1
|
MacNeil J, Wang Y, Yang G. H 2S inhibition of xanthine dehydrogenase to xanthine oxidase conversion reduces uric acid levels and improves myoblast functions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119909. [PMID: 39880133 DOI: 10.1016/j.bbamcr.2025.119909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter that regulates a wide range of pathophysiological processes. Higher uric acid levels are associated with an increased risk of metabolic diseases. The causal mechanism linking H2S signalling and uric acid metabolism in skeletal muscles has not yet been elucidated. This study aimed to explore the intertwined metabolisms of H2S and uric acid as well as their integrated roles in controlling myoblast cell functions. It was first found that purine overload increased uric acid levels, promoted oxidative stress, mitochondrial damage, and apoptosis in cultured mouse myoblasts, which could be reversed by the exogenously application of H2S at physiologically relevant concentration. In addition, H2S significantly inhibited the expressions of inflammatory genes (encoding IL2, IL4, and TNFα) but had no effect on oxidative stress, mitochondrial damage and cell death induced by excessive uric acid. Mechanistically, H2S inhibited xanthine oxidoreductase (XOR) activity by blocking the conversion of xanthine dehydrogenase (XDH) to xanthine oxidase (XO), thus reducing uric acid levels and improving myoblast functions. In addition, purine and uric acid attenuated the expression of cystathionine gamma-lyase (CSE, an H2S-generating enzyme) and suppressed endogenous H2S production. Blood uric acid levels and skeletal muscle XOR activity were significantly higher in CSE knockout mice than in wild-type mice. This study revealed a mutual interaction between H2S signalling and uric acid metabolism in the regulation myoblast functions. Thus, the CSE/H2S system may be a target for the prevention of hyperuricemia-related metabolic syndromes.
Collapse
Affiliation(s)
- Joshua MacNeil
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
2
|
Kiesworo K, Agius T, Macarthur MR, Lambelet M, Lyon A, Zhang J, Turiel G, Fan Z, d’Almeida S, Uygun K, Yeh H, Déglise S, de Bock K, Mitchell SJ, Ocampo A, Allagnat F, Longchamp A. Nicotinamide mononucleotide restores impaired metabolism, endothelial cell proliferation and angiogenesis in old sedentary male mice. iScience 2025; 28:111656. [PMID: 39868046 PMCID: PMC11763620 DOI: 10.1016/j.isci.2024.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity. Aged EC harvested from the mouse skeletal muscle displayed a pro-angiogenic gene expression phenotype, along with considerable changes in metabolic genes. Metabolomics analysis and 13C glucose tracing revealed impaired ATP production and blockade in glycolysis and TCA cycle in late passage HUVECs, which occurred at nicotinamide adenine dinucleotide (NAD⁺)-dependent steps, along with NAD+ depletion. Supplementation with nicotinamide mononucleotide (NMN), a precursor of NAD⁺, enhances late-passage EC proliferation and sprouting angiogenesis from aged mice aortas. Taken together, our study illustrates the importance of NAD+-dependent metabolism in the maintenance of EC proliferation capacity with age, and the therapeutic potential of NAD precursors.
Collapse
Affiliation(s)
- Kevin Kiesworo
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michael R. Macarthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Martine Lambelet
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Arnaud Lyon
- Transplantation Centre and Transplantation Immunopathology Laboratory, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jing Zhang
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Guillermo Turiel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Zheng Fan
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Korkut Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Katrien de Bock
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah J. Mitchell
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Lausanne University (UNIL), Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Taggart M, Holkup S, Tchir A, Mojoudi M, Lyon A, Hassan M, Taveras C, Ozgur OS, Markmann JF, Yeh H, Uygun K, Longchamp A. UW supplementation with AP39 improves liver viability following static cold storage. Sci Rep 2025; 15:1559. [PMID: 39789174 PMCID: PMC11718015 DOI: 10.1038/s41598-025-85302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025] Open
Abstract
Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (H2S) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. H2S is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations. AP39, a mitochondrially targeted, slow-release H2S donor, has been shown to reduce ischemia-reperfusion injury in hearts and kidneys. Thus, we investigated whether the addition of AP39 during 3-day static cold storage can improve liver graft viability. At the end of storage, livers underwent six hours of acellular normothermic machine perfusion, a model of transplantation. During simulated transplantation, livers stored with AP39 showed reduced resistance, reduced cellular damage (ALT and AST), and reduced apoptosis. Additionally, bile production and glucose, as well as energy charge were improved by the addition of AP39. These results indicate that AP39 supplementation improves liver viability during static cold storage.
Collapse
Affiliation(s)
- McLean Taggart
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Saige Holkup
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Tchir
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- Massachusetts Institute of Technology, Boston, MA, USA
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Arnaud Lyon
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Madeeha Hassan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Christopher Taveras
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Ozge Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - James F Markmann
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's Boston, Boston, MA, USA.
| | - Alban Longchamp
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's Boston, Boston, MA, USA.
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Yang S, Liu Y, Wu T, Zhang X, Xu S, Pan Q, Zhu L, Zheng P, Qiao D, Zhu W. Synthesis and Application of a Novel Multifunctional Nanoprodrug for Synergistic Chemotherapy and Phototherapy with Hydrogen Sulfide Gas. J Med Chem 2025. [PMID: 39786725 DOI: 10.1021/acs.jmedchem.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
With the dilemma of limited efficacy of individual therapies, it is crucial to develop innovative combination therapy systems to target the complex pathogenesis of cancer. In this study, we designed a nanoprodrug ISL@MIL-101-ADT to facilitate synergistic delivery of hydrogen sulfide (H2S) and prodrug ISL for specific eradication of tumor cells with minimal toxicity and maximal efficacy. The nanoprodrug passively targeted tumors through enhanced permeation and retention effects, followed by disintegration and release of IR780, lonidamine (LND), and H2S. IR780 localizes LND to mitochondria to enhance therapeutic effects and turn on the phototherapy and chemotherapy when exposed to a laser; H2S inhibits procancer signaling pathways and mitochondrial function. In vivo experiments have demonstrated that ISL@MIL-101-ADT exhibits excellent pharmacokinetic properties and significant tumor inhibitory effects. Additionally, this nanoprodrug possesses outstanding photothermal and fluorescence imaging capabilities. Therefore, we strongly believe that the nanoprodrug present herein holds great potential for application in cancer therapy.
Collapse
Affiliation(s)
- Silan Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Yijun Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Tianyu Wu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Lianghui Zhu
- Jiang Xi Institute for Drug Control, Jiangxi Provincial Drug Administration, 1566 Beijing East Road, Nanchang, Jiangxi 330029, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| |
Collapse
|
5
|
Sun WT, Du JY, Wang J, Wang YL, Dong ED. Potential preservative mechanisms of cardiac rehabilitation pathways on endothelial function in coronary heart disease. SCIENCE CHINA. LIFE SCIENCES 2025; 68:158-175. [PMID: 39395086 DOI: 10.1007/s11427-024-2656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 10/14/2024]
Abstract
Cardiac rehabilitation, a comprehensive exercise-based lifestyle and medical management, is effective in decreasing morbidity and improving life quality in patients with coronary heart disease. Endothelial function, an irreplaceable indicator in coronary heart disease progression, is measured by various methods in traditional cardiac rehabilitation pathways, including medicinal treatment, aerobic training, and smoking cessation. Nevertheless, studies on the effect of some emerging cardiac rehabilitation programs on endothelial function are limited. This article briefly reviewed the endothelium-beneficial effects of different cardiac rehabilitation pathways, including exercise training, lifestyle modification and psychological intervention in patients with coronary heart disease, and related experimental models, and summarized both uncovered and potential cellular and molecular mechanisms of the beneficial roles of various cardiac rehabilitation pathways on endothelial function. In exercise training and some lifestyle interventions, the enhanced bioavailability of nitric oxide, increased circulating endothelial progenitor cells (EPCs), and decreased oxidative stress are major contributors to preventing endothelial dysfunction in coronary heart disease. Moreover, the preservation of endothelial-dependent hyperpolarizing factors and inflammatory suppression play roles. On the one hand, to develop more endothelium-protective rehabilitation methods in coronary heart disease, adequately designed and sized randomized multicenter clinical trials should be advanced using standardized cardiac rehabilitation programs and existing assessment methods. On the other hand, additional studies using suitable experimental models are warranted to elucidate the relationship between some new interventions and endothelial protection in both macro- and microvasculature.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jian-Yong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jia Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yi-Long Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Er-Dan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- The Institute of Cardiovascular Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
6
|
Cortellino S, D'Angelo M, Quintiliani M, Giordano A. Cancer knocks you out by fasting: Cachexia as a consequence of metabolic alterations in cancer. J Cell Physiol 2025; 240:e31417. [PMID: 39245862 DOI: 10.1002/jcp.31417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Neoplastic transformation reprograms tumor and surrounding host cell metabolism, increasing nutrient consumption and depletion in the tumor microenvironment. Tumors uptake nutrients from neighboring normal tissues or the bloodstream to meet energy and anabolic demands. Tumor-induced chronic inflammation, a high-energy process, also consumes nutrients to sustain its dysfunctional activities. These tumor-related metabolic and physiological changes, including chronic inflammation, negatively impact systemic metabolism and physiology. Furthermore, the adverse effects of antitumor therapy and tumor obstruction impair the endocrine, neural, and gastrointestinal systems, thereby confounding the systemic status of patients. These alterations result in decreased appetite, impaired nutrient absorption, inflammation, and shift from anabolic to catabolic metabolism. Consequently, cancer patients often suffer from malnutrition, which worsens prognosis and increases susceptibility to secondary adverse events. This review explores how neoplastic transformation affects tumor and microenvironment metabolism and inflammation, leading to poor prognosis, and discusses potential strategies and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), School for Advanced Studies, Federico II University, Naples, Italy
- SHRO Italia Foundation ETS, Candiolo, Turin, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Lyon A, Agius T, Macarthur MR, Kiesworo K, Stavart L, Allagnat F, Mitchell SJ, Riella LV, Uygun K, Yeh H, Déglise S, Golshayan D, Longchamp A. Dietary or pharmacological inhibition of insulin-like growth factor-1 protects from renal ischemia-reperfusion injury in mice. iScience 2024; 27:111256. [PMID: 39759002 PMCID: PMC11700642 DOI: 10.1016/j.isci.2024.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 01/07/2025] Open
Abstract
One-week protein restriction (PR) limits ischemia-reperfusion (IR) damages and improves metabolic fitness. Similarly, longer-term calory restriction results in increased lifespan, partly via reduced insulin-like growth factor (IGF)-1. However, the influence of short-term PR on IGF-1 and its impact on IR are unknown. PR was achieved in mice via one-week carbohydrate loading and/or through a low-protein diet. PR decreased IGF-1 circulating levels as well as renal and hepatic expression. Upon renal IR, serum IGF-1 positively correlated with renal dysfunction and tissular damages, independently of sex and age. Exogenous IGF-1 administration abrogated PR benefits during IR, while IGF-1 receptor inhibition with linsitinib was protective. IGF-1 was associated with a reduction in forkhead box O (FoxO), and AMP-activated protein kinase (AMPK) signaling pathways previously demonstrated to improve IR resilience in various organs. These data support dietary or pharmacological reduction of IGF-1 signaling to mitigate IR injury prior to solid organ transplantation and beyond.
Collapse
Affiliation(s)
- Arnaud Lyon
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael R. Macarthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kevin Kiesworo
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Louis Stavart
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Leonardo V. Riella
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Déla Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Urra H, Aravena R, González-Johnson L, Hetz C. The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment. Trends Cancer 2024; 10:1161-1173. [PMID: 39472237 DOI: 10.1016/j.trecan.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024]
Abstract
The tumor microenvironment (TME) represents a dynamic network of cancer cells, stromal cells, immune mediators, and extracellular matrix components, crucial for cancer progression. Stress conditions such as oncogene activation, nutrient deprivation, and hypoxia disrupt the endoplasmic reticulum (ER), activating the unfolded protein response (UPR), the main adaptive mechanism to restore ER function. The UPR regulates cancer progression by engaging cell-autonomous and cell-non-autonomous mechanisms, reprogramming the stroma and promoting immune evasion, angiogenesis, and invasion. This review explores the role of UPR beyond cancer cells, focusing on how ER stress signaling reshapes the TME, supporting tumor growth. The therapeutic potential of targeting the UPR is also discussed.
Collapse
Affiliation(s)
- Hery Urra
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Raúl Aravena
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago 7510602, Chile
| | - Lucas González-Johnson
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Claudio Hetz
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato, CA, USA.
| |
Collapse
|
9
|
Kip P, Sluiter TJ, MacArthur MR, Tao M, Kruit N, Mitchell SJ, Jung J, Kooijman S, Gorham J, Seidman JG, Quax PHA, Decano JL, Aikawa M, Ozaki CK, Mitchell JR, de Vries MR. Preoperative methionine restriction induces perivascular adipose tissue browning and improves vein graft remodeling in male mice. Nat Commun 2024; 15:9652. [PMID: 39511181 PMCID: PMC11544300 DOI: 10.1038/s41467-024-53844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Short-term preoperative methionine restriction (MetR) is a promising translatable strategy to mitigate surgical injury response. However, its application to improve post-interventional vascular remodeling remains underexplored. Here we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and pathologic vascular remodeling following vein graft surgery in male mice. RNA sequencing reveals that MetR enhances browning in arterial (thoracic aorta) perivascular adipose tissue (PVAT) and induces it in venous (caval vein) PVAT. Specifically, Ppara is highly upregulated in PVAT-adipocytes upon MetR. Furthermore, MetR dampens the postoperative pro-inflammatory response to surgery in PVAT-macrophages in vivo and in vitro. This study shows that the detrimental effects of dysfunctional PVAT on vascular remodeling can be reversed by MetR, and identifies pathways involved in MetR-induced browning of PVAT. Furthermore, we demonstrate the potential of short-term preoperative MetR as a simple intervention to ameliorate vascular remodeling after vascular surgery.
Collapse
Affiliation(s)
- Peter Kip
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Thijs J Sluiter
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael R MacArthur
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ming Tao
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicky Kruit
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah J Mitchell
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Jonathan Jung
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Josh Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Julius L Decano
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - C Keith Ozaki
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margreet R de Vries
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
10
|
Hanna DA, Chen B, Shah YM, Khalimonchuk O, Cunniff B, Banerjee R. H 2 S remodels mitochondrial ultrastructure and destabilizes respiratory supercomplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621162. [PMID: 39553932 PMCID: PMC11565962 DOI: 10.1101/2024.10.30.621162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mitochondrial form and function are intimately interconnected, responding to cellular stresses and changes in energy demand. Hydrogen sulfide, a product of amino acid metabolism, has dual roles as an electron transport chain substrate and complex IV (CIV) inhibitor, leading to a reductive shift, which has pleiotropic metabolic consequences. Luminal sulfide concentration in colon is high due to microbial activity, and in this study, we demonstrate that chronic sulfide exposure of colonocyte-derived cells leads to lower Mic60 and Mic19 expression that is correlated with a profound loss of cristae and lower mitochondrial networking. Sulfide-induced depolarization of the inner mitochondrial membrane activates Oma1-dependent cleavage of Opa1 and is associated with a profound loss of CI and CIV activities associated with respirasomes. Our study reveals a potential role for sulfide as an endogenous modulator of mitochondrial dynamics and suggests that this regulation is corrupted in hereditary or acquired diseases associated with elevated sulfide. Significance Statement Hydrogen sulfide is a product of host as well as gut microbial metabolism and has the dual capacity for activating respiration as a substrate, and inhibiting it at the level of complex IV. In this study, we report that chronic albeit low-level sulfide exposure elicits profound changes in mitochondrial architecture in cultured human cells. Disruption of mitochondrial networks is reversed upon removal of sulfide from the growth chamber atmosphere. Sulfide-dependent depolarization of the inner mitochondrial membrane is associated with loss of cristae and respiratory supercomplexes. Our study reveals the potential for sulfide to be an endogenous regulator of mitochondrial ultrastructure and function via modulation of electron flux and for this process to be corrupted in sulfide dysregulated diseases.
Collapse
|
11
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
12
|
Lidonnici J, Oberkersch RE. Reciprocal Dynamics of Metabolism and mRNA Translation in Tumor Angiogenesis. Int J Mol Sci 2024; 25:11284. [PMID: 39457064 PMCID: PMC11508371 DOI: 10.3390/ijms252011284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Angiogenesis, the process of formation of new blood vessels from pre-existing vasculature, is essential for tumor growth and metastasis. Anti-angiogenic treatment targeting vascular endothelial growth factor (VEGF) signaling is a powerful tool to combat tumor growth; however, anti-tumor angiogenesis therapy has shown limited efficacy, with survival benefits ranging from only a few weeks to months. Compensation by upregulation of complementary growth factors and switches to different modes of vascularization have made these types of therapies less effective. Recent evidence suggests that targeting specific players in endothelial metabolism is a valuable therapeutic strategy against tumor angiogenesis. Although it is clear that metabolism can modulate the translational machinery, the reciprocal relationship between metabolism and mRNA translational control during tumor angiogenesis is not fully understood. In this review, we explore emerging examples of how endothelial cell metabolism affects mRNA translation during the formation of blood vessels. A deeper comprehension of these mechanisms could lead to the development of innovative therapeutic strategies for both physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Jacopo Lidonnici
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy;
| | | |
Collapse
|
13
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
14
|
Kumar R, Vitvitsky V, Sethaudom A, Singhal R, Solanki S, Alibeckoff S, Hiraki HL, Bell HN, Andren A, Baker BM, Lyssiotis CA, Shah YM, Banerjee R. Sulfide oxidation promotes hypoxic angiogenesis and neovascularization. Nat Chem Biol 2024; 20:1294-1304. [PMID: 38509349 PMCID: PMC11584973 DOI: 10.1038/s41589-024-01583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.
Collapse
Affiliation(s)
- Roshan Kumar
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Apichaya Sethaudom
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Alibeckoff
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Altintas O, MacArthur MR. General control nonderepressible 2 (GCN2) as a therapeutic target in age-related diseases. FRONTIERS IN AGING 2024; 5:1447370. [PMID: 39319345 PMCID: PMC11420162 DOI: 10.3389/fragi.2024.1447370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
The function of General Control Nonderepressible 2 (GCN2), an evolutionary-conserved component of the integrated stress response (ISR), has been well-documented across organisms from yeast to mammals. Recently GCN2 has also gained attention for its role in health and disease states. In this review, we provide a brief overview of GCN2, including its structure, activation mechanisms and interacting partners, and explore its potential significance as a therapeutic target in various age-related diseases including neurodegeneration, inflammatory disorders and cancer. Finally, we summarize the barriers to effectively targeting GCN2 for the treatment of disease and to promote a healthier aging process.
Collapse
Affiliation(s)
- Ozlem Altintas
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael R. MacArthur
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| |
Collapse
|
16
|
Hu XJ, Sun Y, Liu GJ, Zhang J, Zhang LX, Peng YH. Cystathionine- β-synthase expression correlates with tumour progression and adverse prognosis in patients with colon cancer. J Int Med Res 2024; 52:3000605241263726. [PMID: 39324183 PMCID: PMC11439173 DOI: 10.1177/03000605241263726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE To investigate the levels of cystathionine-β-synthase (CBS) in colon cancer tissues compared with adjacent control tissues; and to examine the relationship between CBS level and clinical characteristics and prognosis. METHODS This retrospective study enrolled patients with primary colon cancer. Paraffin-embedded specimens were used to create pathological tissue microarrays. Immunohistochemistry was performed on the microarray to detect the levels of CBS in colon cancer tissues and normal adjacent tissues. Analyses were undertaken to examine the relationship between the level of CBS and clinical characteristics and prognosis. RESULTS A total of 216 patients (107 males and 109 females) were included in the study. The level of CBS in cancer tissues was found to be significantly increased compared with normal adjacent control tissues. There were significant differences in tumour location, tumour-node-metastasis stage and survival rate between the CBS-negative and CBS-positive groups. Positive CBS immunostaining was associated with decreased survival in colon cancer patients. The results of multivariate Cox regression analysis revealed that tumour location and positive CBS immunostaining were independent prognostic factors for survival. CONCLUSION Positive CBS immunostaining was closely associated with colon cancer and high levels of CBS might accelerate tumour development and affect patient prognosis in colon cancer.
Collapse
Affiliation(s)
- Xiao-Jie Hu
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei Province, China
- Department of Gastrointestinal Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Yun Sun
- Department of Gastrointestinal Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Guang-Jie Liu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Juan Zhang
- Department of Epidemiology and Statistics, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Li-Xiao Zhang
- Department of Gastrointestinal Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Yan-Hui Peng
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei Province, China
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
17
|
Wang RH, Chen PR, Chen YT, Chen YC, Chu YH, Chien CC, Chien PC, Lo SY, Wang ZL, Tsou MC, Chen SY, Chiu GS, Chen WL, Wu YH, Wang LHC, Wang WC, Lin SY, Kung HJ, Wang LH, Cheng HC, Lin KT. Hydrogen sulfide coordinates glucose metabolism switch through destabilizing tetrameric pyruvate kinase M2. Nat Commun 2024; 15:7463. [PMID: 39198443 PMCID: PMC11358145 DOI: 10.1038/s41467-024-51875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Most cancer cells reprogram their glucose metabolic pathway from oxidative phosphorylation to aerobic glycolysis for energy production. By reducing enzyme activity of pyruvate kinase M2 (PKM2), cancer cells attain a greater fraction of glycolytic metabolites for macromolecule synthesis needed for rapid proliferation. Here we demonstrate that hydrogen sulfide (H2S) destabilizes the PKM2 tetramer into monomer/dimer through sulfhydration at cysteines, notably at C326, leading to reduced PKM2 enzyme activity and increased PKM2-mediated transcriptional activation. Blocking PKM2 sulfhydration at C326 through amino acid mutation stabilizes the PKM2 tetramer and crystal structure further revealing the tetramer organization of PKM2-C326S. The PKM2-C326S mutant in cancer cells rewires glucose metabolism to mitochondrial respiration, significantly inhibiting tumor growth. In this work, we demonstrate that PKM2 sulfhydration by H2S inactivates PKM2 activity to promote tumorigenesis and inhibiting this process could be a potential therapeutic approach for targeting cancer metabolism.
Collapse
Grants
- National Science and Technology Council (Taiwan), 108-2314-B-007-003-MY3, 111-2320-B-007-005-MY3; National Tsing Hua University (NTHU), 111Q2713E1, 112Q2511E1, and 112Q2521E1, 113Q2524E1.
- National Science and Technology Council (Taiwan), 110-2320-B-007-004-MY3; National Health Research Institutes (Taiwan), NHRI-EX113-11124BI. National Tsing Hua University (NTHU), 112QI033E1
- National Science and Technology Council (Taiwan),110-2320-B-039-066; Ministry of Education (Taiwan), CMRC-CENTER-0
- National Science and Technology Council (Taiwan), 108-2311-B-007-002-MY3, 111-2311-B-007-009
Collapse
Affiliation(s)
- Rong-Hsuan Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Pin-Ru Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yue-Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chang Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Hsin Chu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Chen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shao-Yun Lo
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zhong-Liang Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Chen Tsou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ssu-Yu Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Guang-Shen Chiu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Hsuan Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsing-Jien Kung
- College of Medical Science and Technology, PhD Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Lu-Hai Wang
- Chiese Medicine Research Center, and Institute of Integrated Medicine, China Medical University, Taichung City, Taiwan.
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Kai-Ti Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
18
|
Yao H, Jiang W, Liao X, Wang D, Zhu H. Regulatory mechanisms of amino acids in ferroptosis. Life Sci 2024; 351:122803. [PMID: 38857653 DOI: 10.1016/j.lfs.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.
Collapse
Affiliation(s)
- Heying Yao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
19
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
20
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
21
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
22
|
Kanaan MN, Pileggi CA, Karam CY, Kennedy LS, Fong-McMaster C, Cuperlovic-Culf M, Harper ME. Cystine/glutamate antiporter xCT controls skeletal muscle glutathione redox, bioenergetics and differentiation. Redox Biol 2024; 73:103213. [PMID: 38815331 PMCID: PMC11167394 DOI: 10.1016/j.redox.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Cysteine, the rate-controlling amino acid in cellular glutathione synthesis is imported as cystine, by the cystine/glutamate antiporter, xCT, and subsequently reduced to cysteine. As glutathione redox is important in muscle regeneration in aging, we hypothesized that xCT exerts upstream control over skeletal muscle glutathione redox, metabolism and regeneration. Bioinformatic analyses of publicly available datasets revealed that expression levels of xCT and GSH-related genes are inversely correlated with myogenic differentiation genes. Muscle satellite cells (MuSCs) isolated from Slc7a11sut/sut mice, which harbour a mutation in the Slc7a11 gene encoding xCT, required media supplementation with 2-mercaptoethanol to support cell proliferation but not myotube differentiation, despite persistently lower GSH. Slc7a11sut/sut primary myotubes were larger compared to WT myotubes, and also exhibited higher glucose uptake and cellular oxidative capacities. Immunostaining of myogenic markers (Pax7, MyoD, and myogenin) in cardiotoxin-damaged tibialis anterior muscle fibres revealed greater MuSC activation and commitment to differentiation in Slc7a11sut/sut muscle compared to WT mice, culminating in larger myofiber cross-sectional areas at 21 days post-injury. Slc7a11sut/sut mice subjected to a 5-week exercise training protocol demonstrated enhanced insulin tolerance compared to WT mice, but blunted muscle mitochondrial biogenesis and respiration in response to exercise training. Our results demonstrate that the absence of xCT inhibits cell proliferation but promotes myotube differentiation by regulating cellular metabolism and glutathione redox. Altogether, these results support the notion that myogenesis is a redox-regulated process and may help inform novel therapeutic approaches for muscle wasting and dysfunction in aging and disease.
Collapse
Affiliation(s)
- Michel N Kanaan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; Dr. Eric Poulin Centre for Neuromuscular Disease (CNMD), University of Ottawa, ON, K1H 8M5, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Charbel Y Karam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Luke S Kennedy
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
23
|
Mann CG, MacArthur MR, Zhang J, Gong S, AbuSalim JE, Hunter CJ, Lu W, Agius T, Longchamp A, Allagnat F, Rabinowitz J, Mitchell JR, De Bock K, Mitchell SJ. Sulfur Amino Acid Restriction Enhances Exercise Capacity in Mice by Boosting Fat Oxidation in Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601041. [PMID: 39005372 PMCID: PMC11244859 DOI: 10.1101/2024.06.27.601041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dietary restriction of the sulfur-containing amino acids methionine and cysteine (SAAR) improves body composition, enhances insulin sensitivity, and extends lifespan; benefits seen also with endurance exercise. Yet, the impact of SAAR on skeletal muscle remains largely unexplored. Here we demonstrate that one week of SAAR in sedentary, young, male mice increases endurance exercise capacity. Indirect calorimetry showed that SAAR increased lipid oxidation at rest and delayed the onset of carbohydrate utilization during exercise. Transcriptomic analysis revealed increased expression of genes involved in fatty acid catabolism especially in glycolytic muscle following SAAR. These findings were functionally supported by increased fatty acid circulatory turnover flux and muscle β-oxidation. Reducing lipid uptake from circulation through endothelial cell (EC)-specific CD36 deletion attenuated the running phenotype. Mechanistically, VEGF-signaling inhibition prevented exercise increases following SAAR, without affecting angiogenesis, implicating noncanonical VEGF signaling and EC CD36-dependent fatty acid transport in regulating exercise capacity by influencing muscle substrate availability.
Collapse
Affiliation(s)
- Charlotte G Mann
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Michael R MacArthur
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Jing Zhang
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Songlin Gong
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Jenna E AbuSalim
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Craig J. Hunter
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Joshua Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - James R Mitchell
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Sarah J Mitchell
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
24
|
Xing Z, Li X, He ZNT, Fang X, Liang H, Kuang C, Li A, Yang Q. IDO1 Inhibitor RY103 Suppresses Trp-GCN2-Mediated Angiogenesis and Counters Immunosuppression in Glioblastoma. Pharmaceutics 2024; 16:870. [PMID: 39065567 PMCID: PMC11279595 DOI: 10.3390/pharmaceutics16070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma is characterized by strong immunosuppression and excessive angiogenesis. Based on existing reports, it can be speculated that the resistance to anti-angiogenic drug vascular endothelial growth factor A (VEGFA) antibody correlates to the induction of novel immune checkpoint indoleamine 2,3-dioxygenase 1 (IDO1), while IDO1 has also been suggested to be related to tumor angiogenesis. Herein, we aim to clarify the potential role of IDO1 in glioma angiogenesis and the mechanism behind it. Bioinformatic analyses showed that the expressions of IDO1 and angiogenesis markers VEGFA and CD34 were positively correlated and increased with pathological grade in glioma. IDO1-overexpression-derived-tryptophan depletion activated the general control nonderepressible 2 (GCN2) pathway and upregulated VEGFA in glioma cells. The tube formation ability of angiogenesis model cells could be inhibited by IDO1 inhibitors and influenced by the activity and expression of IDO1 in condition medium. A significant increase in serum VEGFA concentration and tumor CD34 expression was observed in IDO1-overexpressing GL261 subcutaneous glioma-bearing mice. IDO1 inhibitor RY103 showed positive anti-tumor efficacy, including the anti-angiogenesis effect and upregulation of natural killer cells in GL261 glioma-bearing mice. As expected, the combination of RY103 and anti-angiogenesis agent sunitinib was proved to be a better therapeutic strategy than either monotherapy.
Collapse
Affiliation(s)
- Zikang Xing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Xuewen Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Zhen Ning Tony He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China;
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| |
Collapse
|
25
|
Cao Y, Wang S, Zhang M, Lai B, Liang Y. PFKFB3-mediated glycolysis in hepatic stellate cells promotes liver regeneration. Biochem Biophys Res Commun 2024; 712-713:149958. [PMID: 38640731 DOI: 10.1016/j.bbrc.2024.149958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Hepatic stellate cells (HSCs) perform a significant function in liver regeneration (LR) by becoming active. We propose to investigate if activated HSCs enhance glycolysis via PFKFB3, an essential glycolytic regulator, and whether targeting this pathway could be beneficial for LR. The liver and isolated HSCs of mice subjected to 2/3 partial hepatectomy (PHx) exhibited a significant rise in PFKFB3 expression, as indicated by quantitative RT-PCR analyses and Western blotting. Also, the primary HSCs of mice subjected to PHx have a significant elevation of the glycolysis level. Knocking down PFKFB3 significantly diminished the enhancement of glycolysis by PDGF in human LX2 cells. The hepatocyte proliferation in mice treated with PHx was almost completely prevented when the PFKFB3 inhibitor 3PO was administered, emerging that PFKFB3 is essential in LR. Furthermore, there was a decline in mRNA expression of immediate early genes and proinflammatory cytokines. In terms of mechanism, both the p38 MAP kinase and ERK1/2 phosphorylation in LO2 cells and LO2 proliferation were significantly reduced by the conditioned medium (CM) obtained from LX2 cells with either PFKFB3 knockdown or inhibition. Compared to the control group, isolated hepatocytes from 3PO-treated mice showed decreased p38 MAP kinase and ERK1/2 phosphorylation and proliferation. Thus, LR after PHx involves the activation of PFKFB3 in HSCs, which enhances glycolysis and promotes lactate production, thereby facilitating hepatocyte proliferation via the p38/ERK MAPK signaling pathway.
Collapse
Affiliation(s)
- Yapeng Cao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Siyu Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Min Zhang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanni Liang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian Yang, 712046, China.
| |
Collapse
|
26
|
McLean ST, Holkup S, Tchir A, Mojoudi M, Hassan M, Taveras C, Ozge SO, James FM, Yeh H, Uygun K, Longchamp A. UW Supplementation with AP39 Improves Liver Viability Following Static Cold Storage. RESEARCH SQUARE 2024:rs.3.rs-4487319. [PMID: 38947096 PMCID: PMC11213193 DOI: 10.21203/rs.3.rs-4487319/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Static cold storage of donor livers at 4°C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (H2S) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. H2S is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations. AP39, a mitochondrially targeted, slow-release H2S donor, has been shown to reduce ischemia-reperfusion injury in hearts and kidneys. Thus, we investigated whether the addition of AP39 during 3-day static cold storage can improve liver graft viability. At the end of storage, livers underwent six hours of acellular normothermic machine perfusion, a model of transplantation. During simulated transplantation, livers stored with AP39 showed reduced resistance, reduced cellular damage (ALT and AST), and reduced apoptosis. Additionally, bile production and glucose, as well as energy charge were improved by the addition of AP39. These results indicate that AP39 supplementation improves liver viability during static cold storage.
Collapse
Affiliation(s)
| | - Saige Holkup
- Massachusetts General Hospital, Harvard Medical School
| | | | | | | | | | - S Ozgur Ozge
- Massachusetts General Hospital, Harvard Medical School
| | | | - Heidi Yeh
- Massachusetts General Hospital, Harvard Medical School
| | - Korkut Uygun
- Massachusetts General Hospital, Harvard Medical School
| | | |
Collapse
|
27
|
Xue J, Ye C. The role of lipoylation in mitochondrial adaptation to methionine restriction. Bioessays 2024; 46:e2300218. [PMID: 38616332 DOI: 10.1002/bies.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Dietary methionine restriction (MR) is associated with a spectrum of health-promoting benefits. Being conducive to prevention of chronic diseases and extension of life span, MR can activate integrated responses at metabolic, transcriptional, and physiological levels. However, how the mitochondria of MR influence metabolic phenotypes remains elusive. Here, we provide a summary of cellular functions of methionine metabolism and an overview of the current understanding of effector mechanisms of MR, with a focus on the aspect of mitochondria-mediated responses. We propose that mitochondria can sense and respond to MR through a modulatory role of lipoylation, a mitochondrial protein modification sensitized by MR.
Collapse
Affiliation(s)
- Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
28
|
Liu J, Lu X, Zeng S, Fu R, Wang X, Luo L, Huang T, Deng X, Zheng H, Ma S, Ning D, Zong L, Lin SH, Zhang Y. ATF3-CBS signaling axis coordinates ferroptosis and tumorigenesis in colorectal cancer. Redox Biol 2024; 71:103118. [PMID: 38490069 PMCID: PMC10958616 DOI: 10.1016/j.redox.2024.103118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
The induction of ferroptosis is promising for cancer therapy. However, the mechanisms enabling cancer cells to evade ferroptosis, particularly in low-cystine environments, remain elusive. Our study delves into the intricate regulatory mechanisms of Activating transcription factor 3 (ATF3) on Cystathionine β-synthase (CBS) under cystine deprivation stress, conferring resistance to ferroptosis in colorectal cancer (CRC) cells. Additionally, our findings establish a positively correlation between this signaling axis and CRC progression, suggesting its potential as a therapeutic target. Mechanistically, ATF3 positively regulates CBS to resist ferroptosis under cystine deprivation stress. In contrast, the suppression of CBS sensitizes CRC cells to ferroptosis through targeting the mitochondrial tricarboxylic acid (TCA) cycle. Notably, our study highlights that the ATF3-CBS signaling axis enhances ferroptosis-based CRC cancer therapy. Collectively, the findings reveal that the ATF3-CBS signaling axis is the primary feedback pathway in ferroptosis, and blocking this axis could be a potential therapeutic approach for colorectal cancer.
Collapse
Affiliation(s)
- Junjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinyi Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Siyu Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rong Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xindong Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lingtao Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ting Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xusheng Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hualei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaoqian Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dan Ning
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lili Zong
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yongyou Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
29
|
Zhang S, Cheng Y, Guan Y, Wen J, Chen Z. Hydrogen Sulfide Exerted a Pro-Angiogenic Role by Promoting the Phosphorylation of VEGFR2 at Tyr797 and Ser799 Sites in Hypoxia-Reoxygenation Injury. Int J Mol Sci 2024; 25:4340. [PMID: 38673925 PMCID: PMC11050214 DOI: 10.3390/ijms25084340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The protective effects of hydrogen sulfide (H2S) against ischemic brain injury and its role in promoting angiogenesis have been established. However, the specific mechanism underlying these effects remains unclear. This study is designed to investigate the regulatory impact and mechanism of H2S on VEGFR2 phosphorylation. Following expression and purification, the recombinant His-VEGFR2 protein was subjected to LC-PRM/MS analysis to identify the phosphorylation sites of VEGFR2 upon NaHS treatment. Adenovirus infection was used to transfect primary rat brain artery endothelial cells (BAECs) with the Ad-VEGFR2WT, Ad-VEGFR2Y797F, and Ad-VEGFR2S799A plasmids. The expression of VEGFR2 and recombinant Flag-VEGFR2, along with Akt phosphorylation, cell proliferation, and LDH levels, was assessed. The migratory capacity and tube-forming potential of BAECs were assessed using wound healing, transwell, and tube formation assays. NaHS notably enhanced the phosphorylation of VEGFR2 at Tyr797 and Ser799 sites. These phosphorylation sites were identified as crucial for mediating the protective effects of NaHS against hypoxia-reoxygenation (H/R) injury. NaHS significantly enhanced the Akt phosphorylation, migratory capacity, and tube formation of BAECs and upregulated the expression of VEGFR2 and recombinant proteins. These findings suggest that Tyr797 and Ser799 sites of VEGFR2 serve as crucial mediators of H2S-induced pro-angiogenic effects and protection against H/R injury.
Collapse
Affiliation(s)
- Sen Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (S.Z.); (Y.G.)
| | - Yongfeng Cheng
- Clinical Medical College, Anhui Medical University, Hefei 230012, China;
| | - Yining Guan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (S.Z.); (Y.G.)
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (S.Z.); (Y.G.)
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (S.Z.); (Y.G.)
| |
Collapse
|
30
|
Ryoo HD. The integrated stress response in metabolic adaptation. J Biol Chem 2024; 300:107151. [PMID: 38462161 PMCID: PMC10998230 DOI: 10.1016/j.jbc.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
31
|
Han Y, Tong X, Zhou R, Wang Y, Chen Y, Chen L, Hong X, Wu L, Lin Z, Zhang Y, Zhang X, Hu C, Li B, Ping Y, Cao Z, Ye Z, Song Z, Li Y, Wen C, Zhou Y, Lin J, Huang S. Biodegradable Zn-5Dy Alloy with Enhanced Osteo/Angio-Genic Activity and Osteointegration Effect via Regulation of SIRT4-Dependent Mitochondrial Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307812. [PMID: 38243646 PMCID: PMC10987155 DOI: 10.1002/advs.202307812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.
Collapse
Affiliation(s)
- Yue Han
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xian Tong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Runqi Zhou
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yilin Wang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yuge Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
- Department of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonT6G2R3Canada
| | - Liang Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xinhua Hong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Linmei Wu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhiqiang Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yichi Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xuejia Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Chaoming Hu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Bin Li
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yifan Ping
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zelin Cao
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental CareFaculty of DentistryUniversity of Hong KongHong Kong999077China
| | - Zhongchen Song
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Yuncang Li
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Cuie Wen
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Yongsheng Zhou
- Department of ProsthodonticsNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyResearch Center of Engineering and Technology for Computerized Dentistry Ministry of HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Jixing Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Shengbin Huang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
32
|
Chen X, Wang H, Wu C, Li X, Huang X, Ren Y, Pu Q, Cao Z, Tang X, Ding BS. Endothelial H 2S-AMPK dysfunction upregulates the angiocrine factor PAI-1 and contributes to lung fibrosis. Redox Biol 2024; 70:103038. [PMID: 38266576 PMCID: PMC10811458 DOI: 10.1016/j.redox.2024.103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Dysfunction of the vascular angiocrine system is critically involved in regenerative defects and fibrosis of injured organs. Previous studies have identified various angiocrine factors and found that risk factors such as aging and metabolic disorders can disturb the vascular angiocrine system in fibrotic organs. One existing key gap is what sense the fibrotic risk to modulate the vascular angiocrine system in organ fibrosis. Here, using human and mouse data, we discovered that the metabolic pathway hydrogen sulfide (H2S)-AMP-activated protein kinase (AMPK) is a sensor of fibrotic stress and serves as a key mechanism upregulating the angiocrine factor plasminogen activator inhibitor-1 (PAI-1) in endothelial cells to participate in lung fibrosis. Activation of the metabolic sensor AMPK was inhibited in endothelial cells of fibrotic lungs, and AMPK inactivation was correlated with enriched fibrotic signature and reduced lung functions in humans. The inactivation of endothelial AMPK accelerated lung fibrosis in mice, while the activation of endothelial AMPK with metformin alleviated lung fibrosis. In fibrotic lungs, endothelial AMPK inactivation led to YAP activation and overexpression of the angiocrine factor PAI-1, which was positively correlated with the fibrotic signature in human fibrotic lungs and inhibition of PAI-1 with Tiplaxtinin mitigated lung fibrosis. Further study identified that the deficiency of the antioxidative gas metabolite H2S accounted for the inactivation of AMPK and activation of YAP-PAI-1 signaling in endothelial cells of fibrotic lungs. H2S deficiency was involved in human lung fibrosis and H2S supplement reversed mouse lung fibrosis in an endothelial AMPK-dependent manner. These findings provide new insight into the mechanism underlying the deregulation of the vascular angiocrine system in fibrotic organs.
Collapse
Affiliation(s)
- Xiangqi Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojuan Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yafeng Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery, National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol 2024; 98:1025-1041. [PMID: 38383612 DOI: 10.1007/s00204-024-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
34
|
Longchamp A, Fontan FM, Aburawi MM, Eymard C, Karimian N, Detelich D, Pendexter C, Cronin S, Agius T, Nagpal S, Banik PD, Tessier SN, Ozer S, Delmonico FL, Uygun K, Yeh H, Markmann JF. Acellular Perfusate is an Adequate Alternative to Packed Red Blood Cells During Normothermic Human Kidney Perfusion. Transplant Direct 2024; 10:e1609. [PMID: 38481967 PMCID: PMC10936975 DOI: 10.1097/txd.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 03/17/2024] Open
Abstract
Background Brief normothermic machine perfusion is increasingly used to assess and recondition grafts before transplant. During normothermic machine perfusion, metabolic activity is typically maintained using red blood cell (RBC)-based solutions. However, the utilization of RBCs creates important logistical constraints. This study explored the feasibility of human kidney normothermic perfusion using William's E-based perfusate with no additional oxygen carrier. Methods Sixteen human kidneys declined for transplant were perfused with a perfusion solution containing packed RBCs or William's E medium only for 6 h using a pressure-controlled system. The temperature was set at 37 °C. Renal artery resistance, oxygen extraction, metabolic activity, energy metabolism, and histological features were evaluated. Results Baseline donor demographics were similar in both groups. Throughout perfusion, kidneys perfused with William's E exhibited improved renal flow (P = 0.041) but similar arterial resistance. Lactic acid levels remained higher in kidneys perfused with RBCs during the first 3 h of perfusion but were similar thereafter (P = 0.95 at 6 h). Throughout perfusion, kidneys from both groups exhibited comparable behavior regarding oxygen consumption (P = 0.41) and reconstitution of ATP tissue concentration (P = 0.55). Similarly, nicotinamide adenine dinucleotide levels were preserved during perfusion. There was no evidence of histological damage caused by either perfusate. Conclusions In human kidneys, William's E medium provides a logistically convenient, off-the-shelf alternative to packed RBCs for up to 6 h of normothermic machine perfusion.
Collapse
Affiliation(s)
- Alban Longchamp
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Fermin M. Fontan
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mohamed M. Aburawi
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Corey Eymard
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Negin Karimian
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Danielle Detelich
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Casie Pendexter
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Stephanie Cronin
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Thomas Agius
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sonal Nagpal
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Peony Dutta Banik
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shannon N. Tessier
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sinan Ozer
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Francis L. Delmonico
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- New England Donor Services, Waltham, MA
| | - Korkut Uygun
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - James F. Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Li C, Hao B, Yang H, Wang K, Fan L, Xiao W. Protein aggregation and biomolecular condensation in hypoxic environments (Review). Int J Mol Med 2024; 53:33. [PMID: 38362920 PMCID: PMC10903932 DOI: 10.3892/ijmm.2024.5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Due to molecular forces, biomacromolecules assemble into liquid condensates or solid aggregates, and their corresponding formation and dissolution processes are controlled. Protein homeostasis is disrupted by increasing age or environmental stress, leading to irreversible protein aggregation. Hypoxic pressure is an important factor in this process, and uncontrolled protein aggregation has been widely observed in hypoxia‑related conditions such as neurodegenerative disease, cardiovascular disease, hypoxic brain injury and cancer. Biomolecular condensates are also high‑order complexes assembled from macromolecules. Although they exist in different phase from protein aggregates, they are in dynamic balance under certain conditions, and their activation or assembly are considered as important regulatory processes in cell survival with hypoxic pressure. Therefore, a better understanding of the relationship between hypoxic stress, protein aggregation and biomolecular condensation will bring marked benefits in the clinical treatment of various diseases. The aim of the present review was to summarize the underlying mechanisms of aggregate assembly and dissolution induced by hypoxic conditions, and address recent breakthroughs in understanding the role of aggregates in hypoxic‑related diseases, given the hypotheses that hypoxia induces macromolecular assemblage changes from a liquid to a solid phase, and that adenosine triphosphate depletion and ATP‑driven inactivation of multiple protein chaperones play important roles among the process. Moreover, it is anticipated that an improved understanding of the adaptation in hypoxic environments could extend the overall survival of patients and provide new strategies for hypoxic‑related diseases.
Collapse
Affiliation(s)
- Chaoqun Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bingjie Hao
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Haiguang Yang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kai Wang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lihong Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Weihua Xiao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
36
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
37
|
Da J, Di X, Xie Y, Li J, Zhang L, Liu Y. Recent advances in nanomedicine for metabolism-targeted cancer therapy. Chem Commun (Camb) 2024; 60:2442-2461. [PMID: 38321983 DOI: 10.1039/d3cc05858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metabolism denotes the sum of biochemical reactions that maintain cellular function. Different from most normal differentiated cells, cancer cells adopt altered metabolic pathways to support malignant properties. Typically, almost all cancer cells need a large number of proteins, lipids, nucleotides, and energy in the form of ATP to support rapid division. Therefore, targeting tumour metabolism has been suggested as a generic and effective therapy strategy. With the rapid development of nanotechnology, nanomedicine promises to have a revolutionary impact on clinical cancer therapy due to many merits such as targeting, improved bioavailability, controllable drug release, and potentially personalized treatment compared to conventional drugs. This review comprehensively elucidates recent advances of nanomedicine in targeting important metabolites such as glucose, glutamine, lactate, cholesterol, and nucleotide for effective cancer therapy. Furthermore, the challenges and future development in this area are also discussed.
Collapse
Affiliation(s)
- Jun Da
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - XinJia Di
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YuQi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - JiLi Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - LiLi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YanLan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
38
|
Agius T, Emsley R, Lyon A, MacArthur MR, Kiesworo K, Faivre A, Stavart L, Lambelet M, Legouis D, de Seigneux S, Golshayan D, Lazeyras F, Yeh H, Markmann JF, Uygun K, Ocampo A, Mitchell SJ, Allagnat F, Déglise S, Longchamp A. Short-term hypercaloric carbohydrate loading increases surgical stress resilience by inducing FGF21. Nat Commun 2024; 15:1073. [PMID: 38316771 PMCID: PMC10844297 DOI: 10.1038/s41467-024-44866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Dietary restriction promotes resistance to surgical stress in multiple organisms. Counterintuitively, current medical protocols recommend short-term carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a multimodal perioperative care pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in surgical contexts are lacking. Here we demonstrate in ad libitum-fed mice that liquid carbohydrate loading for one week drives reductions in solid food intake, while nearly doubling total caloric intake. Similarly, in humans, simple carbohydrate intake is inversely correlated with dietary protein intake. Carbohydrate loading-induced protein dilution increases expression of hepatic fibroblast growth factor 21 (FGF21) independent of caloric intake, resulting in protection in two models of surgical stress: renal and hepatic ischemia-reperfusion injury. The protection is consistent across male, female, and aged mice. In vivo, amino acid add-back or genetic FGF21 deletion blocks carbohydrate loading-mediated protection from ischemia-reperfusion injury. Finally, carbohydrate loading induction of FGF21 is associated with the induction of the canonical integrated stress response (ATF3/4, NF-kB), and oxidative metabolism (PPARγ). Together, these data support carbohydrate loading drinks prior to surgery and reveal an essential role of protein dilution via FGF21.
Collapse
Affiliation(s)
- Thomas Agius
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaella Emsley
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Arnaud Lyon
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kevin Kiesworo
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Anna Faivre
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Louis Stavart
- Transplantation Center, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martine Lambelet
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Legouis
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Déla Golshayan
- Transplantation Center, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sarah J Mitchell
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Florent Allagnat
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Ou Q, Qiao X, Li Z, Niu L, Lei F, Cheng R, Xie T, Yang N, Liu Y, Fu L, Yang J, Mao X, Kou X, Chen C, Shi S. Apoptosis releases hydrogen sulfide to inhibit Th17 cell differentiation. Cell Metab 2024; 36:78-89.e5. [PMID: 38113886 DOI: 10.1016/j.cmet.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Over 50 billion cells undergo apoptosis each day in an adult human to maintain immune homeostasis. Hydrogen sulfide (H2S) is also required to safeguard the function of immune response. However, it is unknown whether apoptosis regulates H2S production. Here, we show that apoptosis-deficient MRL/lpr (B6.MRL-Faslpr/J) and Bim-/- (B6.129S1-Bcl2l11tm1.1Ast/J) mice exhibit significantly reduced H2S levels along with aberrant differentiation of Th17 cells, which can be rescued by the additional H2S. Moreover, apoptotic cells and vesicles (apoVs) express key H2S-generating enzymes and generate a significant amount of H2S, indicating that apoptotic metabolism is an important source of H2S. Mechanistically, H2S sulfhydrates selenoprotein F (Sep15) to promote signal transducer and activator of transcription 1 (STAT1) phosphorylation and suppress STAT3 phosphorylation, leading to the inhibition of Th17 cell differentiation. Taken together, this study reveals a previously unknown role of apoptosis in maintaining H2S homeostasis and the unique role of H2S in regulating Th17 cell differentiation via sulfhydration of Sep15C38.
Collapse
Affiliation(s)
- Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengshi Li
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Luhan Niu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Fangcao Lei
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Ruifeng Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100101, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100101, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100101, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
40
|
Hine C, Patel AK, Ponti AK. Diet-Modifiable Redox Alterations in Ageing and Cancer. Subcell Biochem 2024; 107:129-172. [PMID: 39693023 PMCID: PMC11753504 DOI: 10.1007/978-3-031-66768-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With ageing comes some of life's best and worst moments. Those lucky enough to live out into the seventh, eighth, and nineth decades and perhaps beyond have more opportunities to experience the wonders and joys of the world. As the world's population shifts towards more and more of these individuals, this is something to be celebrated. However, it is not without negative consequences. Advanced age also ushers in health decline and the burden of non-communicable diseases such as cancer, heart disease, stroke, and organ function decay. Thus, alleviating or at least dampening the severity of ageing as a whole, as well as these individual age-related disorders will enable the improvement in lifespan and healthspan. In the following chapter, we delve into hypothesised causes of ageing and experimental interventions that can be taken to slow their progression. We also highlight cellular and subcellular mechanisms of ageing with a focus on protein thiol oxidation and posttranslational modifications that impact cellular homeostasis and the advent and progression of ageing-related cancers. By having a better understanding of the mechanisms of ageing, we can hopefully develop effective, safe, and efficient therapeutic modalities that can be used prophylactically and/or concurrent to the onset of ageing.
Collapse
Affiliation(s)
- Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | - Anand Kumar Patel
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Cardiovascular Genetics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - András K Ponti
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
41
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
42
|
Tang L, Yu Y, Deng W, Liu J, Wang Y, Ye F, Kang R, Tang D, He Q. TXNDC12 inhibits lipid peroxidation and ferroptosis. iScience 2023; 26:108393. [PMID: 38047088 PMCID: PMC10690572 DOI: 10.1016/j.isci.2023.108393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by lipid peroxidation and subsequent damage to the plasma membrane. Here, we report a ferroptosis resistance mechanism involving the upregulation of TXNDC12, a thioredoxin domain-containing protein located in the endoplasmic reticulum. The inducible expression of TXNDC12 during ferroptosis in leukemia cells is inhibited by the knockdown of the transcription factor ATF4, rather than NFE2L2. Mechanistically, TXNDC12 acts to inhibit lipid peroxidation without affecting iron accumulation during ferroptosis. When TXNDC12 is overexpressed, it restores the sensitivity of ATF4-knockdown cells to ferroptosis. Moreover, TXNDC12 plays a GPX4-independent role in inhibiting lipid peroxidation. The absence of TXNDC12 enhances the tumor-suppressive effects of ferroptosis induction in both cell culture and animal models. Collectively, these findings demonstrate an endoplasmic reticulum-based anti-ferroptosis pathway in cancer cells with potential translational applications.
Collapse
Affiliation(s)
- Lanlan Tang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yichun Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
43
|
Kip P, Sluiter TJ, MacArthur MR, Tao M, Jung J, Mitchell SJ, Kooijman S, Kruit N, Gorham J, Seidman JG, Quax PHA, Aikawa M, Ozaki CK, Mitchell JR, de Vries MR. Short-term Pre-operative Methionine Restriction Induces Browning of Perivascular Adipose Tissue and Improves Vein Graft Remodeling in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565269. [PMID: 37961405 PMCID: PMC10635070 DOI: 10.1101/2023.11.02.565269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Short-term preoperative methionine restriction (MetR) shows promise as a translatable strategy to modulate the body's response to surgical injury. Its application, however, to improve post-interventional vascular remodeling remains underexplored. Here, we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and adverse vascular remodeling after vein graft surgery. RNA sequencing reveals that MetR enhances the brown adipose tissue phenotype in arterial perivascular adipose tissue (PVAT) and induces it in venous PVAT. Specifically, PPAR-α was highly upregulated in PVAT-adipocytes. Furthermore, MetR dampens the post-operative pro-inflammatory response to surgery in PVAT-macrophages in vivo and in vitro . This study shows for the first time that the detrimental effects of dysfunctional PVAT on vascular remodeling can be reversed by MetR, and identifies pathways involved in browning of PVAT. Furthermore, we demonstrate the potential of short-term pre-operative MetR as a simple intervention to ameliorate vascular remodeling after vascular surgery.
Collapse
|
44
|
Agius T, Songeon J, Lyon A, Longchamp J, Ruttimann R, Allagnat F, Déglise S, Corpataux JM, Golshayan D, Buhler L, Meier R, Yeh H, Markmann JF, Uygun K, Toso C, Klauser A, Lazeyras F, Longchamp A. Sodium Hydrosulfide Treatment During Porcine Kidney Ex Vivo Perfusion and Transplantation. Transplant Direct 2023; 9:e1508. [PMID: 37915463 PMCID: PMC10617874 DOI: 10.1097/txd.0000000000001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 11/03/2023] Open
Abstract
Background In rodents, hydrogen sulfide (H2S) reduces ischemia-reperfusion injury and improves renal graft function after transplantation. Here, we hypothesized that the benefits of H2S are conserved in pigs, a more clinically relevant model. Methods Adult porcine kidneys retrieved immediately or after 60 min of warm ischemia (WI) were exposed to 100 µM sodium hydrosulfide (NaHS) (1) during the hypothermic ex vivo perfusion only, (2) during WI only, and (3) during both WI and ex vivo perfusion. Kidney perfusion was evaluated with dynamic contrast-enhanced MRI. MRI spectroscopy was further employed to assess energy metabolites including ATP. Renal biopsies were collected at various time points for histopathological analysis. Results Perfusion for 4 h pig kidneys with Belzer MPS UW + NaHS resulted in similar renal perfusion and ATP levels than perfusion with UW alone. Similarly, no difference was observed when NaHS was administered in the renal artery before ischemia. After autotransplantation, no improvement in histologic lesions or cortical/medullary kidney perfusion was observed upon H2S administration. In addition, AMP and ATP levels were identical in both groups. Conclusions In conclusion, treatment of porcine kidney grafts using NaHS did not result in a significant reduction of ischemia-reperfusion injury or improvement of kidney metabolism. Future studies will need to define the benefits of H2S in human, possibly using other molecules as H2S donors.
Collapse
Affiliation(s)
- Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Julien Songeon
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Arnaud Lyon
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Medicine, Transplantation Centre, Lausanne University Hospital, Lausanne, Switzerland
| | - Justine Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Ruttimann
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre, Lausanne University Hospital, Lausanne, Switzerland
| | - Léo Buhler
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Switzerland
| | - Raphael Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Heidi Yeh
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - James F. Markmann
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Korkut Uygun
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Christian Toso
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Antoine Klauser
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Bi M, Qin Y, Zhao L, Zhang X. Edaravone promotes viability of random skin flaps via activating PI3K/Akt/mTOR signalling pathway-mediated enhancement of autophagy. Int Wound J 2023; 20:3088-3104. [PMID: 37042039 PMCID: PMC10502271 DOI: 10.1111/iwj.14184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Random skin flap transplantation is a commonly used technique. However, ischemia and ischemia-reperfusion injury always impair its therapeutic effectiveness through acclerating oxidative stress, apoptosis and suppressing angiogenesis. To survive, cells rely on mediating autophagy, DNA repair, immunoregulation to resist these cellular injuries. Thus, mediating autophagy may affect the survival of random skin flaps. The edaravone (EDA), a oxygen radicals scavenger, also possesses autophagy mediator potential, we investigated the effects of EDA on skin flap survival and its autophagy-related mechanisms. In vivo, mice were administered EDA or saline intraperitoneally for 7 days postoperatively. We found that EDA ameliorated the viability of random skin flaps, promoted autophagy and angiogenesis, attenuated apoptosis and oxidative stress. In vitro, mouse umbilical vascular endothelial cells (MUVECs) were administered EDA or 3-methyladenine (3-MA, an autophagy inhibitor) or rapacymin (Rapa, an autophagy activator) at the beginning of oxygen glucose deprivation (OGD). We found that EDA promoted cell viability, activated autophagy, enhanced angiogenesis, alleviated apoptosis and oxidative stress. On one hand, 3-MA reversed the effects of EDA on cell viability, oxidative stress and apoptosis via inhibiting autophagy. On the other hand, Rapa had the similar effects of EDA. Furthermore, EDA-induced autophagy was mediated through downregulating PI3K/Akt/mTOR signalling pathway. The findings showed that EDA ameliorated viability of random skin flaps by promoting angiogenesis, suppressing oxidative stress and apoptosis, which may be mediated by autophagic activation through downregulating PI3K/AKT/mTOR signalling pathway.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| | - Yonghong Qin
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| | | | - Xuanfen Zhang
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
46
|
Zhu J, Wang Y, Rivett A, Yang G. H 2S regulation of iron homeostasis by IRP1 improves vascular smooth muscle cell functions. Cell Signal 2023; 110:110826. [PMID: 37487913 DOI: 10.1016/j.cellsig.2023.110826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Either H2S or iron is essential for cellular processes. Abnormal metabolism of H2S and iron has increased risk for cardiovascular diseases. The aim of the present study is to examine the mutual interplay of iron and H2S signals in regulation of vascular smooth muscle cell (SMC) functions. Here we found that deficiency of cystathionine gamma-lyase (CSE, a major H2S-producing enzyme in vascular system) induced but NaHS (a H2S donor) administration attenuated iron accumulation in aortic tissues from angiotensin II-infused mice. In vitro, iron overload induced labile iron levels, promoted cell proliferation, disrupted F-actin filaments, and inhibited protein expressions of SMC-specific markers (αSMA and calponin) more significantly in SMCs from CSE knockout mice (KO-SMCs) than the cells from wild-type mice (WT-SMCs), which could be reversed by exogenously applied NaHS. In contrast, KO-SMCs were more vulnerable to iron starvation-induced cell death. Either iron overload or NaHS did not affect elastin level and gelatinolytic activity. We further found that H2S induced more aconitase activity of iron regulatory protein 1 (IRP1) but inhibited its RNA binding activity accompanied with increased protein levels of ferritin and ferriportin, which would contribute to the lower level of labile iron level inside the cells. In addition, iron was able to suppress CSE-derived H2S generation, while iron also non-enzymatically induced H2S release from cysteine. This study reveals the mutual interaction between iron and H2S signals in regulating SMC phenotypes and functions; CSE/H2S system would be a target for preventing iron metabolic disorder-related vascular diseases.
Collapse
Affiliation(s)
- Jiechun Zhu
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Alexis Rivett
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
47
|
Li Z, Quan B, Li X, Xiong W, Peng Z, Liu J, Wang Y. A proteomic and phosphoproteomic landscape of spinal cord injury. Neurosci Lett 2023; 814:137449. [PMID: 37597742 DOI: 10.1016/j.neulet.2023.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Spinal cord injury (SCI) is a devastating trauma of the central nervous system, with high levels of morbidity, disability, and mortality. To explore the underlying mechanism of SCI, we analyzed the proteome and phosphoproteome of rats at one week after SCI. We identified 465 up-regulated and 129 down-regulated differentially expressed proteins (DEPs), as well as 184 up-regulated and 40 down-regulated differentially expressed phosphoproteins (DEPPs). Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, we identified the biological characteristics of these proteins from the perspectives of cell component, biological process, and molecular function. We also found a lot of enriched functional pathways such as GABAergic synapse pathway, ErbB signaling pathway, tight junction, adherens junction. The integrated analysis of proteomics and phosphoproteomics yielded 22 differently expressed co-identified proteins of DEPs and DEPPs, which revealed strongly correlative patterns. These findings may help clarify the potential mechanisms of trauma and repair in SCI and may guide the development of novel treatments.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Bingxuan Quan
- The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiuyan Li
- The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Limin Hospital of Weihai High District, Weihai, China
| | - Zhibin Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingsong Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China.
| |
Collapse
|
48
|
Han H, Yang Y, Jiao Y, Qi H, Han Z, Wang L, Dong L, Tian J, Vanhaesebroeck B, Li X, Liu J, Ma G, Lei H. Leverage of nuclease-deficient CasX for preventing pathological angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:738-748. [PMID: 37662968 PMCID: PMC10469388 DOI: 10.1016/j.omtn.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Gene editing with a CRISPR/Cas system is a novel potential strategy for treating human diseases. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K) δ suppresses retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Here we show that an innovative system of adeno-associated virus (AAV)-mediated CRISPR/nuclease-deficient (d)CasX fused with the Krueppel-associated box (KRAB) domain is leveraged to block (81.2% ± 6.5%) in vitro expression of p110δ, the catalytic subunit of PI3Kδ, encoded by Pik3cd. This CRISPR/dCasX-KRAB (4, 269 bp) system is small enough to be fit into a single AAV vector. We then document that recombinant AAV serotype (rAAV)1 efficiently transduces vascular endothelial cells from pathologic retinal vessels, which show high expression of p110δ; furthermore, we demonstrate that blockade of retinal p110δ expression by intravitreally injected rAAV1-CRISPR/dCasX-KRAB targeting the Pik3cd promoter prevents (32.1% ± 5.3%) retinal p110δ expression as well as pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy. These data establish a strong foundation for treating pathological angiogenesis by AAV-mediated CRISPR interference with p110δ expression.
Collapse
Affiliation(s)
- Haote Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, the School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, People’s Republic of China
| | - Yunjuan Jiao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, People’s Republic of China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Luping Wang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | | | - Xiaopeng Li
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Junwen Liu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, People’s Republic of China
| | - Gaoen Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hetian Lei
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| |
Collapse
|
49
|
Wek RC, Anthony TG, Staschke KA. Surviving and Adapting to Stress: Translational Control and the Integrated Stress Response. Antioxid Redox Signal 2023; 39:351-373. [PMID: 36943285 PMCID: PMC10443206 DOI: 10.1089/ars.2022.0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Significance: Organisms adapt to changing environments by engaging cellular stress response pathways that serve to restore proteostasis and enhance survival. A primary adaptive mechanism is the integrated stress response (ISR), which features phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2). Four eIF2α kinases respond to different stresses, enabling cells to rapidly control translation to optimize management of resources and reprogram gene expression for stress adaptation. Phosphorylation of eIF2 blocks its guanine nucleotide exchange factor, eIF2B, thus lowering the levels of eIF2 bound to GTP that is required to deliver initiator transfer RNA (tRNA) to ribosomes. While bulk messenger RNA (mRNA) translation can be sharply lowered by heightened phosphorylation of eIF2α, there are other gene transcripts whose translation is unchanged or preferentially translated. Among the preferentially translated genes is ATF4, which directs transcription of adaptive genes in the ISR. Recent Advances and Critical Issues: This review focuses on how eIF2α kinases function as first responders of stress, the mechanisms by which eIF2α phosphorylation and other stress signals regulate the exchange activity of eIF2B, and the processes by which the ISR triggers differential mRNA translation. To illustrate the synergy between stress pathways, we describe the mechanisms and functional significance of communication between the ISR and another key regulator of translation, mammalian/mechanistic target of rapamycin complex 1 (mTORC1), during acute and chronic amino acid insufficiency. Finally, we discuss the pathological conditions that stem from aberrant regulation of the ISR, as well as therapeutic strategies targeting the ISR to alleviate disease. Future Directions: Important topics for future ISR research are strategies for modulating this stress pathway in disease conditions and drug development, molecular processes for differential translation and the coordinate regulation of GCN2 and other stress pathways during physiological and pathological conditions. Antioxid. Redox Signal. 39, 351-373.
Collapse
Affiliation(s)
- Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| |
Collapse
|
50
|
Hanna DA, Vitvitsky V, Banerjee R. A growth chamber for chronic exposure of mammalian cells to H 2S. Anal Biochem 2023; 673:115191. [PMID: 37207973 PMCID: PMC10668543 DOI: 10.1016/j.ab.2023.115191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
H2S is a redox-active signaling molecule that exerts an array of cellular and physiological effects. While intracellular H2S concentrations are estimated to be in the low nanomolar range, intestinal luminal concentrations can be significantly higher due to microbial metabolism. Studies assessing H2S effects are typically conducted with a bolus treatment with sulfide salts or slow releasing sulfide donors, which are limited by the volatility of H2S, and by potential off-target effects of the donor molecules. To address these limitations, we describe the design and performance of a mammalian cell culture incubator for sustained exposure to 20-500 ppm H2S (corresponding to a dissolved sulfide concentrations of ∼4-120 μM in the cell culture medium). We report that colorectal adenocarcinoma HT29 cells tolerate prolonged exposure to H2S with no effect on cell viability after 24 h although ≥50 ppm H2S (∼10 μM) restricts cell proliferation. Even the lowest concentration of H2S used in this study (i.e. ∼4 μM) significantly enhanced glucose consumption and lactate production, revealing a much lower threshold for impacting cellular energy metabolism and activating aerobic glycolysis than has been previously appreciated from studies with bolus H2S treatment regimens.
Collapse
Affiliation(s)
- David A Hanna
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0600, USA
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0600, USA; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 109029, Russia
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0600, USA.
| |
Collapse
|