1
|
Landry-Voyer AM, Holling T, Mis EK, Mir Hassani Z, Alawi M, Ji W, Jeffries L, Kutsche K, Bachand F, Lakhani SA. Biallelic variants in the conserved ribosomal protein chaperone gene PDCD2 are associated with hydrops fetalis and early pregnancy loss. Proc Natl Acad Sci U S A 2025; 122:e2426078122. [PMID: 40208938 DOI: 10.1073/pnas.2426078122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 04/12/2025] Open
Abstract
Pregnancy loss is a major problem in clinical medicine with devastating consequences for families. Next generation sequencing has improved our ability to identify underlying molecular causes, though over half of all cases lack a clear etiology. Here, we began with clinical evaluation combined with exome sequencing across independent families to identify bi-allelic candidate genetic variants in the Programmed Cell Death 2 (PDCD2) gene in multiple fetuses with nonimmune hydrops fetalis (NIHF). PDCD2 is an evolutionarily conserved protein with no prior association with monogenic disorders. PDCD2 is known to act as a molecular chaperone for the ribosomal protein uS5, and this complex formation is important for incorporation of uS5 into the 40S subunit, a crucial step in ribosome biogenesis. Primary fibroblasts from an affected fetus and cell lines expressing PDCD2 patient variants demonstrated reduced levels of PDCD2, reduced PDCD2 binding to uS5, and altered ribosomal RNA processing. Xenopus tadpoles with Pdcd2 knockdown demonstrated developmental defects and edema, reminiscent of the NIHF seen in affected fetuses, and showed altered ribosomal RNA processing. Through genetic, biochemical, and in vivo approaches, we provide evidence that bi-allelic PDCD2 variants cause an autosomal recessive ribosomal biogenesis disorder resulting in pregnancy loss.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
| | - Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Zabih Mir Hassani
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Center for Child and Adolescent Health, partner site Hamburg, Hamburg 20246, Germany
| | - François Bachand
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
2
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. mBio 2025; 16:e0022325. [PMID: 39998264 PMCID: PMC11980393 DOI: 10.1128/mbio.00223-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g., cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.IMPORTANCESexual reproduction is essential for long-term evolutionary success. Fungal cell-type identity is governed by the MAT locus, which is typically rapidly evolving and highly divergent between different mating types. In this study, we show that the a and α alleles of four genes encoded in the MAT locus of the opportunistic human fungal pathogen C. neoformans are essential. We demonstrate that a fifth gene, MYO2, which had been predicted to be essential, is in fact dispensable for cell viability. However, a functional MYO2 allele is important for cytokinesis and fungal pathogenicity. Our study highlights the need for careful genetic analyses in determining essential genes, which is complementary to high-throughput approaches. Additionally, the presence of essential genes in the MAT locus of C. neoformans provides insights into the function, maintenance, and evolution of these fast-evolving genomic regions.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Ford PW, Garshott DM, Narasimhan M, Ge X, Jordahl EM, Subramanya S, Bennett EJ. RNF10 and RIOK3 facilitate 40S ribosomal subunit degradation upon 60S biogenesis disruption or amino acid starvation. Cell Rep 2025; 44:115371. [PMID: 40022732 DOI: 10.1016/j.celrep.2025.115371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025] Open
Abstract
The initiation-specific ribosome-associated quality control pathway (iRQC) is activated when translation initiation complexes fail to transition to elongation-competent 80S ribosomes. Upon iRQC activation, RNF10 ubiquitylates the 40S proteins uS3 and uS5, which leads to 40S decay. How iRQC is activated in the absence of pharmacological translation inhibitors and what mechanisms govern iRQC capacity and activity remain unanswered questions. Here, we demonstrate that altering 60S:40S stoichiometry by disrupting 60S biogenesis triggers iRQC activation and 40S decay. Depleting the critical scanning helicase eIF4A1 impairs 40S ubiquitylation and degradation, indicating mRNA engagement is required for iRQC. We show that amino acid starvation conditions also stimulate iRQC-dependent 40S decay. We identify RIOK3 as a crucial iRQC factor that interacts with ubiquitylated 40S subunits to mediate degradation. Both RNF10 and RIOK3 protein levels increase upon iRQC pathway activation, establishing a feedforward mechanism that regulates iRQC capacity and subsequent 40S decay.
Collapse
Affiliation(s)
- Pierce W Ford
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle M Garshott
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mythreyi Narasimhan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuezhen Ge
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric M Jordahl
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shubha Subramanya
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Kotb NM, Ulukaya G, Ramamoorthy A, Park LS, Tang J, Hasson D, Rangan P. TORC1-driven translation of Nucleoporin44A promotes chromatin remodeling and germ cell-to-maternal transition in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643309. [PMID: 40161787 PMCID: PMC11952567 DOI: 10.1101/2025.03.14.643309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Oocyte specification is a critical developmental transition that requires the coordinated repression of germ cell-specific genes and activation of the maternal program to support embryogenesis. In Drosophila, the timely repression of germ cell and early oogenesis genes is essential for this transition, yet the mechanisms that coordinate this process remain unclear. Here, we uncover an unexpected translation-chromatin axis, where transient Target of Rapamycin Complex 1 (TORC1)-driven translation triggers chromatin remodeling, ensuring irreversible oocyte fate commitment. Through a screen, we identified ribosome biogenesis regulators, including Zinc finger protein RP-8 (Zfrp8) and TORC1 components, as key mediators of gene silencing. We show that TORC1 activity increases during oocyte specification, and disrupting ribosome biogenesis, translation, or TORC1 function prevents proper heterochromatin formation, leading to epigenetic instability. Polysome-seq analysis of zfrp8-depleted ovaries revealed that Zfrp8 is required for the translation of Nucleoporin 44A (Nup44A), a key nuclear pore complex (NPC) component. Given the role of the NPC in chromatin organization, independent disruption of Nup44A results in defective silencing of the germ cell and early oogenesis genes. Our findings reveal a mechanism in which translation-driven NPC remodeling coordinates heterochromatin establishment, facilitating the germ cell-to-maternal transition and ensuring proper oocyte fate commitment.
Collapse
Affiliation(s)
- Noor M. Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany State University of New York (SUNY), Albany, New York 12202, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Current address, Hologic Diagenode, 400 Morris Avenue, Suite 101, Denville, New Jersey 07834, USA
| | - Gulay Ulukaya
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Anupriya Ramamoorthy
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Lina Seojin Park
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Julia Tang
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Dan Hasson
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
5
|
Bressman ZJ, Corbett AH, Ghalei H. Built differently or defective: can RNA exosomopathies cause ribosome heterogeneity? Philos Trans R Soc Lond B Biol Sci 2025; 380:20230382. [PMID: 40045779 PMCID: PMC11883433 DOI: 10.1098/rstb.2023.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 03/09/2025] Open
Abstract
The RNA exosome is an essential, evolutionarily conserved ribonuclease required for processing and degradation of key cellular RNAs. The complex maintains RNA homeostasis within every cell by ensuring the proper maturation, quality control and turnover of various RNA species including rRNAs. A growing list of diseases, collectively termed RNA exosomopathies, are caused by mutations in genes encoding structural subunits of the RNA exosome complex. RNA exosomopathies often result in tissue-specific defects, particularly manifesting as neurological disorders, which is intriguing given the ubiquitous functions and expression of the RNA exosome. One such ubiquitous, essential function of the RNA exosome is its involvement in ribosome biogenesis. In this review, we discuss the established connections between the RNA exosome and ribosome biogenesis, exploring the potential mechanisms through which RNA exosomopathies could influence ribosome heterogeneity, leading to aberrant translation and pathogenesis. We highlight the critical need for research in this area that can aid in understanding the complex aetiology of RNA exosomopathies and the future development of therapeutic strategies to mitigate pathology.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Zachary J. Bressman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA30322, USA
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA30322, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA30322, USA
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA30322, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA30322, USA
| |
Collapse
|
6
|
Surya A, Bolton BM, Rothe R, Mejia-Trujillo R, Leonita A, Zhao Q, Arya A, Liu Y, Rangan R, Gorusu Y, Nguyen P, Cenik C, Sarinay Cenik E. Differential impacts of ribosomal protein haploinsufficiency on mitochondrial function. J Cell Biol 2025; 224:e202404084. [PMID: 39786340 PMCID: PMC11716151 DOI: 10.1083/jcb.202404084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
The interplay between ribosomal protein (RP) composition and mitochondrial function is essential for energy homeostasis. Balanced RP production optimizes protein synthesis while minimizing energy costs, but its impact on mitochondrial functionality remains unclear. Here, we investigated haploinsufficiency for RP genes (rps-10, rpl-5, rpl-33, and rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Significant mitochondrial morphological differences, upregulation of glutathione transferases, and SKN-1-dependent oxidative stress resistance were observed across mutants. Loss of a Datasingle rps-10 copy reduced mitochondrial activity, energy levels, and oxygen consumption, mirrored by similar reductions in mitochondrial activity and energy levels in lymphoblast cells with 50% lower RPS10 transcripts. Both systems exhibited altered translation efficiency (TE) of mitochondrial electron transport chain components, suggesting a conserved mechanism to adjust mitochondrial protein synthesis under ribosomal stress. Finally, mitochondrial membrane and cytosolic RPs showed significant RNA and TE covariation in lymphoblastoid cells, highlighting the interplay between protein synthesis machinery and mitochondrial energy production.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Blythe Marie Bolton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Reed Rothe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Amanda Leonita
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Alia Arya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Rekha Rangan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yasash Gorusu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Pamela Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Voit RA, Liao X, Caulier A, Antoszewski M, Cohen B, Armant M, Lu HY, Fleming TJ, Kamal E, Wahlster L, Roche AM, Everett JK, Petrichenko A, Huang MM, Clarke W, Myers KC, Forester C, Perez-Atayde A, Bushman FD, Pellin D, Shimamura A, Williams DA, Sankaran VG. Regulated GATA1 expression as a universal gene therapy for Diamond-Blackfan anemia. Cell Stem Cell 2025; 32:38-52.e6. [PMID: 39532107 PMCID: PMC11698655 DOI: 10.1016/j.stem.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Gene therapy using hematopoietic stem and progenitor cells is altering the therapeutic landscape for patients with hematologic, immunologic, and metabolic disorders but has not yet been successfully developed for individuals with the bone marrow failure syndrome Diamond-Blackfan anemia (DBA). More than 30 mutations cause DBA through impaired ribosome function and lead to inefficient translation of the erythroid master regulator GATA1, providing a potential avenue for therapeutic intervention applicable to all patients with DBA, irrespective of the underlying genotype. Here, we report the development of a clinical-grade lentiviral gene therapy that achieves erythroid lineage-restricted expression of GATA1. We show that this vector is capable of augmenting erythropoiesis in DBA models and diverse patient samples without impacting hematopoietic stem cell function or demonstrating any signs of premalignant clonal expansion. These preclinical safety and efficacy data provide strong support for the first-in-human universal gene therapy trial for DBA through regulated GATA1 expression.
Collapse
Affiliation(s)
- Richard A Voit
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Xiaotian Liao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Blake Cohen
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Myriam Armant
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henry Y Lu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis J Fleming
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elena Kamal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aoife M Roche
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Angelina Petrichenko
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mei-Mei Huang
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William Clarke
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Craig Forester
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Danilo Pellin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Joly A, Schott A, Phadke I, Gonzalez-Menendez P, Kinet S, Taylor N. Beyond ATP: Metabolite Networks as Regulators of Physiological and Pathological Erythroid Differentiation. Physiology (Bethesda) 2025; 40:0. [PMID: 39226028 DOI: 10.1152/physiol.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state, but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites, including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron, is required for red blood cell (RBC) maturation. In this review, we highlight the multifaceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of solute carrier (SLC) metabolite transporter upregulation. Finally, we discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.
Collapse
Affiliation(s)
- Axel Joly
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Arthur Schott
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Ira Phadke
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sandrina Kinet
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Naomi Taylor
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Wang Y, Wang J, Zhou Z, Gu Y, Zhu X, Yi Z, Cao C, He L, Du Y, Guo H, Tian Y, Fan Z. A read-through circular RNA RCRIN inhibits metabolic dysfunction-associated steatotic liver disease. J Hepatol 2024:S0168-8278(24)02760-0. [PMID: 39667599 DOI: 10.1016/j.jhep.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND & AIMS The molecular mechanisms underlying metabolic dysfunction-associated steatotic liver disease (MASLD) remain elusive and whether non-coding RNAs can serve as biomarkers and therapeutic targets in MASLD has not been determined. METHODS Exon capture RNA-sequencing analysis was used to identify read-through circular RNAs (rt-circRNAs) in livers from three patients with MASLD and three controls without MASLD. Hepatocyte-specific deletion or overexpression of rt-circRNA RCRIN were utilized to study MASLD pathogenesis. RESULTS We identified 1,126 rt-circRNAs in liver tissues from patients with MASLD. RCRIN was highly expressed in normal livers and was downregulated in MASLD livers. Rcrin deletion in hepatocytes caused lipid accumulation and MASLD development, while Rcrin overexpression suppressed MASLD progression. Mechanistically, in normal hepatocytes, highly expressed RCRIN bound to RPL8 protein to recruit RNF2 for its degradation, reducing RPL8-containing ribosome numbers and lipid accumulation. In MASLD livers, low RCRIN expression led to the release of RPL8 protein, increasing RPL8-containing ribosome numbers and lipid synthesis, and leading to greater lipid accumulation and endoplasmic reticulum stress. We synthesized RCRIN and N-acetylgalactosamine (GalNAc)-Rpl8 small-interfering RNAs, which both suppressed the pathogenesis of established MASLD in mice. CONCLUSIONS Our findings reveal an in vivo function of the rt-circRNA RCRIN, show its inhibitory effects in MASLD pathogenesis, and indicate that RCRIN and RPL8 may be therapeutic targets for candidate nucleic acid drugs to treat MASLD. IMPACT AND IMPLICATIONS Our finds reveal a novel mechanism connecting a read-through circular RNA RCRIN, ribosome heterogeneity and metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis. In normal hepatocytes, RCRIN exerts its role by reducing liver lipid accumulation and endoplasmic reticulum stress through promotion of RPL8 degradation. In patients with MASLD, lower RCRIN levels lead to the release of RPL8 to form RPL8-containing ribosomes, promoting lipid accumulation and endoplasmic reticulum stress. RCRIN overexpression and RPL8 depletion dramatically suppress MASLD development and progression. Our findings indicate that RCRIN and RPL8 might be potential therapeutic targets for the treatment of patients with MASLD.
Collapse
Affiliation(s)
- Yanying Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jianyi Wang
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Drug Control, Beijing 102206, China
| | - Ziheng Zhou
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Gu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhibin Yi
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changchang Cao
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing 100853, China
| | - Ying Du
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Guo
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tian
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zusen Fan
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626420. [PMID: 39677606 PMCID: PMC11642766 DOI: 10.1101/2024.12.02.626420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g. cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly-evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
11
|
Kong S, Zhu M, Scarpin MR, Pan D, Jia L, Martinez RE, Alamos S, Vadde BVL, Garcia HG, Qian SB, Brunkard JO, Roeder AHK. DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-signaling inhibitor proteins. Dev Cell 2024; 59:3141-3160.e7. [PMID: 39305905 PMCID: PMC11614703 DOI: 10.1016/j.devcel.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals robustly initiate and grow to a constant size to enclose and protect the inner floral organs. We previously characterized the mutant development-related myb-like 1 (drmy1), where 3-5 sepals initiate variably and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), two cytokinin-signaling inhibitors that are normally rapidly produced before sepal initiation. The resultant upregulation of cytokinin signaling disrupts robust auxin patterning and sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - M Regina Scarpin
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - David Pan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ryan E Martinez
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Alamos
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Batthula Vijaya Lakshmi Vadde
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA; Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Saba JA, Huang Z, Schole KL, Ye X, Bhatt SD, Li Y, Timp W, Cheng J, Green R. LARP1 binds ribosomes and TOP mRNAs in repressed complexes. EMBO J 2024; 43:6555-6572. [PMID: 39533057 PMCID: PMC11649897 DOI: 10.1038/s44318-024-00294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Terminal oligopyrimidine motif-containing mRNAs (TOPs) encode all ribosomal proteins in mammals and are regulated to tune ribosome synthesis to cell state. Previous studies have implicated LARP1 in 40S- or 80S-ribosome complexes that are thought to repress and stabilize TOPs. However, a molecular understanding of how LARP1 and TOPs interact with these ribosome complexes is lacking. Here, we show that LARP1 directly binds non-translating ribosomal subunits. Cryo-EM structures reveal a previously uncharacterized domain of LARP1 bound to and occluding the mRNA channel of the 40S subunit. Increased availability of free ribosomal subunits downstream of various stresses promote 60S joining at the same interface to form LARP1-80S complexes. Simultaneously, LARP1 engages the TOP via its previously characterized La/PAM2 and DM15 domains. Contrary to expectations, ribosome binding within these complexes is not required for LARP1-mediated TOP repression or stabilization, two canonical LARP1 functions. Together, this work provides molecular insight into how LARP1 directly binds ribosomal subunits and challenges existing models describing the function of repressed LARP1-40S/80S-TOP complexes.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong'an Road 131, 200032, Shanghai, China
| | - Kate L Schole
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xianwen Ye
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong'an Road 131, 200032, Shanghai, China
| | - Shrey D Bhatt
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong'an Road 131, 200032, Shanghai, China
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong'an Road 131, 200032, Shanghai, China.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Gianferante DM, Mendez KJW, Cole S, Gadalla SM, Alter BP, Savage SA, Giri N. Genotype-phenotype associations in individuals with Diamond Blackfan anaemia. EJHAEM 2024; 5:1117-1124. [PMID: 39691264 PMCID: PMC11647742 DOI: 10.1002/jha2.1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 12/19/2024]
Abstract
Introduction Diamond Blackfan anaemia (DBA) is a rare disorder characterized by failure of red blood cell production, congenital abnormalities and cancer predisposition, primarily caused by pathogenic germline variants in genes encoding ribosomal proteins. Methods We conducted a genotype-phenotype and outcome study of 121 patients with DBA spanning the 20-year history of the National Cancer Institute's Inherited Bone Marrow Failure Syndromes study. Patient phenotypes were compared by large versus small ribosomal protein genes, across genes with >5 cases (RPS19, RPS29, RPS26 and RPL35A) and by type of pathogenic variants (hypomorphic versus null, large deletions versus others). Results A pathogenic germline variant was identified in 71% of patients (n = 86/121) from 54 families. After adjusting for multiple testing, we found that patients with RPS29 variants were least likely to need treatment for anaemia while those with large ribosomal protein subunit variants had a higher proportion of intellectual disability and gastrointestinal abnormalities compared with small ribosomal protein subunit variants (p < 3.5 × 10-4). There were no statistically significant differences in overall survival or cancer incidence among patients with large or small ribosomal subunit genes. Conclusion This detailed genotype-phenotype study of DBA improves our understanding of the role of germline genetics in the clinical manifestations that may help guide the management of people with DBA.
Collapse
Affiliation(s)
- D. Matthew Gianferante
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIH, RockvilleBethesdaMarylandUSA
- Department of PediatricsUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Kyra J. W. Mendez
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIH, RockvilleBethesdaMarylandUSA
| | - Sarah Cole
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIH, RockvilleBethesdaMarylandUSA
- Department of PediatricsUniformed Services University of the Health SciencesBethesdaMarylandUSA
- Department of Cancer Epidemiology and GeneticsWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Shahinaz M. Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIH, RockvilleBethesdaMarylandUSA
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIH, RockvilleBethesdaMarylandUSA
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIH, RockvilleBethesdaMarylandUSA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIH, RockvilleBethesdaMarylandUSA
| |
Collapse
|
14
|
Nguyen LT, Hains AE, Aziz-Zanjani MO, Dalsass M, Farooqee SBUD, Lu Y, Jackson PK, Van Rechem C. Absence of SMARCB1 in rhabdoid tumor cells increases sensitivity to translation inhibition and alters translation efficiency of specific mRNAs. J Biol Chem 2024; 300:107988. [PMID: 39542244 PMCID: PMC11699736 DOI: 10.1016/j.jbc.2024.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Rhabdoid tumors, characterized and driven by the loss of the mammalian SWItch/sucrose nonfermentable subunit SMARCB1, are very aggressive childhood cancers that can arise in the brain, the kidney, or soft tissues. Cell lines derived from these tumors are specifically sensitivity to the translation inhibitor homoharringtonine. Having recently demonstrated mammalian SWItch/sucrose nonfermentable roles in translation, we assessed SMARCB1 potential roles in translation in rhabdoid tumor cells. We first revealed by cell viability assays that rhabdoid tumor cells' sensitivity to homoharringtonine were dependent on the absence of SMARCB1. Polysome profiling and immunoprecipitation experiments demonstrated the interaction of SMARCB1 with translation machinery. Global translation assays and ribosome profiling experiments further revealed that SMARCB1 re-expression increased global translation and altered translation efficiency of specific mRNAs. Most regulated mRNAs presented an increased translation efficiency and were involved in differentiation. In comparison with the entire transcriptome, these mRNAs presented a longer coding sequence and were enriched in GC. Finally, we demonstrated that SMARCB1 re-expression increased cytoplasmic localization of these mRNAs and that gene encoding these transcripts were bound by SMARCA4 and SMARCC1. In conclusion, this study reveals that the loss of SMARCB1 in rhabdoid tumors has specific consequences on mRNAs translation with potential to unveil new dependencies.
Collapse
Affiliation(s)
- Linh T Nguyen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Anastasia E Hains
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Mohammad O Aziz-Zanjani
- Department of Pathology, Stanford University, Stanford, California, USA; Department of Microbiology & Immunology, Stanford University, Stanford, California, USA; Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, California, USA
| | - Mattia Dalsass
- Immagina Biotechnology S.r.l., Pergine Valsugana, Trento, Italy
| | | | - Yingzhou Lu
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Peter K Jackson
- Department of Pathology, Stanford University, Stanford, California, USA; Department of Microbiology & Immunology, Stanford University, Stanford, California, USA; Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
15
|
Rice MC, Imun M, Jung SW, Park CY, Kim JS, Lai RW, Barr CR, Son JM, Tor K, Kim E, Lu RJ, Cohen I, Benayoun BA, Lee C. The Human Mitochondrial Genome Encodes for an Interferon-Responsive Host Defense Peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530691. [PMID: 39553971 PMCID: PMC11565950 DOI: 10.1101/2023.03.02.530691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The mitochondrial DNA (mtDNA) can trigger immune responses and directly entrap pathogens, but it is not known to encode for active immune factors. The immune system is traditionally thought to be exclusively nuclear-encoded. Here, we report the identification of a mitochondrial-encoded host defense peptide (HDP) that presumably derives from the primordial proto-mitochondrial bacteria. We demonstrate that MOTS-c (mitochondrial open reading frame from the twelve S rRNA type-c) is a mitochondrial-encoded amphipathic and cationic peptide with direct antibacterial and immunomodulatory functions, consistent with the peptide chemistry and functions of known HDPs. MOTS-c targeted E. coli and methicillin-resistant S. aureus (MRSA), in part, by targeting their membranes using its hydrophobic and cationic domains. In monocytes, IFNγ, LPS, and differentiation signals each induced the expression of endogenous MOTS-c. Notably, MOTS-c translocated to the nucleus to regulate gene expression during monocyte differentiation and programmed them into macrophages with unique transcriptomic signatures related to antigen presentation and IFN signaling. MOTS-c-programmed macrophages exhibited enhanced bacterial clearance and shifted metabolism. Our findings support MOTS-c as a first-in-class mitochondrial-encoded HDP and indicates that our immune system is not only encoded by the nuclear genome, but also by the co-evolved mitochondrial genome.
Collapse
|
16
|
Simon NM, Kim Y, Gribnau J, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis-regulatory evolution at translation genes. Heredity (Edinb) 2024; 133:308-316. [PMID: 39164520 PMCID: PMC11527988 DOI: 10.1038/s41437-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
Affiliation(s)
- Noah M Simon
- Biology of Aging Doctoral Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Yujin Kim
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Rotterdam, PO Box 2040, CA, 3000, Netherlands
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
Liu D, Wang H, Chen H, Tian X, Jiao Y, Wang C, Li Y, Li Z, Hou S, Ni Y, Liu B, Lan Y, Zhou J. Ribosome biogenesis is essential for hemogenic endothelial cells to generate hematopoietic stem cells. Development 2024; 151:dev202875. [PMID: 39324287 PMCID: PMC11529273 DOI: 10.1242/dev.202875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Undergoing endothelial-to-hematopoietic transition, a small fraction of embryonic aortic endothelial cells specializes into hemogenic endothelial cells (HECs) and eventually gives rise to hematopoietic stem cells (HSCs). Previously, we found that the activity of ribosome biogenesis (RiBi) is highly enriched in the HSC-primed HECs compared with adjacent arterial endothelial cells; however, whether RiBi is required in HECs for the generation of HSCs remains to be determined. Here, we have found that robust RiBi is markedly augmented during the endothelial-to-hematopoietic transition in mouse. Pharmacological inhibition of RiBi completely impeded the generation of HSCs in explant cultures. Moreover, disrupting RiBi selectively interrupted the HSC generation potential of HECs rather than T1 pre-HSCs, which was in line with its influence on cell cycle activity. Further investigation revealed that, upon HEC specification, the master transcription factor Runx1 dramatically bound to the loci of genes involved in RiBi, thereby facilitating this biological process. Taken together, our study provides functional evidence showing the indispensable role of RiBi in generating HSCs from HECs, providing previously unreported insights that may contribute to the improvement of HSC regeneration strategies.
Collapse
Affiliation(s)
- Di Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Haizhen Wang
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Haifeng Chen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xitong Tian
- Chinese PLA medical school, Chinese PLA General Hospital, Beijing 100853, China
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yuqing Jiao
- Chinese PLA medical school, Chinese PLA General Hospital, Beijing 100853, China
| | - Chi Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuhui Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Siyuan Hou
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jie Zhou
- Chinese PLA medical school, Chinese PLA General Hospital, Beijing 100853, China
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| |
Collapse
|
18
|
DeCleene NF, Asik E, Sanchez A, Williams CL, Kabotyanski EB, Zhao N, Chatterjee N, Miller KM, Wang YH, Bertuch AA. RPS19 and RPL5, the most commonly mutated genes in Diamond Blackfan anemia, impact DNA double-strand break repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617668. [PMID: 39416207 PMCID: PMC11482920 DOI: 10.1101/2024.10.10.617668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Diamond Blackfan anemia (DBA) is caused by germline heterozygous loss-of-function pathogenic variants (PVs) in ribosomal protein (RP) genes, most commonly RPS19 and RPL5. In addition to red cell aplasia, individuals with DBA are at increased risk of various cancers. Importantly, the mechanism(s) underlying cancer predisposition are poorly understood. We found that DBA patient-derived lymphoblastoid cells had persistent γ-H2AX foci following ionizing radiation (IR) treatment, suggesting DNA double-strand break (DSB) repair defects. RPS19- and RPL5-knocked down (KD) CD34+ cells had delayed repair of IR-induced DSBs, further implicating these RPs in DSB repair. Assessing the impact of RPS19- and RPL5-KD on specific DSB repair pathways, we found RPS19-KD decreased the efficiency of pathways requiring extensive end-resection, whereas RPL5-KD increased end-joining pathways. Additionally, RAD51 was reduced in RPS19- and RPL5-KD and RPS19- and RPL5-mutated DBA cells, whereas RPS19-deficient cells also had a reduction in PARP1 and BRCA2 proteins. RPS19-KD cells had an increase in nuclear RPA2 and a decrease in nuclear RAD51 foci post-IR, reflective of alterations in early, critical steps of homologous recombination. Notably, RPS19 and RPL5 interacted with poly(ADP)-ribose chains noncovalently, were recruited to DSBs in a poly(ADP)-ribose polymerase activity-dependent manner, and interacted with Ku70 and histone H2A. RPL5's recruitment, but not RPS19's, also required p53, suggesting that RPS19 and RPL5 directly participate in DSB repair via different pathways. We propose that defective DSB repair arising from haploinsufficiency of these RPs may underline the cancer predisposition in DBA.
Collapse
Affiliation(s)
- Nicholas F. DeCleene
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Elif Asik
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin
| | - Christopher L. Williams
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | | | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Nimrat Chatterjee
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin
| | - Yu-Hsiu Wang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch
| | - Alison A. Bertuch
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| |
Collapse
|
19
|
Du C, Liu C, Yu K, Zhang S, Fu Z, Chen X, Liao W, Chen J, Zhang Y, Wang X, Chen M, Chen F, Shen M, Wang C, Chen S, Wang S, Wang J. Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury. Cell Stem Cell 2024; 31:1484-1500.e9. [PMID: 39181130 DOI: 10.1016/j.stem.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.
Collapse
Affiliation(s)
- Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Chaonan Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Frontier Medical Training Brigade, Army Medical University (Third Military Medical University), Xinjiang 831200, China
| | - Kuan Yu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shuzhen Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zeyu Fu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinliang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weinian Liao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yimin Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Hematology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610008, China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
20
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
21
|
Fuentes P, Pelletier J, Gentilella A. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease. NAR Cancer 2024; 6:zcae032. [PMID: 39045153 PMCID: PMC11263879 DOI: 10.1093/narcan/zcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The ribosome is a remarkably complex machinery, at the interface with diverse cellular functions and processes. Evolutionarily conserved, yet intricately regulated, ribosomes play pivotal roles in decoding genetic information into the synthesis of proteins and in the generation of biomass critical for cellular physiological functions. Recent insights have revealed the existence of ribosome heterogeneity at multiple levels. Such heterogeneity extends to cancer, where aberrant ribosome biogenesis and function contribute to oncogenesis. This led to the emergence of the concept of 'onco-ribosomes', specific ribosomal variants with altered structural dynamics, contributing to cancer initiation and progression. Ribosomal proteins (RPs) are involved in many of these alterations, acting as critical factors for the translational reprogramming of cancer cells. In this review article, we highlight the roles of RPs in ribosome biogenesis, how mutations in RPs and their paralogues reshape the translational landscape, driving clonal evolution and therapeutic resistance. Furthermore, we present recent evidence providing new insights into post-translational modifications of RPs, such as ubiquitylation, UFMylation and phosphorylation, and how they regulate ribosome recycling, translational fidelity and cellular stress responses. Understanding the intricate interplay between ribosome complexity, heterogeneity and RP-mediated regulatory mechanisms in pathology offers profound insights into cancer biology and unveils novel therapeutic avenues targeting the translational machinery in cancer.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08908, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
22
|
Zhang W, Zhang M, Ma L, Jariyasakulroj S, Chang Q, Lin Z, Lu Z, Chen JF. Impaired phase separation and nucleolar functions in hiPSC models of SNORD118-related ribosomopathies. iScience 2024; 27:110430. [PMID: 39108718 PMCID: PMC11300908 DOI: 10.1016/j.isci.2024.110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 01/21/2025] Open
Abstract
Ribosomopathies arise from the disruptions in ribosome biogenesis within the nucleolus, which is organized via liquid-liquid phase separation (LLPS). The roles of LLPS in ribosomopathies remain poorly understood. Here, we generated human induced pluripotent stem cell (hiPSC) models of ribosomopathy caused by mutations in small nucleolar RNA (snoRNA) gene SNORD118. Mutant hiPSC-derived neural progenitor cells (NPCs) or neural crest cells (NCCs) exhibited ribosomopathy hallmark cellular defects resulting in reduced organoid growth, recapitulating developmental delay in patients. SNORD118 mutations in NPCs disrupted nucleolar morphology and LLPS properties coupled with impaired ribosome biogenesis and a translational downregulation of fibrillarin (FBL), the key LLPS effector acting via the intrinsically disordered region (IDR) motif. IDR-depleted FBL failed to rescue NPC defects, whereas a chimeric FBL with swapped IDR motif from an unrelated protein mitigated ribosomopathy and organoid growth defects. Thus, SNORD118 human iPSC models revealed aberrant phase separation and nucleolar functions as potential pathogenic mechanisms in ribosomopathies.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Supawadee Jariyasakulroj
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Qing Chang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ziying Lin
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Joshi P, Keyvani Chahi A, Liu L, Moreira S, Vujovic A, Hope KJ. RNA binding protein-directed control of leukemic stem cell evolution and function. Hemasphere 2024; 8:e116. [PMID: 39175825 PMCID: PMC11339706 DOI: 10.1002/hem3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 08/24/2024] Open
Abstract
Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post-transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post-transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post-transcriptional control as actionable targets for precision therapy of AML.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ava Keyvani Chahi
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Lina Liu
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Steven Moreira
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ana Vujovic
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Kristin J. Hope
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| |
Collapse
|
24
|
Yang J, Shi X, Liu X, Qiao X, Zhou X, Li H, Du Y, Chen M, Fang D, Han B, Long Z. STK10 mutations block erythropoiesis in acquired pure red cell aplasia via impairing ribosome biogenesis. Ann Hematol 2024; 103:2711-2720. [PMID: 38761185 DOI: 10.1007/s00277-024-05802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Acquired pure red cell aplasia (PRCA) is anemia associated with the absence of erythroblasts and is characterized by persistent and easy recurrence. However, the underlying mechanisms of acquired PRCA remain obscure, and the role of gene mutations in the pathogenesis of acquired PRCA is not fully characterized. In the present study, we detected thirty newly diagnosed patients with acquired PRCA using whole exome sequencing, and a potential role for STK10 in acquired PRCA was uncovered. The mRNA levels of STK10 in three patients with STK10 mutations were decreased. These three patients had a poor response to immunosuppressive therapy and two died in the follow-up period. Here we report that knockdown of STK10 inhibits erythroid differentiation and promotes apoptosis of K562 cells. We show that knockdown of STK10 resulted in inhibition of ribosome biogenesis and reduced ribosome levels in K562 cells. We also show that the p53 signaling pathway is activated by knockdown of STK10. Our results imply that ribosome biogenesis downregulation together with pathological p53 activation prevents normal erythropoiesis. Our study uncovers a new pathophysiological mechanism leading to acquired PRCA driven by STK10 mutations.
Collapse
Affiliation(s)
- Jichun Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaofeng Shi
- Department of Hematology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Xinyao Liu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xinrui Qiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xun Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongmin Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yali Du
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Dongdong Fang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
25
|
Fellmann F, Saunders C, O’Donohue MF, Reid DW, McFadden KA, Montel-Lehry N, Yu C, Fang M, Zhang J, Royer-Bertrand B, Farinelli P, Karboul N, Willer JR, Fievet L, Bhuiyan ZA, Kleinhenz AL, Jadeau J, Fulbright J, Rivolta C, Renella R, Katsanis N, Beckmann JS, Nicchitta CV, Da Costa L, Davis EE, Gleizes PE. An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants. JCI Insight 2024; 9:e172475. [PMID: 39088281 PMCID: PMC11385091 DOI: 10.1172/jci.insight.172475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.
Collapse
Affiliation(s)
- Florence Fellmann
- The ColLaboratory, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Carol Saunders
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | | | - David W. Reid
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Kelsey A. McFadden
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathalie Montel-Lehry
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Cong Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Pietro Farinelli
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Zahurul Alam Bhuiyan
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Alissa L.W. Kleinhenz
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie Jadeau
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Joy Fulbright
- Division of Hematology/Oncology, Children’s Mercy Hospital and Clinics, Kansas City, Missouri, USA
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Raffaele Renella
- Division of Pediatrics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Jacques S. Beckmann
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Clinical Bioinformatics, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christopher V. Nicchitta
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, Paris, France
- Université Paris Cité, Paris, France
- Hematim EA4666, CURS, CHU Amiens, Amiens, France
- LABEX GR-EX, Paris, France
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
26
|
Wilkes MC, Shibuya A, Liu YL, Mark K, Mercado J, Saxena M, Sathianathen RS, Kim HN, Glader B, Kenny P, Sakamoto KM. Activation of nemo-like kinase in diamond blackfan anemia suppresses early erythropoiesis by preventing mitochondrial biogenesis. J Biol Chem 2024; 300:107542. [PMID: 38992436 PMCID: PMC11345392 DOI: 10.1016/j.jbc.2024.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
Diamond Blackfan Anemia (DBA) is a rare macrocytic red blood cell aplasia that usually presents within the first year of life. The vast majority of patients carry a mutation in one of approximately 20 genes that results in ribosomal insufficiency with the most significant clinical manifestations being anemia and a predisposition to cancers. Nemo-like Kinase (NLK) is hyperactivated in the erythroid progenitors of DBA patients and inhibition of this kinase improves erythropoiesis, but how NLK contributes to the pathogenesis of the disease is unknown. Here we report that activated NLK suppresses the critical upregulation of mitochondrial biogenesis required in early erythropoiesis. During normal erythropoiesis, mTORC1 facilitates the translational upregulation of Transcription factor A, mitochondrial (TFAM), and Prohibin 2 (PHB2) to increase mitochondrial biogenesis. In our models of DBA, active NLK phosphorylates the regulatory component of mTORC1, thereby suppressing mTORC1 activity and preventing mTORC1-mediated TFAM and PHB2 upregulation and subsequent mitochondrial biogenesis. Improvement of erythropoiesis that accompanies NLK inhibition is negated when TFAM and PHB2 upregulation is prevented. These data demonstrate that a significant contribution of NLK on the pathogenesis of DBA is through loss of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mark C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA; Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA.
| | - Aya Shibuya
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Y Lucy Liu
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Kailen Mark
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jaqueline Mercado
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Mallika Saxena
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Ryan S Sathianathen
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Hye Na Kim
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Bertil Glader
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Paraic Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, USA
| |
Collapse
|
27
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
28
|
Simon NM, Kim Y, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis -regulatory evolution at translation genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549406. [PMID: 37503246 PMCID: PMC10370129 DOI: 10.1101/2023.07.18.549406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis -regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
|
29
|
Iskander D, Karadimitris A, Roberts I. Harnessing Single-Cell Technologies in the Search for New Therapies for Diamond-Blackfan Anemia Syndrome. Exp Hematol 2024; 135:104235. [PMID: 38740323 DOI: 10.1016/j.exphem.2024.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The emergence of multiomic single-cell technologies over the last decade has led to improved insights into both normal hematopoiesis and its perturbation in a variety of hematological disorders. Diamond-Blackfan anemia (DBA) syndrome is one such disorder where single-cell assays have helped to delineate the cellular and molecular defects underlying the disease. DBA is caused by heterozygous loss-of-function germline variants in genes encoding ribosomal proteins (RPs). Despite the widespread role of ribosomes in hematopoiesis, the most frequent and severe cytopenia in DBA is anemia. In this review we discussed how single-cell studies, including clonogenic cell culture assays, fluorescence-activated cell sorting (FACS) and single-cell RNA sequencing (scRNA-seq), have led to insights into the pathogenesis of DBA. The main therapies are regular blood transfusions, glucocorticoids, or hematopoietic stem cell transplantation (HSCT) but all are associated with significant morbidity and mortality. We will therefore outline how single-cell studies can inform new therapies for DBA. Furthermore, we discussed how DBA serves as a useful model for understanding normal erythropoiesis in terms of its cellular hierarchy, molecular regulation during homeostasis, and response to "stress."
Collapse
Affiliation(s)
- Deena Iskander
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom; Department of Paediatric Haematology, St Mary's Hospital, Imperial College Healthcare Trust, London, United Kingdom.
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Irene Roberts
- MRC Molecular Haematology Unit, WIMM, University of Oxford, Oxford, United Kingdom; Department of Paediatrics, Children's Hospital and MHU, WIMM, Oxford University and John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
30
|
Law PP, Mikheeva LA, Rodriguez-Algarra F, Asenius F, Gregori M, Seaborne RAE, Yildizoglu S, Miller JRC, Tummala H, Mesnage R, Antoniou MN, Li W, Tan Q, Hillman SL, Rakyan VK, Williams DJ, Holland ML. Ribosomal DNA copy number is associated with body mass in humans and other mammals. Nat Commun 2024; 15:5006. [PMID: 38866738 PMCID: PMC11169392 DOI: 10.1038/s41467-024-49397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Body mass results from a complex interplay between genetics and environment. Previous studies of the genetic contribution to body mass have excluded repetitive regions due to the technical limitations of platforms used for population scale studies. Here we apply genome-wide approaches, identifying an association between adult body mass and the copy number (CN) of 47S-ribosomal DNA (rDNA). rDNA codes for the 18 S, 5.8 S and 28 S ribosomal RNA (rRNA) components of the ribosome. In mammals, there are hundreds of copies of these genes. Inter-individual variation in the rDNA CN has not previously been associated with a mammalian phenotype. Here, we show that rDNA CN variation associates with post-pubertal growth rate in rats and body mass index in adult humans. rDNA CN is not associated with rRNA transcription rates in adult tissues, suggesting the mechanistic link occurs earlier in development. This aligns with the observation that the association emerges by early adulthood.
Collapse
Affiliation(s)
- Pui Pik Law
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liudmila A Mikheeva
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | | | - Fredrika Asenius
- UCL EGA Institute for Women's Health, University College London, London, UK
| | - Maria Gregori
- UCL EGA Institute for Women's Health, University College London, London, UK
| | - Robert A E Seaborne
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Human and Applied Physiological Studies, King's College London, London, UK
| | - Selin Yildizoglu
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James R C Miller
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Hemanth Tummala
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Michael N Antoniou
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Weilong Li
- Population Research Unit, University of Helsinki, Helsinki, Finland
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Sara L Hillman
- UCL EGA Institute for Women's Health, University College London, London, UK
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David J Williams
- UCL EGA Institute for Women's Health, University College London, London, UK
| | - Michelle L Holland
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK.
| |
Collapse
|
31
|
Holmes MJ, Bastos MS, Dey V, Severo V, Wek RC, Sullivan WJ. mRNA cap-binding protein eIF4E1 is a novel regulator of Toxoplasma gondii latency. mBio 2024; 15:e0295423. [PMID: 38747593 PMCID: PMC11237481 DOI: 10.1128/mbio.02954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/15/2024] [Indexed: 05/28/2024] Open
Abstract
The protozoan parasite Toxoplasma gondii causes serious opportunistic disease due to its ability to persist in patients as latent tissue cysts. The molecular mechanisms coordinating conversion between proliferative parasites (tachyzoites) and latent cysts (bradyzoites) are not fully understood. We previously showed that phosphorylation of eIF2α accompanies bradyzoite formation, suggesting that this clinically relevant process involves regulation of mRNA translation. In this study, we investigated the composition and role of eIF4F multi-subunit complexes in translational control. Using CLIPseq, we find that the cap-binding subunit, eIF4E1, localizes to the 5'-end of all tachyzoite mRNAs, many of which show evidence of stemming from heterogeneous transcriptional start sites. We further show that eIF4E1 operates as the predominant cap-binding protein in two distinct eIF4F complexes. Using genetic and pharmacological approaches, we found that eIF4E1 deficiency triggers efficient spontaneous formation of bradyzoites without stress induction. Consistent with this result, we also show that stress-induced bradyzoites exhibit reduced eIF4E1 expression. Overall, our findings establish a novel role for eIF4F in translational control required for parasite latency and microbial persistence. IMPORTANCE Toxoplasma gondii is an opportunistic pathogen important to global human and animal health. There are currently no chemotherapies targeting the encysted form of the parasite. Consequently, a better understanding of the mechanisms controlling encystation is required. Here we show that the mRNA cap-binding protein, eIF4E1, regulates the encystation process. Encysted parasites reduce eIF4E1 levels, and depletion of eIF4E1 decreases the translation of ribosome-associated machinery and drives Toxoplasma encystation. Together, these data reveal a new layer of mRNA translational control that regulates parasite encystation and latency.
Collapse
Affiliation(s)
- Michael J Holmes
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matheus S Bastos
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vishakha Dey
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vanessa Severo
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William J Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
Anastas V, Chavdoula E, La Ferlita A, Soysal B, Cosentini I, Nigita G, Kearse MG, Tsichlis PN. KDM2B is required for ribosome biogenesis and its depletion unequally affects mRNA translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595403. [PMID: 38826406 PMCID: PMC11142201 DOI: 10.1101/2024.05.22.595403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
KDM2B is a JmjC domain lysine demethylase, which promotes cell immortalization, stem cell self-renewal and tumorigenesis. Here we employed a multi-omics strategy to address its role in ribosome biogenesis and mRNA translation. These processes are required to sustain cell proliferation, an important cancer hallmark. Contrary to earlier observations, KDM2B promotes ribosome biogenesis by stimulating the transcription of genes encoding ribosome biogenesis factors and ribosomal proteins, particularly those involved in the biogenesis of the 40S ribosomal subunits. Knockdown of KDM2B impaired the assembly of the small and large subunit processomes, as evidenced by specific defects in pre-ribosomal RNA processing. The final outcome was a decrease in the rate of ribosome assembly and in the abundance of ribosomes, and inhibition of mRNA translation. The inhibition of translation was distributed unequally among mRNAs with different features, suggesting that mRNA-embedded properties influence how mRNAs interpret ribosome abundance. This study identified a novel mechanism contributing to the regulation of translation and provided evidence for a rich biology elicited by a pathway that depends on KDM2B, and perhaps other regulators of translation.
Collapse
Affiliation(s)
- Vollter Anastas
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Evangelia Chavdoula
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Burak Soysal
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Ilaria Cosentini
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Michael G. Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Philip N. Tsichlis
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
33
|
Hwang SP, Denicourt C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 2024; 6:zcae017. [PMID: 38633862 PMCID: PMC11023387 DOI: 10.1093/narcan/zcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The dysregulation of ribosome biogenesis is a hallmark of cancer, facilitating the adaptation to altered translational demands essential for various aspects of tumor progression. This review explores the intricate interplay between ribosome biogenesis and cancer development, highlighting dynamic regulation orchestrated by key oncogenic signaling pathways. Recent studies reveal the multifaceted roles of ribosomes, extending beyond protein factories to include regulatory functions in mRNA translation. Dysregulated ribosome biogenesis not only hampers precise control of global protein production and proliferation but also influences processes such as the maintenance of stem cell-like properties and epithelial-mesenchymal transition, contributing to cancer progression. Interference with ribosome biogenesis, notably through RNA Pol I inhibition, elicits a stress response marked by nucleolar integrity loss, and subsequent G1-cell cycle arrest or cell death. These findings suggest that cancer cells may rely on heightened RNA Pol I transcription, rendering ribosomal RNA synthesis a potential therapeutic vulnerability. The review further explores targeting ribosome biogenesis vulnerabilities as a promising strategy to disrupt global ribosome production, presenting therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
34
|
Kong S, Zhu M, Scarpin MR, Pan D, Jia L, Martinez RE, Alamos S, Vadde BVL, Garcia HG, Qian SB, Brunkard JO, Roeder AHK. DRMY1 promotes robust morphogenesis by sustaining the translation of cytokinin signaling inhibitor proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.07.536060. [PMID: 37066395 PMCID: PMC10104159 DOI: 10.1101/2023.04.07.536060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals robustly initiate and grow to constant size to enclose and protect the inner floral organs. We previously characterized the mutant development related myb-like1 ( drmy1 ), where 3-5 sepals initiate variably and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), two cytokinin signaling inhibitors that are normally rapidly produced before sepal initiation. The resultant upregulation of cytokinin signaling disrupts robust auxin patterning and sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.
Collapse
|
35
|
Giménez Y, Palacios M, Sánchez-Domínguez R, Zorbas C, Peral J, Puzik A, Ugalde L, Alberquilla O, Villanueva M, Río P, Gálvez E, Da Costa L, Strullu M, Catala A, Ruiz-Llobet A, Segovia JC, Sevilla J, Strahm B, Niemeyer CM, Beléndez C, Leblanc T, Lafontaine DL, Bueren J, Navarro S. Lentivirus-mediated gene therapy corrects ribosomal biogenesis and shows promise for Diamond Blackfan anemia. JCI Insight 2024; 9:e171650. [PMID: 38775150 PMCID: PMC11141922 DOI: 10.1172/jci.insight.171650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/10/2024] [Indexed: 06/02/2024] Open
Abstract
This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients' blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.
Collapse
Affiliation(s)
- Yari Giménez
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Manuel Palacios
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Jorge Peral
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Alexander Puzik
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Ugalde
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Omaira Alberquilla
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Mariela Villanueva
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | | | - Lydie Da Costa
- AP-HP, Hematology diagnostic laboratory, Hôpital Robert-Debré, Paris, France
- University of Paris; Hematim, UR4666, UPJV; LABEX GR-EX, Paris, France
| | - Marion Strullu
- AP-HP, service Immuno-Hématologie pédiatique, Hôpital R. Debré, Paris, France
| | | | | | - Jose Carlos Segovia
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | | | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M. Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristina Beléndez
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Sección de Hematología y Oncología Pediátricas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Thierry Leblanc
- AP-HP, service Immuno-Hématologie pédiatique, Hôpital R. Debré, Paris, France
| | - Denis L.J. Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Juan Bueren
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
36
|
Trudel G, Stratis D, Rocheleau L, Pelchat M, Laneuville O. Transcriptomic evidence of erythropoietic adaptation from the International Space Station and from an Earth-based space analog. NPJ Microgravity 2024; 10:55. [PMID: 38740795 PMCID: PMC11091056 DOI: 10.1038/s41526-024-00400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Space anemia affects astronauts and the underlying molecular alterations remain unknown. We evaluated the response of erythropoiesis-modulating genes to spaceflight through the analysis of leukocyte transcriptomes from astronauts during long-duration spaceflight and from an Earth model of microgravity. Differential expression analysis identified 50 genes encoding ribosomal proteins with reduced expression at the transition to bed rest and increased during the bed rest phase; a similar trend was observed in astronauts. Additional genes associated with anemia (15 genes), erythrocyte maturation (3 genes), and hemoglobin (6 genes) were down-regulated during bed rest and increased during reambulation. Transcript levels of the erythropoiesis transcription factor GATA1 and nine of most enriched erythrocyte proteins increased at reambulation after bed rest and at return to Earth from space. Dynamic changes of the leukocyte transcriptome composition while in microgravity and during reambulation supported an erythropoietic modulation accompanying the hemolysis of space anemia and of immobility-induced anemia.
Collapse
Affiliation(s)
- Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Medicine, Division of Physiatry, Faculty of Medicine, University of Ottawa, 505 Smyth Road, Ottawa, ON, K1H 8M2, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Daniel Stratis
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie Private Drive, Ottawa, ON, K1N 6N5, Canada.
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Odette Laneuville
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie Private Drive, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
37
|
Surya A, Bolton BM, Rothe R, Mejia-Trujillo R, Zhao Q, Leonita A, Liu Y, Rangan R, Gorusu Y, Nguyen P, Cenik C, Cenik ES. Cytosolic Ribosomal Protein Haploinsufficiency affects Mitochondrial Morphology and Respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589775. [PMID: 38659761 PMCID: PMC11042305 DOI: 10.1101/2024.04.16.589775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The interplay between ribosomal protein composition and mitochondrial function is essential for sustaining energy homeostasis. Precise stoichiometric production of ribosomal proteins is crucial to maximize protein synthesis efficiency while reducing the energy costs to the cell. However, the impact of this balance on mitochondrial ATP generation, morphology and function remains unclear. Particularly, the loss of a single copy ribosomal protein gene is observed in Mendelian disorders like Diamond Blackfan Anemia and is common in somatic tumors, yet the implications of this imbalance on mitochondrial function and energy dynamics are still unclear. In this study, we investigated the impact of haploinsufficiency for four ribosomal protein genes implicated in ribosomopathy disorders (rps-10, rpl-5, rpl-33, rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Our findings uncover significant, albeit variably penetrant, mitochondrial morphological differences across these mutants, alongside an upregulation of glutathione transferases, and SKN-1 dependent increase in oxidative stress resistance, indicative of increased ROS production. Specifically, loss of a single copy of rps-10 in C. elegans led to decreased mitochondrial activity, characterized by lower energy levels and reduced oxygen consumption. A similar reduction in mitochondrial activity and energy levels was observed in human leukemia cells with a 50% reduction in RPS10 transcript levels. Importantly, we also observed alterations in the translation efficiency of nuclear and mitochondrial electron transport chain components in response to reductions in ribosomal protein genes' expression in both C. elegans and human cells. This suggests a conserved mechanism whereby the synthesis of components vital for mitochondrial function are adjusted in the face of compromised ribosomal machinery. Finally, mitochondrial membrane and cytosolic ribosomal components exhibited significant covariation at the RNA and translation efficiency level in lymphoblastoid cells across a diverse group of individuals, emphasizing the interplay between the protein synthesis machinery and mitochondrial energy production. By uncovering the impact of ribosomal protein haploinsufficiency on the translation efficiency of electron transport chain components, mitochondrial physiology, and the adaptive stress responses, we provide evidence for an evolutionarily conserved strategy to safeguard cellular functionality under genetic stress.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Blythe Marie Bolton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Reed Rothe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel Mejia-Trujillo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Amanda Leonita
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Rekha Rangan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yasash Gorusu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Pamela Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
38
|
Duncan BB, Lotter JL, Superata J, Barranta ME, Machado T, Darden I, Venugopal S, Wu CO, Abkowitz JL, Dunbar CE, Young DJ. Treatment of refractory/relapsed Diamond-Blackfan anaemia with eltrombopag. Br J Haematol 2024; 204:2077-2085. [PMID: 38462764 PMCID: PMC11212774 DOI: 10.1111/bjh.19357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Diamond-Blackfan anaemia (DBA) is a rare, inherited bone marrow failure syndrome with a ribosomal defect causing slowed globin chain production with normal haem synthesis, causing an overabundance of reactive iron/haem and erythroid-specific cellular toxicity. Eltrombopag, a non-peptide thrombopoietin receptor agonist, is a potent intracellular iron chelator and induced a robust durable response in an RPS19-mutated DBA patient on another trial. We hypothesized eltrombopag would improve RBC production in DBA patients. We conducted a single-centre, single-arm pilot study (NCT04269889) assessing safety and erythroid response of 6 months of daily, fixed-dose eltrombopag for DBA patients. Fifteen transfusion-dependent (every 3-5 weeks) patients (median age 18 [range 2-56]) were treated. One responder had sustained haemoglobin improvement and >50% reduction in RBC transfusion frequency. Of note, 7/15 (41%) patients required dose reductions or sustained discontinuation of eltrombopag due to asymptomatic thrombocytosis. Despite the low response rate, eltrombopag has now improved erythropoiesis in several patients with DBA with a favourable safety profile. Dosing restrictions due to thrombocytosis may cause insufficient iron chelation to decrease haem production and improve anaemia in most patients. Future work will focus on erythropoiesis dynamics in patients and use of haem synthesis inhibitors without an impact on other haematopoietic lineages.
Collapse
Affiliation(s)
- Brynn B Duncan
- Translational Stem Cell Biology Branch, NHLBI, Bethesda, Maryland, USA
| | | | | | | | - Tania Machado
- Office of the Clinical Director, NHLBI, Bethesda, Maryland, USA
| | - Ivana Darden
- Office of the Clinical Director, NHLBI, Bethesda, Maryland, USA
| | | | - Colin O Wu
- Office of Biostatistics Research, NHLBI, Bethesda, Maryland, USA
| | - Janis L Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, NHLBI, Bethesda, Maryland, USA
| | - David J Young
- Translational Stem Cell Biology Branch, NHLBI, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Koury MJ, Hausrath DJ. Macrocytic anemias. Curr Opin Hematol 2024; 31:82-88. [PMID: 38334746 DOI: 10.1097/moh.0000000000000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
PURPOSE OF REVIEW Over the last century, the diseases associated with macrocytic anemia have been changing with more patients currently having hematological diseases including malignancies and myelodysplastic syndrome. The intracellular mechanisms underlying the development of anemia with macrocytosis can help in understanding normal erythropoiesis. Adaptations to these diseases involving erythroid progenitor and precursor cells lead to production of fewer but larger red blood cells, and understanding these mechanisms can provide information for possible treatments. RECENT FINDINGS Both inherited and acquired bone marrow diseases involving primarily impaired or delayed erythroid cell division or secondary adaptions to basic erythroid cellular deficits that results in prolonged cell division frequently present with macrocytic anemia. SUMMARY OF FINDINGS In marrow failure diseases, large accumulations of iron and heme in early stages of erythroid differentiation make cells in those stages especially susceptible to death, but the erythroid cells that can survive the early stages of terminal differentiation yield fewer but larger erythrocytes that are recognized clinically as macrocytic anemia. Other disorders that limit deoxynucleosides required for DNA synthesis affect a broader range of erythropoietic cells, but they also lead to macrocytic anemia. The source of macrocytosis in other diseases remains uncertain.
Collapse
Affiliation(s)
- Mark J Koury
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA and Medical Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | |
Collapse
|
40
|
Pina C. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230052. [PMID: 38432321 PMCID: PMC10909511 DOI: 10.1098/rstb.2023.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 03/05/2024] Open
Abstract
Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
- CenGEM – Centre for Genome Engineering and Maintenance, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
| |
Collapse
|
41
|
Messling JE, Peña-Rømer I, Moroni AS, Bruestl S, Helin K. RIO-kinase 2 is essential for hematopoiesis. PLoS One 2024; 19:e0300623. [PMID: 38564577 PMCID: PMC10986946 DOI: 10.1371/journal.pone.0300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Regulation of protein synthesis is a key factor in hematopoietic stem cell maintenance and differentiation. Rio-kinase 2 (RIOK2) is a ribosome biogenesis factor that has recently been described an important regulator of human blood cell development. Additionally, we have previously identified RIOK2 as a regulator of protein synthesis and a potential target for the treatment of acute myeloid leukemia (AML). However, its functional relevance in several organ systems, including normal hematopoiesis, is not well understood. Here, we investigate the consequences of RIOK2 loss on normal hematopoiesis using two different conditional knockout mouse models. Using competitive and non-competitive bone marrow transplantations, we demonstrate that RIOK2 is essential for the differentiation of hematopoietic stem and progenitor cells (HSPCs) as well as for the maintenance of fully differentiated blood cells in vivo as well as in vitro. Loss of RIOK2 leads to rapid death in full-body knockout mice as well as mice with RIOK2 loss specific to the hematopoietic system. Taken together, our results indicate that regulation of protein synthesis and ribosome biogenesis by RIOK2 is essential for the function of the hematopoietic system.
Collapse
Affiliation(s)
- Jan-Erik Messling
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Ann Sophie Moroni
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Bruestl
- The Institute of Cancer Research, London, United Kingdom
| | - Kristian Helin
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
42
|
Ye D, He J, He X. The role of bile acid receptor TGR5 in regulating inflammatory signalling. Scand J Immunol 2024; 99:e13361. [PMID: 38307496 DOI: 10.1111/sji.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a bile acid receptor, and its role in regulating metabolism after binding with bile acids has been established. Since the immune response depends on metabolism to provide biomolecules and energy to cope with challenging conditions, emerging evidence reveals the regulatory effects of TGR5 on the immune response. An in-depth understanding of the effect of TGR5 on immune regulation can help us disentangle the interaction of metabolism and immune response, accelerating the development of TGR5 as a therapeutic target. Herein, we reviewed more than 200 articles published in the last 20 years in PubMed, to discuss the roles of TGR5 in regulating inflammatory response, the molecular mechanism, as well as existing problems. Particularly, its anti-inflammation effect is emphasized.
Collapse
Affiliation(s)
- Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiayao He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Key Laboratory of Pediatric Hematology and Oncology Disease of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
43
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
44
|
Xiao R, Zhang L, Xin Z, Zhu J, Zhang Q, Zheng G, Chu S, Wu J, Zhang L, Wan Y, Chen X, Yuan W, Zhang Z, Zhu X, Fang X. Disruption of mitochondrial energy metabolism is a putative pathogenesis of Diamond-Blackfan anemia. iScience 2024; 27:109172. [PMID: 38414864 PMCID: PMC10897903 DOI: 10.1016/j.isci.2024.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Energy metabolism in the context of erythropoiesis and related diseases remains largely unexplored. Here, we developed a primary cell model by differentiating hematopoietic stem progenitor cells toward the erythroid lineage and suppressing the mitochondrial oxidative phosphorylation (OXPHOS) pathway. OXPHOS suppression led to differentiation failure of erythroid progenitors and defects in ribosome biogenesis. Ran GTPase-activating protein 1 (RanGAP1) was identified as a target of mitochondrial OXPHOS for ribosomal defects during erythropoiesis. Overexpression of RanGAP1 largely alleviated erythroid defects resulting from OXPHOS suppression. Coenzyme Q10, an activator of OXPHOS, largely rescued erythroid defects and increased RanGAP1 expression. Patients with Diamond-Blackfan anemia (DBA) exhibited OXPHOS suppression and a concomitant suppression of ribosome biogenesis. RNA-seq analysis implied that the substantial mutation (approximately 10%) in OXPHOS genes accounts for OXPHOS suppression in these patients. Conclusively, OXPHOS disruption and the associated disruptive mitochondrial energy metabolism are linked to the pathogenesis of DBA.
Collapse
Affiliation(s)
- Rudan Xiao
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lijuan Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zijuan Xin
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Junwei Zhu
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
| | - Qian Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
| | - Guangmin Zheng
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Siyun Chu
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
| | - Jing Wu
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Lu Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhaojun Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P.R. China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, P.R. China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiangdong Fang
- Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P.R. China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, P.R. China
| |
Collapse
|
45
|
Yamashita M, Tomoda T, Mizuo A, Isoda T, Egawa M, Yoshida M, Toki T, Kudo K, Terui K, Ito E, Morio T, Takagi M. Transient erythroblastopenia due to a GATA1 variant in an infant female. Pediatr Blood Cancer 2024; 71:e30834. [PMID: 38149846 DOI: 10.1002/pbc.30834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a congenital anemia with erythroid cell aplasia. Most of the causative genes are ribosomal proteins. GATA1, a hematopoietic master transcription factor required for erythropoiesis, also causes DBA. GATA1 is located on Xp11.23; therefore, DBA develops only in males in an X-linked inheritance pattern. Here, we report a case of transient erythroblastopenia and moderate anemia in a female newborn infant with a de novo GATA1 variant. In this patient, increased methylation of the GATA1 wild-type allele was observed in erythroid cells. Skewed lyonization of GATA1 may cause mild transient erythroblastopenia in a female patient.
Collapse
Affiliation(s)
- Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ami Mizuo
- Department of Pediatrics, Kagawa University, Kagawa, Japan
- Department of Pediatrics, Kagawa Saiseikai Hospital, Kagawa, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Makiko Egawa
- Department of Nutrition and Metabolism in Cardiovascular Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masayuki Yoshida
- Department of Nutrition and Metabolism in Cardiovascular Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
46
|
Zhang W, Zhang M, Ma L, Jariyasakulroj S, Chang Q, Lin Z, Lu Z, Chen JF. Recapitulating and reversing human brain ribosomopathy defects via the maladaptive integrated stress response. SCIENCE ADVANCES 2024; 10:eadk1034. [PMID: 38306425 PMCID: PMC10836730 DOI: 10.1126/sciadv.adk1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Animal or human models recapitulating brain ribosomopathies are incomplete, hampering development of urgently needed therapies. Here, we generated genetic mouse and human cerebral organoid models of brain ribosomopathies, caused by mutations in small nucleolar RNA (snoRNA) SNORD118. Both models exhibited protein synthesis loss, proteotoxic stress, and p53 activation and led to decreased proliferation and increased death of neural progenitor cells (NPCs), resulting in brain growth retardation, recapitulating features in human patients. Loss of SNORD118 function resulted in an aberrant upregulation of p-eIF2α, the mediator of integrated stress response (ISR). Using human iPSC cell-based screen, we identified small-molecule 2BAct, an ISR inhibitor, which potently reverses mutant NPC defects. Targeting ISR by 2BAct mitigated ribosomopathy defects in both cerebral organoid and mouse models. Thus, our SNORD118 mutant organoid and mice recapitulate human brain ribosomopathies and cross-validate maladaptive ISR as a key disease-driving mechanism, pointing to a therapeutic intervention strategy.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Supawadee Jariyasakulroj
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Qing Chang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ziying Lin
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
47
|
Yang Q, Yu H, Li Q. Comparative Transcriptome Analysis Reveals the Role of Ribosome Reduction in Impeding Oogenesis in Female Triploid Crassostrea Gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:125-135. [PMID: 38217752 DOI: 10.1007/s10126-024-10283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
The fecundity of triploid female Crassostrea gigas exhibited significant variation and was lower compared to diploid individuals. Previous studies categorized mature stage triploid female C. gigas into two groups: female α, characterized by a high number of oocytes, and female β, displaying few or no oocytes. To investigate the molecular mechanisms underlying irregular oogenesis and fecundity differences in triploid C. gigas, we performed a comparative analysis of gonad transcriptomes at different stages of gonadal development, including female α, female β, and diploids. During early oogenesis, functional enrichment analysis between female diploids and putative female β triploids revealed differently expressed genes (DEGs) in the ribosome and ribosome biogenesis pathways. Expression levels of DEGs in these pathways were significantly decreased in the putative female β triploid, suggesting a potential role of reduced ribosome levels in obstructing triploid oogenesis. Moreover, to identify regulatory pathways in gonad development, female oysters at the early and mature stages were compared. The DNA repair and recombination proteins pathways were enriched in female diploids and female α triploids but absent in female β triploids. Overall, we propose that decreased ribosome biogenesis in female triploids hinders the differentiation of germ stem cells, leading to the formation of a large number of abnormal germ cells and ultimately resulting in reduced fecundity. The variation in fertility among triploids appeared to be related to the degree of DNA damage repair during female gonad development. This study offers valuable insights into the oogenesis process in female triploid C. gigas.
Collapse
Affiliation(s)
- Qiong Yang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
48
|
Popper B, Bürkle M, Ciccopiedi G, Marchioretto M, Forné I, Imhof A, Straub T, Viero G, Götz M, Schieweck R. Ribosome inactivation regulates translation elongation in neurons. J Biol Chem 2024; 300:105648. [PMID: 38219816 PMCID: PMC10869266 DOI: 10.1016/j.jbc.2024.105648] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.
Collapse
Affiliation(s)
- Bastian Popper
- Core Facility Animal Models, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Martina Bürkle
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Giuliana Ciccopiedi
- Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Marta Marchioretto
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Ignasi Forné
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Department of Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Gabriella Viero
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Magdalena Götz
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Rico Schieweck
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy.
| |
Collapse
|
49
|
Powers EN, Kuwayama N, Sousa C, Reynaud K, Jovanovic M, Ingolia NT, Brar GA. Dbp1 is a low performance paralog of RNA helicase Ded1 that drives impaired translation and heat stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575095. [PMID: 38260653 PMCID: PMC10802583 DOI: 10.1101/2024.01.12.575095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Ded1 and Dbp1 are paralogous conserved RNA helicases that enable translation initiation in yeast. Ded1 has been heavily studied but the role of Dbp1 is poorly understood. We find that the expression of these two helicases is controlled in an inverse and condition-specific manner. In meiosis and other long-term starvation states, Dbp1 expression is upregulated and Ded1 is downregulated, whereas in mitotic cells, Dbp1 expression is extremely low. Inserting the DBP1 ORF in place of the DED1 ORF cannot replace the function of Ded1 in supporting translation, partly due to inefficient mitotic translation of the DBP1 mRNA, dependent on features of its ORF sequence but independent of codon optimality. Global measurements of translation rates and 5' leader translation, activity of mRNA-tethered helicases, ribosome association, and low temperature growth assays show that-even at matched protein levels-Ded1 is more effective than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Ded1 supports halting of translation and cell growth in response to heat stress, but Dbp1 lacks this function, as well. These functional differences in the ability to efficiently mediate translation activation and braking can be ascribed to the divergent, disordered N- and C-terminal regions of these two helicases. Altogether, our data show that Dbp1 is a "low performance" version of Ded1 that cells employ in place of Ded1 under long-term conditions of nutrient deficiency.
Collapse
|
50
|
Ni C, Yu L, Vona B, Park D, Wei Y, Schmitz DA, Wei Y, Ding Y, Sakurai M, Ballard E, Liu Y, Kumar A, Xing C, Kim HG, Ekmekci C, Karimiani EG, Imannezhad S, Eghbal F, Badv RS, Schwaibold EMC, Dehghani M, Mehrjardi MYV, Metanat Z, Eslamiyeh H, Khouj E, Alhajj SMN, Chedrawi A, Alves CAPF, Houlden H, Kruer M, Alkuraya FS, Cenik C, Maroofian R, Wu J, Buszczak M. An inappropriate decline in ribosome levels drives a diverse set of neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574708. [PMID: 38260472 PMCID: PMC10802443 DOI: 10.1101/2024.01.09.574708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Many neurodevelopmental defects are linked to perturbations in genes involved in housekeeping functions, such as those encoding ribosome biogenesis factors. However, how reductions in ribosome biogenesis can result in tissue and developmental specific defects remains a mystery. Here we describe new allelic variants in the ribosome biogenesis factor AIRIM primarily associated with neurodevelopmental disorders. Using human cerebral organoids in combination with proteomic analysis, single-cell transcriptome analysis across multiple developmental stages, and single organoid translatome analysis, we identify a previously unappreciated mechanism linking changes in ribosome levels and the timing of cell fate specification during early brain development. We find ribosome levels decrease during neuroepithelial differentiation, making differentiating cells particularly vulnerable to perturbations in ribosome biogenesis during this time. Reduced ribosome availability more profoundly impacts the translation of specific transcripts, disrupting both survival and cell fate commitment of transitioning neuroepithelia. Enhancing mTOR activity by both genetic and pharmacologic approaches ameliorates the growth and developmental defects associated with intellectual disability linked variants, identifying potential treatment options for specific brain ribosomopathies. This work reveals the cellular and molecular origins of protein synthesis defect-related disorders of human brain development. Highlights AIRIM variants reduce ribosome levels specifically in neural progenitor cells. Inappropriately low ribosome levels cause a transient delay in radial glia fate commitment.Reduced ribosome levels impair translation of a selected subset of mRNAs.Genetic and pharmacologic activation of mTORC1 suppresses AIRIM-linked phenotypes.
Collapse
|