since it entails the formation of a three-protein complex inside the crowded environs of a cell. Here, we employed live-cell, single-molecule imaging to visualize and track fluorescently tagged dynein. First, we observed that only ∼30% of dynein molecules that bound to the microtubule (MT) engaged in minus end-directed movement, and that too for a short duration of ∼0.6 s. Next, using high-resolution imaging in live and fixed cells and using correlative light and electron microscopy, we discovered that dynactin and endosomal cargo remained in proximity to each other and to MTs. We then employed two-color imaging to visualize cargo movement effected by single motor binding. Finally, we performed long-term imaging to show that short movements are sufficient to drive cargo to the perinuclear region of the cell. Taken together, we discovered a search mechanism that is facilitated by dynein's frequent MT binding-unbinding kinetics: (i) in a futile event when dynein does not encounter cargo anchored in proximity to the MT, dynein dissociates and diffuses into the cytoplasm, (ii) when dynein encounters cargo and dynactin upon MT binding, it moves cargo in a short run. Several of these short runs are undertaken in succession for long-range directed movement. In conclusion, we demonstrate that dynein activation and cargo capture are coupled in a step that relies on the reduction of dimensionality to enable minus end-directed transport in cellulo and that complex cargo behavior emerges from stochastic motor-cargo interactions.
Collapse
Affiliation(s)
| | - Gregory Michael Ian Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Sarah Viktoria Skerhut
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Pritha Dolai
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | | | - Nicholas Ariotti
- Electron Microscopy Unit, University of New South Wales, Sydney, Australia
| | - K. Vijay Kumar
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
38
|
Heber S, McClintock MA, Simon B, Mehtab E, Lapouge K, Hennig J, Bullock SL, Ephrussi A. Tropomyosin 1-I/C coordinates kinesin-1 and dynein motors during oskar mRNA transport. Nat Struct Mol Biol 2024; 31:476-488. [PMID: 38297086 PMCID: PMC10948360 DOI: 10.1038/s41594-024-01212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.
Collapse
Affiliation(s)
- Simone Heber
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Eve Mehtab
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
39
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
40
|
Chiba K, Niwa S. Autoinhibition and activation of kinesin-1 and their involvement in amyotrophic lateral sclerosis. Curr Opin Cell Biol 2024; 86:102301. [PMID: 38096601 DOI: 10.1016/j.ceb.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Kinesin-1, composed of kinesin heavy chain and kinesin light chain, is a founding member of kinesin superfamily and transports various neuronal cargos. Kinesin-1 is one of the most abundant ATPases in the cell and thus need to be tightly regulated to avoid wastage of energy. It has been well established that kinesin-1 is regulated by the autoinhibition mechanism. This review focuses on the recent researches that have contributed to the understanding of mechanisms for the autoinhibition of kinesin-1 and its unlocking. Recent electron microscopic studies have shown an unanticipated structure of autoinhibited kinesin-1. Biochemical reconstitution have revealed detailed molecular mechanisms how the autoinhibition is unlocked. Importantly, misregulation of kinesin-1 is emerging as one of the major causes of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan; Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
41
|
Sakato-Antoku M, Patel-King RS, Balsbaugh JL, King SM. Methylation of ciliary dynein motors involves the essential cytosolic assembly factor DNAAF3/PF22. Proc Natl Acad Sci U S A 2024; 121:e2318522121. [PMID: 38261620 PMCID: PMC10835030 DOI: 10.1073/pnas.2318522121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Axonemal dynein motors drive ciliary motility and can consist of up to twenty distinct components with a combined mass of ~2 MDa. In mammals, failure of dyneins to assemble within the axonemal superstructure leads to primary ciliary dyskinesia. Syndromic phenotypes include infertility, rhinitis, severe bronchial conditions, and situs inversus. Nineteen specific cytosolic factors (Dynein Axonemal Assembly Factors; DNAAFs) are necessary for axonemal dynein assembly, although the detailed mechanisms involved remain very unclear. Here, we identify the essential assembly factor DNAAF3 as a structural ortholog of S-adenosylmethionine-dependent methyltransferases. We demonstrate that dynein heavy chains, especially those forming the ciliary outer arms, are methylated on key residues within various nucleotide-binding sites and on microtubule-binding domain helices directly involved in the transition to low binding affinity. These variable modifications, which are generally missing in a Chlamydomonas null mutant for the DNAAF3 ortholog PF22 (DAB1), likely impact on motor mechanochemistry fine-tuning the activities of individual dynein complexes.
Collapse
Affiliation(s)
- Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT06030-3305
| | - Ramila S. Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT06030-3305
| | - Jeremy L. Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT06269
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT06030-3305
| |
Collapse
|
42
|
Mishima T, Yuasa-Kawada J, Fujioka S, Tsuboi Y. Perry Disease: Bench to Bedside Circulation and a Team Approach. Biomedicines 2024; 12:113. [PMID: 38255218 PMCID: PMC10813069 DOI: 10.3390/biomedicines12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
With technological applications, especially in genetic testing, new diseases have been discovered and new disease concepts have been proposed in recent years; however, the pathogenesis and treatment of these rare diseases are not as well established as those of common diseases. To demonstrate the importance of rare disease research, in this paper we focus on our research topic, Perry disease (Perry syndrome). Perry disease is a rare autosomal dominant neurodegenerative disorder clinically characterized by parkinsonism, depression/apathy, weight loss, and respiratory symptoms including central hypoventilation and central sleep apnea. The pathological classification of Perry disease falls under TAR DNA-binding protein 43 (TDP-43) proteinopathies. Patients with Perry disease exhibit DCTN1 mutations, which is the causative gene for the disease; they also show relatively uniform pathological and clinical features. This review summarizes recent findings regarding Perry disease from both basic and clinical perspectives. In addition, we describe technological innovations and outline future challenges and treatment prospects. We discuss the expansion of research from rare diseases to common diseases and the importance of collaboration between clinicians and researchers. Here, we highlight the importance of researching rare diseases as it contributes to a deeper understanding of more common diseases, thereby opening up new avenues for scientific exploration.
Collapse
Affiliation(s)
| | | | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka 814-0180, Japan; (T.M.); (J.Y.-K.); (S.F.)
| |
Collapse
|
43
|
Liu X, Gennerich A. Insect Cell-Based Expression of Cytoskeletal Motor Proteins for Single-Molecule Studies. Methods Mol Biol 2024; 2694:69-90. [PMID: 37824000 PMCID: PMC10880877 DOI: 10.1007/978-1-0716-3377-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Cytoskeletal motor proteins are essential molecular machines that hydrolyze ATP to generate force and motion along cytoskeletal filaments. Members of the dynein and kinesin superfamilies play critical roles in transporting biological payloads (such as proteins, organelles, and vesicles) along microtubule pathways, cause the beating of flagella and cilia, and act within the mitotic and meiotic spindles to segregate replicated chromosomes to progeny cells. Understanding the underlying mechanisms and behaviors of motor proteins is critical to provide better strategies for the treatment of motor protein-related diseases. Here, we provide detailed protocols for the recombinant expression of the Kinesin-1 motor KIF5C using a baculovirus/insect cell system and provide updated protocols for performing single-molecule studies using total internal reflection fluorescence microscopy and optical tweezers to study the motility and force generation of the purified motor.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
44
|
Badieyan S, Lichon D, Andreas MP, Gillies JP, Peng W, Shi J, DeSantis ME, Aiken CR, Böcking T, Giessen TW, Campbell EM, Cianfrocco MA. HIV-1 binds dynein directly to hijack microtubule transport machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555335. [PMID: 37693451 PMCID: PMC10491134 DOI: 10.1101/2023.08.29.555335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.
Collapse
Affiliation(s)
| | - Drew Lichon
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael P Andreas
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Wang Peng
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Christopher R Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Tobias W Giessen
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Madan V, Albacete‐Albacete L, Jin L, Scaturro P, Watson JL, Muschalik N, Begum F, Boulanger J, Bauer K, Kiebler MA, Derivery E, Bullock SL. HEATR5B associates with dynein-dynactin and promotes motility of AP1-bound endosomal membranes. EMBO J 2023; 42:e114473. [PMID: 37872872 PMCID: PMC10690479 DOI: 10.15252/embj.2023114473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
The microtubule motor dynein mediates polarised trafficking of a wide variety of organelles, vesicles and macromolecules. These functions are dependent on the dynactin complex, which helps recruit cargoes to dynein's tail and activates motor movement. How the dynein-dynactin complex orchestrates trafficking of diverse cargoes is unclear. Here, we identify HEATR5B, an interactor of the adaptor protein-1 (AP1) clathrin adaptor complex, as a novel player in dynein-dynactin function. HEATR5B was recovered in a biochemical screen for proteins whose association with the dynein tail is augmented by dynactin. We show that HEATR5B binds directly to the dynein tail and dynactin and stimulates motility of AP1-associated endosomal membranes in human cells. We also demonstrate that the Drosophila HEATR5B homologue is an essential gene that selectively promotes dynein-based transport of AP1-bound membranes to the Golgi apparatus. As HEATR5B lacks the coiled-coil architecture typical of dynein adaptors, our data point to a non-canonical process orchestrating motor function on a specific cargo. We additionally show that HEATR5B promotes association of AP1 with endosomal membranes independently of dynein. Thus, HEATR5B co-ordinates multiple events in AP1-based trafficking.
Collapse
Affiliation(s)
- Vanesa Madan
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
AbcamCambridgeUK
| | - Lucas Albacete‐Albacete
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Li Jin
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | | | - Joseph L Watson
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Nadine Muschalik
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Farida Begum
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Jérôme Boulanger
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Karl Bauer
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Emmanuel Derivery
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Simon L Bullock
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
46
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568878. [PMID: 38076848 PMCID: PMC10705250 DOI: 10.1101/2023.11.28.568878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
NUDC ( nu clear d istribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (r NudC -/- ). Loss of NUDC in rods led to complete photoreceptor cell death at six weeks of age. By 3 weeks of age, r NudC -/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of r NudC -/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. Absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor. Significance Statement Nuclear distribution protein C (NUDC) has been studied extensively as an essential protein for mitotic cell division. In this study, we discovered its expression and role in the postmitotic rod photoreceptor cell. In the absence of NUDC in mouse rods, we detected functional loss, protein mislocalization, and rapid retinal degeneration consistent with dynein inactivation. In the early phase of retinal degeneration, we observed ultrastructural defects and an upregulation of inflammatory markers suggesting additional, dynein-independent functions of NUDC.
Collapse
|
47
|
Gonçalves-Santos F, De-Castro ARG, Rodrigues DRM, De-Castro MJG, Gassmann R, Abreu CMC, Dantas TJ. Hot-wiring dynein-2 establishes roles for IFT-A in retrograde train assembly and motility. Cell Rep 2023; 42:113337. [PMID: 37883232 DOI: 10.1016/j.celrep.2023.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Intraflagellar transport (IFT) trains, built around IFT-A and IFT-B complexes, are carried by opposing motors to import and export ciliary cargo. While transported by kinesin-2 on anterograde IFT trains, the dynein-2 motor adopts an autoinhibitory conformation until it needs to be activated at the ciliary tip to power retrograde IFT. Growing evidence has linked the IFT-A complex to retrograde IFT; however, its roles in this process remain unknown. Here, we use CRISPR-Cas9-mediated genome editing to disable the dynein-2 autoinhibition mechanism in Caenorhabditis elegans and assess its impact on IFT with high-resolution live imaging and photobleaching analyses. Remarkably, this dynein-2 "hot-wiring" approach reignites retrograde motility inside IFT-A-deficient cilia without triggering tug-of-war events. In addition to providing functional evidence that multiple mechanisms maintain dynein-2 inhibited during anterograde IFT, our data establish key roles for IFT-A in mediating motor-train coupling during IFT turnaround, promoting retrograde IFT initiation, and modulating dynein-2 retrograde motility.
Collapse
Affiliation(s)
- Francisco Gonçalves-Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana R G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diogo R M Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria J G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carla M C Abreu
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Tiago J Dantas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
48
|
Zhao Y, Oten S, Yildiz A. Nde1 promotes Lis1-mediated activation of dynein. Nat Commun 2023; 14:7221. [PMID: 37940657 PMCID: PMC10632352 DOI: 10.1038/s41467-023-42907-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Cytoplasmic dynein drives the motility and force generation functions towards the microtubule minus end. The assembly of dynein with dynactin and a cargo adaptor in an active transport complex is facilitated by Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 relieves dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigate how human Nde1 and Lis1 regulate the assembly and subsequent motility of mammalian dynein using in vitro reconstitution and single molecule imaging. We find that Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin adaptor complexes. Nde1 can compete with the α2 subunit of platelet activator factor acetylhydrolase 1B (PAF-AH1B) for the binding of Lis1, which suggests that Nde1 may disrupt PAF-AH1B recruitment of Lis1 as a noncatalytic subunit, thus promoting Lis1 binding to dynein. Before the initiation of motility, the association of dynactin with dynein triggers the dissociation of Nde1 from dynein by competing against Nde1 binding to the dynein intermediate chain. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, 94709, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA
| | - Sena Oten
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA, 94709, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA, 94709, USA.
| |
Collapse
|
49
|
Okada K, Iyer BR, Lammers LG, Gutierrez PA, Li W, Markus SM, McKenney RJ. Conserved roles for the dynein intermediate chain and Ndel1 in assembly and activation of dynein. Nat Commun 2023; 14:5833. [PMID: 37730751 PMCID: PMC10511499 DOI: 10.1038/s41467-023-41466-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Processive transport by the microtubule motor cytoplasmic dynein requires the regulated assembly of a dynein-dynactin-adapter complex. Interactions between dynein and dynactin were initially ascribed to the dynein intermediate chain N-terminus and the dynactin subunit p150Glued. However, recent cryo-EM structures have not resolved this interaction, questioning its importance. The intermediate chain also interacts with Nde1/Ndel1, which compete with p150Glued for binding. We reveal that the intermediate chain N-terminus is a critical evolutionarily conserved hub that interacts with dynactin and Ndel1, the latter of which recruits LIS1 to drive complex assembly. In additon to revealing that the intermediate chain N-terminus is likely bound to p150Glued in active transport complexes, our data support a model whereby Ndel1-LIS1 must dissociate prior to LIS1 being handed off to dynein in temporally discrete steps. Our work reveals previously unknown steps in the dynein activation pathway, and provide insight into the integrated activities of LIS1/Ndel1 and dynactin/cargo-adapters.
Collapse
Affiliation(s)
- Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Bharat R Iyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lindsay G Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pedro A Gutierrez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
50
|
Zhao Y, Oten S, Yildiz A. Nde1 Promotes Lis1-Mediated Activation of Dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542537. [PMID: 37292665 PMCID: PMC10246013 DOI: 10.1101/2023.05.26.542537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytoplasmic dynein is the primary motor that drives the motility and force generation functions towards the microtubule minus end. The activation of dynein motility requires its assembly with dynactin and a cargo adaptor. This process is facilitated by two dynein-associated factors, Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 rescues dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigated how human Nde1 and Lis1 regulate the assembly and subsequent motility of the mammalian dynein/dynactin complex using in vitro reconstitution and single molecule imaging. We found that Nde1 promotes the assembly of active dynein complexes in two distinct ways. Nde1 competes with the α2 subunit of platelet activator factor acetylhydrolase (PAF-AH) 1B, which recruits Lis1 as a noncatalytic subunit and prevents its binding to dynein. Second, Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin-adaptor complexes. However, excess Nde1 inhibits dynein, presumably by competing against dynactin to bind the dynein intermediate chain. The association of dynactin with dynein triggers Nde1 dissociation before the initiation of dynein motility. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA, 94709
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
| | - Sena Oten
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA, USA, 94709
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
- Biophysics Graduate Group, University of California, Berkeley, CA, USA, 94709
| |
Collapse
|