1
|
Fu Y, Yang Q, Xu N, Zhang X. MiRNA affects the advancement of breast cancer by modulating the immune system's response. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167759. [PMID: 40037267 DOI: 10.1016/j.bbadis.2025.167759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Breast cancer (BC), which is the most common tumor in women, has greatly endangered women's lives and health. Currently, patients with BC receive comprehensive treatments, including surgery, chemotherapy, radiotherapy, endocrine therapy, and targeted therapy. According to the latest research, the development of BC is closely related to the inflammatory immune response, and the immunogenicity of BC has steadily been recognized. As such, immunotherapy is one of the promising and anticipated forms of treatment for BC. The potential values of miRNA in the diagnosis and prognosis of BC have been established, and aberrant expression of associated miRNA can either facilitate or inhibit progression of BC. In the tumor immune microenvironment (TME), miRNAs are considered to be an essential molecular mechanism by which tumor cells interact with immunocytes and immunologic factors. Aberrant expression of miRNAs results in reprogramming of tumor cells actively, which may suppress the generation and activation of immunocytes and immunologic factors, avoid tumor cells apoptosis, and ultimately result in uncontrolled proliferation and deterioration. Therefore, through activating and regulating the immunocytes related to tumors and associated immunologic factors, miRNA can contribute to the advancement of BC. In this review, we assessed the function of miRNA and associated immune system components in regulating the advancement of BC, as well as the potential and viability of using miRNA in immunotherapy for BC.
Collapse
Affiliation(s)
- Yeqin Fu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Qiuhui Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, China
| | - Ning Xu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xiping Zhang
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Killarney ST, Mesa G, Washart R, Mayro B, Dillon K, Wardell SE, Newlin M, Lu M, Rmaileh AA, Liu N, McDonnell DP, Pendergast AM, Wood KC. PKN2 Is a Dependency of the Mesenchymal-like Cancer Cell State. Cancer Discov 2025; 15:595-615. [PMID: 39560431 PMCID: PMC11875962 DOI: 10.1158/2159-8290.cd-24-0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Cancer cells exploit a mesenchymal-like transcriptional state (MLS) to survive drug treatments. Although the MLS is well characterized, few therapeutic vulnerabilities targeting this program have been identified. In this study, we systematically identify the dependency network of mesenchymal-like cancers through an analysis of gene essentiality scores in ∼800 cancer cell lines, nominating a poorly studied kinase, PKN2, as a top therapeutic target of the MLS. Coessentiality relationships, biochemical experiments, and genomic analyses of patient tumors revealed that PKN2 promotes mesenchymal-like cancer growth through a PKN2-SAV1-TAZ signaling mechanism. Notably, pairing genetic PKN2 inhibition with clinically relevant targeted therapies against EGFR, KRAS, and BRAF suppresses drug resistance by depleting mesenchymal-like drug-tolerant persister cells. These findings provide evidence that PKN2 is a core regulator of the Hippo tumor suppressor pathway and highlight the potential of PKN2 inhibition as a generalizable therapeutic strategy to overcome drug resistance driven by the MLS across cancer contexts. Significance: This work identifies PKN2 as a core member of the Hippo signaling pathway, and its inhibition blocks YAP/TAZ-driven tumorigenesis. Furthermore, this study discovers PKN2-TAZ as arguably the most selective dependency of mesenchymal-like cancers and supports specific inhibition of PKN2 as a provocative strategy to overcome drug resistance in diverse cancer contexts. See related commentary by Shen and Tan, p. 458.
Collapse
Affiliation(s)
- Shane T. Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Gabriel Mesa
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Rachel Washart
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Benjamin Mayro
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kerry Dillon
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Madeline Newlin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Min Lu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Areej Abu Rmaileh
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Nicky Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
3
|
Hu H, Fan Y, Wang J, Zhang J, Lv Y, Hou X, Cui J, Zhang Y, Gao J, Zhang T, Nan K. Single-cell technology for cell-based drug delivery and pharmaceutical research. J Control Release 2025:113587. [PMID: 40032008 DOI: 10.1016/j.jconrel.2025.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Leveraging the capacity to precisely manipulate and analyze individual cells, single-cell technology has rapidly become an indispensable tool in the advancement of cell-based drug delivery systems and innovative cell therapies. This technology offers a powerful means to address cellular heterogeneity and significantly enhance therapeutic efficacy. Recent breakthroughs in techniques such as single-cell electroporation, mechanical perforation, and encapsulation, particularly when integrated with microfluidics and bioelectronics, have led to remarkable improvements in drug delivery efficiency, reductions in cytotoxicity, and more precise targeting of therapeutic effects. Moreover, single-cell analyses, including advanced sequencing and high-resolution sensing, offer profound insights into complex disease mechanisms, the development of drug resistance, and the intricate processes of stem cell differentiation. This review summarizes the most significant applications of these single-cell technologies, highlighting their impact on the landscape of modern biomedicine. Furthermore, it provides a forward-looking perspective on future research directions aimed at further optimizing drug delivery strategies and enhancing therapeutic outcomes in the treatment of various diseases.
Collapse
Affiliation(s)
- Huihui Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yunlong Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China; MicroTech Medical (Hangzhou) Co., Hangzhou 311100, China
| | - Jiawen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jialu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yidan Lv
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Xiaoqi Hou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200438, China; International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Yamin Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
4
|
Lu J, Ding F, Sun Y, Zhao Y, Ma W, Zhang H, Shi B. Unveiling the role of MDH1 in breast cancer drug resistance through single-cell sequencing and schottenol intervention. Cell Signal 2025; 127:111608. [PMID: 39818404 DOI: 10.1016/j.cellsig.2025.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC). The study also analyzed myeloid cells and tumor-infiltrating lymphocytes (TILs) within the breast cancer immune microenvironment, identifying 14 TIL subpopulations and assessing their proportion variations across different patients. The CellChat tool revealed a complex cellular communication network within the tumor microenvironment, showing notable differences in communication intensity and patterns between TNBC and NTNBC patients. Additionally, the key regulatory role of the senescence-associated gene MDH1 in breast cancer was confirmed, and its impact on drug sensitivity was explored. Finally, it was discovered that the phytosterol Schottenol inhibits breast cancer cell proliferation by downregulating MDH1 expression and enhances sensitivity to paclitaxel. These findings provide new insights into MDH1 as a therapeutic target and suggest Schottenol as a potential strategy to overcome breast cancer drug resistance.
Collapse
Affiliation(s)
- Jian Lu
- Cheeloo College of Medicine, Shandong University, Jinan 250000, Shandong, China.; Department of Breast Diseases (II), Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Feng Ding
- Department of Breast Diseases (II), Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Yongjie Sun
- Department of Breast Diseases (II), Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Yu Zhao
- Department of Stomatology, Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Wenbiao Ma
- Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China
| | - Huan Zhang
- Department of Anesthesiology, The Qinghai Provincial People's Hospital, Xining 810007, China
| | - Bo Shi
- Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China.
| |
Collapse
|
5
|
Fonseca Teixeira A, Pires BRB, Panis C, Monte-Alto-Costa A, da Fonseca ADS, Mencalha AL. Low-Power Blue LED Modulates NF-κB and Proinflammatory Cytokines in Doxorubicin-Treated MDA-MB-231 Cells. J Biochem Mol Toxicol 2025; 39:e70192. [PMID: 39987519 DOI: 10.1002/jbt.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/08/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Doxorubicin is a crucial chemotherapy used in the treatment of triple-negative breast cancer (TNBC) patients, but elevated doxorubicin doses may induce therapeutic resistance. To overcome this limitation, we have previously established a photodynamic therapeutic (PDT)-like strategy that irradiates doxorubicin-treated cells with a low-power nonionizing blue LED device. This combined treatment increases the production of reactive oxygen species to promote cell death, consequently enabling reduced doxorubicin dosages. Yet, precisely determining the molecular mechanisms that drive this outcome is still required for advancing such PDT-like approach. Here, we aimed to correlate the expression of the inflammatory markers NF-κB, IL-8, IL-6, and IL-1β with the survival of TNBC cells submitted to our PDT-like protocol. Our results show that NF-κB/p65 nuclear levels were enhanced in MDA-MB-231 cells treated with doxorubicin and blue LED. Moreover, this PDT-like strategy increased IL-6 mRNA levels in MDA-MB-231 cells. IL-1β and IL-8 mRNA were upregulated in samples incubated with doxorubicin regardless of concomitant irradiation with blue LED. These results show that our PDT-like protocol is effective in elevating inflammatory signals, shedding light on the molecular mechanisms that underlie the efficacy of this innovative anticancer therapeutic approach.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Panis
- Centro de Ciências da Saúde, Universidade Estadual do Oeste do Paraná, Paraná, Brazil
| | - Andréa Monte-Alto-Costa
- Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Huang L, Han L, Liang S, Han G. Molecular mechanism of ZC3H13 -mediated ferroptosis in doxorubicin resistance of triple negative breast cancer. Cell Biol Toxicol 2025; 41:52. [PMID: 40000487 PMCID: PMC11861033 DOI: 10.1007/s10565-024-09980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/21/2024] [Indexed: 02/27/2025]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) continues to be the most aggressive subtype of breast cancer that frequently develops resistance to chemotherapy. Doxorubicin (DOX) belongs to the anthracycline chemical class of the drug and is one of the widely used anticancer drugs. This study investigates the mechanism of m6A methyltransferase ZC3H13 in DOX resistance of TNBC. METHODS ZC3H13, KCNQ1OT1, and TRABD expressions in TNBC tissues or cells were detected by RT-qPCR or Western blot. The effect of ZC3H13 on DOX resistance of TNBC cells was evaluated by CCK-8, clone formation, and EdU staining. RIP was performed to analyze the enrichment of YTHDF2 or m6A on KCNQ1OT1. RIP and RNA pull-down verified the binding between KCNQ1OT1 and MLL4. The enrichment of MLL or H3K9me1/2/3 on TRABD promoter was analyzed by ChIP. A nude mouse xenograft tumor model was established to verify the mechanism in vivo. RESULTS ZC3H13 was poorly expressed in TNBC, and its expression further decreased in drug-resistant cells. Overexpression of ZC3H13 decreased the IC50 of drug-resistant TNBC cells to DOX, repressed proliferation, and induced ferroptosis. Mechanistically, ZC3H13-mediated m6A modification reduced the transcriptional stability of KCNQ1OT1 and inhibited its expression in a YTHDF2-dependent manner. KCNQ1OT1 enhanced the enrichment of H3K4me1/2/3 on TRABD promoter by recruiting MLL4, thus increasing TRABD expression. ZC3H13 induced ferroptosis by inhibiting KCNQ1OT1/TRABD, thereby restraining the growth of DOX-treated tumors in vivo. CONCLUSION ZC3H13-mediated m6A modification reduces DOX resistance in TNBC by promoting ferroptosis via KCNQ1OT1/TRABD axis.
Collapse
Affiliation(s)
- Li Huang
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province, Chinese Academy of Medical Sciences/Cancer HospitalAffiliated to, Shanxi Medical University, Taiyuan, 030013, China
| | - Lei Han
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province, Chinese Academy of Medical Sciences/Cancer HospitalAffiliated to, Shanxi Medical University, Taiyuan, 030013, China
| | - Shuai Liang
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province, Chinese Academy of Medical Sciences/Cancer HospitalAffiliated to, Shanxi Medical University, Taiyuan, 030013, China
| | - Guohui Han
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province, Chinese Academy of Medical Sciences/Cancer HospitalAffiliated to, Shanxi Medical University, Taiyuan, 030013, China.
| |
Collapse
|
7
|
Xie C, Chan L, Pang Y, Shang Y, Wang W, Zhao L. Rosmarinic acid promotes mitochondrial fission and induces ferroptosis in triple-negative breast cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03927-0. [PMID: 39998626 DOI: 10.1007/s00210-025-03927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Breast cancer is the most common malignant tumor in women. Among its subtypes, triple-negative breast cancer (TNBC) is more aggressive and poses a serious threat to women's health. Rosmarinic acid (RA) is a natural polyphenolic compound known for its diverse pharmacological activities, with its antioxidant and anticancer properties being particularly notable. This study investigated the effects of RA on TNBC cell lines and explored its potential mechanisms. CCK-8 and colony formation assays were used to evaluate the potential inhibitory effects of RA on TNBC cells and to measure intracellular reactive oxygen species (ROS) levels. Flow cytometry was employed to analyze the cell cycle and apoptosis. RNA-seq analysis was performed to investigate the potential mechanisms of RA on MDA-MB-231 cells. RA inhibited the proliferation of TNBC cells in a concentration-dependent manner and reduced intracellular ROS levels. RA induced cell cycle arrest at the G1/G0 phase and promoted apoptosis by decreasing mitochondrial membrane potential. RNA-seq differential expression analysis, identified 1,929 differentially expressed genes, including 601 upregulated genes and 1,328 downregulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) showed that these differentially expressed genes were significantly enriched in pathways associated with ferroptosis, ABC transporters, and fatty acid metabolism. Additionally, RA significantly upregulated the expression of dynamin-related protein 1 (DRP1) in MDA-MB-231 cells, promoting mitochondrial fission, disrupting mitochondrial dynamics, and leading to dysfunction. Furthermore, RA increased the expression of intracellular ferroportin and heme oxygenase 1 (HMOX-1), resulting in elevated intracellular iron levels. The study suggests that RA inhibits the proliferation of TNBC cells through multiple mechanisms and may have potential therapeutic effects in the treatment of TNBC.
Collapse
Affiliation(s)
- Chufei Xie
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang, 550025, China
- Fengtai District, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, 8, Xitoutiao, Right Anmen West, Beijing, 100069, China
| | - Liujia Chan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing, 100069, China
| | - Yuheng Pang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, 150, Haping Road, Nangang District, Heilongjiang, 150086, China
| | - Yuefeng Shang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, 150, Haping Road, Nangang District, Heilongjiang, 150086, China
| | - Wenjing Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang, 550025, China.
- Fengtai District, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, 8, Xitoutiao, Right Anmen West, Beijing, 100069, China.
| | - Lichun Zhao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang, 550025, China.
| |
Collapse
|
8
|
Weddle CJ, Blancard M, Uche N, Pongpamorn P, Cejas RB, Burridge PW. Examining patient-specific responses to PARP inhibitors in a novel, human induced pluripotent stem cell-based model of breast cancer. NPJ Precis Oncol 2025; 9:53. [PMID: 40000798 PMCID: PMC11862011 DOI: 10.1038/s41698-025-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Preclinical models of breast cancer that better predict patient-specific drug responses are critical for expanding the clinical utility of targeted therapies, including for inhibitors of poly(ADP-ribose) polymerase (PARP). Reprogramming primary cancer cells into human induced pluripotent stem cells (hiPSCs) recently emerged as a powerful tool to model drug response phenotypes, but its use to date has been limited to hematopoietic malignancies. We designed an optimized reprogramming methodology to generate breast cancer-derived hiPSCs (BC-hiPSCs) from nine patients representing all major subtypes of breast cancer. BC-hiPSCs retain patient-specific oncogenic variants, including variants unique to individual tumor subclones. Additionally, we developed a protocol to differentiate BC-hiPSCs into mammary epithelial cells and mammary-like organoids for in vitro disease modeling, including drug response phenotyping. Using these tools, we demonstrated that BC-hiPSCs can be used to screen for differential sensitivity to PARP inhibitors and mechanistically investigated the causal genetic variant driving drug sensitivity in one patient.
Collapse
Affiliation(s)
- Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nnamdi Uche
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Praeploy Pongpamorn
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Romina B Cejas
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
9
|
Chaudhary N, Choudhary BS, Shivashankar A, Manna S, Ved K, Shaikh S, Khanna S, Baar J, Dani J, Sahoo S, Soundharya R, Jolly MK, Verma N. EGFR-to-Src family tyrosine kinase switching in proliferating-DTP TNBC cells creates a hyperphosphorylation-dependent vulnerability to EGFR TKI. Cancer Cell Int 2025; 25:55. [PMID: 39972345 PMCID: PMC11841279 DOI: 10.1186/s12935-025-03691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is the most aggressive type of breast malignancy, with chemotherapy as the only mainstay treatment. TNBC patients have the worst prognoses as a large fraction of them do not achieve complete pathological response post-treatment and develop drug-resistant residual disease. Molecular mechanisms that trigger proliferation in drug-resistant chemo-residual TNBC cells are poorly understood due to the lack of investigations using clinically relevant cellular models. In this study, we have established TNBC subtype-specific cellular models of proliferating drug-tolerant persister (PDTP) cells using different classes of chemotherapeutic agents that recapitulate clinical residual disease with molecular heterogeneity. Analysis of total phospho-tyrosine signals in TNBC PDTPs showed an enhanced phospho-tyrosine content compared to the parental cells (PC). Interestingly, using mass-spectrometry analysis, we identified a dramatic decrease in epidermal growth factor receptor (EGFR) expression in the PDTPs, while the presence of hyper-activated tyrosine phosphorylation of EGFR compared to PC. Further, we show that EGFR has enhanced lysosomal trafficking in PDTPs with a concomitant increase in N-Myc Downstream Regulated-1 (NDRG1) expression that co-localizes with EGFR to mediate receptor degradation. More surprisingly, we found that reduced protein levels of EGFR are coupled with a robust increase in Src family kinases, including Lyn and Fyn kinases, that creates a hyper-phosphorylation state of EGFR-Src tyrosine kinases axis in PDTPs and mediates downstream over-activation of STAT3, AKT and MAP kinases. Moreover, paclitaxel-derived PDTPs show increased sensitivity to EGFR TKI Gefitinib and its combination with paclitaxel selectively induced cell death in Paclitaxel-derived PDTP (PDTP-P) TNBC cells and 3D spheroids by strongly downregulating phosphorylation of EGFR-Src with concomitant downregulation of Lyn and Fyn tyrosine kinases. Collectively, this study identifies a unique hyper-phosphorylation cellular state of TNBC PDTPs established by switching of EGFR-Src family tyrosine kinases, creating a vulnerability to EGFR TKI.
Collapse
Affiliation(s)
- Nazia Chaudhary
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Bhagya Shree Choudhary
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India
| | - Anusha Shivashankar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Subhakankha Manna
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Khyati Ved
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Shagufa Shaikh
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India
| | - Sonal Khanna
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Jeetnet Baar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Jagruti Dani
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - R Soundharya
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Nandini Verma
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, Maharashtra, India.
- Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E Borges Road, Anushakti Nagar, Parel, Mumbai, Maharashtra, India.
| |
Collapse
|
10
|
Kwok DW, Stevers NO, Etxeberria I, Nejo T, Colton Cove M, Chen LH, Jung J, Okada K, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Liu J, Wu SH, Ramos E, Yamamichi A, Watchmaker PB, Ogino H, Saijo A, Du A, Grishanina NR, Woo J, Diaz A, Hervey-Jumper SL, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumour-wide RNA splicing aberrations generate actionable public neoantigens. Nature 2025:10.1038/s41586-024-08552-0. [PMID: 39972144 DOI: 10.1038/s41586-024-08552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2024] [Indexed: 02/21/2025]
Abstract
T cell-based immunotherapies hold promise in treating cancer by leveraging the immune system's recognition of cancer-specific antigens1. However, their efficacy is limited in tumours with few somatic mutations and substantial intratumoural heterogeneity2-4. Here we introduce a previously uncharacterized class of tumour-wide public neoantigens originating from RNA splicing aberrations in diverse cancer types. We identified T cell receptor clones capable of recognizing and targeting neoantigens derived from aberrant splicing in GNAS and RPL22. In cases with multi-site biopsies, we detected the tumour-wide expression of the GNAS neojunction in glioma, mesothelioma, prostate cancer and liver cancer. These neoantigens are endogenously generated and presented by tumour cells under physiologic conditions and are sufficient to trigger cancer cell eradication by neoantigen-specific CD8+ T cells. Moreover, our study highlights a role for dysregulated splicing factor expression in specific cancer types, leading to recurrent patterns of neojunction upregulation. These findings establish a molecular basis for T cell-based immunotherapies addressing the challenges of intratumoural heterogeneity.
Collapse
Affiliation(s)
- Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Iñaki Etxeberria
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Maggie Colton Cove
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lee H Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jangham Jung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Abhilash Barpanda
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Gary K L Chan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Samuel H Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aidan Du
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - James Woo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
11
|
Regner MJ, Garcia-Recio S, Thennavan A, Wisniewska K, Mendez-Giraldez R, Felsheim B, Spanheimer PM, Parker JS, Perou CM, Franco HL. Defining the regulatory logic of breast cancer using single-cell epigenetic and transcriptome profiling. CELL GENOMICS 2025; 5:100765. [PMID: 39914387 PMCID: PMC11872555 DOI: 10.1016/j.xgen.2025.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 01/08/2025] [Indexed: 02/12/2025]
Abstract
Annotation of cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to understanding tumor biology. Herein, we present matched chromatin accessibility (single-cell assay for transposase-accessible chromatin by sequencing [scATAC-seq]) and transcriptome (single-cell RNA sequencing [scRNA-seq]) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell of origin for subtype-specific breast tumors and implement linear mixed-effects modeling to quantify associations between regulatory elements and gene expression in malignant versus normal cells. These data unveil cancer-specific regulatory elements and putative silencer-to-enhancer switching events in cells that lead to the upregulation of clinically relevant oncogenes. In addition, we generate matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing a conserved oncogenic gene expression program between in vitro and in vivo cells. This work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of cancer cells.
Collapse
Affiliation(s)
- Matthew J Regner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamila Wisniewska
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raul Mendez-Giraldez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brooke Felsheim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Philip M Spanheimer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hector L Franco
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA.
| |
Collapse
|
12
|
Zhang L, Yang Y, Tan J. Applications and emerging challenges of single-cell RNA sequencing technology in tumor drug discovery. Drug Discov Today 2025; 30:104290. [PMID: 39828052 DOI: 10.1016/j.drudis.2025.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Current therapeutic drugs are inadequate for curing tumors, highlighting the need for novel tumor drugs. The advancement of single-cell RNA sequencing (scRNA-seq) technology offers new opportunities for tumor drug discovery. This technology allows us to explore tumor heterogeneity and developmental mechanisms at the single-cell level. In this review, we outline the application of scRNA-seq in tumor drug discovery stages, including elucidating tumor mechanisms, identifying targets, screening drugs, and understanding drug action and resistance. We also discuss the challenges and future prospects of using scRNA-seq in drug development, providing a scientific foundation for advancing tumor therapies.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yueying Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Jianjun Tan
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China.
| |
Collapse
|
13
|
Man KF, Darweesh O, Hong J, Thompson A, O'Connor C, Bonaldo C, Melkonyan MN, Sun M, Patel R, Ellisen LW, Robinson T, Song D, Koh SB. CREB1-BCL2 drives mitochondrial resilience in RAS GAP-dependent breast cancer chemoresistance. Oncogene 2025:10.1038/s41388-025-03284-5. [PMID: 39890967 DOI: 10.1038/s41388-025-03284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogenous breast cancer subtype. RASAL2 is a RAS GTPase-activating protein (GAP) that has been associated with platinum resistance in TNBC, but the underlying mechanism is unknown. Here, we show that RASAL2 is enriched following neoadjuvant chemotherapy in TNBC patients. This enrichment is specific to the tumour compartment compared to adjacent normal tissues, suggesting that RASAL2 upregulation is tumour-selective. Analyses based on 2D/3D cultures and patient-derived xenograft models reveal that RASAL2 confers cross-resistance to common DNA-damaging chemotherapies other than platinum. Mechanistically, we found that apoptotic signalling is significantly downregulated upon RASAL2 expression. This feature is characterised by substantial alterations in the expression of anti-versus pro-apoptotic factors, pointing to heterogeneous mechanisms. In particular, RASAL2 upregulates BCL2 via activation of the oncogenic transcription co-factor YAP. CREB1, a YAP-interacting protein, was identified as the common transcription factor that binds to the promoter regions of RASAL2 and BCL2, driving their collective expression. A subset of RASAL2 colocalises with BCL2 subcellularly. Both proteins decorate mitochondria, where the high levels of mitochondrial RASAL2-induced BCL2 expression render the organelles refractory to apoptosis. Accordingly, mitochondrial outer membrane permeabilisation assay using live mitochondria from RASAL2-high/chemoresistant tumour cells demonstrated attenuated release of death signal, cytochrome c, when exposed to pro-apoptotic factors BAX and tBID. Similarly, these cells were more resilient towards chemotherapy-induced mitochondrial depolarisation. Together, this work reveals a previously undocumented molecular link between RAS GAP and apoptosis regulation, providing a new mechanistic framework for targeting a subset of chemorefractory tumours.
Collapse
Affiliation(s)
- Ki-Fong Man
- University of Bristol, University Walk, Bristol, UK
| | - Omeed Darweesh
- University of Bristol, University Walk, Bristol, UK
- College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
| | - Jinghui Hong
- University of Bristol, University Walk, Bristol, UK
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | | - Mo Sun
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Rajnikant Patel
- University of Leicester, Henry Wellcome Building, Lancaster, UK
| | - Leif W Ellisen
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tim Robinson
- University of Bristol, University Walk, Bristol, UK
- University Hospitals Bristol and Weston, NHS Foundation Trust, Bristol, UK
| | - Dong Song
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Siang-Boon Koh
- University of Bristol, University Walk, Bristol, UK.
- University Hospitals Bristol and Weston, NHS Foundation Trust, Bristol, UK.
| |
Collapse
|
14
|
Lopez D, Tyson DR, Hong T. Intercellular signaling stabilizes single-cell level phenotypic transitions and accelerates the reestablishment of equilibrium of heterogeneous cancer cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631250. [PMID: 39803530 PMCID: PMC11722408 DOI: 10.1101/2025.01.03.631250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Cancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood. In particular, the role of intercellular communications in phenotypic plasticity remains elusive. In this study, we employ a multiscale inference-based approach using single-cell RNA sequencing (scRNA-seq) data to explore how intercellular interactions influence phenotypic dynamics of cancer cells, particularly cancers undergoing epithelial-mesenchymal transition. Our inference approach reveals that signaling interactions between cancerous cells in small cell lung cancer (SCLC) result in seemingly contradictory behaviors-reinforcing the cellular phenotypes and maintaining population-level intratumoral heterogeneity. Additionally, we find a recurring signaling pattern across multiple types of cancer in which the mesenchymal-like subtypes utilize signals from other subtypes to reinforce its phenotype, further promoting the intratumoral heterogeneity. We use a mathematical model based on ordinary differential equations to show that inter-subtype communication accelerates the development of heterogeneous tumor populations. Our work highlights the critical role of intercellular signaling in sustaining intratumoral heterogeneity, and our approach of computational analysis of scRNA-seq data can infer inter- and intra-cellular signaling networks in a holistic manner.
Collapse
Affiliation(s)
- Daniel Lopez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville. Knoxville, Tennessee 37916, USA
| | - Darren R Tyson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Tian Hong
- Department of Biological Sciences, The University of Texas at Dallas. Richardson, Texas 75080, USA
| |
Collapse
|
15
|
Zhang W, Zhang X, Teng F, Yang Q, Wang J, Sun B, Liu J, Zhang J, Sun X, Zhao H, Xie Y, Liao K, Wang X. Research progress and the prospect of using single-cell sequencing technology to explore the characteristics of the tumor microenvironment. Genes Dis 2025; 12:101239. [PMID: 39552788 PMCID: PMC11566696 DOI: 10.1016/j.gendis.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 11/19/2024] Open
Abstract
In precision cancer therapy, addressing intra-tumor heterogeneity poses a significant obstacle. Due to the heterogeneity of each cell subtype and between cells within the tumor, the sensitivity and resistance of different patients to targeted drugs, chemotherapy, etc., are inconsistent. Concerning a specific tumor type, many feasible treatments or combinations can be used by specifically targeting the tumor microenvironment. To solve this problem, it is necessary to further study the tumor microenvironment. Single-cell sequencing techniques can dissect distinct tumor cell populations by isolating cells and using statistical computational methods. This technology may assist in the selection of targeted combination therapy, and the obtained cell subset information is crucial for the rational application of targeted therapy. In this review, we summarized the research and application advances of single-cell sequencing technology in the tumor microenvironment, including the most commonly used single-cell genomic and transcriptomic sequencing, and their future development direction was proposed. The application of single-cell sequencing technology has been expanded to include epigenomics, proteomics, metabolomics, and microbiome analysis. The integration of these different omics approaches has significantly advanced the development of single-cell multiomics sequencing technology. This innovative approach holds immense potential for various fields, such as biological research and medical investigations. Finally, we discussed the advantages and disadvantages of using single-cell sequencing to explore the tumor microenvironment.
Collapse
Affiliation(s)
- Wenyige Zhang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xue Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Feifei Teng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qijun Yang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiayi Wang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bing Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jie Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingyan Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaomeng Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hanqing Zhao
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuxuan Xie
- The Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kaili Liao
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
16
|
Sánchez JF, Ramtani S, Boucetta A, Velasco MA, Vaca-González JJ, Duque-Daza CA, Garzón-Alvarado DA. Is Tumor Growth Influenced by the Bone Remodeling Process? J Comput Biol 2025; 32:104-124. [PMID: 39723973 DOI: 10.1089/cmb.2023.0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
In this study, we develop a comprehensive model to investigate the intricate relationship between the bone remodeling process, tumor growth, and bone diseases such as multiple myeloma. By analyzing different scenarios within the Basic Multicellular Unit, we uncover the dynamic interplay between remodeling and tumor progression. The model developed developed in the paper are based on the well accepted Komarova's and Ayati's models for the bone remodeling process, then these models were modified to include the effects of the tumor growth. Our in silico experiments yield results consistent with existing literature, providing valuable insights into the complex dynamics at play. This research aims to improve the clinical management of bone diseases and metastasis, paving the way for targeted interventions and personalized treatment strategies to enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
| | - Salah Ramtani
- Laboratoire CSPBAT, equipe LBPS, CNRS (UMR 7244), Universit e Sorbonne Paris Nord, Villetaneuse, France
| | - Abdelkader Boucetta
- Laboratoire CSPBAT, equipe LBPS, CNRS (UMR 7244), Universit e Sorbonne Paris Nord, Villetaneuse, France
| | | | | | | | | |
Collapse
|
17
|
Xiao H, Liu L, Huang S. STK32C modulates doxorubicin resistance in triple-negative breast cancer cells via glycolysis regulation. Mol Cell Biochem 2025; 480:459-471. [PMID: 38507019 DOI: 10.1007/s11010-024-04989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Understanding the mechanisms underlying doxorubicin resistance in triple-negative breast cancer (TNBC) holds paramount clinical significance. In our study, we investigate the potential of STK32C, a little-explored kinase, to impact doxorubicin sensitivity in TNBC cells. Our findings reveal elevated STK32C expression in TNBC specimens, associated with unfavorable prognosis in doxorubicin-treated TNBC patients. Subsequent experiments highlighted that STK32C depletion significantly augmented the sensitivity of doxorubicin-resistant TNBC cells to doxorubicin. Mechanistically, we unveiled that the cytoplasmic subset of STK32C plays a pivotal role in mediating doxorubicin sensitivity, primarily through the regulation of glycolysis. Furthermore, the kinase activity of STK32C proved to be essential for its mediation of doxorubicin sensitivity, emphasizing its role as a kinase. Our study suggests that targeting STK32C may represent a novel therapeutic approach with the potential to improve doxorubicin's efficacy in TNBC treatment.
Collapse
Affiliation(s)
- Huawei Xiao
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Shaoyan Huang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China.
| |
Collapse
|
18
|
Lu Y, Zhen Y, Li Z, Luo B, Yin B, Zhang L. Discovery of a novel Fam20C inhibitor for treatment of triple-negative breast cancer. Int J Biol Macromol 2025; 286:138398. [PMID: 39647747 DOI: 10.1016/j.ijbiomac.2024.138398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Sequence similarity 20 family member C (Fam20C), a Golgi casein kinase, has a gradually elucidated mechanism in triple-negative breast cancer (TNBC) and is considered a possible target for therapeutic intervention. In this study, we combined virtual screening and chemical synthesis methods to obtain a new small-molecule Fam20C inhibitor, compound 5k, which possesses desirable kinase inhibitory activity against Fam20C and significant anti-proliferative activity against MDA-MB-231 and BT-549 cells. Subsequently, cellular thermal shift assay (CETSA), molecular docking, and molecular dynamics (MD) simulations revealed that compound 5k binds to Fam20C. Moreover, compound 5k showed favorable antitumor efficacy in TNBC cells and xenograft models by promoting apoptosis and inhibiting migration. Mechanistically, compound 5k can inhibit the proliferation, promote apoptosis, and inhibit migration of TNBC cells by targeting Fam20C, thereby inhibiting the deterioration of TNBC and preventing its progression. Taken together, these results suggest that compound 5k can be utilized as a novel Fam20C inhibitor, laying a foundation for the discovery of more small-molecule drugs for the treatment of TNBC in the future.
Collapse
Affiliation(s)
- Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yongqi Zhen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
19
|
Lu B. Cancer phylogenetic inference using copy number alterations detected from DNA sequencing data. CANCER PATHOGENESIS AND THERAPY 2025; 3:16-29. [PMID: 39872371 PMCID: PMC11764021 DOI: 10.1016/j.cpt.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 01/30/2025]
Abstract
Cancer is an evolutionary process involving the accumulation of diverse somatic mutations and clonal evolution over time. Phylogenetic inference from samples obtained from an individual patient offers a powerful approach to unraveling the intricate evolutionary history of cancer and provides insights that can inform cancer treatment. Somatic copy number alterations (CNAs) are important in cancer evolution and are often used as markers, alone or with other somatic mutations, for phylogenetic inferences, particularly in low-coverage DNA sequencing data. Many phylogenetic inference methods using CNAs detected from bulk or single-cell DNA sequencing data have been developed over the years. However, there have been no systematic reviews on these methods. To summarize the state-of-the-art of the field and inform future development, this review presents a comprehensive survey on the major challenges in inference, different types of methods, and applications of these methods. The challenges are discussed from the aspects of input data, models of evolution, and inference algorithms. The different methods are grouped according to the markers used for inference and the types of the reconstructed trees. The applications include using phylogenetic inference to understand intra-tumor heterogeneity, metastasis, treatment resistance, and early cancer development. This review also sheds light on future directions of cancer phylogenetic inference using CNAs, including the improvement of scalability, the utilization of new types of data, and the development of more realistic models of evolution.
Collapse
Affiliation(s)
- Bingxin Lu
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
20
|
Gong J, Cheng D, Liu C, Wu S, Sun N, Zhao L, Li J, Xing Y, Zhao J. Hybrid Cell Membrane-Coated Nanoparticles for Synergizing Sonodynamic Therapy and Immunotherapy against Triple-Negative Breast Cancer. Adv Healthc Mater 2025; 14:e2404184. [PMID: 39573837 DOI: 10.1002/adhm.202404184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/12/2024] [Indexed: 01/29/2025]
Abstract
Tumor immunotherapy represents a highly promising modality for the treatment of triple-negative breast cancer (TNBC). Nevertheless, its therapeutic efficacy has been profoundly impacted by challenges such as low drug uptake, hypoxia, and immunosuppression. To address these problems, the study develops a strategy combining sonodynamic therapy (SDT) and immunotherapy using biomimetic nanoparticles coated with hybrid membranes. The nanoparticles are loaded with semiconducting polymers (PFODBT), Atovaquone (ATO), and TMP195 to enhance biocompatibility, targeting ability, and drug uptake and retention at the tumor site. In in vitro experiments, the biomimetic nanoparticles alleviate hypoxia, induce immunogenic cell death (ICD), and prompt reprogramming of tumor-associated macrophages (TAMs) from M2 type to M1 type. In in vivo experiments, the synergistic effects of enhanced SDT-mediated ICD and TAMs repolarization significantly inhibit the proliferation of primary and distant tumor in the 4T1 subcutaneous tumor model, and effectively attenuated metastasis of lung and liver. Moreover, the in vivo immune responses are further activated by improving the maturation of dendritic cells, filtration of CD8+ T cells, and depletion of regulatory T cells. This study offers a novel strategy for TNBC therapy by converting the tumor microenvironment from the "cold" into "hot" tumor through multiple synergistic therapies.
Collapse
Affiliation(s)
- Jiali Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Danling Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shan Wu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Na Sun
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 201620, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
21
|
Zhou Z, Cai S, Zhou X, Zhao W, Sun J, Zhou Z, Yang Z, Li W, Wang Z, Zou H, Fu H, Wang X, Khoo BL, Yang M. Circulating Tumor Cells Culture: Methods, Challenges, and Clinical Applications. SMALL METHODS 2024:e2401026. [PMID: 39726345 DOI: 10.1002/smtd.202401026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/10/2024] [Indexed: 12/28/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in cancer metastasis and hold considerable potential for clinical diagnosis, therapeutic monitoring, and prognostic evaluation. Nevertheless, the limited quantity of CTCs in liquid biopsy samples poses challenges for comprehensive downstream analysis. In vitro culture of CTCs can effectively address the issue of insufficient CTC numbers. Furthermore, research based on CTC cell lines serves as a valuable complement to traditional cancer cell line-based research. While numerous reports exist on CTC in vitro culture and even the establishment of CTC cell lines, the methods used vary, leading to disparate culture outcomes. This review presents the developmental history and current status of CTC in vitro culture research. Additionally, the culture strategies applied in different methods and analyzed the impact of various steps on culture outcomes are compared. Overall, the review indicates that while the short-term culture of CTCs is relatively straightforward, long-term culture success has been achieved for various specific cancer types but still faces challenges. Further optimization of efficient and widely applicable culture strategies is needed. Additionally, ongoing applications of CTC in vitro culture are summarized, highlighting the potential of expanded CTCs for drug susceptibility testing and as therapeutic tools in personalized treatment.
Collapse
Affiliation(s)
- Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Wei Zhao
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhihang Zhou
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zihan Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhe Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Heng Zou
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Huayang Fu
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Bee Luan Khoo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
22
|
Chen P, Liang K, Mao X, Wu Q, Chen Z, Jin Y, Lin K, He T, Yang S, Huang H, Ye G, Gao J, Zhou D, Zeng Z. Single-cell transcriptomes of dissecting the intra-tumoral heterogeneity of breast cancer microenvironment. J Cancer Res Clin Oncol 2024; 151:17. [PMID: 39724260 PMCID: PMC11671554 DOI: 10.1007/s00432-024-06015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE To investigate the mechanism by which heterogeneity in breast cancer developed and acted in single-cell transcriptomes. METHODS The composition of breast cancer based on the single-cell transcriptomes of 54,055 high-quality cells from clinical specimens of 4 malignant and 4 non-malignant patients were investigated. RESULTS We identified six common expression programs and six subtype-specific expression programs form malignant epithelial cells. The expression program of malignant epithelial cells exhibited activated EMT (Epithelial Mesenchymal Transition) in TME, which might indicate EMT intervention have a general therapeutic effect on various subtypes. Gene set enrichment analysis (GSEA) based on the top 50 highly NMF (non-negative matrix factorization) score genes in each program depicted the distinct function of each program in breast cancer progression. Moreover, we revealed the profound cellular heterogeneity of myeloid cell lineages in breast cancer. In macrophages, two mainly tumor associated macrophages (TAMs), TAM1 and TAM2, were also detected and the highly variable genes in TAM2 were strongly enriched in IFN-α and IFN-γ. The changes of lipid metabolism pathways in macrophages are closely related to the microenvironment of breast cancer. CONCLUSION We constructed a comprehensive single-cell transcriptome atlas of 54,055 cells from 4 malignant and 4 nonmalignant patients, providing insights into the mechanisms underlying breast cancer progression and the development of potential therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Kaifeng Liang
- Department of Breast Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), #1, Jiazi Road, Lunjiao, Shunde District, Foshan, 528308, Guangdong Province, China
| | - Xiaofan Mao
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Qiuyuan Wu
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
- Guangdong Medical University, Zhanjiang, 524000, China
| | - Zhiyan Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
- Guangdong Medical University, Zhanjiang, 524000, China
| | - Yabin Jin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Kairong Lin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Tiancheng He
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Shuqing Yang
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Huiqi Huang
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Guolin Ye
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
- Guangdong Medical University, Zhanjiang, 524000, China
| | - Zhihao Zeng
- Department of Breast Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), #1, Jiazi Road, Lunjiao, Shunde District, Foshan, 528308, Guangdong Province, China.
| |
Collapse
|
23
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Tian M, Keshavarz M, Demircali AA, Han B, Yang GZ. Localized Microrobotic Delivery of Enzyme-Responsive Hydrogel-Immobilized Therapeutics to Suppress Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408813. [PMID: 39692188 DOI: 10.1002/smll.202408813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Triple-negative breast cancer (TNBC), characterized by its aggressive metastatic propensity and lack of effective targeted therapeutic options, poses a major challenge in oncological management. A proof-of-concept neoadjuvant strategy aimed at inhibiting TNBC tumor growth and mitigating metastasis through a localized delivery of chemotherapeutics is reported in this paper. This approach addresses the limitations in payload capacity and stimuli responsiveness commonly associated with microrobotics in oncology. A hydrogel-based system is developed for the immobilization of chemotherapeutic agents, subsequently encapsulated within magnetically responsive microrobots. This design leverages external magnetic fields to facilitate the precise navigation and localization of the therapeutic agents directly to the tumor site. The efficacy of this approach is demonstrated in an animal model, in which a significant 14-fold reduction in tumor size and suppression of metastasis to critical organs such as the liver and lungs are observed. Crucially, the drug release mechanism is engineered to be responsive to the tumor microenvironment and is regulated by the overexpression of the enzymatic activity of matrix metalloproteinases (MMP2 and MMP9) in TNBC tumors, triggering the degradation of the hydrogel matrix, leading to controlled release of the immobilized therapeutic drug. This ensures that the therapeutic action is localized, reducing systemic toxicity and enhancing treatment efficacy. These findings suggest that this neoadjuvant approach holds promise for broader applications in other cancer types.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meysam Keshavarz
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London, South Kensington, SW7 2AZ, UK
| | - Ali Anil Demircali
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Bing Han
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
25
|
Shi M, Yang Y, Huang N, Zeng D, Mo Z, Wang J, Zhang X, Liu R, Wang C, Rong X, Wu Z, Huang Q, Shang H, Tang J, Wang Z, Cai J, Huang G, Guan Y, Guo J, Mu Q, Wang J, Liao W. Genetic and microenvironmental evolution of colorectal liver metastases under chemotherapy. Cell Rep Med 2024; 5:101838. [PMID: 39631402 PMCID: PMC11722126 DOI: 10.1016/j.xcrm.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Drug resistance limits the efficacy of chemotherapy for colorectal cancer liver metastasis (CRLM). However, the evolution of CRLM during drug treatment remains poorly elucidated. Multi-omics and treatment response data from 115 samples of 49 patients with CRLM undergoing bevacizumab (BVZ)-based chemotherapy show little difference in genomic alterations in 92% of cases, while remarkable differences are observed at the transcriptomic level. By decoupling intrinsic and acquired resistance, we find that hepatocyte and myeloid cell infiltration contribute to 38.5% and 23.1% of acquired resistance, respectively. Importantly, SMAD4 mutations and chr20q copy-number gain are associated with intrinsic chemoresistance. Gene interference experiments suggest that SMAD4R361H/C mutations confer BVZ and 5-fluorouracil (5-FU) resistance through STAT3 signaling. Notably, supplementing BVZ and 5-FU with the STAT3 inhibitor GB201 restores therapeutic efficacy in SMAD4R361H/C cancer cells. Our study uncovers the evolutionary dynamics of CRLM and its microenvironment during treatment and offers strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Zongchao Mo
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiao Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaomeng Zhang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ran Liu
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chunlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenzhen Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Shang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jihong Tang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhaojun Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianan Cai
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Genjie Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yijin Guan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian Guo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Quanhua Mu
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiguang Wang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, P.R. China.
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| |
Collapse
|
26
|
Weng Z, Mai Z, Yuan J, Liu Q, Deng F, Yang H, Ling Y, Xie X, Lin X, Lin T, Chen J, Wei X, Luo K, Fu J, Wen J. Evolution of genome and immunogenome in esophageal squamous cell carcinomas driven by neoadjuvant chemoradiotherapy. Int J Cancer 2024; 155:2021-2035. [PMID: 39081132 DOI: 10.1002/ijc.35118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 10/04/2024]
Abstract
Neoadjuvant chemoradiotherapy (NCRT) followed by surgery is a standard treatment for locally advanced esophageal squamous cell carcinomas (ESCCs). However, the evolution of genome and immunogenome in ESCCs driven by NCRT remains incompletely elucidated. We performed whole-exome sequencing of 51 ESCC tumors collected before and after NCRT, 36 of which were subjected to transcriptome sequencing. Clonal analysis identified clonal extinction in 13 ESCC patients wherein all pre-NCRT clones disappeared after NCRT, and clonal persistence in 9 patients wherein clones endured following NCRT. The clone-persistent patients showed higher pre-NCRT genomic intratumoral heterogeneity and worse prognosis than the clone-extinct ones. In contrast to the clone-extinct patients, the clone-persistent patients demonstrated a high proportion of subclonal neoantigens within pre-treatment specimens. Transcriptome analysis revealed increased immune infiltrations and up-regulated immune-related pathways after NCRT, especially in the clone-extinct patients. The number of T cell receptor-neoantigen interactions was higher in the clone-extinct patients than in the clone-persistent ones. The decrease in T cell repertoire evenness positively correlated to the decreased number of clonal neoantigens after NCRT, especially in the clone-extinct patients. In conclusion, we identified two prognosis-related clonal dynamic modes driven by NCRT in ESCCs. This study extended our knowledge of the ESCC genome and immunogenome evolutions driven by NCRT.
Collapse
Affiliation(s)
- Zelin Weng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zihang Mai
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianye Yuan
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Qianwen Liu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangqi Deng
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yihong Ling
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiuying Xie
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaodan Lin
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Lin
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiyang Chen
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoli Wei
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kongjia Luo
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
27
|
Uchida Y, Kurimoto R, Chiba T, Matsushima T, Oda G, Onishi I, Takeuchi Y, Gotoh N, Asahara H. RNA binding protein ZCCHC24 promotes tumorigenicity in triple-negative breast cancer. EMBO Rep 2024; 25:5352-5382. [PMID: 39420119 PMCID: PMC11624195 DOI: 10.1038/s44319-024-00282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of hormone and HER2 receptors and is highly malignant with no effective therapeutic targets. In TNBC, the cancer stem-like cell (CSC) population is considered to be the main cause of resistance to treatment. Thus, the therapeutic targeting of this population could substantially improve patient survival. Here, we identify the RNA-binding protein ZCCHC24 as enriched in the mesenchymal-like TNBC population. ZCCHC24 promotes the expression of a set of genes related to tumorigenicity and treatment resistance by directly binding to the cis-element "UGUWHWWA" in their mRNAs, thereby stabilizing them. One of the ZCCHC24 targets, ZEB1, is a transcription factor that promotes the expression of cancer stemness genes and reciprocally induces ZCCHC24 expression. ZCCHC24 knockdown by siRNAs shows a therapeutic effect and reduces the mesenchymal-like cell population in TNBC patient-derived xenografts. ZCCHC24 knockdown also has additive effects with the BET inhibitor JQ1 in suppressing tumor growth in TNBC patient-derived xenografts.
Collapse
Affiliation(s)
- Yutaro Uchida
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Ryota Kurimoto
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Tomoki Chiba
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Takahide Matsushima
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Goshi Oda
- Department of Surgery, Breast Surgery, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Yasuto Takeuchi
- Division of Cancer Cell Biology, Kanazawa University, Kanazawa, 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Kanazawa University, Kanazawa, 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan.
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, CA, 92037, USA.
| |
Collapse
|
28
|
Li S, Chen A, Gui J, Zhou H, Zhu L, Mi Y. TLN1: an oncogene associated with tumorigenesis and progression. Discov Oncol 2024; 15:716. [PMID: 39589610 PMCID: PMC11599537 DOI: 10.1007/s12672-024-01593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Talin-1 (TLN1), encoded by the TLN1 gene, is a focal adhesion-related protein capable of binding various proteins in the cytoskeleton. It is also expressed at high levels in many cancers wherein it influences cellular adhesion and the activation of integrins. TLN1 is also capable of promoting tumor cell invasivity, proliferation, and metastatic progression, in addition to being a relevant biomarker and therapeutic target in certain cancers. The present review offers a comprehensive overview of current knowledge regarding TLN1 with respect to its structural properties, functions, and role in tumor development.
Collapse
Affiliation(s)
- Sixin Li
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Anjie Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Jiandong Gui
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Hangsheng Zhou
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China.
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
29
|
Lu B, Qiu R, Wei J, Wang L, Zhang Q, Li M, Zhan X, Chen J, Hsieh IY, Yang C, Zhang J, Sun Z, Zhu Y, Jiang T, Zhu H, Li J, Zhao W. Phase separation of phospho-HDAC6 drives aberrant chromatin architecture in triple-negative breast cancer. NATURE CANCER 2024; 5:1622-1640. [PMID: 39198689 DOI: 10.1038/s43018-024-00816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
How dysregulated liquid-liquid phase separation (LLPS) contributes to the oncogenesis of female triple-negative breast cancer (TNBC) remains unknown. Here we demonstrate that phosphorylated histone deacetylase 6 (phospho-HDAC6) forms LLPS condensates in the nuclei of TNBC cells that are essential for establishing aberrant chromatin architecture. The disordered N-terminal domain and phosphorylated residue of HDAC6 facilitate effective LLPS, whereas nuclear export regions exert a negative dominant effect. Through phase-separation-based screening, we identified Nexturastat A as a specific disruptor of phospho-HDAC6 condensates, which effectively suppresses tumor growth. Mechanistically, importin-β interacts with phospho-HDAC6, promoting its translocation to the nucleus, where 14-3-3θ mediates the condensate formation. Disruption of phospho-HDAC6 LLPS re-established chromatin compartments and topologically associating domain boundaries, leading to disturbed chromatin loops. The phospho-HDAC6-induced aberrant chromatin architecture affects chromatin accessibility, histone acetylation, RNA polymerase II elongation and transcriptional profiles in TNBC. This study demonstrates phospho-HDAC6 LLPS as an emerging mechanism underlying the dysregulation of chromatin architecture in TNBC.
Collapse
Affiliation(s)
- Bing Lu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ru Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiatian Wei
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qinkai Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Mingsen Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiudan Zhan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jian Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - I-Yun Hsieh
- Shunde Hospital (The First People's Hospital of Shunde), Southern Medical University, Foshan, China
| | - Ciqiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yifan Zhu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tao Jiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Han Zhu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Wei Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Vieira Junior MG, de Almeida Côrtes AM, Gonçalves Carneiro FR, Carels N, Silva FABD. A method for in silico exploration of potential glioblastoma multiforme attractors using single-cell RNA sequencing. Sci Rep 2024; 14:26003. [PMID: 39472601 PMCID: PMC11522675 DOI: 10.1038/s41598-024-74985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
We presented a method to find potential cancer attractors using single-cell RNA sequencing (scRNA-seq) data. We tested our method in a Glioblastoma Multiforme (GBM) dataset, an aggressive brain tumor presenting high heterogeneity. Using the cancer attractor concept, we argued that the GBM's underlying dynamics could partially explain the observed heterogeneity, with the dataset covering a representative region around the attractor. Exploratory data analysis revealed promising GBM's cellular clusters within a 3-dimensional marker space. We approximated the clusters' centroid as stable states and each cluster covariance matrix as defining confidence regions. To investigate the presence of attractors inside the confidence regions, we constructed a GBM gene regulatory network, defined a model for the dynamics, and prepared a framework for parameter estimation. An exploration of hyperparameter space allowed us to sample time series intending to simulate myriad variations of the tumor microenvironment. We obtained different densities of stable states across gene expression space and parameters displaying multistability across different clusters. Although we used our methodological approach in studying GBM, we would like to highlight its generality to other types of cancer. Therefore, this report contributes to an advance in the simulation of cancer dynamics and opens avenues to investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Marcos Guilherme Vieira Junior
- Graduate Program in Computational and Systems Biology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, Brazil.
| | - Adriano Maurício de Almeida Côrtes
- Department of Applied Mathematics, Institute of Mathematics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-909, Brazil
- Systems Engineering and Computer Science Program, Coordination of Postgraduate Programs in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-972, Brazil
| | - Flávia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-361, Brazil
- Laboratório Interdisciplinar de Pesquisas Médicas, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050, Brazil
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-361, Brazil
| | | |
Collapse
|
31
|
Iweala EEJ, Amuji DN, Oluwajembola AM, Ugbogu EA. Targeting c-Met in breast cancer: From mechanisms of chemoresistance to novel therapeutic strategies. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100204. [PMID: 39524211 PMCID: PMC11543557 DOI: 10.1016/j.crphar.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer presents a significant challenge due to its heterogeneity and propensity for developing chemoresistance, particularly in the triple-negative subtype. c-Mesenchymal epithelial transition factor (c-Met), a receptor tyrosine kinase, presents a promising target for breast cancer therapy due to its involvement in disease progression and poor prognosis. However, the heterogeneous expression of c-Met within breast cancer subtypes and individual tumors complicates targeted therapy. Also, cancer cells can develop resistance to c-Met inhibitors through various mechanisms, including bypass signaling pathways and genetic mutations. The off-target effects of c-Met inhibitors further limit their clinical utility, necessitating the development of more selective agents. To overcome these challenges, personalized treatment approaches and combination therapies are being explored to improve treatment efficacy while minimizing adverse effects. Novel c-Met inhibitors with improved selectivity and reduced off-target toxicity show promise in preclinical studies. Additionally, targeted delivery systems aim to enhance drug localization and reduce systemic toxicity. Future directions involve refining inhibitor design and integrating c-Met inhibition into personalized treatment regimens guided by molecular profiling. This review explores the mechanisms by which c-Met contributes to chemoresistance in breast cancer and current challenges in targeting c-Met for breast cancer therapy. It discusses strategies to optimize treatment outcomes, ultimately improving patient prognosis and reducing mortality rates associated with this devastating disease.
Collapse
Affiliation(s)
- Emeka Eze Joshua Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Doris Nnenna Amuji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Abimbola Mary Oluwajembola
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | | |
Collapse
|
32
|
Ge Z, Wang J, He L, Zhao M, Si Y, Chang S, Zhang G, Cheng S, Ding W. Reconstruction of cancer marker analysis with holistic anatomical precision implicates heterogeneity development during breast tumor progression. Discov Oncol 2024; 15:564. [PMID: 39406984 PMCID: PMC11480302 DOI: 10.1007/s12672-024-01442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Biomarkers are not only of significant importance for cancer diagnosis and selection of treatment plans but also recently increasingly used for the evaluation of malignancy development and tumor heterogeneity. Large-size tumors from clinical patients can be unique and valuable sources for the study of cancer progression, particularly to the extent of intratumoral heterogeneity. In the present study, we obtained a series of post-surgery puncture samples from a breast cancer patient with a 4 × 3.5 × 2 cm tumor in its original size. Immunohistochemistry for Ki-67, COX-2, and CA IX was performed and the expression levels within the breast cancer tumor mass were evaluated in the reconstructed 3D models. To further evaluate the intratumoral heterogeneity, we performed high throughput whole transcriptome sequencing of 12 samples from different spatial positions within the tumor tissue. Comparing the reconstructed 3D distribution of biomarkers with projected tumor growth models, asymmetric and heterogeneous expansion of tumor mass was found to be possibly influenced by factors such as blood supply, inflammation and/or hypoxia stimulations, as suggested from the correlation between the results of Ki-67 and CA IX or COX-2 staining. Furthermore, high-throughput RNA sequencing data provided additional information for profiling the intratumoral heterogeneity and expanded the understanding of cancer progression. Digital technology for medical imaging once properly integrated with molecular pathology examinations will become particularly helpful in dissecting out in-depth information for precision medicine. We prospect that this approach, facilitated by rapidly advancing artificial intelligence, could provide new insights for clinical decision-making in the future. Strategies for the continuous development from the present study for better performance and application were discussed.
Collapse
Affiliation(s)
- Zhicheng Ge
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Libing He
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Meng Zhao
- Department of Infection Control, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Yang Si
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Siyuan Chang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Guoyan Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Shan Cheng
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Wei Ding
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
33
|
Yang Y, Li H, Yang W, Shi Y. Improving efficacy of TNBC immunotherapy: based on analysis and subtyping of immune microenvironment. Front Immunol 2024; 15:1441667. [PMID: 39430759 PMCID: PMC11487198 DOI: 10.3389/fimmu.2024.1441667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer that encompasses several distinct subtypes. Recent advances in immunotherapy offer a promising future for the treatment of these highly heterogeneous and readily metastatic tumors. Despite advancements, the efficacy of immunotherapy remains limited as shown by unimproved efficacy of PD-L1 biomarker and limited patient benefit. To enhance the effectiveness of TNBC immunotherapy, we conducted investigation on the microenvironment, and corresponding therapeutic interventions of TNBC and recommended further investigation into the identification of additional biomarkers that can facilitate the subtyping of TNBC for more targeted therapeutic approaches. TNBC is a highly aggressive subtype with dismal long-term survival due to the lack of opportunities for traditional endocrine and targeted therapies. Recent advances in immunotherapy have shown promise, but response rates can be limited due to the heterogeneous tumor microenvironments and developed therapy resistance, especially in metastatic cases. In this review, we will investigate the tumor microenvironment of TNBC and corresponding therapeutic interventions. We will summarize current subtyping strategies and available biomarkers for TNBC immunotherapy, with a particular emphasis on the need for further research to identify additional prognostic markers and refine tailored therapies for specific TNBC subtypes. These efforts aim to improve treatment sensitivity and ultimately enhance survival outcomes for advanced-stage TNBC patients.
Collapse
Affiliation(s)
- Yalan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haifeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia Shi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
34
|
Frank SA, Yanai I. The origin of novel traits in cancer. Trends Cancer 2024; 10:880-892. [PMID: 39112299 DOI: 10.1016/j.trecan.2024.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 10/11/2024]
Abstract
The traditional view of cancer emphasizes a genes-first process. Novel cancer traits arise by genetic mutations that spread to drive phenotypic change. However, recent data support a phenotypes-first process in which nonheritable cellular variability creates novel traits that later become heritably stabilized by genetic and epigenetic changes. Single-cell measurements reinforce the idea that phenotypes lead genotypes, showing how cancer evolution follows normal developmental plasticity and creates novel traits by recombining parts of different cellular developmental programs. In parallel, studies in evolutionary biology also support a phenotypes-first process driven by developmental plasticity and developmental recombination. These advances in cancer research and evolutionary biology mutually reinforce a revolution in our understanding of how cells and organisms evolve novel traits in response to environmental challenges.
Collapse
Affiliation(s)
- Steven A Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
| | - Itai Yanai
- Perlmutter Cancer Center, New York University (NYU) Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
35
|
Zhang S, Yu T, Zhang G, Chen M, Yin D, Zhang C. Systematic simulation of tumor cell invasion and migration in response to time-varying rotating magnetic field. Biomech Model Mechanobiol 2024; 23:1617-1630. [PMID: 38801615 DOI: 10.1007/s10237-024-01858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
Cancer invasion and migration play a pivotal role in tumor malignancy, which is a major cause of most cancer deaths. Rotating magnetic field (RMF), one of the typical dynamic magnetic fields, can exert substantial mechanical influence on cells. However, studying the effects of RMF on cell is challenging due to its complex parameters, such as variation of magnetic field intensity and direction. Here, we developed a systematic simulation method to explore the influence of RMF on tumor invasion and migration, including a finite element method (FEM) model and a cell-based hybrid numerical model. Coupling with the data of magnetic field from FEM, the cell-based hybrid numerical model was established to simulate the tumor cell invasion and migration. This model employed partial differential equations (PDEs) and finite difference method to depict cellular activities and solve these equations in a discrete system. PDEs were used to depict cell activities, and finite difference method was used to solve the equations in discrete system. As a result, this study provides valuable insights into the potential applications of RMF in tumor treatment, and a series of in vitro experiments were performed to verify the simulation results, demonstrating the model's reliability and its capacity to predict experimental outcomes and identify pertinent factors. Furthermore, these findings shed new light on the mechanical and chemical interplay between cells and the ECM, offering new insights and providing a novel foundation for both experimental and theoretical advancements in tumor treatment by using RMF.
Collapse
Affiliation(s)
- Shilong Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Tongyao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Chenyan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, People's Republic of China.
| |
Collapse
|
36
|
Liu B, Liu Y, Yang S, Ye J, Hu J, Chen S, Wu S, Liu Q, Tang F, Liu Y, He Y, Du Y, Zhang G, Guo Q, Yang C. Enhanced desmosome assembly driven by acquired high-level desmoglein-2 promotes phenotypic plasticity and endocrine resistance in ER + breast cancer. Cancer Lett 2024; 600:217179. [PMID: 39154704 DOI: 10.1016/j.canlet.2024.217179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Acquired resistance to endocrine treatments remains a major clinical challenge. In this study, we found that desmoglein-2 (DSG2) plays a major role in acquired endocrine resistance and cellular plasticity in ER+ breast cancer (BC). By analysing the well-established fulvestrant-resistant ER+ BC model using single-cell RNA-seq, we revealed that ER inhibition leads to a specific increase in DSG2 in cancer cell populations, which in turn enhances desmosome formation in vitro and in vivo and cell phenotypic plasticity that promotes resistance to treatment. DSG2 depletion reduced tumorigenesis and metastasis in fulvestrant-resistant xenograft models and promoted fulvestrant efficiency. Mechanistically, DSG2 forms a desmosome complex with JUP and Vimentin and triggers Wnt/PCP signalling. We showed that elevated DSG2 levels, along with reduced ER levels and an activated Wnt/PCP pathway, predicted poor survival, suggesting that a DSG2high signature could be exploited for therapeutic interventions. Our analysis highlighted the critical role of DSG2-mediated desmosomal junctions following antiestrogen treatment.
Collapse
Affiliation(s)
- Bohan Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Yang
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwen Ye
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajie Hu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Chen
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyi Wu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinqing Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fen Tang
- Department of Breast Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Yang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
Xiong X, Wang X, Liu CC, Shao ZM, Yu KD. Deciphering breast cancer dynamics: insights from single-cell and spatial profiling in the multi-omics era. Biomark Res 2024; 12:107. [PMID: 39294728 PMCID: PMC11411917 DOI: 10.1186/s40364-024-00654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
As one of the most common tumors in women, the pathogenesis and tumor heterogeneity of breast cancer have long been the focal point of research, with the emergence of tumor metastasis and drug resistance posing persistent clinical challenges. The emergence of single-cell sequencing (SCS) technology has introduced novel approaches for gaining comprehensive insights into the biological behavior of malignant tumors. SCS is a high-throughput technology that has rapidly developed in the past decade, providing high-throughput molecular insights at the individual cell level. Furthermore, the advent of multitemporal point sampling and spatial omics also greatly enhances our understanding of cellular dynamics at both temporal and spatial levels. The paper provides a comprehensive overview of the historical development of SCS, and highlights the most recent advancements in utilizing SCS and spatial omics for breast cancer research. The findings from these studies will serve as valuable references for future advancements in basic research, clinical diagnosis, and treatment of breast cancer.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Tivey A, Lee RJ, Clipson A, Hill SM, Lorigan P, Rothwell DG, Dive C, Mouliere F. Mining nucleic acid "omics" to boost liquid biopsy in cancer. Cell Rep Med 2024; 5:101736. [PMID: 39293399 PMCID: PMC11525024 DOI: 10.1016/j.xcrm.2024.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Treatments for cancer patients are becoming increasingly complex, and there is a growing desire from clinicians and patients for biomarkers that can account for this complexity to support informed decisions about clinical care. To achieve precision medicine, the new generation of biomarkers must reflect the spatial and temporal heterogeneity of cancer biology both between patients and within an individual patient. Mining the different layers of 'omics in a multi-modal way from a minimally invasive, easily repeatable, liquid biopsy has increasing potential in a range of clinical applications, and for improving our understanding of treatment response and resistance. Here, we detail the recent developments and methods allowing exploration of genomic, epigenomic, transcriptomic, and fragmentomic layers of 'omics from liquid biopsy, and their integration in a range of applications. We also consider the specific challenges that are posed by the clinical implementation of multi-omic liquid biopsies.
Collapse
Affiliation(s)
- Ann Tivey
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rebecca J Lee
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Alexandra Clipson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Steven M Hill
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Paul Lorigan
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Florent Mouliere
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
39
|
Berner MJ, Beasley HK, Vue Z, Lane A, Vang L, Baek ML, Marshall AG, Killion M, Zeleke F, Shao B, Parker D, Peterson A, Rhoades JS, Scudese E, Dobrolecki LE, Lewis MT, Hinton A, Echeverria GV. Three-dimensional analysis of mitochondria in a patient-derived xenograft model of triple negative breast cancer reveals mitochondrial network remodeling following chemotherapy treatments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611245. [PMID: 39314272 PMCID: PMC11419075 DOI: 10.1101/2024.09.09.611245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mitochondria are hubs of metabolism and signaling and play an important role in tumorigenesis, therapeutic resistance, and metastasis in many cancer types. Various laboratory models of cancer demonstrate the extraordinary dynamics of mitochondrial structure, but little is known about the role of mitochondrial structure in resistance to anticancer therapy. We previously demonstrated the importance of mitochondrial structure and oxidative phosphorylation in the survival of chemotherapy-refractory triple negative breast cancer (TNBC) cells. As TNBC is a highly aggressive breast cancer subtype with few targeted therapy options, conventional chemotherapies remain the backbone of early TNBC treatment. Unfortunately, approximately 45% of TNBC patients retain substantial residual tumor burden following chemotherapy, associated with abysmal prognoses. Using an orthotopic patient-derived xenograft mouse model of human TNBC, we compared mitochondrial structures between treatment-naïve tumors and residual tumors after conventional chemotherapeutics were administered singly or in combination. We reconstructed 1,750 mitochondria in three dimensions from serial block-face scanning electron micrographs, providing unprecedented insights into the complexity and intra-tumoral heterogeneity of mitochondria in TNBC. Following exposure to carboplatin or docetaxel given individually, residual tumor mitochondria exhibited significant increases in mitochondrial complexity index, area, volume, perimeter, width, and length relative to treatment-naïve tumor mitochondria. In contrast, residual tumors exposed to those chemotherapies given in combination exhibited diminished mitochondrial structure changes. Further, we document extensive intra-tumoral heterogeneity of mitochondrial structure, especially prior to chemotherapeutic exposure. These results highlight the potential for structure-based monitoring of chemotherapeutic responses and reveal potential molecular mechanisms that underlie chemotherapeutic resistance in TNBC.
Collapse
Affiliation(s)
- Mariah J. Berner
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Audra Lane
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mokryun L. Baek
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Dominque Parker
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Autumn Peterson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Julie Sterling Rhoades
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael T. Lewis
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Gloria V. Echeverria
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
40
|
Winkler J, Tan W, Diadhiou CM, McGinnis CS, Abbasi A, Hasnain S, Durney S, Atamaniuc E, Superville D, Awni L, Lee JV, Hinrichs JH, Wagner PS, Singh N, Hein MY, Borja M, Detweiler AM, Liu SY, Nanjaraj A, Sitarama V, Rugo HS, Neff N, Gartner ZJ, Oliveira Pisco A, Goga A, Darmanis S, Werb Z. Single-cell analysis of breast cancer metastasis reveals epithelial-mesenchymal plasticity signatures associated with poor outcomes. J Clin Invest 2024; 134:e164227. [PMID: 39225101 PMCID: PMC11364385 DOI: 10.1172/jci164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. It is unclear how intratumor heterogeneity (ITH) contributes to metastasis and how metastatic cells adapt to distant tissue environments. The study of these adaptations is challenged by the limited access to patient material and a lack of experimental models that appropriately recapitulate ITH. To investigate metastatic cell adaptations and the contribution of ITH to metastasis, we analyzed single-cell transcriptomes of matched primary tumors and metastases from patient-derived xenograft models of breast cancer. We found profound transcriptional differences between the primary tumor and metastatic cells. Primary tumors upregulated several metabolic genes, whereas motility pathway genes were upregulated in micrometastases, and stress response signaling was upregulated during progression. Additionally, we identified primary tumor gene signatures that were associated with increased metastatic potential and correlated with patient outcomes. Immune-regulatory control pathways were enriched in poorly metastatic primary tumors, whereas genes involved in epithelial-mesenchymal transition were upregulated in highly metastatic tumors. We found that ITH was dominated by epithelial-mesenchymal plasticity (EMP), which presented as a dynamic continuum with intermediate EMP cell states characterized by specific genes such as CRYAB and S100A2. Elevated expression of an intermediate EMP signature correlated with worse patient outcomes. Our findings identified inhibition of the intermediate EMP cell state as a potential therapeutic target to block metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy and
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Weilun Tan
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Sophia Durney
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Elena Atamaniuc
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Daphne Superville
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | | | - Joyce V. Lee
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Johanna H. Hinrichs
- Department of Anatomy and
- Institute of Internal Medicine D, Medical Cell Biology, University Hospital Münster, Münster, Germany
| | - Patrick S. Wagner
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Namrata Singh
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Y. Hein
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria
| | - Michael Borja
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Hope S. Rugo
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Norma Neff
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub Investigator, San Francisco, California, USA
| | | | - Andrei Goga
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Genentech, South San Francisco, California, USA
| | | |
Collapse
|
41
|
Li M, Zuo J, Yang K, Wang P, Zhou S. Proteomics mining of cancer hallmarks on a single-cell resolution. MASS SPECTROMETRY REVIEWS 2024; 43:1019-1040. [PMID: 37051664 DOI: 10.1002/mas.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
Collapse
Affiliation(s)
- Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Barnieh FM, Morais GR, Loadman PM, Falconer RA, El‐Khamisy SF. Hypoxia-Responsive Prodrug of ATR Inhibitor, AZD6738, Selectively Eradicates Treatment-Resistant Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403831. [PMID: 38976561 PMCID: PMC11425890 DOI: 10.1002/advs.202403831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Targeted therapy remains the future of anti-cancer drug development, owing to the lack of specificity of current treatments which lead to damage in healthy normal tissues. ATR inhibitors have in recent times demonstrated promising clinical potential, and are currently being evaluated in the clinic. However, despite the considerable optimism for clinical success of these inhibitors, reports of associated normal tissues toxicities remain a concern and can compromise their utility. Here, ICT10336 is reported, a newly developed hypoxia-responsive prodrug of ATR inhibitor, AZD6738, which is hypoxia-activated and specifically releases AZD6738 only in hypoxic conditions, in vitro. This hypoxia-selective release of AZD6738 inhibited ATR activation (T1989 and S428 phosphorylation) and subsequently abrogated HIF1a-mediated adaptation of hypoxic cancers cells, thus selectively inducing cell death in 2D and 3D cancer models. Importantly, in normal tissues, ICT10336 is demonstrated to be metabolically stable and less toxic to normal cells than its active parent agent, AZD6738. In addition, ICT10336 exhibited a superior and efficient multicellular penetration ability in 3D tumor models, and selectively eradicated cells at the hypoxic core compared to AZD6738. In summary, the preclinical data demonstrate a new strategy of tumor-targeted delivery of ATR inhibitors with significant potential of enhancing the therapeutic index.
Collapse
Affiliation(s)
- Francis M. Barnieh
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Goreti Ribeiro Morais
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Paul M. Loadman
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Robert A. Falconer
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Sherif F. El‐Khamisy
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
- School of Biosciences, the Healthy Lifespan Institute and the Institute of NeuroscienceUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| |
Collapse
|
43
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
Kong Y, Lan T, Wang L, Gong C, Lv W, Zhang H, Zhou C, Sun X, Liu W, Huang H, Weng X, Cai C, Peng W, Zhang M, Jiang D, Yang C, Liu X, Rao Y, Chen C. BRD4-specific PROTAC inhibits basal-like breast cancer partially through downregulating KLF5 expression. Oncogene 2024; 43:2914-2926. [PMID: 39164524 PMCID: PMC11420083 DOI: 10.1038/s41388-024-03121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
Interest in the use of proteolysis-targeting chimeras (PROTACs) in cancer therapy has increased in recent years. Targeting bromodomain and extra terminal domain (BET) proteins, especially bromodomain-containing protein 4 (BRD4), has shown inhibitory effects on basal-like breast cancer (BLBC). However, the bioavailability of BRD4 PROTACs is restricted by their non-selective biodegradability and low tumor-targeting ability. We demonstrated that 6b (BRD4 PROTAC) suppresses BLBC cell growth by targeting BRD4, but not BRD2 and BRD3, for cereblon (CRBN)-mediated ubiquitination and proteasomal degradation. Compound 6b also inhibited expression of Krüppel-like factor 5 (KLF5) transcription factor, a key oncoprotein in BLBC, controlled by BRD4-mediated super-enhancers. Moreover, 6b inhibited HCC1806 tumor growth in a xenograft mouse model. The combination of 6b and KLF5 inhibitors showed additive effects on BLBC. These results suggest that BRD4-specific PROTAC can effectively inhibit BLBC by downregulating KLF5, and that 6b has potential as a novel therapeutic drug for BLBC.
Collapse
Grants
- This study was supported in part by grants National Key Research and Development Program of China (2020YFA0112300 to Chen, C. 2020YFE0202200, 2021YFA1300200 to Rao, Y.), The National Nature Science Foundation of China (U2102203 and 81830087 to Chen, C., 81402206, 82273216 and 81773149 to Kong, Y., 82125034 to Rao, Y.), Biomedical Projects of Yunnan Key Science and Technology Program (202302AA310046),Yunnan Fundamental Research Projects (202101AS070050), and Yunnan Revitalization Talent Support Program (Yunling Shcolar Project to CC). Yunnan (Kunming) Academician Expert Workstation (grant No. YSZJGZZ-2020025 to CC). Shenzhen Science and Technology program (RCYX20221008092911040 to Kong, Y.), Shenzhen Municipal Government of China (JCYJ20210324103603011 to Kong, Y.), Shenzhen Planned Projects for Post-doctors Stand out Research Funds to Kong, Y., Guangdong Basic and Applied Basic Research Foundation (2022A1515220051 to Kong, Y.).
Collapse
Affiliation(s)
- Yanjie Kong
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Tianlong Lan
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Luzhen Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chen Gong
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenxin Lv
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chengang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiuyun Sun
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Haihui Huang
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xin Weng
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chang Cai
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenfeng Peng
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Meng Zhang
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xia Liu
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, China.
| |
Collapse
|
45
|
Chen BY, Xu JH, Chen QQ, Wu HX, Ou BF, Zhou Z, Xu F, Wu SY, Xie SL, Wen DS. Pharmacokinetics and Bioavailability Study of a Novel Smoothened Inhibitor TPB15 for Treatment of Triple-Negative Breast Cancer in Rats by High Performance Liquid Chromatography-Mass Spectrometry. Eur J Drug Metab Pharmacokinet 2024; 49:645-655. [PMID: 39158678 DOI: 10.1007/s13318-024-00911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research. METHODS Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1. RESULTS The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (Cmax) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (Tmax) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC0-t) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC0-∞) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t1/2) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h). CONCLUSIONS TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t1/2. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.
Collapse
Affiliation(s)
- Bo-Yu Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Huan Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian-Qing Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huan-Xian Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bao-Fang Ou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Zhou
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Fei Xu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 511436, China
| | - Shao-Yu Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shui-Lin Xie
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 511436, China.
| | - Ding-Sheng Wen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| |
Collapse
|
46
|
Xiang L, Rao J, Yuan J, Xie T, Yan H. Single-Cell RNA-Sequencing: Opening New Horizons for Breast Cancer Research. Int J Mol Sci 2024; 25:9482. [PMID: 39273429 PMCID: PMC11395021 DOI: 10.3390/ijms25179482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer is the most prevalent malignant tumor among women with high heterogeneity. Traditional techniques frequently struggle to comprehensively capture the intricacy and variety of cellular states and interactions within breast cancer. As global precision medicine rapidly advances, single-cell RNA sequencing (scRNA-seq) has become a highly effective technique, revolutionizing breast cancer research by offering unprecedented insights into the cellular heterogeneity and complexity of breast cancer. This cutting-edge technology facilitates the analysis of gene expression profiles at the single-cell level, uncovering diverse cell types and states within the tumor microenvironment. By dissecting the cellular composition and transcriptional signatures of breast cancer cells, scRNA-seq provides new perspectives for understanding the mechanisms behind tumor therapy, drug resistance and metastasis in breast cancer. In this review, we summarized the working principle and workflow of scRNA-seq and emphasized the major applications and discoveries of scRNA-seq in breast cancer research, highlighting its impact on our comprehension of breast cancer biology and its potential for guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jie Rao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Xie
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
47
|
Xie F, Hua S, Guo Y, Wang T, Shan C, Zhang L, He T. Identification of TAT as a Biomarker Involved in Cell Cycle and DNA Repair in Breast Cancer. Biomolecules 2024; 14:1088. [PMID: 39334853 PMCID: PMC11430390 DOI: 10.3390/biom14091088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and the primary cause of cancer-related mortality in women. Treatment of triple-negative breast cancer (TNBC) remains particularly challenging due to its resistance to chemotherapy and poor prognosis. Extensive research efforts in BC screening and therapy have improved clinical outcomes for BC patients. Therefore, identifying reliable biomarkers for TNBC is of great clinical importance. Here, we found that tyrosine aminotransferase (TAT) expression was significantly reduced in BC and strongly correlated with the poor prognosis of BC patients, which distinguished BC patients from normal individuals, indicating that TAT is a valuable biomarker for early BC diagnosis. Mechanistically, we uncovered that methylation of the TAT promoter was significantly increased by DNA methyltransferase 3 (DNMT3A/3B). In addition, reduced TAT contributes to DNA replication and cell cycle activation by regulating homologous recombination repair and mismatch repair to ensure genomic stability, which may be one of the reasons for TNBC resistance to chemotherapy. Furthermore, we demonstrated that Diazinon increases TAT expression as an inhibitor of DNMT3A/3B and inhibits the growth of BC by blocking downstream pathways. Taken together, we revealed that TAT is silenced by DNMT3A/3B in BC, especially in TNBC, which promotes the proliferation of tumor cells by supporting DNA replication, activating cell cycle, and enhancing DNA damage repair. These results provide fresh insights and a theoretical foundation for the clinical diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Saiwei Hua
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Yajuan Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Taoyuan Wang
- Cardiothoracic Surgery Department, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin 300162, China;
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Lianwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Tao He
- Department of Pathology, Characteristic Medical Center of The Chinese People’s Armed Police Force, Tianjin 300162, China
| |
Collapse
|
48
|
Torres-Ruiz S, Garrido-Cano I, Lameirinhas A, Burgués O, Hernando C, Martínez MT, Rojo F, Bermejo B, Tapia M, Carbonell-Asins JA, Peña CJ, Lluch A, Cejalvo JM, Tormo E, Eroles P. MiRNA-449 family is epigenetically repressed and sensitizes to doxorubicin through ACSL4 downregulation in triple-negative breast cancer. Cell Death Discov 2024; 10:372. [PMID: 39174500 PMCID: PMC11341569 DOI: 10.1038/s41420-024-02128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
Despite progress in breast cancer treatment, a significant portion of patients still relapse because of drug resistance. The involvement of microRNAs in cancer progression and chemotherapy response is well established. Therefore, this study aimed to elucidate the dysregulation of the microRNA-449 family (specifically, microRNA-449a, microRNA-449b-5p, and microRNA-449c-5p) and its impact on resistance to doxorubicin, a commonly used chemotherapeutic drug for the treatment of triple-negative breast cancer. We found that the microRNA-449 family is downregulated in triple-negative breast cancer and demonstrated its potential as a diagnostic biomarker. Besides, our findings indicate that the downregulation of the microRNA-449 family is mediated by the microRNAs-449/SIRT1-HDAC1 negative feedback loop. Moreover, it was found that the microRNA-449 family dysregulates the fatty acid metabolism by targeting ACSL4, which is a potential prognostic biomarker that mediates doxorubicin response through regulation of the drug extrusion pump ABCG2. Altogether, our results suggest that the microRNA-449 family might be a potential therapeutic target for the treatment of triple-negative breast cancer since it is implicated in doxorubicin response through ACSL4/ABCG2 axis regulation. Ultimately, our results also highlight the value of microRNAs-449 and ACSL4 as diagnostic and prognostic biomarkers in triple-negative breast cancer. Proposed model of miRNAs-449 downregulation in TNBC and doxorubicin response. MiRNAs-449 are downregulated in TNBC through a negative feedback loop with SIRT1 and HDAC1. Moreover, ACSL4 increases ABCG2 expression, thus diminishing the intracellular doxorubicin concentration and promoting doxorubicin resistance. MiRNAs-449 overexpression downregulates the ACSL4/ABCG2 axis and sensitizes doxorubicin-resistant cells to doxorubicin. Created with BioRender. TNBC: triple-negative breast cancer; DOX: doxorubicin; SIRT1: Sirtuin 1; HDAC1: Histone deacetylase 1; ACSL4: Acyl-CoA Synthetase Long-Chain Family Member 4; ABCG2: ATP-binding cassette superfamily G member 2.
Collapse
Affiliation(s)
| | - Iris Garrido-Cano
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universidad politécnica de Valencia, Universidad de Valencia, Valencia, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Madrid, Spain
| | | | - Octavio Burgués
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Pathology, Hospital Clínico Universitario de València, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
| | - Cristina Hernando
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - María Teresa Martínez
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - Federico Rojo
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz, Madrid, Spain
| | - Begoña Bermejo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - Marta Tapia
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | | | | | - Ana Lluch
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
- Department of Medicine, Universidad de Valencia, Valencia, Spain
| | - Juan Miguel Cejalvo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain.
| | - Pilar Eroles
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain.
- Department of Physiology, Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
49
|
Liu H, Dong A, Rasteh AM, Wang P, Weng J. Identification of the novel exhausted T cell CD8 + markers in breast cancer. Sci Rep 2024; 14:19142. [PMID: 39160211 PMCID: PMC11333736 DOI: 10.1038/s41598-024-70184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Cancer is one of the most concerning public health issues and breast cancer is one of the most common cancers in the world. The immune cells within the tumor microenvironment regulate cancer development. In this study, single immune cell data sets were used to identify marker gene sets for exhausted CD8 + T cells (CD8Tex) in breast cancer. Machine learning methods were used to cluster subtypes and establish the prognostic models with breast cancer bulk data using the gene sets to evaluate the impacts of CD8Tex. We analyzed breast cancer overexpressing and survival-associated marker genes and identified CD8Tex hub genes in the protein-protein-interaction network. The relevance of the hub genes for CD8 + T-cells in breast cancer was evaluated. The clinical associations of the hub genes were analyzed using bulk sequencing data and spatial sequencing data. The pan-cancer expression, survival, and immune association of the hub genes were analyzed. We identified biomarker gene sets for CD8Tex in breast cancer. CD8Tex-based subtyping systems and prognostic models performed well in the separation of patients with different immune relevance and survival. CRTAM, CLEC2D, and KLRB1 were identified as CD8Tex hub genes and were demonstrated to have potential clinical relevance and immune therapy impact. This study provides a unique view of the critical CD8Tex hub genes for cancer immune therapy.
Collapse
Affiliation(s)
- Hengrui Liu
- Cancer Research Institute, Jinan University, Guangzhou, China
| | | | | | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
50
|
Souto EP, Gong P, Landua JD, Srinivasan RR, Ganesan A, Dobrolecki LE, Purdy SC, Pan X, Zeosky M, Chung A, Yi SS, Ford HL, Lewis MT. The interferon/STAT1 signaling axis is a common feature of tumor-initiating cells in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557958. [PMID: 37745510 PMCID: PMC10515955 DOI: 10.1101/2023.09.15.557958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A tumor cell subpopulation of tumor-initiating cells (TIC), or "cancer stem cells", are associated with therapeutic resistance, as well as both local and distant recurrence. Enriched populations of TIC are identified by markers including aldehyde dehydrogenase (ALDH1) activity, the cell surface marker combination CD44 + /CD24 - , or fluorescent reporters for signaling pathways that regulate TIC function. We showed previously that S ignal T ransducer and A ctivator of T ranscription (STAT)-mediated transcription allows enrichment for TIC in claudin-low models of human triple-negative breast cancer using a STAT-responsive reporter. However, the molecular phenotypes of STAT TIC are not well understood, and there is no existing method to lineage-trace TIC as they undergo cell state changes. Using a new STAT-responsive lineage-tracing (LT) system in conjunction with our original reporter, we enriched for cells with enhanced mammosphere-forming potential in some, but not all, basal-like triple-negative breast cancer (TNBC) xenograft models (TNBC) indicating TIC-related and TIC-independent functions for STAT signaling. Single-cell RNA sequencing (scRNAseq) of reporter-tagged xenografts and clinical samples identified a common interferon (IFN)/STAT1-associated transcriptional state, previously linked to inflammation and macrophage differentiation, in TIC. Surprisingly, most of the genes we identified are not present in previously published TIC signatures derived using bulk RNA sequencing. Finally, we demonstrated that bone marrow stromal cell antigen 2 (BST2), is a cell surface marker of this state, and that it functionally regulates TIC frequency. These results suggest TIC may exploit the IFN/STAT1 signaling axis to promote their activity, and that targeting this pathway may help eliminate TIC. Significance TIC differentially express interferon response genes, which were not previously reported in bulk RNA sequencing-derived TIC signatures, highlighting the importance of coupling single-cell transcriptomics with enrichment to derive TIC signatures.
Collapse
|