1
|
Zhu Z, Cao H, Yan H, Liu H, Hong Z, Sun A, Liu T, Mao F. Prognostic iron-metabolism signature robustly stratifies single-cell characteristics of hepatocellular carcinoma. Comput Struct Biotechnol J 2024; 23:929-941. [PMID: 38375529 PMCID: PMC10875160 DOI: 10.1016/j.csbj.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Cancer immunotherapy has shown to be a promising method in treating hepatocellular carcinoma (HCC), but suboptimal responses in patients are attributed to cellular and molecular heterogeneity. Iron metabolism-related genes (IRGs) are important in maintaining immune system homeostasis and have the potential to help develop new strategies for HCC treatment. Herein, we constructed and validated the iron-metabolism gene prognostic index (IPX) using univariate Cox proportional hazards regression and LASSO Cox regression analysis, successfully categorizing HCC patients into two groups with distinct survival risks. Then, we performed single-sample gene set enrichment analysis, weighted correlation network analysis, gene ontology enrichment analysis, cellular lineage analysis, and SCENIC analysis to reveal the key determinants underlying the ability of this model based on bulk and single-cell transcriptomic data. We identified several driver transcription factors specifically activated in specific malignant cell sub-populations to contribute to the adverse survival outcomes in the IPX-high subgroup. Within the tumor microenvironment (TME), T cells displayed significant diversity in their cellular characteristics and experienced changes in their developmental paths within distinct clusters identified by IPX. Interestingly, the proportion of Treg cells was increased in the high-risk group compared with the low-risk group. These results suggest that iron-metabolism could be involved in reshaping the TME, thereby disrupting the cell cycle of immune cells. This study utilized IRGs to construct a novel and reliable model, which can be used to assess the prognosis of patients with HCC and further clarify the molecular mechanisms of IRGs in HCC at single-cell resolution.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Huang Cao
- School of Medicine, Xiamen University, Xiamen, Fujian 361100, China
| | - Hongyu Yan
- School of Medicine, Xiamen University, Xiamen, Fujian 361100, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Hanzhi Liu
- The Third Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Zaifa Hong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361103, China
| | - Anran Sun
- Oncology Research Center, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, Guangdong 511300, China
- Research Center for Translational Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Tong Liu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
2
|
Sun H, Miao Y, Yang X, Guo L, Li Q, Wang J, Long J, Zhang Z, Shi J, Li J, Cao Y, Yu C, Mai J, Rong Z, Feng J, Wang S, Yang J, Wang S. Rapid identification of A29L antibodies based on mRNA immunization and high-throughput single B cell sequencing to detect Monkeypox virus. Emerg Microbes Infect 2024; 13:2332665. [PMID: 38517731 PMCID: PMC10984235 DOI: 10.1080/22221751.2024.2332665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
With the large number of atypical cases in the mpox outbreak, which was classified as a global health emergency by the World Health Organization (WHO) on 23 July 2022, rapid diagnosis of mpox and diseases with similar symptoms to mpox such as chickenpox and respiratory infectious diseases in the early stages of viral infection is key to controlling the spread of the outbreak. In this study, antibodies against the monkeypox virus A29L protein were efficiently and rapidly identified by combining rapid mRNA immunization with high-throughput sequencing of individual B cells. We obtained eight antibodies with a high affinity for A29L validated by ELISA, which were was used as the basis for developing an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobeads (SiTQD-ICA). The SiTQD-ICA biosensor utilizing M53 and M78 antibodies showed high sensitivity and stability of detection: A29L was detected within 20 min, with a minimum detection limit of 5 pg/mL. A specificity test showed that the method was non-cross-reactive with chickenpox or common respiratory pathogens and can be used for early and rapid diagnosis of monkeypox virus infection by antigen detection. This antibody identification method can also be used for rapid acquisition of monoclonal antibodies in early outbreaks of other infectious diseases for various studies.
Collapse
Affiliation(s)
- Huisheng Sun
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Yiqi Miao
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Xingsheng Yang
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Liang Guo
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Qingyu Li
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jing Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Jinrong Long
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Zhen Zhang
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jingqi Shi
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jian Li
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Yiming Cao
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Changxiao Yu
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jierui Mai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Zhen Rong
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jiannan Feng
- Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Shumei Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Jing Yang
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Shengqi Wang
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| |
Collapse
|
3
|
Liu WN, Harden SL, Tan SLW, Tan RJR, Fong SY, Tan SY, Liu M, Karnik I, Shuen TWH, Toh HC, Fan Y, Lim SG, Chan JKY, Chen Q. Single-cell RNA sequencing reveals anti-tumor potency of CD56 + NK cells and CD8 + T cells in humanized mice via PD-1 and TIGIT co-targeting. Mol Ther 2024; 32:3895-3914. [PMID: 39318093 DOI: 10.1016/j.ymthe.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
In solid tumors, the exhaustion of natural killer (NK) cells and cytotoxic T cells in the immunosuppressive tumor microenvironment poses challenges for effective tumor control. Conventional humanized mouse models of hepatocellular carcinoma patient-derived xenografts (HCC-PDX) encounter limitations in NK cell infiltration, hindering studies on NK cell immunobiology. Here, we introduce an improved humanized mouse model with restored NK cell reconstitution and infiltration in HCC-PDX, coupled with single-cell RNA sequencing (scRNA-seq) to identify potential anti-HCC treatments. A single administration of adeno-associated virus carrying human interleukin-15 reinstated persistent NK cell reconstitution and infiltration in HCC-PDX in humanized mice. scRNA-seq revealed NK cell and T cell subpopulations with heightened PDCD1 and TIGIT levels. Notably, combination therapy with anti-PD-1 and anti-TIGIT antibodies alleviated HCC burden in humanized mice, demonstrating NK cell-dependent efficacy. Bulk-RNA sequencing analysis also revealed significant alterations in the tumor transcriptome that may contribute to further resistance after combination therapy, warranting further investigations. As an emerging strategy, ongoing clinical trials with anti-PD-1 and anti-TIGIT antibodies provide limited data. The improved humanized mouse HCC-PDX model not only sheds light on the pivotal role of NK cells but also serves as a robust platform for evaluating safety and anti-tumor efficacy of combination therapies and other potential regimens, complementing clinical insights.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Humans
- Mice
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- CD56 Antigen/metabolism
- CD56 Antigen/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Interleukin-15/metabolism
- Interleukin-15/genetics
- Xenograft Model Antitumor Assays
- Single-Cell Analysis/methods
- Tumor Microenvironment/immunology
- Disease Models, Animal
- Cell Line, Tumor
- Sequence Analysis, RNA/methods
- Dependovirus/genetics
Collapse
Affiliation(s)
- Wai Nam Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Sarah L Harden
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Shawn Lu Wen Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Rachel Jun Rou Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Isha Karnik
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Timothy Wai Ho Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Republic of Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Republic of Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Seng Gee Lim
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore 119228, Republic of Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Republic of Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Republic of Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Republic of Singapore; Singapore Immunology Network (SIgN), A∗STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore.
| |
Collapse
|
4
|
Wang S, Meng L, Xu N, Chen H, Xiao Z, Lu D, Fan X, Xia L, Chen J, Zheng S, Wei Q, Wei X, Xu X. Hepatocellular carcinoma-specific epigenetic checkpoints bidirectionally regulate the antitumor immunity of CD4 + T cells. Cell Mol Immunol 2024; 21:1296-1308. [PMID: 39300319 PMCID: PMC11528031 DOI: 10.1038/s41423-024-01215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4+ T cells, particularly conventional CD4+ T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4+ T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8+ T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Lijun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaofeng Xiao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xiaohui Fan
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, Zhejiang, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, 310000, Hangzhou, China.
| |
Collapse
|
5
|
Maggi E, Munari E, Landolina N, Mariotti FR, Azzarone B, Moretta L. T cell landscape in the microenvironment of human solid tumors. Immunol Lett 2024; 270:106942. [PMID: 39486594 DOI: 10.1016/j.imlet.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
T cells are the main effectors involved in anti-tumor immunity, mediating most of the adaptive response towards cancer. After priming in lymph nodes, tumor antigens-specific naïve T lymphocytes proliferate and differentiate into effector CD4+ and CD8+ T cells that migrate from periphery into tumor sites aiming to eliminate cancer cells. Then while most effector T cells die, a small fraction persists and recirculates as long-lived memory T cells which generate enhanced immune responses when re-encountering the same antigen. A number of T (and non-T) cell subsets, stably resides in non-lymphoid peripheral tissues and may provide rapid immune response independently of T cells recruited from blood, against the reemergence of cancer cells. When tumor grows, however, tumor cells have evaded immune surveillance of effector cells (NK and CTL cells) which are exhausted, thus favoring the local expansion of T (and non-T) regulatory cells. In this review, the current knowledge of features of T cells present in the tumor microenvironment (TME) of solid adult and pediatric tumors, the mechanisms upregulating immune-checkpoint molecules and transcriptional and epigenetic landscapes leading to dysfunction and exhaustion of T effector cells are reviewed. The interaction of T cells with cancer- or TME non-neoplastic cells and their secreted molecules shape the T cell profile compromising the intrinsic plasticity of T cells and, therefore, favoring immune evasion. In this phase regulatory T cells contribute to maintain a high immunosuppressive TME thus facilitating tumor cell proliferation and metastatic spread. Despite the advancements of cancer immunotherapy, many tumors are unresponsive to immune checkpoint inhibitors, or therapeutical vaccines or CAR T cell-based adoptive therapy: some novel strategies to improve these T cell-based treatments are lastly proposed.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | | | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy.
| |
Collapse
|
6
|
Yang L, Kim J, Chen L, Wei W, Wang J. Detection of >400 Cluster of Differentiation Biomarkers and Pathway Proteins in Single Immune Cells by Cyclic Multiplex In Situ Tagging for Single-Cell Proteomic Studies. Anal Chem 2024; 96:17387-17395. [PMID: 39422499 DOI: 10.1021/acs.analchem.4c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The identification and characterization of immune cell subpopulations are critical to reveal cell development throughout life and immune responses to environmental factors. Next-generation sequencing technologies have dramatically advanced single-cell genomics and transcriptomics for immune cell classification. However, gene expression is often not correlated with protein expression, and immunotyping is mostly accepted in protein format. Current single-cell proteomic technologies are either limited in multiplex capacity or not sensitive enough to detect the critical functional proteins. Herein, we present a single-cell cyclic multiplex in situ tagging (CycMIST) technology to simultaneously measure >400 proteins, a scale of >10 times than similar technologies. Such an ultrahigh multiplexity is achieved by reiterative staining of the single cells coupled with a MIST array for detection. This technology has been thoroughly validated through comparison with flow cytometry and fluorescence immunostaining techniques. Both peripheral blood mononuclear cells (PBMCs) and T cells are analyzed by the CycMIST technology, and almost the entire spectrum of cluster of differentiation (CD) surface markers has been measured. The landscape of fluctuation of CD protein expression in single cells has been uncovered by our technology. Further study found T cell activation signatures and protein-protein networks. This study represents the highest multiplexity of single immune cell marker measurement targeting functional proteins. With additional information from intracellular proteins of the same single cells, our technology can potentially facilitate mechanistic studies of immune responses under various disease conditions.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Juho Kim
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Long Chen
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Wei Wei
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
7
|
Xue J, Yang S, Zhang SS, Fan J, Wu ZL, Sui CJ, Yang YQ, Zhang JF, Liu P, Zhang DJ, Qiu XY, Zhang T, Chen L, Wu G, Wang HY, Tang J. Deciphering the Multifaceted Immune Landscape of Unresectable Primary Liver Cancer to Predict Immunotherapy Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2309631. [PMID: 39467150 DOI: 10.1002/advs.202309631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/30/2024] [Indexed: 10/30/2024]
Abstract
Immunotherapies employing PD-1/PD-L1 immune checkpoint inhibitors (ICIs) are vital for primary liver cancer (PLC), but response rates remain unsatisfying. Accurate differentiation of responders from non-responders to immunotherapy is imperative. Here, single-cell-scaled mass cytometry analysis on sequential peripheral blood mononuclear cells (PBMCs) from ICI-treated PLC patients is conducted, and tissue residence of immune subpopulations is assessed via multiplex immunohistochemistry. In the discovery cohort (n = 24), responders have lower baseline B cell and HLA-DR+CD8+T cell, and higher CD14+CD16- classical monocyte (CM) proportions. CMs decrease more in responders PBMCs, while HLA-DR+CD8+T cells conformably amplify after ICI-exposure. Responsive individuals display upregulated exhaustion and activation markers in peripheral immune lineages. In the expanded cohort of 77 patients, the augment of the B cells in non-responders is re-confirmed. Responders demonstrate much higher enrichment of B cells or tertiary lymphoid structures in tumor compared to non-responders. A prospective model that excelled in early discrimination of responders is developed using generalized linear model and achieves a satisfactory AUC over 0.9 in all three independent cohorts. Integratedly, the study unveils dynamic immune landscapes in PLC patients undergoing ICI-based therapy, aiding in PLC patient stratification for ICI-based treatment and fostering new response monitoring strategies.
Collapse
Affiliation(s)
- Jun Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Si-Si Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jun Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zi-Long Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Cheng-Jun Sui
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 200441, China
| | - Yong-Qiang Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jin-Feng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - De-Jun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Yao Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 200441, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Yang Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 200441, China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Arito M, Tsutiya A, Sato M, Omoteyama K, Sato T, Motonaga Y, Suematsu N, Kurokawa MS, Kato T. Role of layilin in regulating mitochondria-mediated apoptosis: a study on B cell lymphoma (BCL)-2 family proteins. BMC Mol Cell Biol 2024; 25:24. [PMID: 39455917 PMCID: PMC11515419 DOI: 10.1186/s12860-024-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Malignant gliomas exhibit rapid tumor progression and resistance to treatment, leading to high lethality. One of the causes is the reduced progression of apoptosis in glioma cells. Layilin is a type 1 transmembrane protein with a C-type lectin motif in its extracellular domain. We previously reported that layilin is mainly localized to mitochondria or their close proximity and that layilin is essential for maintaining of the fragmented type of mitochondria. This study investigates the effects of layilin on mitochondria-mediated apoptosis, focusing on B cell lymphoma (BCL)-2 family proteins in a glioma cell line of A172 cells. RESULTS We compared the levels of pro-apoptotic BCL-2 family proteins of BAD, BAK, BAX, and BIM and anti-apoptotic BCL-2 family proteins of BCL-2 and BCL-XL between layilin- knockdown (KD) cells and control cells using western blot. The protein levels of BAD were significantly smaller in layilin-KD cells than in control cells, while those of BCL-2 were significantly larger. We then compared the mitochondrial membrane potential (ΔΨm) under p-trifluoromethoxyphenyl hydrazone (FCCP)-treated conditions using MT-1 staining. In layilin-KD cells, ΔΨm was significantly larger and FCCP-induced ΔΨm reduction was significantly lower than in control cells. Furthermore, we examined the levels of cell membrane-bound Annexin V and DNA-bound propidium idodide (PI) in layilin-KD cells with/without staurosporine (STS) treatment. Layilin-KD significantly decreased levels of cell membrane-bound Annexin V with/without STS treatment. On the other hand, PI levels were not changed by layilin-KD. We also investigated the amounts of the active caspase (CASP)-3, CASP-6, CASP-7, and poly (ADP-ribose) polymerase-1 (PARP1, cleaved form), as well as DNA fragmentation in layilin-KD cells under apoptotic conditions induced by STS, using western blot and the DNA ladder method, respectively. Under STS-treated conditions, the amounts of active CASP-3, CASP-7, and poly (ADP-ribose) PARP1 were significantly smaller in layilin-KD cells than in control cells. Accordingly, DNA fragmentation was significantly suppressed in layilin-KD cells compared to control cells under STS-treated conditions. CONCLUSION This study demonstrates that layilin contributes to ΔΨm reduction to promote apoptosis by up-regulating BAD and down-regulating BCL-2 in glioma cells. Our data elucidates a new function of layilin: regulation of mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Mitsumi Arito
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Atsuhiro Tsutiya
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masaaki Sato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kazuki Omoteyama
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Toshiyuki Sato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yusei Motonaga
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Naoya Suematsu
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Manae S Kurokawa
- Disease Biomarker Analysis and Molecular Regulation, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Tomohiro Kato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
9
|
Lavarti R, Cai L, Alvarez‐Diaz T, Medina‐Rodriguez T, Bombin S, Raju RP. Senescence landscape in the liver following sepsis and senolytics as potential therapeutics. Aging Cell 2024:e14354. [PMID: 39444093 DOI: 10.1111/acel.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Senescence, caused by cell-cycle arrest, is a hallmark of aging. Senescence has also been described in embryogenesis, wound healing, and acute injuries. Sepsis is characterized by a dysregulated host response to infection, leading to organ dysfunction and mortality. Most of the pathophysiology of human sepsis is recapitulated in the mouse model of polymicrobial sepsis, developed by cecal ligation and puncture (CLP). In this report, we demonstrate a rapid onset of cellular senescence in the liver of mice subjected to CLP-induced sepsis, characterized by the upregulation of p21, p53, and other senescence markers, including SA-βgal. Using RNAscope, confocal microscopy, and flow cytometry, we further confirm the emergence of p21-expressing senescence phenotype in the liver 24 h after sepsis induction. Senescence was observed in several cell types in the liver, including hepatocytes, endothelial cells, and macrophages. We determined the landscape of senescence phenotype in murine sepsis by single-cell sequencing, which further ascertained that this cell fate is not confined to any particular cell type but displays a heterogeneous distribution. Furthermore, we observed a significant reduction in mortality following sepsis when mice were treated with senolytics, a combination of dasatinib and quercetin, before the CLP surgery. Our experiments unequivocally demonstrated a rapid development of cellular senescence with sepsis and, for the first time, described the senescence landscape in the sepsis liver and the possible role of senescent cells in the worsening outcome following sepsis.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Lun Cai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tatiana Alvarez‐Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Thalia Medina‐Rodriguez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sergei Bombin
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
10
|
Wu Y, Zhai Y, Ding Z, Xie T, Zhu W, Zhang C, Lu Y, Chen Y, Ren S, Hu Y, Li X, Zhong F, Liang Y, Wang S. Single-cell transcriptomics reveals tumor microenvironment changes and prognostic gene signatures in hepatocellular carcinoma. Int Immunopharmacol 2024; 143:113317. [PMID: 39447409 DOI: 10.1016/j.intimp.2024.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is the most common type of primary liver cancer, accounting for the majority of liver cancer cases. Hepatocellular Carcinoma not only exhibits high heterogeneity but also possesses an immune-suppressive tumor microenvironment that promotes tumor evasion, posing substantial difficulties for efficient therapy. Our aim is to utilize single-cell RNA transcriptome data to investigate the dynamic changes in the tumor microenvironment during the malignant progression of HCC, the communication among immune cells, and the marker genes associated with patient prognosis. METHODS We constructed expression matrices from open single-cell RNA transcriptome data (GSE149614) of HCC patients (representing stages I-IV), establishing single-cell RNA transcriptional atlases for different stages of HCC progression. For each stage, we conducted cell subgroup analysis to identify cell types at each stage. Horizontally, we explored the dynamic changes of the same cell type across different stages, performing trajectory analysis and prognosis analysis. Vertically, we investigated pairwise comparisons of different stages of HCC progression, probing the dynamic alterations in tumor microenvironment immune cell signaling pathways. Finally, potential drugs for the treatment of HCC were predicted based on relevant genes. FINDINGS As the HCC advances towards increased malignancy, there is a shift in the predominant composition of the tumor microenvironment, with a decline in the dominance of hepatic cells. Tumor-infiltrating immune cells migrate and accumulate within the tumor microenvironment, where T cells and myeloid cells display distinct patterns of change. Genes associated with cancer-associated fibroblasts (CAFs) and T cells are correlated with adverse patient outcomes. In the late stages of HCC, the tumor microenvironment is infiltrated by more myeloid-derived suppressor cells (MDSCs), and a prognostic model constructed based on genes related to myeloid cells can predict patient outcomes. Additionally, in the analysis of transcription factors, YY1 and MYC are found to be highly expressed. Cell communication analysis among tumor-infiltrating immune cells reveals significant differences in the main signaling pathways at different stages of HCC progression. Finally, drug sensitivity analysis based on key genes identifies Acetalax, Allopurinol, and Amonafide as potential candidates for HCC treatment.
Collapse
Affiliation(s)
- Yilin Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yangyang Zhai
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhilong Ding
- Department of Hepatobiliary Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China
| | - Tong Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - WeiJie Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Cui Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Ying Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yunli Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Shiying Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yihuai Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Xiangqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Fei Zhong
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Yong Liang
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Shiyan Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China.
| |
Collapse
|
11
|
Ning J, Wang Y, Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front Immunol 2024; 15:1483834. [PMID: 39502703 PMCID: PMC11534672 DOI: 10.3389/fimmu.2024.1483834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses significant challenges regarding morbidity and mortality rates. In the context of HCC, immune cells play a vital role, especially concerning the presentation of antigens. This review explores the intricate interactions among immune cells within HCC, focusing on their functions in antigen presentation and the modulation of T-cell responses. We begin by summarizing the strategies that HCC uses to escape immune recognition, emphasizing the delicate equilibrium between immune surveillance and evasion. Next, we investigate the specific functions of various types of immune cells, including dendritic cells, natural killer (NK) cells, and CD8+ T cells, in the process of antigen presentation. We also examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the pathways involving programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen presentation, while taking into account the clinical significance of checkpoint inhibitors. The review further emphasizes the importance of immune-based therapies, including cancer vaccines and CAR-T cell therapy, in improving antigen presentation. In conclusion, we encapsulate the latest advancements in research, propose future avenues for exploration, and stress the importance of innovative technologies and customized treatment strategies. By thoroughly analyzing the interactions of immune cells throughout the antigen presentation process in HCC, this review provides an up-to-date perspective on the field, setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Jianbo Ning
- The Fourth Clinical College, China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijia Tao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Zong Y, Liu Y, Wang J, Rastegar-Kashkooli Y, Fu P, Chen S, Zhang Q, Huang M, Wang J, Zhang J, Wang J, Jiang C. The characteristics of T-cell receptor repertoire in relation to systemic immune response of patients with ischemic stroke. J Neurochem 2024. [PMID: 39438982 DOI: 10.1111/jnc.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
T lymphocytes play a vital role in the immune-inflammatory response following a stroke. However, the specific mechanisms behind the contrasting functions of T cells in the brain and peripheral tissues after a stroke remain unclear and require further investigation. T-cell receptors (TCRs) are essential in controlling how T lymphocytes develop and become active. This study aims to gain a deeper understanding of the biological function of T lymphocytes by analyzing the TCR repertoire in patients who have experienced an acute ischemic stroke (AIS). High-throughput TCR sequencing was conducted on peripheral blood samples from 25 AIS patients and 10 healthy controls. We compared the percentage of T cells and the characteristics of the TCR repertoire, specifically focusing on the recombination of V(D)J gene fragments and the diversity of the complementarity determining region 3 (CDR3) of the Vβ gene. Additionally, this study analyzed the potential biological significance of the skewed TCR repertoire in AIS patients. In patients with AIS, the proportion of circulating lymphocytes (LY%) decreased while the systemic immune-inflammatory index (SII) increased compared to healthy controls. The average number of TCR read pairs decreased, corresponding with the presence of lymphopenia. However, the recombination of V(D)J gene fragments, the number of CDR3 clonotypes, and the diversity of CDR3 was elevated in the peripheral blood of AIS patients. Furthermore, the increased number of CDR3 amino acid or nucleotide clonotypes was negatively correlated with neurologic deficits but positively correlated with AIS patients' systemic immune condition and functional outcomes. Our findings suggest that both immunosuppression and enhanced antigen-specific T-cell response may exist in the periphery of the AIS patients. Further investigation into the mechanisms underlying these opposing changes may lead to the discovery of novel targets to reverse immunosuppression or mitigate the detrimental effects of T cells in the lesioned brain of AIS patients.
Collapse
Affiliation(s)
- Yan Zong
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, P. R. China
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yuanyuan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Peiji Fu
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, P. R. China
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Shuai Chen
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, P. R. China
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Qianlin Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, P. R. China
| | - Maosen Huang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, P. R. China
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, P. R. China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, P. R. China
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
13
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
14
|
Qazi S, Trieu V. TGFB2 mRNA Levels Prognostically Interact with Interferon-Alpha Receptor Activation of IRF9 and IFI27, and an Immune Checkpoint LGALS9 to Impact Overall Survival in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2024; 25:11221. [PMID: 39457004 PMCID: PMC11508538 DOI: 10.3390/ijms252011221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The treatment of pancreatic ductal adenocarcinoma (PDAC) is an unmet challenge, with the median overall survival rate remaining less than a year, even with the use of FOLFIRINOX-based therapies. This study analyzed archived macrophage-associated mRNA expression using datasets deposited in the UCSC Xena web platform to compare normal pancreatic tissue and PDAC tumor samples. The TGFB2 gene exhibited low mRNA expression levels in normal tissue, with less than one TPM. In contrast, in tumor tissue, TGFB2 expression levels exhibited a 7.9-fold increase in mRNA expression relative to normal tissue (p < 0.0001). Additionally, components of the type-I interferon signaling pathway exhibited significant upregulation of mRNA levels in tumor tissue, including Interferon alpha/beta receptor 1 (IFNAR1; 3.4-fold increase, p < 0.0001), Interferon regulatory factor 9 (IRF9; 4.2-fold increase, p < 0.0001), Signal transducer and activator of transcription 1 (STAT1; 7.1-fold increase, p < 0.0001), and Interferon Alpha Inducible Protein 27 (IFI27; 66.3-fold increase, p < 0.0001). We also utilized TCGA datasets deposited in cBioportal and KMplotter to relate mRNA expression levels to overall survival outcomes. These increased levels of mRNA expression were found to be prognostically significant, whereby patients with high expression levels of either TGFB2, IRF9, or IFI27 showed median OS times ranging from 16 to 20 months (p < 0.01 compared to 72 months for patients with low levels of expression for both TGFB2 and either IRF9 or IFI27). Examination of the KMplotter database determined the prognostic impact of TGFB2 mRNA expression levels by comparing patients expressing high versus low levels of TGFB2 (50th percentile cut-off) in low macrophage TME. In TME with low macrophage levels, patients with high levels of TGFB2 mRNA exhibited significantly shorter OS outcomes than patients with low TGFB2 mRNA levels (Median OS of 15.3 versus 72.7 months, p < 0.0001). Furthermore, multivariate Cox regression models were applied to control for age at diagnosis. Nine genes exhibited significant increases in hazard ratios for TGFB2 mRNA expression, marker gene mRNA expression, and a significant interaction term between TGFB2 and marker gene expression (mRNA for markers: C1QA, CD74, HLA-DQB1, HLA-DRB1, HLA-F, IFI27, IRF9, LGALS9, MARCO). The results of our study suggest that a combination of pharmacological tools can be used in treating PDAC patients, targeting both TGFB2 and the components of the type-I interferon signaling pathway. The significant statistical interaction between TGFB2 and the nine marker genes suggests that TGFB2 is a negative prognostic indicator at low levels of the IFN-I activated genes and TAM marker expression, including the immune checkpoint LGALS9 (upregulated 16.5-fold in tumor tissue; p < 0.0001).
Collapse
MESH Headings
- Humans
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Female
- Male
- Gene Expression Regulation, Neoplastic
- Transforming Growth Factor beta2/genetics
- Transforming Growth Factor beta2/metabolism
- Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics
- Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism
- Middle Aged
- Aged
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Galectins
Collapse
Affiliation(s)
- Sanjive Qazi
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA;
| | | |
Collapse
|
15
|
Li N, Chen S, Xu X, Wang H, Zheng P, Fei X, Ke H, Lei Y, Zhou Y, Yang X, Ouyang Y, Xie C, He C, Hu Y, Cao Y, Li Z, Xie Y, Ge Z, Shu X, Lu N, Liu J, Zhu Y. Single-cell transcriptomic profiling uncovers cellular complexity and microenvironment in gastric tumorigenesis associated with Helicobacter pylori. J Adv Res 2024:S2090-1232(24)00466-1. [PMID: 39414226 DOI: 10.1016/j.jare.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) infection is the main risk for gastric cancer (GC). However, the cellular heterogeneity and underlying molecular mechanisms in H. pylori-driven gastric tumorigenesis are poorly understood. OBJECTIVE Here, we generated a single-cell atlas of gastric tumorigenesis comprising 18 specimens of gastritis, gastric intestinal metaplasia (IM) and GC with or without H. pylori infection. METHODS Single-cell RNA sequencing (scRNA-seq) was performed. Immunofluorescence, immunohistochemistry and qRT-PCR analysis were applied in a second human gastric tissues cohort for validation. Bioinformatics analyses of public TCGA and GEO datasets were applied. RESULTS Single-cell RNA profile highlights cellular heterogeneity and alterations in tissue ecology throughout the progression of gastric carcinoma. Various cell lineages exhibited unique cancer-associated expression profiles, such as tumor-like epithelial cell subset (EPC), inflammatory cancer-associated fibroblasts (iCAFs) and Tumor-associated macrophage (TAM). Notably, we revealed that the specific epithelial subset enterocytes from the precancerous lesion GIM, exhibited elevated expression of genes related to lipid metabolism, and HNF4G was predicted as its specific transcription factor. Furthermore, we identified differentially expressed genes in H. pylori-positive and negative epithelial cells, fibroblasts and myeloid cells were identified. Futhermore, H. pylori-positive specimens exhibited enriched cell-cell communication, characterized by significantly active TNF, SPP1, and THY1 signaling networks. CONCLUSIONS Our study provides a comprehensive landscape of the gastric carcinogenesis ecosystem and novel insights into the molecular mechanisms of different cell types in H. pylori-induced GC.
Collapse
Affiliation(s)
- Nianshuang Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sihai Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Pan Zheng
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Fei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huajing Ke
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuting Lei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanan Zhou
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyu Yang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yaobin Ouyang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Hu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Cao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengrong Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xu Shu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Jianping Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Yin Zhu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
16
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
17
|
Zhou L, Zhu JQ, Kou JT, Xu WL, Lyu SC, Du GS, Yang HW, Wang JF, Hu XP, Yu CZ, Yuan CH, Han DD, Sang CQ, Li B, Gao J, Qi HZ, Wang LM, Lyu L, Liu H, Wu JY, Lang R, He Q, Li XL. Chinese expert consensus on quantitatively monitoring and assessing immune cell function status and its clinical application (2024 edition). Hepatobiliary Pancreat Dis Int 2024:S1499-3872(24)00125-5. [PMID: 39448347 DOI: 10.1016/j.hbpd.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ji-Qiao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Tao Kou
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen-Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guo-Sheng Du
- Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang 110010, China
| | - Hong-Wei Yang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang 110010, China
| | - Jian-Feng Wang
- Department of Interventional Therapy, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiao-Peng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chun-Zhao Yu
- Department of General Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Chun-Hui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Dong-Dong Han
- Liver Transplantation Department, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cui-Qin Sang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bo Li
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100871, China
| | - Hai-Zhi Qi
- Department of General Surgery/Organ Transplant Center, The Second Xiang Ya Hospital of Central South Univercity, Changsha 410011, China
| | - Li-Ming Wang
- Organ Transplant Center, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Ling Lyu
- Department of General Surgery, Jiangsu Provincial People's Hospital, Nanjing 210029, China
| | - Hao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jian-Yong Wu
- Kidney Transplant Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ren Lang
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Qiang He
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xian-Liang Li
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
18
|
Yue T, Chen SY, Shen WK, Zhang ZY, Cheng L, Guo AY. TCRosetta: An Integrated Analysis and Annotation Platform for T-cell Receptor Sequences. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae013. [PMID: 39436242 DOI: 10.1093/gpbjnl/qzae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 10/23/2024]
Abstract
T cells and T-cell receptors (TCRs) are essential components of the adaptive immune system. Characterization of the TCR repertoire offers a promising and highly informative source for understanding the functions of T cells in the immune response and immunotherapy. Although TCR repertoire studies have attracted much attention, there are few online servers available for TCR repertoire analysis, especially for TCR sequence annotation or advanced analyses. Therefore, we developed TCRosetta, a comprehensive online server that integrates analytical methods for TCR repertoire analysis and visualization. TCRosetta combines general feature analysis, large-scale sequence clustering, network construction, peptide-TCR binding prediction, generation probability calculation, and k-mer motif analysis for TCR sequences, making TCR data analysis as simple as possible. The TCRosetta server accepts multiple input data formats and can analyze ∼ 20,000 TCR sequences in less than 3 min. TCRosetta is the most comprehensive web server available for TCR repertoire analysis and is freely available at https://guolab.wchscu.cn/TCRosetta/.
Collapse
Affiliation(s)
- Tao Yue
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Si-Yi Chen
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wen-Kang Shen
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhan-Ye Zhang
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Gao Y, Li J, Cheng W, Diao T, Liu H, Bo Y, Liu C, Zhou W, Chen M, Zhang Y, Liu Z, Han W, Chen R, Peng J, Zhu L, Hou W, Zhang Z. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 2024; 42:1764-1783.e10. [PMID: 39303725 DOI: 10.1016/j.ccell.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/28/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Fibroblasts, known for their functional diversity, play crucial roles in inflammation and cancer. In this study, we conduct comprehensive single-cell RNA sequencing analyses on fibroblast cells from 517 human samples, spanning 11 tissue types and diverse pathological states. We identify distinct fibroblast subpopulations with universal and tissue-specific characteristics. Pathological conditions lead to significant shifts in fibroblast compositions, including the expansion of immune-modulating fibroblasts during inflammation and tissue-remodeling myofibroblasts in cancer. Within the myofibroblast category, we identify four transcriptionally distinct subpopulations originating from different developmental origins, with LRRC15+ myofibroblasts displaying terminally differentiated features. Both LRRC15+ and MMP1+ myofibroblasts demonstrate pro-tumor potential that contribute to the immune-excluded and immune-suppressive tumor microenvironments (TMEs), whereas PI16+ fibroblasts show potential anti-tumor functions in adjacent non-cancerous regions. Fibroblast-subtype compositions define patient subtypes with distinct clinical outcomes. This study advances our understanding of fibroblast biology and suggests potential therapeutic strategies for targeting specific fibroblast subsets in cancer treatment.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jianan Li
- Changping Laboratory, Beijing 102206, China
| | - Wenfeng Cheng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Tian Diao
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Huilan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chang Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Minmin Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanyuan Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510180, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| | - Linnan Zhu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenhong Hou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Yang A, Poholek AC. Systems immunology approaches to study T cells in health and disease. NPJ Syst Biol Appl 2024; 10:117. [PMID: 39384819 PMCID: PMC11464710 DOI: 10.1038/s41540-024-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
T cells are dynamically regulated immune cells that are implicated in a variety of diseases ranging from infection, cancer and autoimmunity. Recent advancements in sequencing methods have provided valuable insights in the transcriptional and epigenetic regulation of T cells in various disease settings. In this review, we identify the key sequencing-based methods that have been applied to understand the transcriptomic and epigenomic regulation of T cells in diseases.
Collapse
Affiliation(s)
- Aaron Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Yuzhalin AE, Lowery FJ, Saito Y, Yuan X, Yao J, Duan Y, Ding J, Acharya S, Zhang C, Fajardo A, Chen HN, Wei Y, Sun Y, Zhang L, Xiao Y, Li P, Lorenzi PL, Huse JT, Fan H, Zhao Z, Hung MC, Yu D. Astrocyte-induced Cdk5 expedites breast cancer brain metastasis by suppressing MHC-I expression to evade immune recognition. Nat Cell Biol 2024; 26:1773-1789. [PMID: 39304713 DOI: 10.1038/s41556-024-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Brain metastases (BrMs) evade the immune response to develop in the brain, yet the mechanisms of BrM immune evasion remains unclear. This study shows that brain astrocytes induce the overexpression of neuronal-specific cyclin-dependent kinase 5 (Cdk5) in breast cancer-derived BrMs, which facilitates BrM outgrowth in mice. Cdk5-overexpressing BrMs exhibit reduced expression and function of the class I major histocompatibility complex (MHC-I) and antigen-presentation pathway, which are restored by inhibiting Cdk5 genetically or pharmacologically, as evidenced by single-cell RNA sequencing and functional studies. Mechanistically, Cdk5 suppresses MHC-I expression on the cancer cell membrane through the Irf2bp1-Stat1-importin α-Nlrc5 pathway, enabling BrMs to avoid recognition by T cells. Treatment with roscovitine-a clinically applicable Cdk5 inhibitor-alone or combined with immune checkpoint inhibitors, significantly reduces BrM burden and increases tumour-infiltrating functional CD8+ lymphocytes in mice. Thus, astrocyte-induced Cdk5 overexpression endorses BrM immune evasion, whereas therapeutically targeting Cdk5 markedly improves the efficacy of immune checkpoint inhibitors and inhibits BrM growth.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank J Lowery
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yimin Duan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingzhen Ding
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Acharya
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyu Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abigail Fajardo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hao-Nien Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huihui Fan
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX, USA
- John P and Katherine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung City, Taiwan
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
23
|
Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for hepatocellular carcinoma. JHEP Rep 2024; 6:101130. [PMID: 39308986 PMCID: PMC11414669 DOI: 10.1016/j.jhepr.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global healthcare challenge, with >1 million patients predicted to be affected annually by 2025. In contrast to other cancers, both incidence and mortality rates continue to rise, and HCC is now the third leading cause of cancer-related death worldwide. Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for advanced HCC, with trials demonstrating a superior overall survival benefit compared to sorafenib in the first-line setting. Combination therapy with either atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) or durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4) is now recognised as standard of care for advanced HCC. More recently, two phase III studies of ICI-based combination therapy in the early and intermediate disease settings have successfully met their primary end points of improved recurrence- and progression-free survival, respectively. Despite these advances, and in contrast to other tumour types, there remain no validated predictive biomarkers of response to ICIs in HCC. Ongoing research efforts are focused on further characterising the tumour microenvironment in order to select patients most likely to benefit from ICI and identify novel therapeutic targets. Herein, we review the current understanding of the immune landscape in which HCC develops and the evidence for ICI-based therapeutic strategies in HCC. Additionally, we describe the state of biomarker development and novel immunotherapy approaches in HCC which have progressed beyond the pre-clinical stage and into early-phase trials.
Collapse
Affiliation(s)
- Alexa Childs
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Gloryanne Aidoo-Micah
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Tim Meyer
- Department of Medical Oncology, Royal Free Hospital, London, UK
- UCL Cancer Institute, University College London, UK
| |
Collapse
|
24
|
Qiu X, Zhou T, Li S, Wu J, Tang J, Ma G, Yang S, Hu J, Wang K, Shen S, Wang H, Chen L. Spatial single-cell protein landscape reveals vimentin high macrophages as immune-suppressive in the microenvironment of hepatocellular carcinoma. NATURE CANCER 2024; 5:1557-1578. [PMID: 39327501 DOI: 10.1038/s43018-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
Tumor microenvironment heterogeneity in hepatocellular carcinoma (HCC) on a spatial single-cell resolution is unclear. Here, we conducted co-detection by indexing to profile the spatial heterogeneity of 401 HCC samples with 36 biomarkers. By parsing the spatial tumor ecosystem of liver cancer, we identified spatial patterns with distinct prognosis and genomic and molecular features, and unveiled the progressive role of vimentin (VIM)high macrophages. Integration analysis with eight independent cohorts demonstrated that the spatial co-occurrence of VIMhigh macrophages and regulatory T cells promotes tumor progression and favors immunotherapy. Functional studies further demonstrated that VIMhigh macrophages enhance the immune-suppressive activity of regulatory T cells by mechanistically increasing the secretion of interleukin-1β. Our data provide deep insights into the heterogeneity of tumor microenvironment architecture and unveil the critical role of VIMhigh macrophages during HCC progression, which holds potential for personalized cancer prevention and drug discovery and reinforces the need to resolve spatial-informed features for cancer treatment.
Collapse
Affiliation(s)
- Xinyao Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Tao Zhou
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shuai Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jianmin Wu
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guosheng Ma
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ji Hu
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kaiting Wang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Siyun Shen
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China.
| | - Lei Chen
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- National Center for Liver Cancer, Shanghai, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China.
| |
Collapse
|
25
|
Yeh CY, Aguirre K, Laveroni O, Kim S, Wang A, Liang B, Zhang X, Han LM, Valbuena R, Bassik MC, Kim YM, Plevritis SK, Snyder MP, Howitt BE, Jerby L. Mapping spatial organization and genetic cell-state regulators to target immune evasion in ovarian cancer. Nat Immunol 2024; 25:1943-1958. [PMID: 39179931 PMCID: PMC11436371 DOI: 10.1038/s41590-024-01943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
The drivers of immune evasion are not entirely clear, limiting the success of cancer immunotherapies. Here we applied single-cell spatial and perturbational transcriptomics to delineate immune evasion in high-grade serous tubo-ovarian cancer. To this end, we first mapped the spatial organization of high-grade serous tubo-ovarian cancer by profiling more than 2.5 million cells in situ in 130 tumors from 94 patients. This revealed a malignant cell state that reflects tumor genetics and is predictive of T cell and natural killer cell infiltration levels and response to immune checkpoint blockade. We then performed Perturb-seq screens and identified genetic perturbations-including knockout of PTPN1 and ACTR8-that trigger this malignant cell state. Finally, we show that these perturbations, as well as a PTPN1/PTPN2 inhibitor, sensitize ovarian cancer cells to T cell and natural killer cell cytotoxicity, as predicted. This study thus identifies ways to study and target immune evasion by linking genetic variation, cell-state regulators and spatial biology.
Collapse
Grants
- P30 CA124435 NCI NIH HHS
- U01 HG012069 NHGRI NIH HHS
- L.J. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund (BWF) and a Liz Tilberis Early Career Award from the Ovarian Cancer Research Alliance (OCRA). This study was supported by the BWF (1019508.01; L.J.), National Human Genome Research Institute (NHGRI, U01HG012069; L.J.), OCRA (889076; L.J), Under One Umbrella, Stanford Women’s Cancer Center, Stanford Cancer Institute, a National Cancer Institute (NCI)-designated Comprehensive Cancer Center (251217; B.E.H., L.J.), as well as funds from the Departments of Genetics (L.J.) at Stanford University and from the Chan Zuckerberg Biohub (L.J.).
- This study was partially supported by the Stanford Women’s Cancer Center (251217; B.E.H., L.J.), and an NCI Center Support Grant (P30CA124435; B.E.H.), as well as funds from the Departments of Pathology (B.E.H.).
Collapse
Affiliation(s)
- Christine Yiwen Yeh
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Karmen Aguirre
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia Laveroni
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Subin Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aihui Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke Liang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoming Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucy M Han
- Department of Pathology, California Pacific Medical Center, San Francisco, CA, USA
| | - Raeline Valbuena
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Young-Min Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Livnat Jerby
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
26
|
Liu L, Hao S, Gou S, Tang X, Zhang Y, Cai D, Xiao M, Zhang X, Zhang D, Shen J, Li Y, Chen Y, Zhao Y, Deng S, Wu X, Li M, Zhang Z, Xiao Z, Du F. Potential applications of dual haptoglobin expression in the reclassification and treatment of hepatocellular carcinoma. Transl Res 2024; 272:19-40. [PMID: 38815898 DOI: 10.1016/j.trsl.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
HCC is a malignancy characterized by high incidence and mortality rates. Traditional classifications of HCC primarily rely on tumor morphology, phenotype, and multicellular molecular levels, which may not accurately capture the cellular heterogeneity within the tumor. This study integrates scRNA-seq and bulk RNA-seq to spotlight HP as a critical gene within a subgroup of HCC malignant cells. HP is highly expressed in HCC malignant cells and lowly expressed in T cells. Within malignant cells, elevated HP expression interacts with C3, promoting Th1-type responses via the C3/C3AR1 axis. In T cells, down-regulating HP expression favors the expression of Th1 cell-associated marker genes, potentially enhancing Th1-type responses. Consequently, we developed a "HP-promoted Th1 response reclassification" gene set, correlating higher activity scores with improved survival rates in HCC patients. Additionally, four predictive models for neoadjuvant treatment based on HP and C3 expression were established: 1) Low HP and C3 expression with high Th2 cell infiltration; 2) High HP and low C3 expression with high Th2 cell infiltration; 3) High HP and C3 expression with high Th1 cell infiltration; 4) Low HP and high C3 expression with high Th1 cell infiltration. In conclusion, the HP gene selected from the HCC malignant cell subgroup (Malignant_Sub 6) might serve as a potential ally against the tumor by promoting Th1-type immune responses. The establishment of the "HP-promoted Th1 response reclassification" gene set offers predictive insights for HCC patient survival prognosis and neoadjuvant treatment efficacy, providing directions for clinical treatments.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Siyu Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xinyi Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yan Li
- Public Center of Experimental Technology, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China.
| |
Collapse
|
27
|
Yang J, Zhang N, Luo T, Yang M, Shen W, Tan Z, Xia Y, Zhang L, Zhou X, Lei Q, Guo A. TCellSI: A novel method for T cell state assessment and its applications in immune environment prediction. IMETA 2024; 3:e231. [PMID: 39429885 PMCID: PMC11487559 DOI: 10.1002/imt2.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 10/22/2024]
Abstract
T cell is an indispensable component of the immune system and its multifaceted functions are shaped by the distinct T cell types and their various states. Although multiple computational models exist for predicting the abundance of diverse T cell types, tools for assessing their states to characterize their degree of resting, activation, and suppression are lacking. To address this gap, a robust and nuanced scoring tool called T cell state identifier (TCellSI) leveraging Mann-Whitney U statistics is established. The TCellSI methodology enables the evaluation of eight distinct T cell states-Quiescence, Regulating, Proliferation, Helper, Cytotoxicity, Progenitor exhaustion, Terminal exhaustion, and Senescence-from transcriptome data, providing T cell state scores (TCSS) for samples through specific marker gene sets and a compiled reference spectrum. Validated against sizeable pseudo-bulk and actual bulk RNA-seq data across a range of T cell types, TCellSI not only accurately characterizes T cell states but also surpasses existing well-discovered signatures in reflecting the nature of T cells. Significantly, the tool demonstrates predictive value in the immune environment, correlating T cell states with patient prognosis and responses to immunotherapy. For better utilization, the TCellSI is readily accessible through user-friendly R package and web server (https://guolab.wchscu.cn/TCellSI/). By offering insights into personalized cancer therapies, TCellSI has the potential to improve treatment outcomes and efficacy.
Collapse
Affiliation(s)
- Jing‐Min Yang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Department of Thoracic SurgeryWest China Biomedical Big Data Center, West China Hospital, Sichuan UniversityChengduChina
| | - Nan Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Department of Thoracic SurgeryWest China Biomedical Big Data Center, West China Hospital, Sichuan UniversityChengduChina
| | - Tao Luo
- BGI Education CenterUniversity of Chinese Academy of SciencesShenzhenChina
| | - Mei Yang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Wen‐Kang Shen
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Zhen‐Lin Tan
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yun Xia
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Libin Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Qian Lei
- Department of Thoracic SurgeryWest China Biomedical Big Data Center, West China Hospital, Sichuan UniversityChengduChina
| | - An‐Yuan Guo
- Department of Thoracic SurgeryWest China Biomedical Big Data Center, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
28
|
Han Y, Shi L, Jiang N, Huang J, Jia X, Zhu B. Dissecting the Single-Cell Diversity and Heterogeneity Underlying Cervical Precancerous Lesions and Cancer Tissues. Reprod Sci 2024:10.1007/s43032-024-01695-5. [PMID: 39354287 DOI: 10.1007/s43032-024-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024]
Abstract
The underlying cellular diversity and heterogeneity from cervix precancerous lesions to cervical squamous cell carcinoma (CSCC) is investigated. Four single-cell datasets including normal tissues, normal adjacent tissues, precancerous lesions, and cervical tumors were integrated to perform disease stage analysis. Single-cell compositional data analysis (scCODA) was utilized to reveal the compositional changes of each cell type. Differentially expressed genes (DEGs) among cell types were annotated using BioCarta. An assay for transposase-accessible chromatin sequencing (ATAC-seq) analysis was performed to correlate epigenetic alterations with gene expression profiles. Lastly, a logistic regression model was used to assess the similarity between the original and new cohort data (HRA001742). After global annotation, seven distinct cell types were categorized. Eight consensus-upregulated DEGs were identified in B cells among different disease statuses, which could be utilized to predict the overall survival of CSCC patients. Inferred copy number variation (CNV) analysis of epithelial cells guided disease progression classification. Trajectory and ATAC-seq integration analysis identified 95 key transcription factors (TF) and one immunohistochemistry (IHC) testified key-node TF (YY1) involved in epithelial cells from CSCC initiation to progression. The consistency of epithelial cell subpopulation markers was revealed with single-cell sequencing, bulk sequencing, and RT-qPCR detection. KRT8 and KRT15, markers of Epi6, showed progressively higher expression with disease progression as revealed by IHC detection. The logistic regression model testified the robustness of the resemblance of clusters among the various datasets utilized in this study. Valuable insights into CSCC cellular diversity and heterogeneity provide a foundation for future targeted therapy.
Collapse
Affiliation(s)
- Yanling Han
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Lu Shi
- CRE Life Institute, Beijing, 100000, China
| | - Nan Jiang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jiamin Huang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xiuzhi Jia
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, 323000, China.
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
29
|
Hu J, Shi Q, Xue C, Wang Q. Berberine Protects against Hepatocellular Carcinoma Progression by Regulating Intrahepatic T Cell Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405182. [PMID: 39135526 PMCID: PMC11497054 DOI: 10.1002/advs.202405182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/25/2024] [Indexed: 10/25/2024]
Abstract
Accumulating evidence suggests that berberine (BBR) exhibits anti-cancer effects in hepatocellular carcinoma (HCC). However, the mechanisms by which BBR regulates the immunological microenvironment in HCC has not been fully elucidated. In this study, a mouse model of orthotopic HCC is established and treated with varying doses of BBR. BBR showed effectiveness in reducing tumor burden in mice with HCC. Cytometry by time-of-flight depicted the alterations in the tumor immune landscape following BBR treatment, revealing the enhancement in the T lymphocytes effector function. In particular, BBR decreased the proportion of TCRbhiPD-1hiCD69+CD27+ effector CD8+ T lymphocytes and increased the proportion of Ly6ChiTCRb+CD69+CD27+CD62L+ central memory CD8+ T lymphocytes. Single-cell RNA sequencing further elucidates the effects of BBR on transcriptional profiles of liver immune cells and confirms the phenotypical heterogeneity of T lymphocytes in HCC immune microenvironment. Additionally, it is found that BBR potentially regulated the antitumor immunity in HCC by modulating the receptor-ligand interaction among immune cells mediated by cytokines. In summary, the findings improve the understanding of BBR's impact on protecting against HCC, emphasizing BBR's role in regulating intrahepatic T cell heterogeneity. BBR has the potential to be a promising therapeutic strategy to hinder the advancement of HCC.
Collapse
Affiliation(s)
- Jiaxiang Hu
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310003China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310003China
| | - Qingqing Wang
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| |
Collapse
|
30
|
Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, Yang R. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res 2024; 12:110. [PMID: 39334490 PMCID: PMC11438019 DOI: 10.1186/s40364-024-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize the current status and challenges of applying single-cell multi-omics technologies to biological research and clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential strategies to address them.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunhan Dai
- Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
31
|
Fiorenza S, Zheng Y, Purushe J, Bock TJ, Sarthy J, Janssens DH, Sheih AS, Kimble EL, Kirchmeier D, Phi TD, Gauthier J, Hirayama AV, Riddell SR, Wu Q, Gottardo R, Maloney DG, Yang JYH, Henikoff S, Turtle CJ. Histone marks identify novel transcription factors that parse CAR-T subset-of-origin, clinical potential and expansion. Nat Commun 2024; 15:8309. [PMID: 39333103 PMCID: PMC11436946 DOI: 10.1038/s41467-024-52503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Chimeric antigen receptor-modified T cell (CAR-T) immunotherapy has revolutionised blood cancer treatment. Parsing the genetic underpinnings of T cell quality and CAR-T efficacy is challenging. Transcriptomics inform CAR-T state, but the nature of dynamic transcription during activation hinders identification of transiently or minimally expressed genes, such as transcription factors, and over-emphasises effector and metabolism genes. Here we explore whether analyses of transcriptionally repressive and permissive histone methylation marks describe CAR-T cell functional states and therapeutic potential beyond transcriptomic analyses. Histone mark analyses improve identification of differences between naïve, central memory, and effector memory CD8 + T cell subsets of human origin, and CAR-T derived from these subsets. We find important differences between CAR-T manufactured from central memory cells of healthy donors and of patients. By examining CAR-T products from a clinical trial in lymphoma (NCT01865617), we find a novel association between the activity of the transcription factor KLF7 with in vivo CAR-T accumulation in patients and demonstrate that over-expression of KLF7 increases in vitro CAR-T proliferation and IL-2 production. In conclusion, histone marks provide a rich dataset for identification of functionally relevant genes not apparent by transcriptomics.
Collapse
Affiliation(s)
- S Fiorenza
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Y Zheng
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Bioinformatics and Computational Biology Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - J Purushe
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - T J Bock
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - J Sarthy
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - D H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - A S Sheih
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - E L Kimble
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - D Kirchmeier
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - T D Phi
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - J Gauthier
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - A V Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - S R Riddell
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - Q Wu
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - R Gottardo
- Biomedical Data Sciences, Lausanne University Hospital, Lausanne, Switzerland
| | - D G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - J Y H Yang
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - S Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - C J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, St. Leonards, NSW, Australia
| |
Collapse
|
32
|
Thorsson H, Henningsson R, Puente-Moncada N, Peña-Martínez P, Sjöström L, Ågerstam H, Sandén C, Rissler M, Castor A, Marquart H, Modvig S, Paulsson K, Pronk CJ, Schmiegelow K, Hyrenius-Wittsten A, Orsmark-Pietras C, Lilljebjörn H, Fioretos T. Single-cell genomics details the maturation block in BCP-ALL and identifies therapeutic vulnerabilities in DUX4-r cases. Blood 2024; 144:1399-1411. [PMID: 38968149 PMCID: PMC11451301 DOI: 10.1182/blood.2023021705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) is the most common childhood malignancy and is driven by multiple genetic alterations that cause maturation arrest and accumulation of abnormal progenitor B cells. Current treatment protocols with chemotherapy have led to favorable outcomes but are associated with significant toxicity and risk of side effects, highlighting the necessity for highly effective, less toxic, targeted drugs, even in subtypes with a favorable outcome. Here, we used multimodal single-cell sequencing to delineate the transcriptional, epigenetic, and immunophenotypic characteristics of 23 childhood BCP-ALLs belonging to the BCR::ABL1+, ETV6::RUNX1+, high hyperdiploid, and recently discovered DUX4-rearranged (DUX4-r) subtypes. Projection of the ALL cells along the normal hematopoietic differentiation axis revealed a diversity in the maturation pattern between the different BCP-ALL subtypes. Although the BCR::ABL1+, ETV6::RUNX1+, and high hyperdiploidy cells mainly showed similarities to normal pro-B cells, DUX4-r ALL cells also displayed transcriptional signatures resembling mature B cells. Focusing on the DUX4-r subtype, we found that the blast population displayed not only multilineage priming toward nonhematopoietic cells, myeloid, and T-cell lineages, but also an activation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling that sensitized the cells to PI3K inhibition in vivo. Given the multilineage priming of DUX4-r blasts with aberrant expression of myeloid marker CD371 (CLL-1), we generated chimeric antigen receptor T cells, which effectively eliminated DUX4-r ALL cells in vivo. These results provide a detailed characterization of BCP-ALL at the single-cell level and reveal therapeutic vulnerabilities in the DUX4-r subtype, with implications for the understanding of ALL biology and new therapeutic strategies.
Collapse
Affiliation(s)
- Hanna Thorsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Rasmus Henningsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Noelia Puente-Moncada
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pablo Peña-Martínez
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ludvig Sjöström
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Helena Ågerstam
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Carl Sandén
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Marianne Rissler
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Castor
- Childhood Cancer Center, Skåne University Hospital, Lund, Sweden
| | - Hanne Marquart
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Signe Modvig
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Kjeld Schmiegelow
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, The Juliane Marie Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Axel Hyrenius-Wittsten
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christina Orsmark-Pietras
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
33
|
Zhao Y, Zhang D, Meng B, Zhang Y, Ma S, Zeng J, Wang X, Peng T, Gong X, Zhai R, Dong L, Jiang Y, Dai X, Fang X, Jia W. Integrated proteomic and glycoproteomic analysis reveals heterogeneity and molecular signatures of brain metastases from lung adenocarcinomas. Cancer Lett 2024; 605:217262. [PMID: 39341452 DOI: 10.1016/j.canlet.2024.217262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Brain metastasis is a major cause of poor prognosis and death in lung adenocarcinoma (LUAD); however, the understanding of therapeutic strategies and mechanisms for brain metastases from LUAD (BM-LUAD) remains notably limited, especially at the proteomics levels. To address this issue, we conducted integrated proteomic and glycoproteomic analyses on 49 BM-LUAD tumors, revealing two distinct subtypes of the disease: BM-S1 and BM-S2. Whole exome sequencing analysis revealed that somatic mutations in STK11 and KEAP1, as well as copy number deletions on chr19p13.3, such as STK11, UQCR11, and SLC25A23, were more frequently detected in BM-S2. In BM-S1 tumors, we observed significant infiltration of GFAP + astrocytes, as evidenced by elevated levels of GFAP, GABRA2, GABRG1 and GAP43 proteins and an enrichment of astrocytic signatures in both our proteomic data and external spatial transcriptomic data. Conversely, BM-S2 tumors demonstrated higher levels of PD-1 immune cell infiltration, supported by the upregulation of PD-1 and LAG-3 genes. These findings suggest distinct microenvironmental adaptations required by the different BM-LUAD subtypes. Additionally, we observed unique glycosylation patterns between the subtypes, with increased fucosylation in BM-S1 and enhanced sialylation in BM-S2, primarily affected by glycosylation enzymes such as FUT9, B4GALT1, and ST6GAL1. Specifically, in BM-S2, these sialylation modifications are predominantly localized to the lysosomes, underscoring the critical role of N-glycosylation in the tumor progression of BM-LUAD. Overall, our study not only provides a comprehensive multi-omic data resource but also offers valuable biological insights into BM-LUAD, highlighting potential mechanisms and therapeutic targets for further investigation.
Collapse
Affiliation(s)
- Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jiaming Zeng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Lianhua Dong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
34
|
Trehan R, Zhu XB, Huang P, Wang X, Soliman M, Strepay D, Nur A, Kedei N, Arhin M, Ghabra S, Rodríguez-Matos F, Benmebarek MR, Ma C, Korangy F, Greten TF. A Paradoxical Tumor Antigen Specific Response in the Liver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.614002. [PMID: 39372792 PMCID: PMC11451677 DOI: 10.1101/2024.09.19.614002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Functional tumor-specific CD8+ T cells are essential for an effective anti-tumor immune response and the efficacy of immune checkpoint inhibitor therapy. In comparison to other organ sites, we found higher numbers of tumor-specific CD8+ T cells in primary, metastatic liver tumors in murine tumor models. Despite their abundance, CD8+ T cells in the liver displayed an exhausted phenotype. Depletion of CD8+ T cells showed that liver tumor-reactive CD8+ T failed to control liver tumors but was effective against subcutaneous tumors. Similarly, analysis of single-cell RNA sequencing data from patients showed a higher frequency of exhausted tumor-reactive CD8+ T cells in liver metastasis compared to paired primary colon cancer. High-dimensional, multi-omic analysis combining proteomic CODEX and scRNA-seq data revealed enriched interaction of SPP1+ macrophages and CD8+ tumor-reactive T cells in profibrotic, alpha-SMA rich regions in the liver. Liver tumors grew less in Spp1-/- mice and the tumor-specific CD8+ T cells were less exhausted. Differential pseudotime trajectory inference analysis revealed extrahepatic signaling promoting an intermediate cell (IC) population in the liver, characterized by co-expression of VISG4, CSF1R, CD163, TGF-βR, IL-6R, SPP1. scRNA-seq of a third data set of premetastatic adenocarcinoma showed that enrichment of this population may predict liver metastasis. Our data suggests a mechanism by which extrahepatic tumors facilitate the formation of liver metastasis by promoting an IC population inhibiting tumor-reactive CD8+ T cell function.
Collapse
Affiliation(s)
- Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao Bin Zhu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTR, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Arhin
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shadin Ghabra
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodríguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Senior author
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
- Senior author
| |
Collapse
|
35
|
Taherifard E, Tran K, Saeed A, Yasin JA, Saeed A. Biomarkers for Immunotherapy Efficacy in Advanced Hepatocellular Carcinoma: A Comprehensive Review. Diagnostics (Basel) 2024; 14:2054. [PMID: 39335733 PMCID: PMC11431712 DOI: 10.3390/diagnostics14182054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver malignancy and the sixth most common cancer globally, remains fatal for many patients with inappropriate responses to treatment. Recent advancements in immunotherapy have transformed the treatment landscape for advanced HCC. However, variability in patient responses to immunotherapy highlights the need for biomarkers that can predict treatment outcomes. This manuscript comprehensively reviews the evolving role of biomarkers in immunotherapy efficacy, spanning from blood-derived indicators-alpha-fetoprotein, inflammatory markers, cytokines, circulating tumor cells, and their DNA-to tissue-derived indicators-programmed cell death ligand 1 expression, tumor mutational burden, microsatellite instability, and tumor-infiltrating lymphocytes. The current body of evidence suggests that these biomarkers hold promise for improving patient selection and predicting immunotherapy outcomes. Each biomarker offers unique insights into disease biology and the immune landscape of HCC, potentially enhancing the precision of treatment strategies. However, challenges such as methodological variability, high costs, inconsistent findings, and the need for large-scale validation in well-powered two-arm trial studies persist, making them currently unsuitable for integration into standard care. Addressing these challenges through standardized techniques and implementation of further studies will be critical for the future incorporation of these biomarkers into clinical practice for advanced HCC.
Collapse
Affiliation(s)
- Erfan Taherifard
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Krystal Tran
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA
| | - Jehad Amer Yasin
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
36
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
37
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
38
|
Skadborg SK, Maarup S, Draghi A, Borch A, Hendriksen S, Mundt F, Pedersen V, Mann M, Christensen IJ, Skjøth-Ramussen J, Yde CW, Kristensen BW, Poulsen HS, Hasselbalch B, Svane IM, Lassen U, Hadrup SR. Nivolumab Reaches Brain Lesions in Patients with Recurrent Glioblastoma and Induces T-cell Activity and Upregulation of Checkpoint Pathways. Cancer Immunol Res 2024; 12:1202-1220. [PMID: 38885356 PMCID: PMC11369628 DOI: 10.1158/2326-6066.cir-23-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with poor prognosis. Although immunotherapy is being explored as a potential treatment option for patients with GBM, it is unclear whether systemic immunotherapy can reach and modify the tumor microenvironment in the brain. We evaluated immune characteristics in patients receiving the anti-PD-1 immune checkpoint inhibitor nivolumab 1 week prior to surgery, compared with control patients receiving salvage resection without prior nivolumab treatment. We observed saturating levels of nivolumab bound to intratumorally and tissue-resident T cells in the brain, implicating saturating levels of nivolumab reaching brain tumors. Following nivolumab treatment, significant changes in T-cell activation and proliferation were observed in the tumor-resident T-cell population, and peripheral T cells upregulated chemokine receptors related to brain homing. A strong nivolumab-driven upregulation in compensatory checkpoint inhibition molecules, i.e., TIGIT, LAG-3, TIM-3, and CTLA-4, was observed, potentially counteracting the treatment effect. Finally, tumor-reactive tumor-infiltrating lymphocytes (TIL) were found in a subset of nivolumab-treated patients with prolonged survival, and neoantigen-reactive T cells were identified in both TILs and blood. This indicates a systemic response toward GBM in a subset of patients, which was further boosted by nivolumab, with T-cell responses toward tumor-derived neoantigens. Our study demonstrates that nivolumab does reach the GBM tumor lesion and enhances antitumor T-cell responses both intratumorally and systemically. However, various anti-inflammatory mechanisms mitigate the clinical efficacy of the anti-PD-1 treatment.
Collapse
Affiliation(s)
- Signe K. Skadborg
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Simone Maarup
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Annie Borch
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sille Hendriksen
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
| | - Vilde Pedersen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
- Research Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Ib J. Christensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Jane Skjøth-Ramussen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Christina W. Yde
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Bjarne W. Kristensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Hans S. Poulsen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Benedikte Hasselbalch
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Inge M. Svane
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Ulrik Lassen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Sine R. Hadrup
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
39
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
40
|
Cai S, Gou Y, Chen Y, Hou X, Zhang J, Bi C, Gu P, Yang M, Zhang H, Zhong W, Yuan H. Luteolin exerts anti-tumour immunity in hepatocellular carcinoma by accelerating CD8 + T lymphocyte infiltration. J Cell Mol Med 2024; 28:e18535. [PMID: 39267250 PMCID: PMC11392827 DOI: 10.1111/jcmm.18535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
Luteolin, a commonly used traditional Chinese medicine, has been utilized for several decades in the treatment of hepatocellular carcinoma (HCC). Previous research has demonstrated its anti-tumour efficacy, but its underlying mechanism remains unclear. This study aimed to assess the therapeutic effects of luteolin in H22 tumour-bearing mice. luteolin effectively inhibited the growth of solid tumours in a well-established mouse model of HCC. High-throughput sequencing revealed that luteolin treatment could enhance T-cell activation, cell chemotaxis and cytokine production. In addition, luteolin helped sustain a high ratio of CD8+ T lymphocytes in the spleen, peripheral blood and tumour tissues. The effects of luteolin on the phenotypic and functional changes in tumour-infiltrating CD8+ T lymphocytes were also investigated. Luteolin restored the cytotoxicity of tumour-infiltrating CD8+ T lymphocytes in H22 tumour-bearing mice. The CD8+ T lymphocytes exhibited intensified phenotype activation and increased production of granzyme B, IFN-γ and TNF-α in serum. The combined administration of luteolin and the PD-1 inhibitor enhanced the anti-tumour effects in H22 tumour-bearing mice. Luteolin could exert an anti-tumour immune response by inducing CD8+ T lymphocyte infiltration and enhance the anti-tumour effects of the PD-1 inhibitor on H22 tumour-bearing mice.
Collapse
Affiliation(s)
- Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yidan Gou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanyan Chen
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoran Hou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Chongwen Bi
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Gu
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Miao Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanxu Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
41
|
Wang H, Liu J, Zhu P, Shi L, Liu Y, Yang X, Yang X. Single-nucleus transcriptome reveals cell dynamic response of liver during the late chick embryonic development. Poult Sci 2024; 103:103979. [PMID: 38941785 PMCID: PMC11261130 DOI: 10.1016/j.psj.2024.103979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024] Open
Abstract
The late embryonic development of the liver, a major metabolic organ, remains poorly characterized at single cell resolution. Here, we used single-nucleus RNA-sequencing (snRNA-seq) to characterize the chicken liver cells at 2 embryonic development time points (E14 and D1). We uncovered 8 cell types including hepatocytes, endothelial cells, hepatic stellate cells, erythrocytes, cholangiocytes, kupffer cells, mesothelial cells, and lymphocytes. And we discovered significant differences in the abundance of different cell types between E14 and D1. Moreover, we characterized the heterogeneity of hepatocytes, endothelial cells, and mesenchymal cells based on the gene regulatory networks of each clusters. Trajectory analyses revealed 128 genes associated with hepatocyte development and function, including apolipoprotein genes involved hepatic lipid metabolism and NADH dehydrogenase subunits involved hepatic oxidative phosphorylation. Furthermore, we identified the differentially expressed genes (DEGs) between E14 and D1 at the cellular levels, which contribute to changes in liver development and function. These DEGs were significantly enriched in PPAR signaling pathways and lipid metabolism related pathways. Our results presented the single-cell mapping of chick embryonic liver at late stages of development and demonstrated the metabolic changes across the 2 age stages at the cellular level, which can help to further study the molecular development mechanism of embryonic liver.
Collapse
Affiliation(s)
- Huimei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiongyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pinhui Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lin Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
42
|
Zhang H, Ren Y, Wang F, Tu X, Tong Z, Liu L, Zheng Y, Zhao P, Cheng J, Li J, Fang W, Liu X. The long-term effectiveness and mechanism of oncolytic virotherapy combined with anti-PD-L1 antibody in colorectal cancer patient. Cancer Gene Ther 2024; 31:1412-1426. [PMID: 39068234 PMCID: PMC11405277 DOI: 10.1038/s41417-024-00807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Colorectal cancer (CRC) is known to be resistant to immunotherapy. In our phase-I clinical trial, one patient achieved a 313-day prolonged response during the combined treatment of oncolytic virotherapy and immunotherapy. To gain a deeper understanding of the potential molecular mechanisms, we performed a comprehensive multi-omics analysis on this patient and three non-responders. Our investigation unveiled that, initially, the tumor microenvironment (TME) of this responder presented minimal infiltration of T cells and natural killer cells, along with a relatively higher presence of macrophages compared to non-responders. Remarkably, during treatment, there was a progressive increase in CD4+ T cells, CD8+ T cells, and B cells in the responder's tumor tissue. This was accompanied by a significant upregulation of transcription factors associated with T-cell activation and cytotoxicity, including GATA3, EOMES, and RUNX3. Furthermore, dynamic monitoring of peripheral blood samples from the responder revealed a rapid decrease in circulating tumor DNA (ctDNA), suggesting its potential as an early blood biomarker of treatment efficacy. Collectively, our findings demonstrate the effectiveness of combined oncolytic virotherapy and immunotherapy in certain CRC patients and provide molecular evidence that virotherapy can potentially transform a "cold" TME into a "hot" one, thereby improving sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Hangyu Zhang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Yiqing Ren
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Feiyu Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Xiaoxuan Tu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Zhou Tong
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Lulu Liu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Yi Zheng
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Jianwen Li
- Geneplus-Shenzhen, Shenzhen, P. R. China.
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China.
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
43
|
Wang L, He Y, Wang P, Lou H, Liu H, Sha W. Single-cell transcriptome sequencing reveals altered peripheral blood immune cells in patients with severe tuberculosis. Eur J Med Res 2024; 29:434. [PMID: 39198909 PMCID: PMC11360321 DOI: 10.1186/s40001-024-01991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Tuberculosis is a serious global health burden, resulting in millions of deaths each year. Several circulating cell subsets in the peripheral blood are known to modulate the host immune response to Mycobacterium tuberculosis (Mtb) infection in different ways. However, the characteristics and functions of these subsets to varying stages of tuberculosis infection have not been well elucidated. Peripheral blood immune cells (PBICs) were isolated from healthy donors (HD group), individuals with mild tuberculosis (MI group), and individuals with severe tuberculosis (SE group). CD4+ naive T cells and CD8+ T cells were decreased in the SE and MI groups, while CD14+ monocytes were increased in the SE group. Further analysis revealed increased activated CD4+ T cells, transitional CD8+ T cells, memory-like NK cells, and IGHG3highTTNhighFCRL5high B cells were increased in all patients with tuberculosis (SE and MI group). In contrast, Th17 cells, cytotoxic NK cells, and cytotoxic CD4+ T cells were decreased. Moreover, the increase of CD14+CD16+ monocytes correlated with severe tuberculosis, and the GBP5highRSAD2high neutrophils were unique to patients with severe tuberculosis. Cellular communication analysis revealed that CD8+ T cells exhibited the highest incoming interaction strength in the SE group. The increased CD8+ T cell incoming interactions are associated with the MHC-I and LCK pathways, with HLA-(A-E)-CD8A, HLA-(A-E)-CD8B, and LCK-(CD8A+CD8B) being ligand-receptor pairs. Patients with tuberculosis, especially severe tuberculosis, have profound changes in peripheral blood immune cell profiles. CD8+ T cells showed the highest incoming interaction strength in patients with severe tuberculosis, with the main signals being MHC-I and LCK pathways.
Collapse
Affiliation(s)
- Li Wang
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ya He
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hai Lou
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.
- Department of Tuberculosis, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Liu D, Li C, Deng Z, Luo N, Li W, Hu W, Li X, Qiu Z, Chen J, Peng J. Multi-omics analysis reveals the landscape of tumor microenvironments in left-sided and right-sided colon cancer. Front Med (Lausanne) 2024; 11:1403171. [PMID: 39267963 PMCID: PMC11391487 DOI: 10.3389/fmed.2024.1403171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Background Distinct clinical features and molecular characteristics of left-sided colon cancer (LCC) and right-sided colon cancer (RCC) suggest significant variations in their tumor microenvironments (TME). These differences can impact the efficacy of immunotherapy, making it essential to investigate and understand these disparities. Methods We conducted a multi-omics analysis, including bulk RNA sequencing (bulk RNA-seq), single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing (WES), to investigate the constituents and characteristic differences of the tumor microenvironment (TME) in left-sided colon cancer (LCC) and right-sided colon cancer (RCC). Result Deconvolution algorithms revealed significant differences in infiltrated immune cells between left-sided colon cancer (LCC) and right-sided colon cancer (RCC), including dendritic cells, neutrophils, natural killer (NK) cells, CD4 and CD8 T cells, and M1 macrophages (P < 0.05). Notably, whole-exome sequencing (WES) data analysis showed a significantly higher mutation frequency in RCC compared to LCC (82,187/162 versus 18,726/115, P < 0.01). Single-cell analysis identified predominant tumor cell subclusters in RCC characterized by heightened proliferative potential and increased expression of major histocompatibility complex class I molecules. However, the main CD8 + T cell subpopulations in RCC exhibited a highly differentiated state, marked by T cell exhaustion and recent activation, defined as tumor-specific cytotoxic T lymphocytes (CTLs). Immunofluorescence and flow cytometry results confirmed this trend. Additionally, intercellular communication analysis demonstrated a greater quantity and intensity of interactions between tumor-specific CTLs and tumor cells in RCC. Conclusion RCC patients with an abundance of tumor-specific cytotoxic T lymphocytes (CTLs) and increased immunogenicity of tumor cells in the TME may be better candidates for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Dongfang Liu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zenghua Deng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenxia Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenzhe Hu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zichao Qiu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianfei Chen
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
45
|
Chen YZ, Meng ZS, Xiang ZL. HMGB2 drives tumor progression and shapes the immunosuppressive microenvironment in hepatocellular carcinoma: insights from multi-omics analysis. Front Immunol 2024; 15:1415435. [PMID: 39247201 PMCID: PMC11380137 DOI: 10.3389/fimmu.2024.1415435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) poses a significant health burden globally, with high mortality rates despite various treatment options. Immunotherapy, particularly immune-checkpoint inhibitors (ICIs), has shown promise, but resistance and metastasis remain major challenges. Understanding the intricacies of the tumor microenvironment (TME) is imperative for optimizing HCC management strategies and enhancing patient prognosis. Methods This study employed a comprehensive approach integrating multi-omics approaches, including single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing (Bulk RNA-seq), and validation in clinical samples using spatial transcriptomics (ST) and multiplex immunohistochemistry (mIHC). The analysis aimed to identify key factors influencing the immunosuppressive microenvironment associated with HCC metastasis and immunotherapy resistance. Results HMGB2 is significantly upregulated in HCCTrans, a transitional subgroup associated with aggressive metastasis. Furthermore, HMGB2 expression positively correlates with an immunosuppressive microenvironment, particularly evident in exhausted T cells. Notably, HMGB2 expression correlated positively with immunosuppressive markers and poor prognosis in HCC patients across multiple cohorts. ST combined with mIHC validated the spatial expression patterns of HMGB2 within the TME, providing additional evidence of its role in HCC progression and immune evasion. Conclusion HMGB2 emerges as a critical player of HCC progression, metastasis, and immunosuppression. Its elevated expression correlates with aggressive tumor behavior and poor patient outcomes, suggesting its potential as both a therapeutic target and a prognostic indicator in HCC management.
Collapse
Affiliation(s)
- Yan-Zhu Chen
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi-Shang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Radiation Oncology, Shanghai East Hospital Ji'an hospital, Ji'an, China
| |
Collapse
|
46
|
Zheng X, Yang L, Shen X, Pan J, Chen Y, Chen J, Wang H, Meng J, Chen Z, Xie S, Li Y, Zhu B, Zhu W, Qin L, Lu L. Targeting Gsk3a reverses immune evasion to enhance immunotherapy in hepatocellular carcinoma. J Immunother Cancer 2024; 12:e009642. [PMID: 39174053 PMCID: PMC11340705 DOI: 10.1136/jitc-2024-009642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Immune escape is an important feature of hepatocellular carcinoma (HCC). The overall response rate of immune checkpoint inhibitors (ICIs) in HCC is still limited. Revealing the immune regulation mechanisms and finding new immune targets are expected to further improve the efficacy of immunotherapy. Our study aims to use CRISPR screening mice models to identify potential targets that play a critical role in HCC immune evasion and further explore their value in improving immunotherapy. METHODS We performed CRISPR screening in two mice models with different immune backgrounds (C57BL/6 and NPG mice) and identified the immunosuppressive gene Gsk3a as a candidate for further investigation. Flow cytometry was used to analyze the impact of Gsk3a on immune cell infiltration and T-cell function. RNA sequencing was used to identify the changes in neutrophil gene expression induced by Gsk3a and alterations in downstream molecules. The therapeutic value of the combination of Gsk3a inhibitors and anti-programmed cell death protein-1 (PD-1) antibody was also explored. RESULTS Gsk3a, as an immune inhibitory target, significantly promoted tumor growth in immunocompetent mice rather than immune-deficient mice. Gsk3a inhibited cytotoxic T lymphocytes (CTLs) function by inducing neutrophil chemotaxis. Gsk3a promoted self-chemotaxis of neutrophil expression profiles and neutrophil extracellular traps (NETs) formation to block T-cell activity through leucine-rich α-2-glycoprotein 1 (LRG1). A significant synergistic effect was observed when Gsk3a inhibitor was in combination with anti-PD-1 antibody. CONCLUSIONS We identified a potential HCC immune evasion target, Gsk3a, through CRISPR screening. Gsk3a induces neutrophil recruitment and NETs formation through the intermediate molecule LRG1, leading to the inhibition of CTLs function. Targeting Gsk3a can enhance CTLs function and improve the efficacy of ICIs.
Collapse
Affiliation(s)
- Xin Zheng
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Luyu Yang
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiaotian Shen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Junjie Pan
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yiran Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jixuan Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao Wang
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jiaqi Meng
- Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhenchao Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Sunzhe Xie
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yitong Li
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bolun Zhu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Wenwei Zhu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Zhang S, Deshpande A, Verma BK, Wang H, Mi H, Yuan L, Ho WJ, Jaffee EM, Zhu Q, Anders RA, Yarchoan M, Kagohara LT, Fertig EJ, Popel AS. Integration of Clinical Trial Spatial Multiomics Analysis and Virtual Clinical Trials Enables Immunotherapy Response Prediction and Biomarker Discovery. Cancer Res 2024; 84:2734-2748. [PMID: 38861365 DOI: 10.1158/0008-5472.can-24-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Due to the lack of treatment options, there remains a need to advance new therapeutics in hepatocellular carcinoma (HCC). The traditional approach moves from initial molecular discovery through animal models to human trials to advance novel systemic therapies that improve treatment outcomes for patients with cancer. Computational methods that simulate tumors mathematically to describe cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico, potentially greatly accelerating delivery of new therapeutics to patients. To facilitate the design of dosing regimens and identification of potential biomarkers for immunotherapy, we developed a new computational model to track tumor progression at the organ scale while capturing the spatial heterogeneity of the tumor in HCC. This computational model of spatial quantitative systems pharmacology was designed to simulate the effects of combination immunotherapy. The model was initiated using literature-derived parameter values and fitted to the specifics of HCC. Model validation was done through comparison with spatial multiomics data from a neoadjuvant HCC clinical trial combining anti-PD1 immunotherapy and a multitargeted tyrosine kinase inhibitor cabozantinib. Validation using spatial proteomics data from imaging mass cytometry demonstrated that closer proximity between CD8 T cells and macrophages correlated with nonresponse. We also compared the model output with Visium spatial transcriptomics profiling of samples from posttreatment tumor resections in the clinical trial and from another independent study of anti-PD1 monotherapy. Spatial transcriptomics data confirmed simulation results, suggesting the importance of spatial patterns of tumor vasculature and TGFβ in tumor and immune cell interactions. Our findings demonstrate that incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides a novel approach for patient outcome prediction and biomarker discovery. Significance: Incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides an effective approach for patient outcome prediction and biomarker discovery.
Collapse
Affiliation(s)
- Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Atul Deshpande
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Babita K Verma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Long Yuan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Yarchoan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Luciane T Kagohara
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Jackson CM, Pant A, Dinalankara W, Choi J, Jain A, Nitta R, Yazigi E, Saleh L, Zhao L, Nirschl TR, Kochel CM, Hwa-Lin Bergsneider B, Routkevitch D, Patel K, Cho KB, Tzeng S, Neshat SY, Kim YH, Smith BJ, Ramello MC, Sotillo E, Wang X, Green JJ, Bettegowda C, Li G, Brem H, Mackall CL, Pardoll DM, Drake CG, Marchionni L, Lim M. The cytokine Meteorin-like inhibits anti-tumor CD8 + T cell responses by disrupting mitochondrial function. Immunity 2024; 57:1864-1877.e9. [PMID: 39111315 PMCID: PMC11324406 DOI: 10.1016/j.immuni.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/08/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) hypofunction contributes to the progression of advanced cancers and is a frequent target of immunotherapy. Emerging evidence indicates that metabolic insufficiency drives T cell hypofunction during tonic stimulation, but the signals that initiate metabolic reprogramming in this context are largely unknown. Here, we found that Meteorin-like (METRNL), a metabolically active cytokine secreted by immune cells in the tumor microenvironment (TME), induced bioenergetic failure of CD8+ T cells. METRNL was secreted by CD8+ T cells during repeated stimulation and acted via both autocrine and paracrine signaling. Mechanistically, METRNL increased E2F-peroxisome proliferator-activated receptor delta (PPARδ) activity, causing mitochondrial depolarization and decreased oxidative phosphorylation, which triggered a compensatory bioenergetic shift to glycolysis. Metrnl ablation or downregulation improved the metabolic fitness of CD8+ T cells and enhanced tumor control in several tumor models, demonstrating the translational potential of targeting the METRNL-E2F-PPARδ pathway to support bioenergetic fitness of CD8+ TILs.
Collapse
Affiliation(s)
- Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ayush Pant
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wikum Dinalankara
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Saleh
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas R Nirschl
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Denis Routkevitch
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Stephany Tzeng
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Y Neshat
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Barbara J Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Cecilia Ramello
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jordan J Green
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Crystal L Mackall
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
49
|
Adapa SR, Meshram P, Sami A, Jiang RHY. Harnessing Porphyrin Accumulation in Liver Cancer: Combining Genomic Data and Drug Targeting. Biomolecules 2024; 14:959. [PMID: 39199347 PMCID: PMC11352895 DOI: 10.3390/biom14080959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The liver, a pivotal organ in human metabolism, serves as a primary site for heme biosynthesis, alongside bone marrow. Maintaining precise control over heme production is paramount in healthy livers to meet high metabolic demands while averting potential toxicity from intermediate metabolites, notably protoporphyrin IX. Intriguingly, our recent research uncovers a disrupted heme biosynthesis process termed 'porphyrin overdrive' in cancers that fosters the accumulation of heme intermediates, potentially bolstering tumor survival. Here, we investigate heme and porphyrin metabolism in both healthy and oncogenic human livers, utilizing primary human liver transcriptomics and single-cell RNA sequencing (scRNAseq). Our investigations unveil robust gene expression patterns in heme biosynthesis in healthy livers, supporting electron transport chain (ETC) and cytochrome P450 function without intermediate accumulation. Conversely, liver cancers exhibit rewired heme biosynthesis and a massive downregulation of cytochrome P450 gene expression. Notably, despite diminished drug metabolism, gene expression analysis shows that heme supply to the ETC remains largely unaltered or even elevated with patient cancer progression, suggesting a metabolic priority shift. Liver cancers selectively accumulate intermediates, which are absent in normal tissues, implicating their role in disease advancement as inferred by expression analysis. Furthermore, our findings in genomics establish a link between the aberrant gene expression of porphyrin metabolism and inferior overall survival in aggressive cancers, indicating potential targets for clinical therapy development. We provide in vitro proof-of-concept data on targeting porphyrin overdrive with a drug synergy strategy.
Collapse
Affiliation(s)
- Swamy R. Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Pravin Meshram
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Abdus Sami
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Rays H. Y. Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
50
|
Tran MA, Youssef D, Shroff S, Chowhan D, Beaumont KG, Sebra R, Mehrazin R, Wiklund P, Lin JJ, Horowitz A, Farkas AM, Galsky MD, Sfakianos JP, Bhardwaj N. Urine scRNAseq reveals new insights into the bladder tumor immune microenvironment. J Exp Med 2024; 221:e20240045. [PMID: 38847806 PMCID: PMC11157455 DOI: 10.1084/jem.20240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
Due to bladder tumors' contact with urine, urine-derived cells (UDCs) may serve as a surrogate for monitoring the tumor microenvironment (TME) in bladder cancer (BC). However, the composition of UDCs and the extent to which they mirror the tumor remain poorly characterized. We generated the first single-cell RNA-sequencing of BC patient UDCs with matched tumor and peripheral blood mononuclear cells (PBMC). BC urine was more cellular than healthy donor (HD) urine, containing multiple immune populations including myeloid cells, CD4+ and CD8+ T cells, natural killer (NK) cells, B cells, and dendritic cells (DCs) in addition to tumor and stromal cells. Immune UDCs were transcriptionally more similar to tumor than blood. UDCs encompassed cytotoxic and activated CD4+ T cells, exhausted and tissue-resident memory CD8+ T cells, macrophages, germinal-center-like B cells, tissue-resident and adaptive NK cells, and regulatory DCs found in tumor but lacking or absent in blood. Our findings suggest BC UDCs may be surrogates for the TME and serve as therapeutic biomarkers.
Collapse
Affiliation(s)
- Michelle A. Tran
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dina Youssef
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjana Shroff
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Disha Chowhan
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G. Beaumont
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenny J. Lin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Department of Immunology and Immunotherapy, The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam M. Farkas
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P. Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Extramural Member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|