1
|
Furlanetto F, Flegel N, Kremp M, Spear C, Fröb F, Alfonsetti M, Bohl B, Krumbiegel M, Turan S, Reis A, Lie DC, Winkler J, Falk S, Wegner M, Karow M. A novel human organoid model system reveals requirement of TCF4 for oligodendroglial differentiation. Life Sci Alliance 2025; 8:e202403102. [PMID: 40155049 PMCID: PMC11953572 DOI: 10.26508/lsa.202403102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Heterozygous mutations of TCF4 in humans cause Pitt-Hopkins syndrome, a neurodevelopmental disease associated with intellectual disability and brain malformations. Although most studies focus on the role of TCF4 in neural stem cells and neurons, we here set out to assess the implication of TCF4 for oligodendroglial differentiation. We discovered that both monoallelic and biallelic mutations in TCF4 result in a diminished capacity to differentiate human neural progenitor cells toward myelinating oligodendrocytes through the forced expression of the transcription factors SOX10, OLIG2, and NKX6.2. Using this experimental strategy, we established a novel organoid model, which generates oligodendroglial cells within a human neurogenic tissue-like context. Also, here we found a reduced ability of TCF4 heterozygous cells to differentiate toward oligodendroglial cells. In sum, we establish a role of human TCF4 in oligodendrocyte differentiation and provide a model system, which allows to dissect the disease etiology in a human tissue-like context.
Collapse
Affiliation(s)
- Federica Furlanetto
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Flegel
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marco Kremp
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chiara Spear
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Margherita Alfonsetti
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Bohl
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sören Turan
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dieter C Lie
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Falk
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
McCluskey KE, Stovell KM, Law K, Kostyanovskaya E, Schmidt JD, Exner CRT, Dea J, Brimble E, State MW, Willsey AJ, Willsey HR. Autism gene variants disrupt enteric neuron migration and cause gastrointestinal dysmotility. Nat Commun 2025; 16:2238. [PMID: 40050271 PMCID: PMC11885846 DOI: 10.1038/s41467-025-57342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
The co-occurrence of autism and gastrointestinal distress is well-established, yet the molecular underpinnings remain unknown. The identification of high-confidence, large-effect autism genes offers the opportunity to identify convergent, underlying biology by studying these genes in the context of the gastrointestinal system. Here we show that the expression of these genes is enriched in human prenatal gut neurons and their migratory progenitors, suggesting that the development and/or function of these neurons may be disrupted by autism-associated genetic variants, leading to gastrointestinal dysfunction. Here we document the prevalence of gastrointestinal issues in patients with large-effect variants in sixteen autism genes, highlighting dysmotility, consistent with potential enteric neuron dysfunction. Using Xenopus tropicalis, we individually target five of these genes (SYNGAP1, CHD8, SCN2A, CHD2, and DYRK1A) and observe disrupted enteric neuronal progenitor migration for each. Further analysis of DYRK1A reveals that perturbation causes gut dysmotility in vivo, which can be ameliorated by treatment with either of two serotonin signaling modulators, identified by in vivo drug screening. This work suggests that atypical development of enteric neurons contributes to the gastrointestinal distress commonly seen in individuals with autism and that serotonin signaling may be a productive therapeutic pathway.
Collapse
Affiliation(s)
- Kate E McCluskey
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Katherine M Stovell
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Karen Law
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - James D Schmidt
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Matthew W State
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Kostyanovskaya E, Lasser MC, Wang B, Schmidt J, Bader E, Buteo C, Arbelaez J, Sindledecker AR, McCluskey KE, Castillo O, Wang S, Dea J, Helde KA, Graglia JM, Brimble E, Kastner DB, Ehrlich AT, State MW, Willsey AJ, Willsey HR. Convergence of autism proteins at the cilium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.626924. [PMID: 39677731 PMCID: PMC11643032 DOI: 10.1101/2024.12.05.626924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hundreds of high-confidence autism genes have been identified, yet the relevant etiological mechanisms remain unclear. Gene ontology analyses have repeatedly identified enrichment of proteins with annotated functions in gene expression regulation and neuronal communication. However, proteins are often pleiotropic and these annotations are inherently incomplete. Our recent autism functional genetics work has suggested that these genes may share a common mechanism at the cilium, a membrane-bound organelle critical for neurogenesis, brain patterning, and neuronal activity-all processes strongly implicated in autism. Moreover, autism commonly co-occurs with conditions that are known to involve ciliary-related pathologies, including congenital heart disease, hydrocephalus, and blindness. However, the role of autism genes at the cilium has not been systematically investigated. Here we demonstrate that autism proteins spanning disparate functional annotations converge in expression, localization, and function at cilia, and that patients with pathogenic variants in these genes have cilia-related co-occurring conditions and biomarkers of disrupted ciliary function. This degree of convergence among genes spanning diverse functional annotations strongly suggests that cilia are relevant to autism, as well as to commonly co-occurring conditions, and that this organelle should be explored further for therapeutic potential.
Collapse
Affiliation(s)
- Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - James Schmidt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Chad Buteo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aria Rani Sindledecker
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Kate E. McCluskey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Octavio Castillo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | | | | | - David B. Kastner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aliza T. Ehrlich
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Matthew W. State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA
| |
Collapse
|
5
|
Tanaka M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025; 13:167. [PMID: 39857751 PMCID: PMC11761901 DOI: 10.3390/biomedicines13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental health disorders like depression and schizophrenia, which necessitate precise, innovative approaches. Emerging technologies like artificial intelligence, induced pluripotent stem cells, and multi-omics have the potential to transform this field by allowing for predictive, patient-specific interventions. Despite these advancements, traditional methodologies such as animal models and single-variable analyses continue to be used, frequently failing to capture the complexities of human neuropsychiatric conditions. Summary: This review critically evaluates the transition from serendipity to precision-based methodologies in neuropsychiatric research. It focuses on key innovations such as dynamic systems modeling and network-based approaches that use genetic, molecular, and environmental data to identify new therapeutic targets. Furthermore, it emphasizes the importance of interdisciplinary collaboration and human-specific models in overcoming the limitations of traditional approaches. Conclusions: We highlight precision psychiatry's transformative potential for revolutionizing mental health care. This paradigm shift, which combines cutting-edge technologies with systematic frameworks, promises increased diagnostic accuracy, reproducibility, and efficiency, paving the way for tailored treatments and better patient outcomes in neuropsychiatric care.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Noda M, Matsumoto A, Ito H, Kagami M, Tajima T, Matsumura T, Yamagata T, Nagata KI. An unstable variant of GAP43 leads to neurodevelopmental deficiency. Sci Rep 2024; 14:31911. [PMID: 39738362 PMCID: PMC11686380 DOI: 10.1038/s41598-024-83445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Growth-associated protein 43 (GAP43) is a membrane-associated phosphoprotein predominantly expressed in the nervous systems, and controls axonal growth, branching, and pathfinding. While the association between GAP43 and human neurological disorders have been reported, the underlying mechanisms remain largely unknown. We performed whole exome sequencing on a patient with intellectual disability (ID), neurodevelopmental disorders, short stature, and skeletal abnormalities such as left-right difference in legs and digital deformities, and identified a heterozygous missense variation in the GAP43 gene [NM_001130064.2: c.436G > A/p.(E146K)]. The variant GAP43 protein was unstable in primary cultured cortical neurons and hippocampal neurons in vitro. In utero electroporation of the variant protein also confirmed its instability in vivo, suggesting that the variant led to a condition similar with haploinsufficiency in the patient. Silencing of GAP43 via in utero electroporation of RNAi vectors demonstrated that loss of GAP43 suppressed axon elongation into the contralateral hemisphere and impaired the dendritic arbor formation as shown by decreased dendritic branch points and shortened total dendritic lengths. Collectively, these findings confirmed the critical roles of GAP43 in brain development and the pathological basis of GAP43-associated diseases. Our study will contribute to a better understanding of how dysregulation of GAP43 leads to human diseases.
Collapse
Affiliation(s)
- Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan
| | - Ayumi Matsumoto
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
- Division of Cardiovascular and Genetic Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 YakushijiShimotsuke-Shi, Tochigi-Ken, 329-0498, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan
| | - Masayo Kagami
- Clinical Endocrine Research Division, Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Takayoshi Matsumura
- Division of Cardiovascular and Genetic Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 YakushijiShimotsuke-Shi, Tochigi-Ken, 329-0498, Japan.
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan.
| | | | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan.
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
7
|
Kong C, Bing Z, Yang L, Huang Z, Wang W, Grebogi C. Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD. Genes (Basel) 2024; 16:11. [PMID: 39858558 PMCID: PMC11764921 DOI: 10.3390/genes16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control. METHODS We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level. We employ Cell-Specific Network Inference via Integer Value Programming and Causal Reasoning (CS-NIVaCaR) to identify core modules and Cell-Specific Probabilistic Contextualization for mRNA Regulatory Networks (CS-ProComReN) to quantitatively reveal activated sub-pathways involving MAPK1, MKNK1, RPS6KA5, and MTOR across different cell types in ASD. RESULTS The results indicate that specific pivotal molecules, such as EIF4EBP1 and EIF4E, lacking Differential Expression (DE) characteristics and responsible for protein translation with long-term potentiation (LTP) or long-term depression (LTD), are dysregulated. We further uncover distinct activation patterns causally linked to the EIF4EBP1-EIF4E module in excitatory and inhibitory neurons. CONCLUSIONS Importantly, our work introduces a methodology for leveraging extensive transcriptomics data to parse the signal transduction network, transforming it into mSiReN, and mapping it back to the protein level. These algorithms can serve as potent tools in systems biology to analyze other omics and regulatory networks. Furthermore, the biomarkers within the activated sub-pathways, revealed by identifying convergent dysregulation, illuminate potential diagnostic and prognostic factors in ASD.
Collapse
Affiliation(s)
- Chao Kong
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zigang Huang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenxu Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Old Aberdeen AB24 3UE, UK
| |
Collapse
|
8
|
Banaraki AK, Toghi A, Mohammadzadeh A. RDoC Framework Through the Lens of Predictive Processing: Focusing on Cognitive Systems Domain. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2024; 8:178-201. [PMID: 39478691 PMCID: PMC11523845 DOI: 10.5334/cpsy.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024]
Abstract
In response to shortcomings of the current classification system in translating discoveries from basic science to clinical applications, NIMH offers a new framework for studying mental health disorders called Research Domain Criteria (RDoC). This framework holds a multidimensional outlook on psychopathologies focusing on functional domains of behavior and their implementing neural circuits. In parallel, the Predictive Processing (PP) framework stands as a leading theory of human brain function, offering a unified explanation for various types of information processing in the brain. While both frameworks share an interest in studying psychopathologies based on pathophysiology, their integration still needs to be explored. Here, we argued in favor of the explanatory power of PP to be a groundwork for the RDoC matrix in validating its constructs and creating testable hypotheses about mechanistic interactions between molecular biomarkers and clinical traits. Together, predictive processing may serve as a foundation for achieving the goals of the RDoC framework.
Collapse
Affiliation(s)
| | - Armin Toghi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Azar Mohammadzadeh
- Research Center for Cognitive and Behavioral Studies, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Teerikorpi N, Lasser MC, Wang S, Kostyanovskaya E, Bader E, Sun N, Dea J, Nowakowski TJ, Willsey AJ, Willsey HR. Ciliary biology intersects autism and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.602578. [PMID: 39131273 PMCID: PMC11312554 DOI: 10.1101/2024.07.30.602578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.
Collapse
Affiliation(s)
- Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco CA 94158, USA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
10
|
McCluskey KE, Stovell KM, Law K, Kostyanovskaya E, Schmidt J, Exner CRT, Dea J, Brimble E, State MW, Willsey AJ, Willsey HR. Autism gene variants disrupt enteric neuron migration and cause gastrointestinal dysmotility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.593642. [PMID: 38854068 PMCID: PMC11160671 DOI: 10.1101/2024.05.28.593642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The comorbidity of autism spectrum disorders and severe gastrointestinal symptoms is well-established, yet the molecular underpinnings remain unknown. The identification of high-confidence large-effect autism risk genes offers the opportunity to identify convergent, underlying biology by studying these genes in the context of the gastrointestinal system. Here we show that the expression of these genes is enriched in human prenatal gut neurons as well as their migratory progenitors, suggesting that the development and/or function of these neurons may be disrupted by autism-associated pathogenic variants, leading to gastrointestinal dysfunction. Here we document the prevalence of gastrointestinal issues in patients with large-effect variants in sixteen of these genes, highlighting dysmotility, consistent with potential enteric neuron dysfunction. Using the high-throughput diploid frog Xenopus tropicalis , we individually target five of these genes ( SYNGAP1, CHD8, SCN2A, CHD2 , and DYRK1A ) and observe disrupted enteric neuronal progenitor migration for each. More extensive analysis of DYRK1A reveals that perturbation causes gut dysmotility in vivo , which can be ameliorated by treatment with a selective serotonin reuptake inhibitor (escitalopram) or a serotonin receptor 6 agonist, identified by in vivo drug screening. This work suggests that atypical development of enteric neurons contributes to the gastrointestinal distress commonly seen in individuals with autism and that increasing serotonin signaling may be a productive therapeutic avenue.
Collapse
|
11
|
Willsey HR, Seaby EG, Godwin A, Ennis S, Guille M, Grainger RM. Modelling human genetic disorders in Xenopus tropicalis. Dis Model Mech 2024; 17:dmm050754. [PMID: 38832520 PMCID: PMC11179720 DOI: 10.1242/dmm.050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Recent progress in human disease genetics is leading to rapid advances in understanding pathobiological mechanisms. However, the sheer number of risk-conveying genetic variants being identified demands in vivo model systems that are amenable to functional analyses at scale. Here we provide a practical guide for using the diploid frog species Xenopus tropicalis to study many genes and variants to uncover conserved mechanisms of pathobiology relevant to human disease. We discuss key considerations in modelling human genetic disorders: genetic architecture, conservation, phenotyping strategy and rigour, as well as more complex topics, such as penetrance, expressivity, sex differences and current challenges in the field. As the patient-driven gene discovery field expands significantly, the cost-effective, rapid and higher throughput nature of Xenopus make it an essential member of the model organism armamentarium for understanding gene function in development and in relation to disease.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94518, USA
| | - Eleanor G Seaby
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Annie Godwin
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Sarah Ennis
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Guille
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
12
|
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. A foundational atlas of autism protein interactions reveals molecular convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569805. [PMID: 38076945 PMCID: PMC10705567 DOI: 10.1101/2023.12.03.569805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
Collapse
|
13
|
Zhang Q, Li F, Li T, Lin J, Jian J, Zhang Y, Chen X, Liu T, Gou S, Zhang Y, Liu X, Ji Y, Wang X, Li Q. Nomo1 deficiency causes autism-like behavior in zebrafish. EMBO Rep 2024; 25:570-592. [PMID: 38253686 PMCID: PMC10897165 DOI: 10.1038/s44319-023-00036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Patients with neuropsychiatric disorders often exhibit a combination of clinical symptoms such as autism, epilepsy, or schizophrenia, complicating diagnosis and development of therapeutic strategies. Functional studies of novel genes associated with co-morbidities can provide clues to understand the pathogenic mechanisms and interventions. NOMO1 is one of the candidate genes located at 16p13.11, a hotspot of neuropsychiatric diseases. Here, we generate nomo1-/- zebrafish to get further insight into the function of NOMO1. Nomo1 mutants show abnormal brain and neuronal development and activation of apoptosis and inflammation-related pathways in the brain. Adult Nomo1-deficient zebrafish exhibit multiple neuropsychiatric behaviors such as hyperactive locomotor activity, social deficits, and repetitive stereotypic behaviors. The Habenular nucleus and the pineal gland in the telencephalon are affected, and the melatonin level of nomo1-/- is reduced. Melatonin treatment restores locomotor activity, reduces repetitive stereotypic behaviors, and rescues the noninfectious brain inflammatory responses caused by nomo1 deficiency. These results suggest melatonin supplementation as a potential therapeutic regimen for neuropsychiatric disorders caused by NOMO1 deficiency.
Collapse
Affiliation(s)
- Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Fei Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Tingting Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Jing Jian
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Ting Liu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Shenglan Gou
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Xiuyun Liu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Yongxia Ji
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Xu Wang
- Cancer Institute, Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China.
| |
Collapse
|
14
|
Sun N, Teyssier N, Wang B, Drake S, Seyler M, Zaltsman Y, Everitt A, Teerikorpi N, Willsey HR, Goodarzi H, Tian R, Kampmann M, Willsey AJ. Autism genes converge on microtubule biology and RNA-binding proteins during excitatory neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573108. [PMID: 38187634 PMCID: PMC10769323 DOI: 10.1101/2023.12.22.573108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Recent studies have identified over one hundred high-confidence (hc) autism spectrum disorder (ASD) genes. Systems biological and functional analyses on smaller subsets of these genes have consistently implicated excitatory neurogenesis. However, the extent to which the broader set of hcASD genes are involved in this process has not been explored systematically nor have the biological pathways underlying this convergence been identified. Here, we leveraged CROP-Seq to repress 87 hcASD genes in a human in vitro model of cortical neurogenesis. We identified 17 hcASD genes whose repression significantly alters developmental trajectory and results in a common cellular state characterized by disruptions in proliferation, differentiation, cell cycle, microtubule biology, and RNA-binding proteins (RBPs). We also characterized over 3,000 differentially expressed genes, 286 of which had expression profiles correlated with changes in developmental trajectory. Overall, we uncovered transcriptional disruptions downstream of hcASD gene perturbations, correlated these disruptions with distinct differentiation phenotypes, and reinforced neurogenesis, microtubule biology, and RBPs as convergent points of disruption in ASD.
Collapse
|
15
|
Iannuccelli M, Vitriolo A, Licata L, Lo Surdo P, Contino S, Cheroni C, Capocefalo D, Castagnoli L, Testa G, Cesareni G, Perfetto L. Curation of causal interactions mediated by genes associated with autism accelerates the understanding of gene-phenotype relationships underlying neurodevelopmental disorders. Mol Psychiatry 2024; 29:186-196. [PMID: 38102483 PMCID: PMC11078740 DOI: 10.1038/s41380-023-02317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Autism spectrum disorder (ASD) comprises a large group of neurodevelopmental conditions featuring, over a wide range of severity and combinations, a core set of manifestations (restricted sociality, stereotyped behavior and language impairment) alongside various comorbidities. Common and rare variants in several hundreds of genes and regulatory regions have been implicated in the molecular pathogenesis of ASD along a range of causation evidence strength. Despite significant progress in elucidating the impact of few paradigmatic individual loci, such sheer complexity in the genetic architecture underlying ASD as a whole has hampered the identification of convergent actionable hubs hypothesized to relay between the vastness of risk alleles and the core phenotypes. In turn this has limited the development of strategies that can revert or ameliorate this condition, calling for a systems-level approach to probe the cross-talk of cooperating genes in terms of causal interaction networks in order to make convergences experimentally tractable and reveal their clinical actionability. As a first step in this direction, we have captured from the scientific literature information on the causal links between the genes whose variants have been associated with ASD and the whole human proteome. This information has been annotated in a computer readable format in the SIGNOR database and is made freely available in the resource website. To link this information to cell functions and phenotypes, we have developed graph algorithms that estimate the functional distance of any protein in the SIGNOR causal interactome to phenotypes and pathways. The main novelty of our approach resides in the possibility to explore the mechanistic links connecting the suggested gene-phenotype relations.
Collapse
Affiliation(s)
- Marta Iannuccelli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Vitriolo
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Prisca Lo Surdo
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Silvia Contino
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Cristina Cheroni
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Daniele Capocefalo
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Testa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy.
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy.
| | - Livia Perfetto
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
16
|
Li P, Wei J, Zhu Y. CellGO: a novel deep learning-based framework and webserver for cell-type-specific gene function interpretation. Brief Bioinform 2023; 25:bbad417. [PMID: 37995133 PMCID: PMC10790717 DOI: 10.1093/bib/bbad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Interpreting the function of genes and gene sets identified from omics experiments remains a challenge, as current pathway analysis tools often fail to consider the critical biological context, such as tissue or cell-type specificity. To address this limitation, we introduced CellGO. CellGO tackles this challenge by leveraging the visible neural network (VNN) and single-cell gene expressions to mimic cell-type-specific signaling propagation along the Gene Ontology tree within a cell. This design enables a novel scoring system to calculate the cell-type-specific gene-pathway paired active scores, based on which, CellGO is able to identify cell-type-specific active pathways associated with single genes. In addition, by aggregating the activities of single genes, CellGO extends its capability to identify cell-type-specific active pathways for a given gene set. To enhance biological interpretation, CellGO offers additional features, including the identification of significantly active cell types and driver genes and community analysis of pathways. To validate its performance, CellGO was assessed using a gene set comprising mixed cell-type markers, confirming its ability to discern active pathways across distinct cell types. Subsequent benchmarking analyses demonstrated CellGO's superiority in effectively identifying cell types and their corresponding cell-type-specific pathways affected by gene knockouts, using either single genes or sets of genes differentially expressed between knockout and control samples. Moreover, CellGO demonstrated its ability to infer cell-type-specific pathogenesis for disease risk genes. Accessible as a Python package, CellGO also provides a user-friendly web interface, making it a versatile and accessible tool for researchers in the field.
Collapse
Affiliation(s)
- Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Junfeng Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Micali N, Ma S, Li M, Kim SK, Mato-Blanco X, Sindhu SK, Arellano JI, Gao T, Shibata M, Gobeske KT, Duque A, Santpere G, Sestan N, Rakic P. Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon. Science 2023; 382:eadf3786. [PMID: 37824652 PMCID: PMC10705812 DOI: 10.1126/science.adf3786] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/30/2023] [Indexed: 10/14/2023]
Abstract
During early telencephalic development, intricate processes of regional patterning and neural stem cell (NSC) fate specification take place. However, our understanding of these processes in primates, including both conserved and species-specific features, remains limited. Here, we profiled 761,529 single-cell transcriptomes from multiple regions of the prenatal macaque telencephalon. We deciphered the molecular programs of the early organizing centers and their cross-talk with NSCs, revealing primate-biased galanin-like peptide (GALP) signaling in the anteroventral telencephalon. Regional transcriptomic variations were observed along the frontotemporal axis during early stages of neocortical NSC progression and in neurons and astrocytes. Additionally, we found that genes associated with neuropsychiatric disorders and brain cancer risk might play critical roles in the early telencephalic organizers and during NSC progression.
Collapse
Affiliation(s)
- Nicola Micali
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xoel Mato-Blanco
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | | | - Jon I. Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tianliuyun Gao
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mikihito Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kevin T. Gobeske
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Departments of Psychiatry, Genetics and Comparative Medicine, Wu Tsai Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Yotova AY, Li LL, O’Leary A, Tegeder I, Reif A, Courtney MJ, Slattery DA, Freudenberg F. Embryonic and adult synaptic proteome perturbations after maternal immune activation: Identification of persistent changes relevant for early intervention. RESEARCH SQUARE 2023:rs.3.rs-3100753. [PMID: 37461513 PMCID: PMC10350178 DOI: 10.21203/rs.3.rs-3100753/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Maternal infections during pregnancy pose an increased risk for neurodevelopmental psychiatric disorders (NPDs) in the offspring. Here, we examined age- and sex-dependent dynamic changes of the hippocampal synaptic proteome after maternal immune activation (MIA) in embryonic and adult mice. Adult male and female MIA offspring exhibited social deficits and sex-specific depression-like behaviours, among others, validating the model. Furthermore, we observed dose-, age-, and sex-dependent synaptic proteome differences. Analysis of the embryonic synaptic proteome implicates sphingolipid and ketoacid metabolism pathway disruptions during neurodevelopment for NPD-pertinent sequelae. In the embryonic hippocampus, prenatal immune activation also led to changes in neuronal guidance, glycosphingolipid metabolism important for signalling and myelination, and post-translational modification of proteins that regulate intercellular interaction and developmental timing. In adulthood, the observed changes in synaptoneurosomes revealed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, and hormone-mediated metabolism. Importantly, 68 of the proteins with differential abundance in the embryonic brains of MIA offspring were also altered in adulthood, 75% of which retained their directionality. These proteins are involved in synaptic organisation, neurotransmitter receptor regulation, and the vesicle cycle. A cluster of persistently upregulated proteins, including AKT3, PAK1/3, PPP3CA, formed a functional network enriched in the embryonic brain that is involved in cellular responses to environmental stimuli. To infer a link between the overlapping protein alterations and cognitive and psychiatric traits, we probed human phenome-wise association study data for cognitive and psychiatric phenotypes and all, but PORCN were significantly associated with the investigated domains. Our data provide insights into the dynamic effects of an early prenatal immune activation on developing and mature hippocampi and highlights targets for early intervention in individuals exposed to such immune challenges.
Collapse
Affiliation(s)
- Anna Y. Yotova
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| | - Li-Li Li
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014, Turku, Finland
| | - Aet O’Leary
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
- Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Irmgard Tegeder
- Goethe University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Michael J Courtney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014, Turku, Finland
| | - David A. Slattery
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Florian Freudenberg
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| |
Collapse
|
19
|
Huang Y, Chen D, Levin AM, Ahmedani BK, Frank C, Li M, Wang Q, Gui H, Sham PC. Cross-phenotype relationship between opioid use disorder and suicide attempts: new evidence from polygenic association and Mendelian randomization analyses. Mol Psychiatry 2023; 28:2913-2921. [PMID: 37340172 DOI: 10.1038/s41380-023-02124-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Clinical epidemiological studies have found high co-occurrence between suicide attempts (SA) and opioid use disorder (OUD). However, the patterns of correlation and causation between them are still not clear due to psychiatric confounding. To investigate their cross-phenotype relationship, we utilized raw phenotypes and genotypes from >150,000 UK Biobank samples, and genome-wide association summary statistics from >600,000 individuals with European ancestry. Pairwise association and a potential bidirectional relationship between OUD and SA were evaluated with and without controlling for major psychiatric disease status (e.g., schizophrenia, major depressive disorder, and alcohol use disorder). Multiple statistical and genetics tools were used to perform epidemiological association, genetic correlation, polygenic risk score prediction, and Mendelian randomizations (MR) analyses. Strong associations between OUD and SA were observed at both the phenotypic level (overall samples [OR = 2.94, P = 1.59 ×10-14]; non-psychiatric subgroup [OR = 2.15, P = 1.07 ×10-3]) and the genetic level (genetic correlation rg = 0.38 and 0.5 with or without conditioning on psychiatric traits, respectively). Consistently, increasing polygenic susceptibility to SA is associated with increasing risk of OUD (OR = 1.08, false discovery rate [FDR] =1.71 ×10-3), and similarly, increasing polygenic susceptibility to OUD is associated with increasing risk of SA (OR = 1.09, FDR = 1.73 ×10-6). However, these polygenic associations were much attenuated after controlling for comorbid psychiatric diseases. A combination of MR analyses suggested a possible causal association from genetic liability for SA to OUD risk (2-sample univariable MR: OR = 1.14, P = 0.001; multivariable MR: OR = 1.08, P = 0.001). This study provided new genetic evidence to explain the observed OUD-SA comorbidity. Future prevention strategies for each phenotype needs to take into consideration of screening for the other one.
Collapse
Affiliation(s)
- Yunqi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Dongru Chen
- Center for Health Policy and Health Services Research, Henry Ford Health, Detroit, MI, USA
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Brian K Ahmedani
- Center for Health Policy and Health Services Research, Henry Ford Health, Detroit, MI, USA
- Behavioral Health Services and Psychiatry Research, Henry Ford Health, Detroit, MI, USA
| | - Cathrine Frank
- Behavioral Health Services and Psychiatry Research, Henry Ford Health, Detroit, MI, USA
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China.
| | - Hongsheng Gui
- Center for Health Policy and Health Services Research, Henry Ford Health, Detroit, MI, USA.
- Behavioral Health Services and Psychiatry Research, Henry Ford Health, Detroit, MI, USA.
| | - Pak-Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12:1680. [PMID: 36836215 PMCID: PMC9967886 DOI: 10.3390/jcm12041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
21
|
Lynham AJ, Knott S, Underwood JFG, Hubbard L, Agha SS, Bisson JI, van den Bree MBM, Chawner SJRA, Craddock N, O'Donovan M, Jones IR, Kirov G, Langley K, Martin J, Rice F, Roberts NP, Thapar A, Anney R, Owen MJ, Hall J, Pardiñas AF, Walters JTR. DRAGON-Data: a platform and protocol for integrating genomic and phenotypic data across large psychiatric cohorts. BJPsych Open 2023; 9:e32. [PMID: 36752340 PMCID: PMC9970169 DOI: 10.1192/bjo.2022.636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Current psychiatric diagnoses, although heritable, have not been clearly mapped onto distinct underlying pathogenic processes. The same symptoms often occur in multiple disorders, and a substantial proportion of both genetic and environmental risk factors are shared across disorders. However, the relationship between shared symptoms and shared genetic liability is still poorly understood. AIMS Well-characterised, cross-disorder samples are needed to investigate this matter, but few currently exist. Our aim is to develop procedures to purposely curate and aggregate genotypic and phenotypic data in psychiatric research. METHOD As part of the Cardiff MRC Mental Health Data Pathfinder initiative, we have curated and harmonised phenotypic and genetic information from 15 studies to create a new data repository, DRAGON-Data. To date, DRAGON-Data includes over 45 000 individuals: adults and children with neurodevelopmental or psychiatric diagnoses, affected probands within collected families and individuals who carry a known neurodevelopmental risk copy number variant. RESULTS We have processed the available phenotype information to derive core variables that can be reliably analysed across groups. In addition, all data-sets with genotype information have undergone rigorous quality control, imputation, copy number variant calling and polygenic score generation. CONCLUSIONS DRAGON-Data combines genetic and non-genetic information, and is available as a resource for research across traditional psychiatric diagnostic categories. Algorithms and pipelines used for data harmonisation are currently publicly available for the scientific community, and an appropriate data-sharing protocol will be developed as part of ongoing projects (DATAMIND) in partnership with Health Data Research UK.
Collapse
Affiliation(s)
- Amy J. Lynham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Sarah Knott
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Jack F. G. Underwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Leon Hubbard
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Sharifah S. Agha
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Jonathan I. Bisson
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Marianne B. M. van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Samuel J. R. A. Chawner
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Nicholas Craddock
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Michael O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Ian R. Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Kate Langley
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK; and School of Psychology, Cardiff University, UK
| | - Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Frances Rice
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Neil P. Roberts
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK; and Directorate of Psychology and Psychological Therapies, Cardiff & Vale University Health Board, UK
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Richard Anney
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - Antonio F. Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - James T. R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| |
Collapse
|
22
|
Akaba Y, Takahashi S, Suzuki K, Kosaki K, Tsujimura K. miR-514a promotes neuronal development in human iPSC-derived neurons. Front Cell Dev Biol 2023; 11:1096463. [PMID: 36824367 PMCID: PMC9941156 DOI: 10.3389/fcell.2023.1096463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Proper development and function of the central nervous system require precise regulation of gene expression. MicroRNAs (miRNAs), a group of small non-coding RNAs that can negatively regulate gene expression at the post-transcriptional level, are critical regulators of neuronal development, and dysregulation of microRNAs has been implicated in various neurological disorders. Changes in microRNA expression and repertoire are related to the emergence of social and behavioral variations in closely related primates, including humans, during evolution. MicroRNA-514a (miR-514a) is an X-linked miRNA that is conserved in species with higher social and cognitive functions, and frequent tandem duplications of miR-514a have been found in primate genomes. Here, we demonstrate that miR-514a plays a crucial role in neuronal development in neurons derived from human induced pluripotent stem cells (iPSCs). Overexpression of miR-514a increased dendritic length, soma size, and activity levels of mammalian target of rapamycin (mTOR) signaling in induced pluripotent stem cell-derived neurons, whereas blocking of endogenous miR-514a inhibited neuronal development. Furthermore, we performed a functional analysis of the miR-514a variation found during primate evolution, to investigate the impact of miR-514a sequence variation and associated changes in expression on brain development during evolution. We found that mutation in miR-514a significantly reduced the expression of the mature form and abolished the effects observed when native miR-514a was expressed. Our findings provide new insights into the functional role of miR-514a in the regulation of neuronal development and evolution of primate brain development.
Collapse
Affiliation(s)
- Yuichi Akaba
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan,Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan,Department of Pediatrics, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Keiichiro Suzuki
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan,Graduate School of Engineering Science, Osaka University, Osaka, Japan,Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan,Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan,*Correspondence: Keita Tsujimura,
| |
Collapse
|
23
|
Johnson KA, Worbe Y, Foote KD, Butson CR, Gunduz A, Okun MS. Tourette syndrome: clinical features, pathophysiology, and treatment. Lancet Neurol 2023; 22:147-158. [PMID: 36354027 PMCID: PMC10958485 DOI: 10.1016/s1474-4422(22)00303-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Tourette syndrome is a chronic neurodevelopmental disorder characterised by motor and phonic tics that can substantially diminish the quality of life of affected individuals. Evaluating and treating Tourette syndrome is complex, in part due to the heterogeneity of symptoms and comorbidities between individuals. The underlying pathophysiology of Tourette syndrome is not fully understood, but recent research in the past 5 years has brought new insights into the genetic variations and the alterations in neurophysiology and brain networks contributing to its pathogenesis. Treatment options for Tourette syndrome are expanding with novel pharmacological therapies and increased use of deep brain stimulation for patients with symptoms that are refractory to pharmacological or behavioural treatments. Potential predictors of patient responses to therapies for Tourette syndrome, such as specific networks modulated during deep brain stimulation, can guide clinical decisions. Multicentre data sharing initiatives have enabled several advances in our understanding of the genetics and pathophysiology of Tourette syndrome and will be crucial for future large-scale research and in refining effective treatments.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Yulia Worbe
- Sorbonne University, ICM, Inserm, CNRS, Department of Neurophysiology, Hôpital Saint Antoine (DMU 6), AP-HP, Paris, France
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Christopher R Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Mapping the common gene networks that underlie related diseases. Nat Protoc 2023:10.1038/s41596-022-00797-1. [PMID: 36653526 DOI: 10.1038/s41596-022-00797-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/21/2022] [Indexed: 01/19/2023]
Abstract
A longstanding goal of biomedicine is to understand how alterations in molecular and cellular networks give rise to the spectrum of human diseases. For diseases with shared etiology, understanding the common causes allows for improved diagnosis of each disease, development of new therapies and more comprehensive identification of disease genes. Accordingly, this protocol describes how to evaluate the extent to which two diseases, each characterized by a set of mapped genes, are colocalized in a reference gene interaction network. This procedure uses network propagation to measure the network 'distance' between gene sets. For colocalized diseases, the network can be further analyzed to extract common gene communities at progressive granularities. In particular, we show how to: (1) obtain input gene sets and a reference gene interaction network; (2) identify common subnetworks of genes that encompass or are in close proximity to all gene sets; (3) use multiscale community detection to identify systems and pathways represented by each common subnetwork to generate a network colocalized systems map; (4) validate identified genes and systems using a mouse variant database; and (5) visualize and further investigate select genes, interactions and systems for relevance to phenotype(s) of interest. We demonstrate the utility of this approach by identifying shared biological mechanisms underlying autism and congenital heart disease. However, this protocol is general and can be applied to any gene sets attributed to diseases or other phenotypes with suspected joint association. A typical NetColoc run takes less than an hour. Software and documentation are available at https://github.com/ucsd-ccbb/NetColoc .
Collapse
|
25
|
Parellada M, Andreu-Bernabeu Á, Burdeus M, San José Cáceres A, Urbiola E, Carpenter LL, Kraguljac NV, McDonald WM, Nemeroff CB, Rodriguez CI, Widge AS, State MW, Sanders SJ. In Search of Biomarkers to Guide Interventions in Autism Spectrum Disorder: A Systematic Review. Am J Psychiatry 2023; 180:23-40. [PMID: 36475375 PMCID: PMC10123775 DOI: 10.1176/appi.ajp.21100992] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to catalog and evaluate response biomarkers correlated with autism spectrum disorder (ASD) symptoms to improve clinical trials. METHODS A systematic review of MEDLINE, Embase, and Scopus was conducted in April 2020. Seven criteria were applied to focus on original research that includes quantifiable response biomarkers measured alongside ASD symptoms. Interventional studies or human studies that assessed the correlation between biomarkers and ASD-related behavioral measures were included. RESULTS A total of 5,799 independent records yielded 280 articles for review that reported on 940 biomarkers, 755 of which were unique to a single publication. Molecular biomarkers were the most frequently assayed, including cytokines, growth factors, measures of oxidative stress, neurotransmitters, and hormones, followed by neurophysiology (e.g., EEG and eye tracking), neuroimaging (e.g., functional MRI), and other physiological measures. Studies were highly heterogeneous, including in phenotypes, demographic characteristics, tissues assayed, and methods for biomarker detection. With a median total sample size of 64, almost all of the reviewed studies were only powered to identify biomarkers with large effect sizes. Reporting of individual-level values and summary statistics was inconsistent, hampering mega- and meta-analysis. Biomarkers assayed in multiple studies yielded mostly inconsistent results, revealing a "replication crisis." CONCLUSIONS There is currently no response biomarker with sufficient evidence to inform ASD clinical trials. This review highlights methodological imperatives for ASD biomarker research necessary to make definitive progress: consistent experimental design, correction for multiple comparisons, formal replication, sharing of sample-level data, and preregistration of study designs. Systematic "big data" analyses of multiple potential biomarkers could accelerate discovery.
Collapse
Affiliation(s)
- Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Mónica Burdeus
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Antonia San José Cáceres
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Elena Urbiola
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Linda L Carpenter
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Nina V Kraguljac
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - William M McDonald
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Charles B Nemeroff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Carolyn I Rodriguez
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Alik S Widge
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Matthew W State
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Stephan J Sanders
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| |
Collapse
|
26
|
From Genes to Therapy in Autism Spectrum Disorder. Genes (Basel) 2022; 13:genes13081377. [PMID: 36011288 PMCID: PMC9407279 DOI: 10.3390/genes13081377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, findings from genetic and other biological studies are starting to reveal the role of various molecular mechanisms that contribute to the etiology of ASD [...]
Collapse
|
27
|
Viard J, Loe-Mie Y, Daudin R, Khelfaoui M, Plancon C, Boland A, Tejedor F, Huganir RL, Kim E, Kinoshita M, Liu G, Haucke V, Moncion T, Yu E, Hindie V, Bléhaut H, Mircher C, Herault Y, Deleuze JF, Rain JC, Simonneau M, Lepagnol-Bestel AM. Chr21 protein-protein interactions: enrichment in proteins involved in intellectual disability, autism, and late-onset Alzheimer's disease. Life Sci Alliance 2022; 5:e202101205. [PMID: 35914814 PMCID: PMC9348576 DOI: 10.26508/lsa.202101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is caused by human chromosome 21 (HSA21) trisomy. It is characterized by a poorly understood intellectual disability (ID). We studied two mouse models of DS, one with an extra copy of the <i>Dyrk1A</i> gene (189N3) and the other with an extra copy of the mouse Chr16 syntenic region (Dp(16)1Yey). RNA-seq analysis of the transcripts deregulated in the embryonic hippocampus revealed an enrichment in genes associated with chromatin for the 189N3 model, and synapses for the Dp(16)1Yey model. A large-scale yeast two-hybrid screen (82 different screens, including 72 HSA21 baits and 10 rebounds) of a human brain library containing at least 10<sup>7</sup> independent fragments identified 1,949 novel protein-protein interactions. The direct interactors of HSA21 baits and rebounds were significantly enriched in ID-related genes (<i>P</i>-value < 2.29 × 10<sup>-8</sup>). Proximity ligation assays showed that some of the proteins encoded by HSA21 were located at the dendritic spine postsynaptic density, in a protein network at the dendritic spine postsynapse. We located HSA21 DYRK1A and DSCAM, mutations of which increase the risk of autism spectrum disorder (ASD) 20-fold, in this postsynaptic network. We found that an intracellular domain of DSCAM bound either DLGs, which are multimeric scaffolds comprising receptors, ion channels and associated signaling proteins, or DYRK1A. The DYRK1A-DSCAM interaction domain is conserved in <i>Drosophila</i> and humans. The postsynaptic network was found to be enriched in proteins associated with ARC-related synaptic plasticity, ASD, and late-onset Alzheimer's disease. These results highlight links between DS and brain diseases with a complex genetic basis.
Collapse
Affiliation(s)
- Julia Viard
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | - Yann Loe-Mie
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
| | - Rachel Daudin
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
| | - Malik Khelfaoui
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
| | - Christine Plancon
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | - Anne Boland
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | - Francisco Tejedor
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Universidad Miguel Hernandez-Campus de San Juan, San Juan, Spain
| | - Richard L Huganir
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Makoto Kinoshita
- Department of Molecular Biology, Division of Biological Science, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz Institut für Molekulare Pharmakologie (FMP) and Freie Universität Berlin, Berlin, Germany
| | | | - Eugene Yu
- Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- PHENOMIN, Institut Clinique de la Souris, ICS, GIE CERBM, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Jean-François Deleuze
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | | | - Michel Simonneau
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, Gif sur Yvette, France
- Department of Biology, Ecole Normale Supérieure Paris-Saclay Université Paris-Saclay, Gif sur Yvette, France
| | | |
Collapse
|
28
|
The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. J Neurosci 2022; 42:4774-4793. [PMID: 35705493 DOI: 10.1523/jneurosci.0059-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Normal neural circuits and functions depend on proper neuronal differentiation, migration, synaptic plasticity, and maintenance. Abnormalities in these processes underlie various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Neural development and maintenance are regulated by many proteins. Among them are Par3, Par6 (partitioning defective 3 and 6), and aPKC (atypical protein kinase C) families of evolutionarily conserved polarity proteins. These proteins perform versatile functions by forming tripartite or other combinations of protein complexes, which hereafter are collectively referred to as "Par complexes." In this review, we summarize the major findings on their biophysical and biochemical properties in cell polarization and signaling pathways. We next summarize their expression and localization in the nervous system as well as their versatile functions in various aspects of neurodevelopment, including neuroepithelial polarity, neurogenesis, neuronal migration, neurite differentiation, synaptic plasticity, and memory. These versatile functions rely on the fundamental roles of Par complexes in cell polarity in distinct cellular contexts. We also discuss how cell polarization may correlate with subcellular polarization in neurons. Finally, we review the involvement of Par complexes in neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. While emerging evidence indicates that Par complexes are essential for proper neural development and maintenance, many questions on their in vivo functions have yet to be answered. Thus, Par3, Par6, and aPKC continue to be important research topics to advance neuroscience.
Collapse
|
29
|
How Variation in Risk Allele Output and Gene Interactions Shape the Genetic Architecture of Schizophrenia. Genes (Basel) 2022; 13:genes13061040. [PMID: 35741803 PMCID: PMC9222307 DOI: 10.3390/genes13061040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Schizophrenia is a highly heritable polygenic psychiatric disorder. Characterization of its genetic architecture may lead to a better understanding of the overall burden of risk variants and how they determine susceptibility to disease. A major goal of this project is to develop a modeling approach to compare and quantify the relative effects of single nucleotide polymorphisms (SNPs), copy number variants (CNVs) and other factors. We derived a mathematical model for the various genetic contributions based on the probability of expressing a combination of risk variants at a frequency that matched disease prevalence. The model included estimated risk variant allele outputs (VAOs) adjusted for population allele frequency. We hypothesized that schizophrenia risk genes would be more interactive than random genes and we confirmed this relationship. Gene–gene interactions may cause network ripple effects that spread and amplify small individual effects of risk variants. The modeling revealed that the number of risk alleles required to achieve the threshold for susceptibility will be determined by the average functional locus output (FLO) associated with a risk allele, the risk allele frequency (RAF), the number of protective variants present and the extent of gene interactions within and between risk loci. The model can account for the quantitative impact of protective variants as well as CNVs on disease susceptibility. The fact that non-affected individuals must carry a non-trivial burden of risk alleles suggests that genetic susceptibility will inevitably reach the threshold for schizophrenia at a recurring frequency in the population.
Collapse
|
30
|
Zhang W, Ross PJ, Ellis J, Salter MW. Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells. Transl Psychiatry 2022; 12:243. [PMID: 35680847 PMCID: PMC9184461 DOI: 10.1038/s41398-022-02010-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
NMDA receptors (NMDARs), a prominent subtype of glutamatergic receptors, are implicated in the pathogenesis and development of neuropsychiatric disorders such as epilepsy, intellectual disability, autism spectrum disorder, and schizophrenia, and are therefore a potential therapeutic target in treating these disorders. Neurons derived from induced pluripotent stem cells (iPSCs) have provided the opportunity to investigate human NMDARs in their native environment. In this review, we describe the expression, function, and regulation of NMDARs in human iPSC-derived neurons and discuss approaches for utilizing human neurons for identifying potential drugs that target NMDARs in the treatment of neuropsychiatric disorders. A challenge in studying NMDARs in human iPSC-derived neurons is a predominance of those receptors containing the GluN2B subunit and low synaptic expression, suggesting a relatively immature phenotype of these neurons and delayed development of functional NMDARs. We outline potential approaches for improving neuronal maturation of human iPSC-derived neurons and accelerating the functional expression of NMDARs. Acceleration of functional expression of NMDARs in human iPSC-derived neurons will improve the modeling of neuropsychiatric disorders and facilitate the discovery and development of novel therapeutics targeting NMDARs for the treatment of these disorders.
Collapse
Affiliation(s)
- Wenbo Zhang
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - P Joel Ross
- Biology Department, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
31
|
Guo H, Hou L, Shi Y, Jin SC, Zeng X, Li B, Lifton RP, Brueckner M, Zhao H, Lu Q. Quantifying concordant genetic effects of de novo mutations on multiple disorders. eLife 2022; 11:75551. [PMID: 35666111 PMCID: PMC9217133 DOI: 10.7554/elife.75551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Exome sequencing on tens of thousands of parent-proband trios has identified numerous deleterious de novo mutations (DNMs) and implicated risk genes for many disorders. Recent studies have suggested shared genes and pathways are enriched for DNMs across multiple disorders. However, existing analytic strategies only focus on genes that reach statistical significance for multiple disorders and require large trio samples in each study. As a result, these methods are not able to characterize the full landscape of genetic sharing due to polygenicity and incomplete penetrance. In this work, we introduce EncoreDNM, a novel statistical framework to quantify shared genetic effects between two disorders characterized by concordant enrichment of DNMs in the exome. EncoreDNM makes use of exome-wide, summary-level DNM data, including genes that do not reach statistical significance in single-disorder analysis, to evaluate the overall and annotation-partitioned genetic sharing between two disorders. Applying EncoreDNM to DNM data of nine disorders, we identified abundant pairwise enrichment correlations, especially in genes intolerant to pathogenic mutations and genes highly expressed in fetal tissues. These results suggest that EncoreDNM improves current analytic approaches and may have broad applications in DNM studies.
Collapse
Affiliation(s)
- Hanmin Guo
- Center for Statistical Science, Tsinghua UniversityBeijingChina
- Department of Industrial Engineering, Tsinghua UniversityBeijingChina
| | - Lin Hou
- Center for Statistical Science, Tsinghua UniversityBeijingChina
- Department of Industrial Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Yu Shi
- Yale School of Management, Yale UniversityNew HavenUnited States
| | - Sheng Chih Jin
- Department of Genetics, Washington University in St. LouisSt. LouisUnited States
| | - Xue Zeng
- Department of Genetics, Yale UniversityNew HavenUnited States
- Laboratory of Human Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Boyang Li
- Department of Biostatistics, Yale School of Public HealthNew HavenUnited States
| | - Richard P Lifton
- Department of Genetics, Yale UniversityNew HavenUnited States
- Laboratory of Human Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Martina Brueckner
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Pediatrics, Yale UniversityNew HavenUnited States
| | - Hongyu Zhao
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Biostatistics, Yale School of Public HealthNew HavenUnited States
- Program of Computational Biology and Bioinformatics, Yale UniversityNew HavenUnited States
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
32
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
Willsey HR, Guille M, Grainger RM. Modeling Human Genetic Disorders with CRISPR Technologies in Xenopus. Cold Spring Harb Protoc 2022; 2022:pdb.prot106997. [PMID: 34531330 DOI: 10.1101/pdb.prot106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Combining the power of Xenopus developmental biology with CRISPR-based technologies promises great discoveries in understanding and treating human genetic disorders. Here we provide a practical pipeline for how to go from known disease gene(s) or risk gene(s) of interest to methods for gaining functional insight into the contribution of these genes to disorder etiology in humans.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143, USA;
| | - Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2UP, United Kingdom
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
34
|
Varela RB, Cararo JH, Tye SJ, Carvalho AF, Valvassori SS, Fries GR, Quevedo J. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: theoretical framework, evidence, and implications. Neurosci Biobehav Rev 2022; 135:104579. [DOI: 10.1016/j.neubiorev.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
|
35
|
Panagiotakos G, Pasca SP. A matter of space and time: Emerging roles of disease-associated proteins in neural development. Neuron 2022; 110:195-208. [PMID: 34847355 PMCID: PMC8776599 DOI: 10.1016/j.neuron.2021.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023]
Abstract
Recent genetic studies of neurodevelopmental disorders point to synaptic proteins and ion channels as key contributors to disease pathogenesis. Although many of these proteins, such as the L-type calcium channel Cav1.2 or the postsynaptic scaffolding protein SHANK3, have well-studied functions in mature neurons, new evidence indicates that they may subserve novel, distinct roles in immature cells as the nervous system is assembled in prenatal development. Emerging tools and technologies, including single-cell sequencing and human cellular models of disease, are illuminating differential isoform utilization, spatiotemporal expression, and subcellular localization of ion channels and synaptic proteins in the developing brain compared with the adult, providing new insights into the regulation of developmental processes. We propose that it is essential to consider the temporally distinct and cell-specific roles of these proteins during development and maturity in our framework for understanding neuropsychiatric disorders.
Collapse
Affiliation(s)
- Georgia Panagiotakos
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
36
|
Current Understanding of the Genetics of Tourette Syndrome. Biomed J 2022; 45:271-279. [PMID: 35042017 PMCID: PMC9250083 DOI: 10.1016/j.bj.2022.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Gilles de la Tourette syndrome (TS) is a common, childhood-onset psychiatric disorder characterized by persistent motor and vocal tics. It is a heterogeneous disorder in which the phenotypic expression may be affected by environmental factors, such as immune responses. Furthermore, several studies have shown that genetic factors play a vital role in the etiology of TS, as well as its comorbidity with other disorders, including attention deficit hyperactivity disorder, obsessive-compulsive disorder, and autism spectrum disorder. TS has a complex inheritance pattern and, according to various genetic studies, several genes and loci have been correlated with TS. Genome-wide linkage studies have identified Slit and Trk-like 1 (SLITRK1) and histidine decarboxylase (HDC) genes, and candidate gene association studies have extensively investigated the dopamine and serotonin system genes, but there have been no consistent results. Moreover, genome-wide association studies have implicated several genetic loci; however, larger study cohorts are needed to confirm this. Copy number variations, which are polymorphisms in the number of gene copies due to chromosomal deletions or duplications, are considered another significant source of mutations in TS. In the last decade, whole genome/exome sequencing has identified several novel genetic mutations in patients with TS. In conclusion, more studies are needed to reveal the exact mechanisms of underlying TS, which may help to provide more information on the prognosis and therapeutic plans for TS.
Collapse
|
37
|
Rosenthal SB, Willsey HR, Xu Y, Mei Y, Dea J, Wang S, Curtis C, Sempou E, Khokha MK, Chi NC, Willsey AJ, Fisch KM, Ideker T. A convergent molecular network underlying autism and congenital heart disease. Cell Syst 2021; 12:1094-1107.e6. [PMID: 34411509 PMCID: PMC8602730 DOI: 10.1016/j.cels.2021.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Patients with neurodevelopmental disorders, including autism, have an elevated incidence of congenital heart disease, but the extent to which these conditions share molecular mechanisms remains unknown. Here, we use network genetics to identify a convergent molecular network underlying autism and congenital heart disease. This network is impacted by damaging genetic variants from both disorders in multiple independent cohorts of patients, pinpointing 101 genes with shared genetic risk. Network analysis also implicates risk genes for each disorder separately, including 27 previously unidentified genes for autism and 46 for congenital heart disease. For 7 genes with shared risk, we create engineered disruptions in Xenopus tropicalis, confirming both heart and brain developmental abnormalities. The network includes a family of ion channels, such as the sodium transporter SCN2A, linking these functions to early heart and brain development. This study provides a road map for identifying risk genes and pathways involved in co-morbid conditions.
Collapse
Affiliation(s)
- Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuxiao Xu
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Mei
- Division of Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sheng Wang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Charlotte Curtis
- Division of Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Sempou
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arthur Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Xie Y, Li M, Dong W, Jiang W, Zhao H. M-DATA: A statistical approach to jointly analyzing de novo mutations for multiple traits. PLoS Genet 2021; 17:e1009849. [PMID: 34735430 PMCID: PMC8568192 DOI: 10.1371/journal.pgen.1009849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Recent studies have demonstrated that multiple early-onset diseases have shared risk genes, based on findings from de novo mutations (DNMs). Therefore, we may leverage information from one trait to improve statistical power to identify genes for another trait. However, there are few methods that can jointly analyze DNMs from multiple traits. In this study, we develop a framework called M-DATA (Multi-trait framework for De novo mutation Association Test with Annotations) to increase the statistical power of association analysis by integrating data from multiple correlated traits and their functional annotations. Using the number of DNMs from multiple diseases, we develop a method based on an Expectation-Maximization algorithm to both infer the degree of association between two diseases as well as to estimate the gene association probability for each disease. We apply our method to a case study of jointly analyzing data from congenital heart disease (CHD) and autism. Our method was able to identify 23 genes for CHD from joint analysis, including 12 novel genes, which is substantially more than single-trait analysis, leading to novel insights into CHD disease etiology.
Collapse
Affiliation(s)
- Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mo Li
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Wei Jiang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
39
|
Nomura J, Mardo M, Takumi T. Molecular signatures from multi-omics of autism spectrum disorders and schizophrenia. J Neurochem 2021; 159:647-659. [PMID: 34537986 DOI: 10.1111/jnc.15514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 01/25/2023]
Abstract
The genetic and phenotypic heterogeneity of autism spectrum disorder (ASD) impedes the unification of multiple biological hypotheses in an attempt to explain the complex features of ASD, such as impaired social communication, social interaction deficits, and restricted and repetitive patterns of behavior. However, recent psychiatric genetic studies have identified numerous risk genes and chromosome loci (copy number variation: CNV) which enable us to analyze at the single gene level and utilize system-level approaches. In this review, we focus on ASD as a major neurodevelopmental disorder and review recent findings mainly from the bioinformatics of omics studies. Additionally, by comparing these data with other major psychiatric disorders, including schizophrenia (SCZ), we identify unique characteristics of both diseases from multiple enrichment, pathway, and protein-protein interaction networks (PPIs) analyses using susceptible genes found in recent large-scale genetic studies. These unified, systematic approaches highlight unique characteristics of both disorders from multiple aspects and demonstrate how convergent pathways can contribute to an understanding of the complex etiology of such neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jun Nomura
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Matthew Mardo
- Neuroscience concentration, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| |
Collapse
|
40
|
Raveh B, Sun L, White KL, Sanyal T, Tempkin J, Zheng D, Bharath K, Singla J, Wang C, Zhao J, Li A, Graham NA, Kesselman C, Stevens RC, Sali A. Bayesian metamodeling of complex biological systems across varying representations. Proc Natl Acad Sci U S A 2021; 118:e2104559118. [PMID: 34453000 PMCID: PMC8536362 DOI: 10.1073/pnas.2104559118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.
Collapse
Affiliation(s)
- Barak Raveh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190416, Israel
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kate L White
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Jeremy Tempkin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Dongqing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Kala Bharath
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Jitin Singla
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
- Epstein Department of Industrial and Systems Engineering, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Information Science Institute, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Chenxi Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jihui Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Angdi Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Carl Kesselman
- Epstein Department of Industrial and Systems Engineering, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Information Science Institute, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| |
Collapse
|
41
|
Abstract
Health is often qualitatively defined as a status free from disease and its quantitative definition requires finding the boundary separating health from pathological conditions. Since many complex diseases have a strong genetic component, substantial efforts have been made to sequence large-scale personal genomes; however, we are not yet able to effectively quantify health status from personal genomes. Since mutational impacts are ultimately manifested at the protein level, we envision that introducing a panoramic proteomic view of complex diseases will allow us to mechanistically understand the molecular etiologies of human diseases. In this perspective article, we will highlight key proteomic approaches to identify pathogenic mutations and map their convergent pathways underlying disease pathogenesis and the integration of omics data at multiple levels to define the borderline between health and disease.
Collapse
Affiliation(s)
- Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Cheng Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
42
|
Trakadis Y, Accogli A, Qi B, Bloom D, Joober R, Levy E, Tabbane K. Next-generation gene panel testing in adolescents and adults in a medical neuropsychiatric genetics clinic. Neurogenetics 2021; 22:313-322. [PMID: 34363551 DOI: 10.1007/s10048-021-00664-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023]
Abstract
Intellectual disability (ID) encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders that may present with psychiatric illness in up to 40% of cases. Despite the evidence for clinical utility of genetic panels in pediatrics, there are no published studies in adolescents/adults with ID or autism spectrum disorder (ASD). This study was approved by our institutional research ethics board. We retrospectively reviewed the medical charts of all patients evaluated between January 2017 and December 2019 in our adult neuropsychiatric genetics clinic at the McGill University Health Centre (MUHC), who had undergone a comprehensive ID/ASD gene panel. Thirty-four patients aged > 16 years, affected by ID/ASD and/or other neuropsychiatric/behavioral disorders, were identified. Pathogenic or likely pathogenic variants were identified in one-third of our cohort (32%): 8 single-nucleotide variants in 8 genes (CASK, SHANK3, IQSEC2, CHD2, ZBTB20, TREX1, SON, and TUBB2A) and 3 copy number variants (17p13.3, 16p13.12p13.11, and 9p24.3p24.1). The presence of psychiatric/behavioral disorders, regardless of the co-occurrence of ID, and, at a borderline level, the presence of ID alone were associated with positive genetic findings (p = 0.024 and p = 0.054, respectively). Moreover, seizures were associated with positive genetic results (p = 0.024). One-third of individuals presenting with psychiatric illness who met our red flags for Mendelian diseases have pathogenic or likely pathogenic variants which can be identified using a comprehensive ID/ASD gene panel (~ 2500 genes) performed on an exome backbone.
Collapse
Affiliation(s)
- Y Trakadis
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Room A04.3140, 1001 Boul. Décarie, Montreal, QC, H4A 3J1, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada. .,Douglas Mental Health Institute/Hospital, Montreal, Canada. .,Department of Psychiatry, McGill University, Montreal, Canada.
| | - A Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Room A04.3140, 1001 Boul. Décarie, Montreal, QC, H4A 3J1, Canada
| | - B Qi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - D Bloom
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - R Joober
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - E Levy
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - K Tabbane
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
43
|
Aldinger KA, Thomson Z, Phelps IG, Haldipur P, Deng M, Timms AE, Hirano M, Santpere G, Roco C, Rosenberg AB, Lorente-Galdos B, Gulden FO, O'Day D, Overman LM, Lisgo SN, Alexandre P, Sestan N, Doherty D, Dobyns WB, Seelig G, Glass IA, Millen KJ. Spatial and cell type transcriptional landscape of human cerebellar development. Nat Neurosci 2021; 24:1163-1175. [PMID: 34140698 PMCID: PMC8338761 DOI: 10.1038/s41593-021-00872-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics. We profiled functionally distinct regions and gene expression dynamics within cell types and across development. The resulting cell atlas demonstrates that the molecular organization of the cerebellar anlage recapitulates cytoarchitecturally distinct regions and developmentally transient cell types that are distinct from the mouse cerebellum. By mapping genes dominant for pediatric and adult neurological disorders onto our dataset, we identify relevant cell types underlying disease mechanisms. These data provide a resource for probing the cellular basis of human cerebellar development and disease.
Collapse
Affiliation(s)
- Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| | - Zachary Thomson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ian G Phelps
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Mei Deng
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Matthew Hirano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Gabriel Santpere
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Neurogenomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Charles Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alexander B Rosenberg
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Belen Lorente-Galdos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Forrest O Gulden
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diana O'Day
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Lynne M Overman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Steven N Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paula Alexandre
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Dan Doherty
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Ian A Glass
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
A white paper on a neurodevelopmental framework for drug discovery in autism and other neurodevelopmental disorders. Eur Neuropsychopharmacol 2021; 48:49-88. [PMID: 33781629 DOI: 10.1016/j.euroneuro.2021.02.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
In the last decade there has been a revolution in terms of genetic findings in neurodevelopmental disorders (NDDs), with many discoveries critical for understanding their aetiology and pathophysiology. Clinical trials in single-gene disorders such as fragile X syndrome highlight the challenges of investigating new drug targets in NDDs. Incorporating a developmental perspective into the process of drug development for NDDs could help to overcome some of the current difficulties in identifying and testing new treatments. This paper provides a summary of the proceedings of the 'New Frontiers Meeting' on neurodevelopmental disorders organised by the European College of Neuropsychopharmacology in conjunction with the Innovative Medicines Initiative-sponsored AIMS-2-TRIALS consortium. It brought together experts in developmental genetics, autism, NDDs, and clinical trials from academia and industry, regulators, patient and family associations, and other stakeholders. The meeting sought to provide a platform for focused communication on scientific insights, challenges, and methodologies that might be applicable to the development of CNS treatments from a neurodevelopmental perspective. Multidisciplinary translational consortia to develop basic and clinical research in parallel could be pivotal to advance knowledge in the field. Although implementation of clinical trials for NDDs in paediatric populations is widely acknowledged as essential, safety concerns should guide each aspect of their design. Industry and academia should join forces to improve knowledge of the biology of brain development, identify the optimal timing of interventions, and translate these findings into new drugs, allowing for the needs of users and families, with support from regulatory agencies.
Collapse
|
45
|
Nayler S, Agarwal D, Curion F, Bowden R, Becker EBE. High-resolution transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci Rep 2021; 11:12959. [PMID: 34155230 PMCID: PMC8217544 DOI: 10.1038/s41598-021-91846-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Current protocols for producing cerebellar neurons from human pluripotent stem cells (hPSCs) often rely on animal co-culture and mostly exist as monolayers, limiting their capability to recapitulate the complex processes in the developing cerebellum. Here, we employed a robust method, without the need for mouse co-culture to generate three-dimensional cerebellar organoids from hPSCs that display hallmarks of in vivo cerebellar development. Single-cell profiling followed by comparison to human and mouse cerebellar atlases revealed the presence and maturity of transcriptionally distinct populations encompassing major cerebellar cell types. Encapsulation with Matrigel aimed to provide more physiologically-relevant conditions through recapitulation of basement-membrane signalling, influenced both growth dynamics and cellular composition of the organoids, altering developmentally relevant gene expression programmes. We identified enrichment of cerebellar disease genes in distinct cell populations in the hPSC-derived cerebellar organoids. These findings ascertain xeno-free human cerebellar organoids as a unique model to gain insight into cerebellar development and its associated disorders.
Collapse
Affiliation(s)
- Samuel Nayler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| | - Devika Agarwal
- Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Fabiola Curion
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom.
| |
Collapse
|
46
|
Hidalgo S, Campusano JM, Hodge JJL. The Drosophila ortholog of the schizophrenia-associated CACNA1A and CACNA1B voltage-gated calcium channels regulate memory, sleep and circadian rhythms. Neurobiol Dis 2021; 155:105394. [PMID: 34015490 DOI: 10.1016/j.nbd.2021.105394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia exhibits up to 80% heritability. A number of genome wide association studies (GWAS) have repeatedly shown common variants in voltage-gated calcium (Cav) channel genes CACNA1C, CACNA1I and CACNA1G have a major contribution to the risk of the disease. More recently, studies using whole exome sequencing have also found that CACNA1B (Cav2.2 N-type) deletions and rare disruptive variants in CACNA1A (Cav2.1 P/Q-type) are associated with schizophrenia. The negative symptoms of schizophrenia include behavioural defects such as impaired memory, sleep and circadian rhythms. It is not known how variants in schizophrenia-associated genes contribute to cognitive and behavioural symptoms, thus hampering the development of treatment for schizophrenia symptoms. In order to address this knowledge gap, we studied behavioural phenotypes in a number of loss of function mutants for the Drosophila ortholog of the Cav2 gene family called cacophony (cac). cac mutants showed several behavioural features including decreased night-time sleep and hyperactivity similar to those reported in human patients. The change in timing of sleep-wake cycles suggested disrupted circadian rhythms, with the loss of night-time sleep being caused by loss of cac just in the circadian clock neurons. These animals also showed a reduction in rhythmic circadian behaviour a phenotype that also could be mapped to the central clock. Furthermore, reduction of cac just in the clock resulted in a lengthening of the 24 h period. In order to understand how loss of Cav2 function may lead to cognitive deficits and underlying cellular pathophysiology we targeted loss of function of cac to the memory centre of the fly, called the mushroom bodies (MB). This manipulation was sufficient to cause reduction in both short- and intermediate-term associative memory. Memory impairment was accompanied by a decrease in Ca2+ transients in response to a depolarizing stimulus, imaged in the MB presynaptic terminals. This work shows loss of cac Cav2 channel function alone causes a number of cognitive and behavioural deficits and underlying reduced neuronal Ca2+ transients, establishing Drosophila as a high-throughput in vivo genetic model to study the Cav channel pathophysiology related to schizophrenia.
Collapse
Affiliation(s)
- Sergio Hidalgo
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, UK; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, UK.
| |
Collapse
|
47
|
Li K, Fang Z, Zhao G, Li B, Chen C, Xia L, Wang L, Luo T, Wang X, Wang Z, Zhang Y, Jiang Y, Pan Q, Hu Z, Guo H, Tang B, Liu C, Sun Z, Xia K, Li J. Cross-Disorder Analysis of De Novo Mutations in Neuropsychiatric Disorders. J Autism Dev Disord 2021; 52:1299-1313. [PMID: 33970367 PMCID: PMC8854168 DOI: 10.1007/s10803-021-05031-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/02/2022]
Abstract
The clinical similarity among different neuropsychiatric disorders (NPDs) suggested a shared genetic basis. We catalogued 23,109 coding de novo mutations (DNMs) from 6511 patients with autism spectrum disorder (ASD), 4,293 undiagnosed developmental disorder (UDD), 933 epileptic encephalopathy (EE), 1022 intellectual disability (ID), 1094 schizophrenia (SCZ), and 3391 controls. We evaluated that putative functional DNMs contribute to 38.11%, 34.40%, 33.31%, 10.98% and 6.91% of patients with ID, EE, UDD, ASD and SCZ, respectively. Consistent with phenotype similarity and heterogeneity in different NPDs, they show different degree of genetic association. Cross-disorder analysis of DNMs prioritized 321 candidate genes (FDR < 0.05) and showed that genes shared in more disorders were more likely to exhibited specific expression pattern, functional pathway, genetic convergence, and genetic intolerance.
Collapse
Affiliation(s)
- Kuokuo Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhenghuan Fang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Lin Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Tengfei Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Xiaomeng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Yi Jiang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Qian Pan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Hui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.,Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China. .,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China. .,School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai, China.
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China. .,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China. .,Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
48
|
von Zastrow M. Proteomic Approaches to Investigate Regulated Trafficking and Signaling of G Protein-Coupled Receptors. Mol Pharmacol 2021; 99:392-398. [PMID: 33361190 PMCID: PMC8058503 DOI: 10.1124/molpharm.120.000178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Advances in proteomic methodologies based on quantitative mass spectrometry are now transforming pharmacology and experimental biology more broadly. The present review will discuss several examples based on work in the author's laboratory, which focuses on delineating relationships between G protein-coupled receptor signaling and trafficking in the endocytic network. The examples highlighted correspond to those discussed in a talk presented at the 2019 EB/ASPET meeting, which was organized by Professor Joe Beavo to commemorate his receipt of the Julius Axelrod Award. SIGNIFICANCE STATEMENT: GPCRs are allosteric machines that signal by interacting with other cellular proteins, and this, in turn, is determined by a complex interplay between the biochemical, subcellular localization, and membrane trafficking properties of receptors relative to transducer and regulatory proteins. The present minireview highlights recent advances and challenges in elucidating this dynamic cell biology and toward delineating the cellular basis of drug action at the level of defined GPCR interaction networks using proteomic approaches enabled by quantitative mass spectrometry.
Collapse
Affiliation(s)
- Mark von Zastrow
- Departments of Cellular and Molecular Pharmacology, and Psychiatry and Behavioral Science, San Francisco School of Medicine, and Quantitative Biology Institute, University of California, San Francisco, California
| |
Collapse
|
49
|
Novel Compound Heterozygous Mutation in TRAPPC9 Gene: The Relevance of Whole Genome Sequencing. Genes (Basel) 2021; 12:genes12040557. [PMID: 33921338 PMCID: PMC8068822 DOI: 10.3390/genes12040557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Advances in high-throughput technologies and its implementation worldwide have had a considerable impact on the elucidation of the molecular causes underlying neurodevelopmental psychiatric disorders, especially for autism spectrum disorder and intellectual disability (ID). Nevertheless, etiology remains elusive in close to 50% of cases, even in those families with multiple affected individuals, strongly hinting at a genetic cause. Here we present a case report of two siblings affected with severe ID and other comorbidities, who embarked on a genetic testing odyssey until diagnosis was reached by using whole genome sequencing (WGS). WGS identified a maternally inherited novel missense variant (NM_031466.7:c.1037G > A; p.Gly346Glu) and a paternally inherited 90 kb intragenic deletion in TRAPPC9 gene. This report demonstrates the clinical utility of WGS in patients who remain undiagnosed after whole exome sequencing.
Collapse
|
50
|
Li K, Ling Z, Luo T, Zhao G, Zhou Q, Wang X, Xia K, Li J, Li B. Cross-Disorder Analysis of De Novo Variants Increases the Power of Prioritising Candidate Genes. Life (Basel) 2021; 11:life11030233. [PMID: 33809095 PMCID: PMC8001830 DOI: 10.3390/life11030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
De novo variants (DNVs) are critical to the treatment of neurodevelopmental disorders (NDDs). However, effectively identifying candidate genes in small cohorts is challenging in most NDDs because of high genetic heterogeneity. We hypothesised that integrating DNVs from multiple NDDs with genetic similarity can significantly increase the possibility of prioritising the candidate gene. We catalogued 66,186 coding DNVs in 50,028 individuals with nine types of NDDs in cohorts with sizes spanning from 118 to 31,260 from Gene4Denovo database to validate this hypothesis. Interestingly, we found that integrated DNVs can effectively increase the number of prioritised candidate genes for each disorder. We identified 654 candidate genes including 481 shared candidate genes carrying putative functional variants in at least two disorders. Notably, 13.51% (65/481) of shared candidate genes were prioritised only via integrated analysis including 44.62% (29/65) genes validated in recent large cohort studies. Moreover, we estimated that more novel candidate genes will be prioritised with the increase in cohort size, in particular for some disorders with high putative functional DNVs per individual. In conclusion, integrated DNVs may increase the power of prioritising candidate genes, which is important for NDDs with small cohort size.
Collapse
Affiliation(s)
- Kuokuo Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Zhengbao Ling
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Tengfei Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
| | - Xiaomeng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.L.); (B.L.); Tel.: +86-731-8975-2406 (J.L. & B.L.); Fax: +86-731-8432-7332 (J.L. & B.L.)
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
- Mobile Health Ministry of Education—China Mobile Joint Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.L.); (B.L.); Tel.: +86-731-8975-2406 (J.L. & B.L.); Fax: +86-731-8432-7332 (J.L. & B.L.)
| |
Collapse
|