1
|
Chen T, Ashwood LM, Kondrashova O, Strasser A, Kelly G, Sutherland KD. Breathing new insights into the role of mutant p53 in lung cancer. Oncogene 2025; 44:115-129. [PMID: 39567755 PMCID: PMC11725503 DOI: 10.1038/s41388-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
The tumour suppressor gene p53 is one of the most frequently mutated genes in lung cancer and these defects are associated with poor prognosis, albeit some debate exists in the lung cancer field. Despite extensive research, the exact mechanisms by which mutant p53 proteins promote the development and sustained expansion of cancer remain unclear. This review will discuss the cellular responses controlled by p53 that contribute to tumour suppression, p53 mutant lung cancer mouse models and characterisation of p53 mutant lung cancer. Furthermore, we discuss potential approaches of targeting mutant p53 for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tianwei Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren M Ashwood
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Gemma Kelly
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Kate D Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Lee J, Kang H, Chen B, Na Y, Khatri I, Soares F, He HH, Law AD, Pan T, Gerbitz A, Zhu X, Minden MD, Zhang L. Allogeneic DNT cell therapy synergizes with T cells to promote anti-leukemic activities while suppressing GvHD. J Exp Clin Cancer Res 2025; 44:28. [PMID: 39876025 PMCID: PMC11773727 DOI: 10.1186/s13046-024-03247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/30/2025] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a second-line treatment with curative potential for leukemia patients. However, the prognosis of allo-HSCT patients with disease relapse or graft-versus-host disease (GvHD) is poor. CD4+ or CD8+ conventional T (Tconv) cells are critically involved in mediating anti-leukemic immune responses to prevent relapse and detrimental GvHD. Hence, treatment for one increases the risk of the other. Thus, therapeutic strategies that can address relapse and GvHD are considered the Holy Grail of allo-HSCT. CD3+CD4-CD8- double-negative T cells (DNTs) are unconventional mature T cells with potent anti-leukemia effects with "off-the-shelf" potential. A phase I clinical trial demonstrated the feasibility, safety, and potential efficacy of allogeneic DNT therapy for patients with relapsing acute myeloid leukemia (AML) post-allo-HSCT. Here, we studied the impact of DNTs on the anti-leukemic and GvHD-inducing activities of Tconv cells. DNTs synergized with Tconv cells to mediate superior anti-leukemic activity. Mechanistically, DNTs released soluble factors which activated and evoked potent anti-leukemic activities of Tconv cells. In contrast, DNTs suppressed GvHD-inducing activities of Tconv cells in a CD18-dependent manner by mediating cytotoxicity against proliferative Tconv cells. The seemingly opposite immunological activities of DNTs were dictated by the presence or absence of AML cells. Collectively, these results support the potential of DNTs as an adjuvant to allo-HSCT to address both disease relapse and GvHD.
Collapse
Affiliation(s)
- Jongbok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Branson Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Yoosu Na
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ismat Khatri
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Arjun D Law
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tianzhong Pan
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Armin Gerbitz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xiaoyu Zhu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Luyang H, Zeng F, Lei Y, He Q, Zhou Y, Xu J. Bidirectional role of neutrophils in tumor development. Mol Cancer 2025; 24:22. [PMID: 39819428 PMCID: PMC11737241 DOI: 10.1186/s12943-025-02228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Neutrophils, traditionally considered as non-specific components of the innate immune system, have garnered considerable research interest due to their dual roles in both promoting and inhibiting tumor progression. This paper seeks to clarify the specific mechanisms by which neutrophils play a bidirectional role in tumor immunity and the factors that influence these roles. By conducting a comprehensive analysis and synthesis of a vast array of relevant literature, it has become evident that neutrophils can influence tumor development and invasive migration through various mechanisms, thereby exerting their anti-tumor effects. Conversely, they can also facilitate tumorigenesis and proliferation, as well as affect the normal physiological functions of other immune cells, thus exerting pro-tumor effects. Moreover, neutrophils are influenced by tumor cells and their unique microenvironment, which in turn affects their heterogeneity and plasticity. Neutrophils interact with tumor cells to regulate various aspects of their life activities precisely. This paper also identifies unresolved issues in the research concerning the bidirectional role of neutrophils in tumorigenesis and tumor development, offering new opportunities and challenges for advancing our understanding. This, in turn, can aid in the proper application of these insights to clinical treatment strategies.
Collapse
Affiliation(s)
- Haoxin Luyang
- Department of critical care medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, 410013, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Feng Zeng
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Yan Lei
- Department of Blood Transfusion, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, 410013, Hunan, China
| | - Qian He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, 410013, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Juan Xu
- Department of critical care medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Ma C, Li Y, Li M, Lv C, Tian Y. Targeting immune checkpoints on myeloid cells: current status and future directions. Cancer Immunol Immunother 2025; 74:40. [PMID: 39751898 PMCID: PMC11699031 DOI: 10.1007/s00262-024-03856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025]
Abstract
Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME. By summarizing the research status of myeloid checkpoints, we propose that blocking immune checkpoints on myeloid cells might be an effective strategy to reverse the immunosuppressive status of the TME. Moreover, combining nanotechnology, cellular therapy, and bispecific antibodies to achieve precise targeting of myeloid immune checkpoints can help to avoid the adverse effects of systemic administration, ultimately achieving a balance between efficacy and safety in cancer therapy.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center (Group), DalianLiaoning Province, 116000, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| |
Collapse
|
5
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
6
|
Herro R, Grimes HL. The diverse roles of neutrophils from protection to pathogenesis. Nat Immunol 2024; 25:2209-2219. [PMID: 39567761 DOI: 10.1038/s41590-024-02006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Neutrophil granulocytes are the most abundant leukocytes in the blood and constitute a critical arm of innate immunity. They are generated in the bone marrow, and under homeostatic conditions enter the bloodstream to patrol tissues and scout for potential pathogens that they quickly destroy through phagocytosis, intracellular degradation, release of granules and formation of extracellular traps. Thus, neutrophils are important effector cells involved in antibacterial defense. However, neutrophils can also be pathogenic. Emerging data suggest they have critical functions related to tissue repair and fibrosis. Moreover, similarly to other innate immune cells, neutrophil cell states are affected by their microenvironment. Notably, this includes tumors that co-opt neutrophils. Neutrophils can undergo transcriptional and epigenetic reprogramming, thus causing or modulating inflammation and injury. It is also possible that distinct neutrophil subsets are generated with designated functions in the bone marrow. Understanding neutrophil plasticity and alternative cell states will help resolve their contradictive roles. This Review summarizes the most recent key findings surrounding protective versus pathogenic functions of neutrophils; elaborating on phenotype-specific subsets of neutrophils and their involvement in homeostasis and disease.
Collapse
Affiliation(s)
- Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Lam KC, Goldszmid RS. Single-cell RNA flow cytometry to assess intratumoral production of cytokines/chemokines. Methods Cell Biol 2024; 191:221-246. [PMID: 39824558 DOI: 10.1016/bs.mcb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The tumor microenvironment (TME) consists of complex interactions between cellular and extracellular components, among which the immune system is known to play an integral role in disease progression and response to therapy. Cytokines and chemokines are cell signaling proteins used by immune cells to communicate with each other as well as with other cell types in the body. These proteins control systemic and local immune responses and levels of cytokines/chemokines in the TME have been associated with tumor outcomes. However, cytokines and chemokines have varied expression across cell types, tumors, and host conditions. Therefore, approaches to effectively study the production of these proteins at the single-cell level in the TME are needed to fully elucidate the mechanisms governing the anti-cancer immune response. Here, we detail a protocol to assess the production of cytokines/chemokines across leukocyte populations in mouse tumors using RNA flow cytometry. Importantly, this method can be adapted with minimal changes to study various mouse and human tumors, other RNA analytes, and non-tumor tissues.
Collapse
Affiliation(s)
- Khiem C Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States; Computational Biology, Bioinformatics and Genomics, Biological Sciences, University of Maryland, College Park, MD, United States
| | - Romina S Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States.
| |
Collapse
|
8
|
Xia M, Han Y, Sun L, Li D, Zhu C, Li D. The role of neutrophils in osteosarcoma: insights from laboratory to clinic. Front Immunol 2024; 15:1490712. [PMID: 39582869 PMCID: PMC11582048 DOI: 10.3389/fimmu.2024.1490712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly influenced by the intricate interactions within its tumor microenvironment (TME), particularly involving neutrophils. This review delineates the multifaceted roles of neutrophils, including tumor-associated neutrophils (TANs) and neutrophil extracellular traps (NETs), in osteosarcoma's pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating tumor growth and immune evasion, while NETs facilitate tumor cell adhesion, migration, and immunosuppression. Clinically, neutrophil-related markers such as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes, highlighting the potential for neutrophil-targeted therapies. Unraveling these complex interactions is crucial for developing novel treatment strategies that harness the TME to improve osteosarcoma management.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongsong Li
- Department of Orthopedics, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
9
|
Wang S, Zhang Z, Wang J, Lou Y, Zhu Y, You J, Liu P, Xu LX. Neutrophils promote the activation of monocytes via ROS to boost systemic antitumor immunity after cryo-thermal therapy. Front Immunol 2024; 15:1445513. [PMID: 39555061 PMCID: PMC11563809 DOI: 10.3389/fimmu.2024.1445513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Background The characteristics of the tumor immunosuppressive microenvironment represent a major challenge that limits the efficacy of immunotherapy. Our previous results suggested that cryo-thermal therapy, a tumor ablation system developed in our laboratory, promotes macrophage M1-type polarization and the complete maturation of DCs to remodel the immunosuppressive environment. However, the cells that respond promptly to CTT have not yet been identified. CTT can cause extensive cell death and the release of danger-associated molecular patterns and antigens. Neutrophils are the first white blood cells recruited to sites of damage and acute inflammation. Therefore, we hypothesized that neutrophils are the initial cells that respond to CTT and are involved in the subsequent establishment of antitumor immunity. Methods In this study, we examined the kinetics of neutrophil recruitment after CTT via flow cytometry and immunofluorescence staining and explored the effect of neutrophils on the establishment of systemic antitumor immunity by in vivo neutrophil depletion and in vitro co-culture assays. Results We found that CTT led to a rapid and strong proinflammatory neutrophil response, which was essential for the long-term survival of mice. CTT-induced neutrophils promoted the activation of monocytes via reactive oxygen species and further upregulated the expression of IFN-γ and cytotoxic molecules in T and NK cells. Adoptive neutrophil transfer further enhanced the antitumor efficacy of CTT in tumor models of spontaneous and experimental metastasis. Conclusion These results reveal the important role of neutrophil‒monocyte interactions in the development of anti-tumor immunity and highlight that CTT could be used as an immunotherapy for targeting neutrophils and monocytes to enhance antitumor immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X. Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Quan S, Li N, Lian S, Wang Y, Liu Y, Liu J, Zhang Z, Gao D, Li Y. SLC4A4 as a novel biomarker involved in immune system response and lung adenocarcinoma progression. Int Immunopharmacol 2024; 140:112756. [PMID: 39083932 DOI: 10.1016/j.intimp.2024.112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Altered expression and activity of solute carrier family 4 member 4 (SLC4A4) could affect the growth, survival and metastasis of tumor cells. Currently, the role of SLC4A4 in lung adenocarcinoma (LUAD) immunotherapy and prognosis was not entirely clear. METHODS We analyzed SLC4A4 expression in LUAD tissues and cell lines using quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry. The effects of SLC4A4 overexpression on angiogenesis, cell migration, invasion, and epithelial-mesenchymal transition were examined. Public databases helped construct a risk model evaluating SLC4A4's expression on LUAD prognosis and immunotherapy response. Additionally, a xenograft model, flow cytometry, and enzyme-linked immunosorbent assay further explored SLC4A4's role in tumor immune microenvironment infiltration. RESULTS Upregulation of SLC4A4 promoted apoptosis in the LUAD cell line and significantly inhibited the migration and invasive ability of cancer cells (P<0.01). A total of 10 key genes (including SIGLEC6, RHOV, PIR, MOB3B, MIR3135B, LPAR6, KRT8, ITGA2, CPS1, and C6) were screened according to SLC4A4 expression, immune score and stromal score, and a prognostic model with good outcome was constructed (AUC values of which in the training cohort at 1,3, and 5 years reached 0.73, 0.73, and 0.72, respectively). Importantly, we demonstrated that high expression of SLC4A4 was able to increase the proliferation level and cytokine secretion of CD8+ T cells for the purpose of promoting the immune system response to LUAD. CONCLUSION Our study revealed that SLC4A4 can serve as a prognostic indicator for LUAD, providing new insights into the treatment and diagnosis of LUAD.
Collapse
Affiliation(s)
- Siyu Quan
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Na Li
- Nephrology Department, Jinan Zhangqiu District People's Hospital, Jinan 250200, China
| | - Shihai Lian
- Out-patient Department, Zaozhuang Municipal Hospital, Zaozhuang 277102, China
| | - Yuanyuan Wang
- The Department of Hospital Infection, Jinan Fifth People's Hospital, Jinan 250022, China
| | - Yang Liu
- Thoracic Surgery, PLA 80th Group Army Hospital, Weifang 261011, China
| | - Jianbo Liu
- Department of Thoracic Surgery, The Fourth People's Hospital of Heze, Heze 274100, China
| | - Zewei Zhang
- Department of Thoracic Surgery, Gaoqing County People's Hospital, Gaoqing 256399, China
| | - Dejun Gao
- Department of Thoracic Surgery, The Second People's Hospital of Liaocheng, Liaocheng 252600, China
| | - Yun Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
11
|
Xiao C, Feng X, Aini W, Zhao Z, Ding G, Gao Y. Knowledge landscape of tumor-associated neutrophil: a bibliometric and visual analysis from 2000-2024. Front Immunol 2024; 15:1448818. [PMID: 39430756 PMCID: PMC11486681 DOI: 10.3389/fimmu.2024.1448818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Background Neutrophils have long been consistently adjudged to hold a dominant position in acute inflammation, which once led people to undervalue their role in chronic malignancy. It is now acknowledged that neutrophils also infiltrate into the tumor microenvironment in substantial quantities and form a highly abundant immune population within the tumor, known as tumor-associated neutrophils (TANs). There has been a surge of interest in researching the eminent heterogeneity and plasticity of TANs in recent years, and scholars increasingly cotton on to the multifaceted functions of TANs so that strenuous endeavors have been devoted to enunciating their potential as therapeutic targets. Yet it remains much left to translate TAN-targeted immunotherapies into clinical practice. Therefore, there is great significance to comprehensively appraise the research status, focal point, and evolution trend of TAN by using bibliometric analysis. Methods Publications related to TAN research from 2000 to 2024 are extracted from the Web of Science Core Collection. Bibliometric analysis and visualization were performed by tools encompassing Microsoft Excel, VOSviewer, CiteSpace, R-bibliometrix, and so on. Results The bibliometric analysis included a total of 788 publications authored by 5291 scholars affiliated with 1000 institutions across 58 countries/regions, with relevant articles published in 324 journals. Despite China's maximum quantity of publications and top 10 institutions, the United States is the leading country with the most high-quality publications and is also the global cooperation center. FRONTIERS IN IMMUNOLOGY published the most papers, whereas CANCER RESEARCH is the highest co-cited journal. Israeli professor Fridlender, Zvi G. is the founder, pioneer, and cultivator with the highest citation counts and H-index in the TAN area. Our analysis prefigures the future trajectories: TAN heterogeneity, neutrophil extracellular trap, the crosstalk between TANs and immunocytes, and immunotherapy will likely be the focus of future research. Conclusion A comprehensive bibliometric and visual analysis is first performed to map the current landscape and intellectual structure of TAN, which proffers fresh perspectives for further research. The accurate identification of distinct TAN subpopulations and the precise targeting of key pro-tumor/anti-tumor subpopulations hold immense potential to develop into a TAN-targeted immunotherapy.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wufuer Aini
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengyi Zhao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gouping Ding
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2024:S0962-8924(24)00187-9. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
13
|
Ma D, Xie A, Lv J, Min X, Zhang X, Zhou Q, Gao D, Wang E, Gao L, Cheng L, Liu S. Engineered extracellular vesicles enable high-efficient delivery of intracellular therapeutic proteins. Protein Cell 2024; 15:724-743. [PMID: 38518087 PMCID: PMC11443452 DOI: 10.1093/procel/pwae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/19/2024] [Indexed: 03/24/2024] Open
Abstract
Developing an intracellular delivery system is of key importance in the expansion of protein-based therapeutics acting on cytosolic or nuclear targets. Recently, extracellular vesicles (EVs) have been exploited as next-generation delivery modalities due to their natural role in intercellular communication and biocompatibility. However, fusion of protein of interest to a scaffold represents a widely used strategy for cargo enrichment in EVs, which could compromise the stability and functionality of cargo. Herein, we report intracellular delivery via EV-based approach (IDEA) that efficiently packages and delivers native proteins both in vitro and in vivo without the use of a scaffold. As a proof-of-concept, we applied the IDEA to deliver cyclic GMP-AMP synthase (cGAS), an innate immune sensor. The results showed that cGAS-carrying EVs activated interferon signaling and elicited enhanced antitumor immunity in multiple syngeneic tumor models. Combining cGAS EVs with immune checkpoint inhibition further synergistically boosted antitumor efficacy in vivo. Mechanistically, scRNA-seq demonstrated that cGAS EVs mediated significant remodeling of intratumoral microenvironment, revealing a pivotal role of infiltrating neutrophils in the antitumor immune milieu. Collectively, IDEA, as a universal and facile strategy, can be applied to expand and advance the development of protein-based therapeutics.
Collapse
Affiliation(s)
- Ding Ma
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - An Xie
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiahui Lv
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaolin Min
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xinye Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qian Zhou
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Daxing Gao
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Enyu Wang
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Lei Gao
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Linzhao Cheng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Senquan Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
14
|
Ghosh S, Zanoni I. The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer. Cancer Immunol Res 2024; 12:1311-1319. [PMID: 39270036 PMCID: PMC11444878 DOI: 10.1158/2326-6066.cir-23-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis-hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils' antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.
Collapse
Affiliation(s)
- Sreya Ghosh
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| |
Collapse
|
15
|
Zhang M, Qin H, Wu Y, Gao Q. Complex role of neutrophils in the tumor microenvironment: an avenue for novel immunotherapies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0192. [PMID: 39297568 PMCID: PMC11523270 DOI: 10.20892/j.issn.2095-3941.2024.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 11/01/2024] Open
Abstract
Neutrophils, which originate from the bone marrow and are characterized by a segmented nucleus and a brief lifespan, have a crucial role in the body's defense against infections and acute inflammation. Recent research has uncovered the complex roles of neutrophils as regulators in tumorigenesis, during which neutrophils exhibit a dualistic nature that promotes or inhibits tumor progression. This adaptability is pivotal within the tumor microenvironment (TME). In this review, we provide a comprehensive characterization of neutrophil plasticity and heterogeneity, aiming to illuminate current research findings and discuss potential therapeutic avenues. By delineating the intricate interplay of neutrophils in the TME, this review further underscores the urgent need to understand the dual functions of neutrophils with particular emphasis on the anti-tumor effects to facilitate the development of effective therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Haokai Qin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Wen J, Liu D, Zhu H, Shu K. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy. J Neuroinflammation 2024; 21:226. [PMID: 39285276 PMCID: PMC11406851 DOI: 10.1186/s12974-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Glioma is the most common primary intracranial tumor in adults, with high incidence, recurrence, and mortality rates. Tumor-associated neutrophils (TANs) are essential components of the tumor microenvironment (TME) in glioma and play a crucial role in glioma cell proliferation, invasion and proneural-mesenchymal transition. Besides the interactions between TANs and tumor cells, the multi-dimensional crosstalk between TANs and other components within TME have been reported to participate in glioma progression. More importantly, several therapies targeting TANs have been developed and relevant preclinical and clinical studies have been conducted in cancer therapy. In this review, we introduce the origin of TANs and the functions of TANs in malignant behaviors of glioma, highlighting the microenvironmental regulation of TANs. Moreover, we focus on summarizing the TANs-targeted methods in cancer therapy, aiming to provide insights into the mechanisms and therapeutic opportunities of TANs in the malignant glioma microenvironment.
Collapse
Affiliation(s)
- Jiayi Wen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
17
|
Pascal M, Bax HJ, Bergmann C, Bianchini R, Castells M, Chauhan J, De Las Vecillas L, Hartmann K, Álvarez EI, Jappe U, Jimenez-Rodriguez TW, Knol E, Levi-Schaffer F, Mayorga C, Poli A, Redegeld F, Santos AF, Jensen-Jarolim E, Karagiannis SN. Granulocytes and mast cells in AllergoOncology-Bridging allergy to cancer: An EAACI position paper. Allergy 2024; 79:2319-2345. [PMID: 39036854 DOI: 10.1111/all.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Drug Hypersensitivity and Desensitization Center, Mastocytosis Center, Brigham and Women's Hospital; Harvard Medical School, Boston, USA
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Elena Izquierdo Álvarez
- Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Madrid, Spain
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | | - Edward Knol
- Departments Center of Translational Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine. The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Cristobalina Mayorga
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Allergy Unit and Research Laboratory, Hospital Regional Universitario de Málaga-HRUM, Instituto de investigación Biomédica de Málaga -IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
18
|
Chen D, Liang H, Huang L, Zhou H, Wang Z. Liraglutide enhances the effect of checkpoint blockade in lung and liver cancers through the inhibition of neutrophil extracellular traps. FEBS Open Bio 2024; 14:1365-1377. [PMID: 36271684 PMCID: PMC11301266 DOI: 10.1002/2211-5463.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) regulates glycemic excursions by augmenting insulin production and inhibiting glucagon secretion. Liraglutide, a long-acting GLP-1 analog, can improve glycemic control for treating type 2 diabetes and prevent neutrophil extravasation in inflammation. Here, we explored the role of liraglutide in the development and therapy of murine lung and liver cancers. In this study, liraglutide substantially decreased circulating neutrophil extracellular trap (NET) markers myeloperoxidase, elastase, and dsDNA in Lewis lung cancer (LLC) and Hepa1-6 tumor-bearing mice. Furthermore, liraglutide downregulated NETs and reactive oxygen species (ROS) of neutrophils in the tumor microenvironment. Functionally, in vitro experiments showed that liraglutide reduced NET formation by inhibiting ROS. In addition, we showed that liraglutide enhanced the anti-tumoral efficiency of programmed cell death-1 (PD-1) inhibition in LLC and Hepa1-6 tumor-bearing C57BL/6 mice. However, the removal of NETs significantly weakened the antitumor efficiency of liraglutide. We further demonstrated that the long-term antitumor CD8+ T cell responses induced by the combination therapy rejected rechallenges by respective tumor cell lines. Taken together, our findings suggest that liraglutide may promote the anti-tumoral efficiency of PD-1 inhibition by reducing NETs in lung and liver cancers.
Collapse
Affiliation(s)
- Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Hongxin Liang
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Luyu Huang
- Department of Surgery, Competence Center of Thoracic SurgeryCharité Universitätsmedizin BerlinGermany
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Zheng Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
19
|
Lam KC, Chen Q, Goldszmid RS. Use of optimized single-cell RNA flow cytometry protocol identifies monocytes as main producers of type I interferon in mouse syngeneic tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604694. [PMID: 39372774 PMCID: PMC11451617 DOI: 10.1101/2024.07.23.604694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The tumor microenvironment (TME) consists of complex interactions between cellular and extracellular components, among which the immune system is known to play an integral role in disease progression and response to therapy. Cytokines and chemokines are cell signaling proteins used by immune cells to communicate with each other as well as with other cell types in the body. These proteins control systemic and local immune responses and levels of cytokines/chemokines in the TME have been associated with tumor outcomes. However, cytokines and chemokines have varied expression across cell types, tumors, and host conditions. Therefore, approaches to effectively study the production of these proteins at the single-cell level in the TME are needed to fully elucidate the mechanisms governing the anti-cancer immune response. Here, we detail a protocol to assess the production of cytokines/chemokines across leukocyte populations in mouse tumors using RNA flow cytometry. Importantly, this method can be adapted with minimal changes to study various mouse and human tumors, other RNA analytes, and non-tumor tissues. With this approach, we characterize single-cell production of Ifnb1, Xcl1 and Ccl5 in mouse tumors and identify monocytes and monocyte-derived macrophages as the main producers of type I interferon transcript Ifnb1 consistent across 4 different syngeneic tumor models.
Collapse
Affiliation(s)
- Khiem C. Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Computational Biology, Bioinformatics and Genomics, Biological Sciences, University of Maryland, College Park, MD 20742, USA
| | - Quanyi Chen
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD 20892, USA
| | - Romina S. Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Wang Z, Wang H, Liu M, Ning X, Chen Y, Tang H. Neutrophil in the suppressed immune microenvironment: Critical prognostic factor for lung adenocarcinoma patients with KEAP1 mutation. Front Genet 2024; 15:1382421. [PMID: 38962454 PMCID: PMC11220125 DOI: 10.3389/fgene.2024.1382421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Purpose It is still unclear whether KEAP1 mutation is detrimental to immunotherapy of lung adenocarcinoma (LUAD) patients, we try to analyse the exact changes in the TME in LUAD patients with KEAP1 mutations and to identify key factors influencing prognosis. Experimental design A total of 1,029 patients with lung squamous carcinoma (LUSC) or LUAD with data obtained from The Cancer Genome Atlas were included in this study. The TME and OS of patients with LUAD stratified by mutant versus wild-type KEAP1 status were comprehensively measured. Moreover, we classified LUAD patients with KEAP1 mutations into three subtypes, by unsupervised consensus clustering. We further analysed the TME, OS, commutated genes and metabolic pathways of different subgroups. A total of 40 LUAD patients underwent immunotherapy were collected and classified into mutant KEAP1 group and wild-type KEAP1 group. We also conducted immunohistochemical staining in KEAP1-MT groups. Result Suppressed TME was observed not only in LUAD patients but also in LUSC patients. LUAD patients with mutant KEAP1 underwent immunotherapy had worse PFS than wild-type KEAP1. Unsupervised consensus clustering analysis suggested that the three subtypes of patients exhibited different densities of neutrophil infiltration and had different OS results: cluster 2 patients had significantly higher levels of neutrophils had significantly worse prognoses than those of patients in clusters 1 and 3 and patients with wild-type KEAP1. Univariate and multivariate Cox analyses proved that a high density of neutrophils was significantly associated with worse OS and immunohistochemical staining proved that shorter PFS showed high density of neutrophils. Conclusion KEAP1 mutation significantly suppresses the tumour immune microenvironment in LUAD patients. LUAD patients with mutant KEAP1 underwent immunotherapy had worse PFS than with wild-type KEAP1. Neutrophils may play an important role in the prognosis of LUAD patients with KEAP1 mutations and may provide a promising therapeutic target.
Collapse
Affiliation(s)
- Zhongzhao Wang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haojue Wang
- School of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Mingjia Liu
- School of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xinhang Ning
- School of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Sun H, Li S, Wang Q, Luo C, Zhong L, Wan G, Li Z, Zhao G, Bu X, Zeng M, Feng G. Formyl peptide enhances cancer immunotherapy by activating antitumoral neutrophils, and T cells. Biomed Pharmacother 2024; 175:116670. [PMID: 38692065 DOI: 10.1016/j.biopha.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Neutrophils are heterogeneous and plastic, with the ability to polarize from antitumour to protumour phenotype and modulate tumour microenvironment components. While some advances have been made, the neutrophil-targeting therapy remains underexplored. Activation of formyl peptide receptors (FPRs) by formylated peptides is needed for local control of infection through the recruitment of activated neutrophils while the potential contribution of antitumour activity remains underexplored. Here, we demonstrate that neutrophils can be harnessed to suppress tumour growth through the action of the formyl peptide (FP) on the formyl peptide receptor (FPR). Mechanistically, FP efficiently recruits neutrophils to produce reactive oxygen species production (ROS), resulting in the direct killing of tumours. Antitumour functions disappeared when neutrophils were depleted by anti-Ly6G antibodies. Interestingly, extensive T-cell activation was observed in mouse tumours treated with FP, showing the potential to alter the immune suppressed tumour microenvironment (TME) and further sensitize mice to anti-PD1 therapy. Transcriptomic and flow cytometry analyses revealed the mechanisms of FP-sensitized anti-PD1 therapy, mainly including stimulated neutrophils and an altered immune-suppressed tumour microenvironment. Collectively, these data establish FP as an effective combination partner for sensitizing anti-PD1 therapy by stimulating tumour-infiltrated neutrophils.
Collapse
Affiliation(s)
- Haixia Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China; Department of Pharmacy, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Shuxin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Chunxiang Luo
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-Sen University, Nanning 530022, China
| | - Lanyi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Guohui Wan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ziqian Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Gexin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou,Guangdong 510060, China.
| |
Collapse
|
22
|
Rodríguez-Rodríguez N, Rosetti F, Crispín JC. CD8 is down(regulated) for tolerance. Trends Immunol 2024; 45:442-453. [PMID: 38782625 DOI: 10.1016/j.it.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Activated CD8+ T cells directly kill target cells. Therefore, the regulation of their function is central to avoiding immunopathology. Mechanisms that curb effector functions in CD4+ and CD8+ T cells are mostly shared, yet important differences occur. Here, we focus on the control of CD8+ T cell activity and discuss the importance of a poorly understood aspect of tolerance that directly impairs engagement of target cells: the downregulation of CD8. We contextualize this process and propose that it represents a key element during CD8+ T cell modulation.
Collapse
Affiliation(s)
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico.
| |
Collapse
|
23
|
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q, Kuca K. Neutrophils in Cancer immunotherapy: friends or foes? Mol Cancer 2024; 23:107. [PMID: 38760815 PMCID: PMC11102125 DOI: 10.1186/s12943-024-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
24
|
Jing W, Wang G, Cui Z, Li X, Zeng S, Jiang X, Li W, Han B, Xing N, Zhao Y, Chen S, Shi B. Tumor-neutrophil cross talk orchestrates the tumor microenvironment to determine the bladder cancer progression. Proc Natl Acad Sci U S A 2024; 121:e2312855121. [PMID: 38713626 PMCID: PMC11098120 DOI: 10.1073/pnas.2312855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/13/2024] [Indexed: 05/09/2024] Open
Abstract
The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Ganyu Wang
- Department of Pediatric Surgery, Qilu Hospital Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Zhiwei Cui
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Xinyuan Li
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Shuyan Zeng
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Xin Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Wushan Li
- Department of Obstetrics, Jinan Maternity and Child Care Hospital Shandong First Medical University, Jinan, Shandong Province250000, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Nianzeng Xing
- Department of Urology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing10021, China
| | - Yunxue Zhao
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| |
Collapse
|
25
|
Sun C, Wang S, Ma Z, Zhou J, Ding Z, Yuan G, Pan Y. Neutrophils in glioma microenvironment: from immune function to immunotherapy. Front Immunol 2024; 15:1393173. [PMID: 38779679 PMCID: PMC11109384 DOI: 10.3389/fimmu.2024.1393173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Glioma is a malignant tumor of the central nervous system (CNS). Currently, effective treatment options for gliomas are still lacking. Neutrophils, as an important member of the tumor microenvironment (TME), are widely distributed in circulation. Recently, the discovery of cranial-meningeal channels and intracranial lymphatic vessels has provided new insights into the origins of neutrophils in the CNS. Neutrophils in the brain may originate more from the skull and adjacent vertebral bone marrow. They cross the blood-brain barrier (BBB) under the action of chemokines and enter the brain parenchyma, subsequently migrating to the glioma TME and undergoing phenotypic changes upon contact with tumor cells. Under glycolytic metabolism model, neutrophils show complex and dual functions in different stages of cancer progression, including participation in the malignant progression, immune suppression, and anti-tumor effects of gliomas. Additionally, neutrophils in the TME interact with other immune cells, playing a crucial role in cancer immunotherapy. Targeting neutrophils may be a novel generation of immunotherapy and improve the efficacy of cancer treatments. This article reviews the molecular mechanisms of neutrophils infiltrating the central nervous system from the external environment, detailing the origin, functions, classifications, and targeted therapies of neutrophils in the context of glioma.
Collapse
Affiliation(s)
- Chao Sun
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Siwen Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhen Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Jinghuan Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zilin Ding
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Yuan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yawen Pan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
26
|
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H, Zhang X. Engineering and Targeting Neutrophils for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310318. [PMID: 38320755 DOI: 10.1002/adma.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, China
| | - Xu Wang
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Abo Akademi University, Turku, 20520, Finland
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
27
|
Lu Y, Chen D, Wang B, Chai W, Yan M, Chen Y, Zhan Y, Yang R, Zhou E, Dai S, Li Y, Dong R, Zheng B. Single-cell landscape of undifferentiated pleomorphic sarcoma. Oncogene 2024; 43:1353-1368. [PMID: 38459120 DOI: 10.1038/s41388-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is a highly aggressive malignant soft tissue tumor with a poor prognosis; however, the identity and heterogeneity of tumor populations remain elusive. Here, eight major cell clusters were identified through the RNA sequencing of 79,569 individual cells of UPS. UPS originates from mesenchymal stem cells (MSCs) and features undifferentiated subclusters. UPS subclusters were predicted to exist in two bulk RNA datasets, and had a prognostic value in The Cancer Genome Atlas (TCGA) dataset. The functional heterogeneity of malignant UPS cells and the immune microenvironment were characterized. Additionally, the fused cells were innovatively detected by expressing both monocyte/macrophage markers and other subcluster-associated genes. Based on the ligand-receptor interaction analysis, cellular interactions with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) were abundant. Furthermore, 73% of patients with UPS (48/66) showed positive EGFR expression, which was associated with a poor prognosis. EGFR blockade with cetuximab inhibited tumor growth in a patient-derived xenograft model. Our transcriptomic studies delineate the landscape of UPS intratumor heterogeneity and serve as a foundational resource for further discovery and therapeutic exploration.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Deqian Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Bingnan Wang
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Chai
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Mingxia Yan
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Enqing Zhou
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China.
| | - Biqiang Zheng
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Zhu X, Heng Y, Zhang D, Tang D, Zhou J, Lin H, Ma J, Ding X, Tao L, Lu L. Prognostic significance and immune escape implication of tumor-infiltrating neutrophil plasticity in human head and neck squamous cell carcinoma. Hum Cell 2024; 37:714-728. [PMID: 38358636 DOI: 10.1007/s13577-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
Tumor-infiltrating neutrophils play a crucial role in the progression of head and neck squamous cell carcinoma (HNSCC). Here, we aimed to statistically quantify the plasticity of HNSCC-infiltrating N2/N1 neutrophils and examine its impacts on survival and immune infiltration landscape. A retrospective study of 80 patients who underwent curative surgical resection for HNSCC between 2014 and 2017 was conducted in this study. HNSCC-infiltrating neutrophil phenotypes were classified using immunofluorescence staining, and the N2/N1 neutrophil plasticity was evaluated via the ratio of N2/N1 neutrophils. We then assessed the correlations between N2/N1 neutrophil plasticity, clinicopathological characteristics, and immune infiltration landscape using rigorous statistical methods. Infiltration variations of N1 and N2 neutrophils were observed between the tumor nest (TN) and tumor stroma (TS), with TN exhibiting higher N2 neutrophil infiltration and lower N1 neutrophil infiltration. High ratios of N2/N1 neutrophils were correlated with advanced TNM stage, large tumor size and invasion of adjacent tissue. High infiltration of N2 neutrophils was associated with decreased overall and relapse-free survival, which were opposite for N1 neutrophils. The independent prognostic role of N2/N1 neutrophil plasticity, particularly within the TN region, was confirmed by multivariate analyses. Moreover, the ratio of N2/N1 neutrophils within the TN region showed correlations with high CD8+ T cells infiltration and low FOXP3+ Tregs infiltration. We identify HNSCC-infiltrating N2/N1 neutrophil plasticity as a crucial prognostic indictor which potentially reflects the tumor microenvironment (TME) and immune escape landscape within HNSCC tissues. Further investigations and validations may provide novel therapeutic strategies for personalized immunomodulation in HNSCC patients.
Collapse
Affiliation(s)
- Xiaoke Zhu
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Yu Heng
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Duo Zhang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Di Tang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Jian Zhou
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Hanqing Lin
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Jingyu Ma
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Xuping Ding
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Lei Tao
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.
| | - Liming Lu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
29
|
Chauhan S, Jaiswal S, Jakhmola V, Singh B, Bhattacharya S, Garg M, Sengupta S. Potential role of p53 deregulation in modulating immune responses in human malignancies: A paradigm to develop immunotherapy. Cancer Lett 2024; 588:216766. [PMID: 38408603 PMCID: PMC7615729 DOI: 10.1016/j.canlet.2024.216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The crucial role played by the oncogenic expression of TP53, stemming from mutation or amyloid formation, in various human malignancies has been extensively studied over the past two decades. Interestingly, the potential role of TP53 as a crucial player in modulating immune responses has provided new insight into the field of cancer biology. The loss of p53's transcriptional functions and/or the acquisition of tumorigenic properties can efficiently modulate the recruitment and functions of myeloid and lymphoid cells, ultimately leading to the evasion of immune responses in human tumors. Consequently, the oncogenic nature of the tumor suppressor p53 can dynamically alter the function of immune cells, providing support for tumor progression and metastasis. This review comprehensively explores the dual role of p53 as both the guardian of the genome and an oncogenic driver, especially in the context of regulation of autophagy, apoptosis, the tumor microenvironment, immune cells, innate immunity, and adaptive immune responses. Additionally, the focus of this review centers on how p53 status in the immune response can be harnessed for the development of tailored therapeutic strategies and their potential application in immunotherapy against human malignancies.
Collapse
Affiliation(s)
- Shivi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| |
Collapse
|
30
|
Carnevale S, Ponzetta A, Rigatelli A, Carriero R, Puccio S, Supino D, Grieco G, Molisso P, Di Ceglie I, Scavello F, Perucchini C, Pasqualini F, Recordati C, Tripodo C, Belmonte B, Mariancini A, Kunderfranco P, Sciumè G, Lugli E, Bonavita E, Magrini E, Garlanda C, Mantovani A, Jaillon S. Neutrophils Mediate Protection Against Colitis and Carcinogenesis by Controlling Bacterial Invasion and IL22 Production by γδ T Cells. Cancer Immunol Res 2024; 12:413-426. [PMID: 38349973 PMCID: PMC10985471 DOI: 10.1158/2326-6066.cir-23-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.
Collapse
Affiliation(s)
| | | | - Anna Rigatelli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Simone Puccio
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | | | | | - Fabio Pasqualini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Mouse & Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, University of Palermo, School of Medicine, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Science, University of Palermo, School of Medicine, Palermo, Italy
| | - Andrea Mariancini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Enrico Lugli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Eduardo Bonavita
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elena Magrini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
31
|
Yu X, Li C, Wang Z, Xu Y, Shao S, Shao F, Wang H, Liu J. Neutrophils in cancer: dual roles through intercellular interactions. Oncogene 2024; 43:1163-1177. [PMID: 38472320 DOI: 10.1038/s41388-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play crucial and diverse roles in tumor development. In the tumor microenvironment (TME), cancer cells regulate the recruitment and behaviors of neutrophils, transforming some of them into a pro-tumor phenotype. Pro-tumor neutrophils interact with cancer cells in various ways to promote cancer initiation, growth, and metastasis, while anti-tumor neutrophils interact with cancer cells to induce senescence and death. Neutrophils can also interact with other cells in TME, including T cells, macrophages, stromal cells, etc. to exert anti- or pro-tumor functions. In this review, we will analyze the anti- and pro-tumor intercellular interactions mediated by neutrophils, with a focus on generalizing the mechanisms underlying the interaction of neutrophils with tumor cells and T cells. Furthermore, we will provide an overview of cancer treatment strategies targeting neutrophil-mediated cellular interactions.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Changhui Li
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yaping Xu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fangwei Shao
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- -University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining, 314400, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China.
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Liu F, Huang H, Yang X, Jiang S, Xu A, Yu Z, Li J, Yu M, Wang Y, Wang B. Ag85B-ENO1 46-82 therapeutic vaccines enhance anti-tumor immunity by inducing CD8 + T cells and remodeling tumor microenvironment. Int Immunopharmacol 2024; 130:111707. [PMID: 38387194 DOI: 10.1016/j.intimp.2024.111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Lung cancer is the leading cause of cancer-related morbidity and mortality in China. However, the effect of traditional cancer treatment is limited. Herein, we designed a therapeutic cancer vaccine based on the tumor-associated antigen mENO1, which can prevent lung cancer growth in vivo, and explored the underlying mechanism of Ag85B-ENO146-82 therapy. Lewis lung carcinoma (LLC) tumor-bearing immunocompetent C57BL/6 mice that received Ag85B-ENO146-82 treatment showed antitumor effect. Further, we detected CD8+ T, CD4+ T in LLC-bearing C57BL/6 mice to understand the impact of Ag85B-ENO146-82 therapy on antitumor capacity. The Ag85B-ENO146-82 therapy induced intensive infiltration of CD4+ and CD8+ T cells in tumors, increased tumor-specific IFN-γ and TNF-α secretion by CD8+ T cells and promoted macrophage polarization toward M1 phenotype. Flow cytometric analysis revealed that CD8+ T effector memory (TEM) cells and central memory (TCM) cells were upregulated. qPCR and ELISA analysis showed that the expression of IFN-γ and TNF-α were upregulated, whereas of IL1β, IL6 and IL10 were downregulated. This study demonstrated that Ag85B-ENO146-82 vaccine augmented antitumor efficacy, which was CD8+ T cells dependent. Our findings paved the way for therapeutic tumor-associated antigen peptide vaccines to enhance anti-tumor immunotherapy for treatment of cancer.
Collapse
Affiliation(s)
- Fengjun Liu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Huan Huang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Xiaoli Yang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Aotian Xu
- Qingdao Sino-cell Biomedicine Co., Ltd., Qingdao 266000, Shandong, China
| | - Zhongjie Yu
- Qingdao Sino-cell Biomedicine Co., Ltd., Qingdao 266000, Shandong, China
| | - Jun Li
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Meng Yu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Bin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266000, China; Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; Qingdao Sino-cell Biomedicine Co., Ltd., Qingdao 266000, Shandong, China.
| |
Collapse
|
33
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
34
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Di Ceglie I, Carnevale S, Rigatelli A, Grieco G, Molisso P, Jaillon S. Immune cell networking in solid tumors: focus on macrophages and neutrophils. Front Immunol 2024; 15:1341390. [PMID: 38426089 PMCID: PMC10903099 DOI: 10.3389/fimmu.2024.1341390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells, stromal cells and leukocytes, including innate and adaptive immune cells, and represents an ecological niche that regulates tumor development and progression. In general, inflammatory cells are considered to contribute to tumor progression through various mechanisms, including the formation of an immunosuppressive microenvironment. Macrophages and neutrophils are important components of the tumor microenvironment and can act as a double-edged sword, promoting or inhibiting the development of the tumor. Targeting of the immune system is emerging as an important therapeutic strategy for cancer patients. However, the efficacy of the various immunotherapies available is still limited. Given the crucial importance of the crosstalk between macrophages and neutrophils and other immune cells in the formation of the anti-tumor immune response, targeting these interactions may represent a promising therapeutic approach against cancer. Here we will review the current knowledge of the role played by macrophages and neutrophils in cancer, focusing on their interaction with other immune cells.
Collapse
Affiliation(s)
| | | | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
36
|
Aroca-Crevillén A, Vicanolo T, Ovadia S, Hidalgo A. Neutrophils in Physiology and Pathology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:227-259. [PMID: 38265879 PMCID: PMC11060889 DOI: 10.1146/annurev-pathmechdis-051222-015009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Infections, cardiovascular disease, and cancer are major causes of disease and death worldwide. Neutrophils are inescapably associated with each of these health concerns, by either protecting from, instigating, or aggravating their impact on the host. However, each of these disorders has a very different etiology, and understanding how neutrophils contribute to each of them requires understanding the intricacies of this immune cell type, including their immune and nonimmune contributions to physiology and pathology. Here, we review some of these intricacies, from basic concepts in neutrophil biology, such as their production and acquisition of functional diversity, to the variety of mechanisms by which they contribute to preventing or aggravating infections, cardiovascular events, and cancer. We also review poorly explored aspects of how neutrophils promote health by favoring tissue repair and discuss how discoveries about their basic biology inform the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alejandra Aroca-Crevillén
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
| | - Tommaso Vicanolo
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
| | - Samuel Ovadia
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Andrés Hidalgo
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| |
Collapse
|
37
|
Liu A, Gammon ST, Pisaneschi F, Boda A, Ager CR, Piwnica-Worms D, Hong DS, Curran MA. Hypoxia-activated prodrug and antiangiogenic therapies cooperatively treat pancreatic cancer but elicit immunosuppressive G-MDSC infiltration. JCI Insight 2024; 9:e169150. [PMID: 37988164 PMCID: PMC10906452 DOI: 10.1172/jci.insight.169150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
We previously showed that ablation of tumor hypoxia can sensitize tumors to immune checkpoint blockade (ICB). Here, we used a Kras+/G12D TP53+/R172H Pdx1-Cre-derived (KPC-derived) model of pancreatic adenocarcinoma to examine the tumor response and adaptive resistance mechanisms involved in response to 2 established methods of hypoxia-reducing therapy: the hypoxia-activated prodrug TH-302 and vascular endothelial growth factor receptor 2 (VEGFR-2) blockade. The combination of both modalities normalized tumor vasculature, increased DNA damage and cell death, and delayed tumor growth. In contrast with prior cancer models, the combination did not alleviate overall tissue hypoxia or sensitize these KPC tumors to ICB therapy despite qualitative improvements to the CD8+ T cell response. Bulk tumor RNA sequencing, flow cytometry, and adoptive myeloid cell transfer suggested that treated tumor cells increased their capacity to recruit granulocytic myeloid-derived suppressor cells (G-MDSCs) through CCL9 secretion. Blockade of the CCL9/CCR1 axis could limit G-MDSC migration, and depletion of Ly6G-positive cells could sensitize tumors to the combination of TH-302, anti-VEGFR-2, and ICB. Together, these data suggest that pancreatic tumors modulate G-MDSC migration as an adaptive response to vascular normalization and that these immunosuppressive myeloid cells act in a setting of persistent hypoxia to maintain adaptive immune resistance.
Collapse
Affiliation(s)
- Arthur Liu
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Immunology program, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, Texas, USA
| | - Seth T. Gammon
- The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Department of Cancer Systems Imaging, Houston, Texas, USA
| | - Federica Pisaneschi
- The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Department of Cancer Systems Imaging, Houston, Texas, USA
| | - Akash Boda
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Immunology program, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, Texas, USA
| | - Casey R. Ager
- Mayo Clinic, Department of Immunology, Scottsdale, Arizona, USA
| | - David Piwnica-Worms
- The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Department of Cancer Systems Imaging, Houston, Texas, USA
| | - David S. Hong
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| | - Michael A. Curran
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Immunology program, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, Texas, USA
| |
Collapse
|
38
|
Liu R, Zhu G, Sun Y, Li M, Hu Z, Cao P, Li X, Song Z, Chen J. Neutrophil infiltration associated genes on the prognosis and tumor immune microenvironment of lung adenocarcinoma. Front Immunol 2023; 14:1304529. [PMID: 38204755 PMCID: PMC10777728 DOI: 10.3389/fimmu.2023.1304529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The neutrophils exhibit both anti-tumor and pro-tumor effects in cancers. The correlation between neutrophils and tumor development in lung adenocarcinoma (LUAD) is still uncertain, possibly due to a lack of specific neutrophil infiltration evaluation methods. In this study, we identified 30 hub genes that were significantly associated with neutrophil infiltration in LUAD through data mining, survival analysis, and multiple tumor-infiltrating immune cells (TICs) analysis, including TIMER, CIBERSORT, QUANTISEQ, XCELL, and MCPCOUNTER. Consensus clustering analysis showed that these 30 hub genes were correlated with clinical features in LUAD. We further developed a neutrophil scoring system based on these hub genes. The neutrophil score was significantly correlated with prognosis and tumor immune microenvironment (TIME) in LUAD. It was also positively associated with PD-L1 expression and negatively associated with tumor mutational burden (TMB). When combined with the neutrophil score, the predictive capacity of PD-L1 and TMB for prognosis was significantly improved. Thus, the 30 hub genes might play an essential role in the interaction of neutrophils and LUAD, and the neutrophil scoring system might effectually assess the infiltration of neutrophils. Furthermore, we verified the expression of these 30 genes in the LUAD tumor tissues collected from our department. We further found that overexpressed TNFAIP6 and TLR6 and downregulated P2RY13, SCARF1, DPEP2, PRAM1, CYP27A1, CFP, GPX3, and NCF1 in LUAD tissue might be potentially associated with neutrophils pro-tumor effects. The following in vitro experiments demonstrated that TNFAIP6 and TLR6 were significantly overexpressed, and P2RY13 and CYP27A1 were significantly downregulated in LUAD cell lines, compared to BEAS-2B cells. Knocking down TNFAIP6 in A549 and PC9 resulted in the upregulation of FAS, CCL3, and ICAM-1, and the downregulation of CCL2, CXCR4, and VEGF-A in neutrophils when co-culturing with the conditioned medium (CM) from LUAD cells. Knocking down TNFAIP6 in LUAD also led to an elevated early apoptosis rate of neutrophils. Therefore, overexpressed TNFAIP6 in LUAD cancer cells might lead to neutrophils "N2" polarization, which exhibited pro-tumor effects. Further research based on the genes identified in this pilot study might shed light on neutrophils' effects on LUAD in the future.
Collapse
Affiliation(s)
- Renwang Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonglin Sun
- Gynecology and Obstetrics Department, Tianjin Third Central Hospital, Tianjin, China
| | - Mingbiao Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zixuan Hu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peijun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
39
|
Zhu W, Wu C, Hu S, Liu S, Zhao S, Zhang D, Qiu G, Cheng X, Huang J. Chemokine- and chemokine receptor-based signature predicts immunotherapy response in female colorectal adenocarcinoma patients. Sci Rep 2023; 13:21358. [PMID: 38049474 PMCID: PMC10695967 DOI: 10.1038/s41598-023-48623-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The clinical significance and comprehensive characteristics of chemokines and chemokine receptors in female patients with advanced colorectal adenocarcinoma have not ever been reported. Our study explored the expression profiles of chemokines and chemokine receptors and constructed a chemokine- and chemokine receptor-based signature in female patients with advanced colorectal adenocarcinoma. Four independent cohorts containing 1335 patients were enrolled in our study. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were performed to construct the signature. CIBERSORT was used to evaluate the landscape of immune cell infiltration. Thirty-two pairs of tissue specimens of female advanced colorectal cancer (CRC) patients and two CRC cell lines were used to validate the signature in vitro. Quantitative real-time PCR and western blotting were performed to validate the mRNA and protein expression levels of signature genes. EdU and colony formation assays were performed to examine proliferative ability. Transwell and wound healing assays were used to evaluate cell invasion and migration capacity. During the signature construction and validation process, we found that the signature was more applicable to female patients with advanced colorectal adenocarcinoma. Hence, the subsequent study mainly focused on the particular subgroup. Enrichment analyses revealed that the signature was closely related to immunity. The landscape of immune cell infiltration presented that the signature was significantly associated with T cells CD8 and neutrophils. Gene set enrichment analysis (GSEA) confirmed that the high-risk group was chiefly enriched in the tumor-promoting related pathways and biological processes, whereas the low-risk group was mainly enriched in anti-tumor immune response pathways and biological processes. The signature was closely correlated with CTLA4, PDL1, PDL2, TMB, MSI, and TIDE, indicating that our signature could serve as a robust biomarker for immunotherapy and chemotherapy response. ROC curves verified that our signature had more robust prognostic power than all immune checkpoints and immunotherapy-related biomarkers. Finally, we used 32 pairs of tissue specimens and 2 CRC cell lines to validate our signature in vitro. We first provided a robust prognostic chemokine- and chemokine receptor-based signature, which could serve as a novel biomarker for immunotherapy and chemotherapy response to guide individualized treatment for female patients with advanced colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Wenjie Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Changlei Wu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shiqi Hu
- Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Sicheng Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shimin Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dongdong Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guisheng Qiu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiufeng Cheng
- Department of Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
40
|
Xie J, Guo Z, Zhu Y, Ma M, Jia G. Peripheral blood inflammatory indexes in breast cancer: A review. Medicine (Baltimore) 2023; 102:e36315. [PMID: 38050296 PMCID: PMC10695498 DOI: 10.1097/md.0000000000036315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
Immune and inflammatory responses play an important role in tumorigenesis and metastasis. Inflammation is an important component of the tumor microenvironment, and the changes in inflammatory cells may affect the occurrence and development of tumors. Complete blood count at the time of diagnosis and treatment can reflect the inflammatory status within the tumor. Studies have shown that the number of certain inflammatory cells in peripheral blood and their ratios are important prognostic factors for many malignancies, including neutrophil, lymphocyte, monocyte, and platelet counts, as well as neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, systemic inflammation response index and pan-immune-inflammation-value. The value of peripheral blood inflammation indexes in predicting the efficacy and prognosis of breast cancer neoadjuvant therapy is worth recognizing. This review details the application of peripheral blood inflammation indexes in the evaluation of efficacy and prediction of prognosis in neoadjuvant therapy for breast cancer, aiming to provide a more comprehensive reference for the comprehensive diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Jiaqiang Xie
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Zhenxi Guo
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Yijing Zhu
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Mingde Ma
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People’s Hospital Affiliated to Henan University, Nanyang, Henan, China
| |
Collapse
|
41
|
Xie Y, Yao J, Yan M, Lin Y, Wei J, Wang H, Mao Y, Liu P, Li X. Pretreatment of UC-MSCs with IFN-α2 improves treatment of liver fibrosis by recruiting neutrophils. J Transl Med 2023; 21:832. [PMID: 37980535 PMCID: PMC10656886 DOI: 10.1186/s12967-023-04732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The use of umbilical cord mesenchymal stem cells (UC-MSCs) is a burgeoning method for the treatment of liver cirrhosis. However, the secretory phenotype and regulatory ability of UC-MSCs are easily affected by their microenvironment. Ensuring a specific microenvironment to enhance the UC-MSCs phenotype is a potential strategy for improving their therapeutic efficacy. The aim of this study was to explore therapeutic UC-MSCs phenotypes for improving liver fibrosis. METHODS RNA-sequencing was used to analyze the response pattern of UC-MSCs after exposure to the serum of cirrhotic patients with HBV. Using immunohistochemistry, quantitative polymerase chain reaction, and immunofluorescence techniques, we evaluated the therapeutic effect of UC-MSCs pretreated with interferon alpha 2 (IFN-α2) (pre-MSCs) in an animal model of cirrhosis. Immunoblotting, ELISA, and other techniques were used to analyze the signaling pathways underlying the IFN-induced changes in UC-MSCs. RESULTS UC-MSCs exposed to the serum of patients with hepatitis B-induced cirrhosis showed an enhanced response to type I IFN. The activated type I IFN signal induced the highest secretion of colony-stimulating factor 3 (CSF-3), interleukin (IL)-8, and chemokine (C-C motif) ligand 20 (CCL20) by the UC-MSCs. Pre-MSCs showed a higher therapeutic efficacy than untreated UC-MSCs in an animal model of liver fibrosis. Immunohistochemical analysis revealed that pre-MSCs could recruit neutrophils resulting in an increase in the secretion of matrix metalloprotease 8 that alleviated fibrosis. When neutrophils in animals were depleted, the therapeutic effect of pre-MSCs on fibrosis was inhibited. IFN-α2 altered the secretory phenotype of UC-MSCs by activating phosphorylated signal transducer and activator of transcription 1 and 2 (p-STAT1 and p-STAT2). CONCLUSIONS Pre-MSCs exhibited enhanced secretion of CSF-3, IL-8, and CCL20 and recruited neutrophils to alleviate fibrosis. This new strategy can improve cell therapy for liver cirrhosis.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Mengchao Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haiping Wang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Pinyan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
42
|
Alzamami A. Implications of single-cell immune landscape of tumor microenvironment for the colorectal cancer diagnostics and therapy. Med Oncol 2023; 40:352. [PMID: 37950801 DOI: 10.1007/s12032-023-02226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
Colorectal cancer (CRC) originates from the polyps lining the colon and is among the most common types of cancer. With the increasing popularity of single-cell sequencing technologies, researchers have been able to better understand the immune landscape of colorectal cancer, by analyzing their expression and interactions in detail with the tumor microenvironment (TME) at single-cell level. Since the tumor-immune cell interactions play a critical part in the advancement as well as treatment response in colorectal cancer, the release of inhibitory factors such as T cells are important for recognizing and destroying cancer cells. Such information is vital to identify immunotherapeutic targets for cure and monitoring response to treatments. Therefore, a comprehensive single-cell studies-based overview of key immunogenic agents regulating the TME of CRC is provided in this review. Tumor-associated macrophages can promote tumor growth and resistance to treatment by releasing factors that inhibit the function of other immune cells. Additionally, colorectal cancer cells can express programmed cell death protein 1 and its ligand, which can also inhibit T-cell function. Researchers have found that certain types of immune cells, prominently T cells, natural killer, and dendritic cells, can have a positive impact on the prognosis of colorectal cancer patients. Treatments like immune checkpoint inhibitors and CAR-T therapies that help to release the inhibitory signals from the cancer cells allow the immune cells to function more effectively.
Collapse
Affiliation(s)
- Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Shaqra University, 11961, Al-Quwayiyah, Saudi Arabia.
| |
Collapse
|
43
|
Ajith A, Mamouni K, Horuzsko DD, Musa A, Dzutsev AK, Fang JR, Chadli A, Zhu X, Lebedyeva I, Trinchieri G, Horuzsko A. Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti-PD-1 resistance. J Clin Invest 2023; 133:e167951. [PMID: 37651197 PMCID: PMC10617775 DOI: 10.1172/jci167951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
The triggering receptor expressed on myeloid cell 1 (TREM1) plays a critical role in development of chronic inflammatory disorders and the inflamed tumor microenvironment (TME) associated with most solid tumors. We examined whether loss of TREM1 signaling can abrogate the immunosuppressive TME and enhance cancer immunity. To investigate the therapeutic potential of TREM1 in cancer, we used mice deficient in Trem1 and developed a novel small molecule TREM1 inhibitor, VJDT. We demonstrated that genetic or pharmacological TREM1 silencing significantly delayed tumor growth in murine melanoma (B16F10) and fibrosarcoma (MCA205) models. Single-cell RNA-Seq combined with functional assays during TREM1 deficiency revealed decreased immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs) accompanied by expansion in cytotoxic CD8+ T cells and increased PD-1 expression. Furthermore, TREM1 inhibition enhanced the antitumorigenic effect of anti-PD-1 treatment, in part, by limiting MDSC frequency and abrogating T cell exhaustion. In patient-derived melanoma xenograft tumors, treatment with VJDT downregulated key oncogenic signaling pathways involved in cell proliferation, migration, and survival. Our work highlights the role of TREM1 in cancer progression, both intrinsically expressed in cancer cells and extrinsically in the TME. Thus, targeting TREM1 to modify an immunosuppressive TME and improve efficacy of immune checkpoint therapy represents what we believe to be a promising therapeutic approach to cancer.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kenza Mamouni
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Daniel D. Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Abu Musa
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer R. Fang
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xingguo Zhu
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anatolij Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
44
|
Genshaft AS, Subudhi S, Keo A, Sanchez Vasquez JD, Conceição-Neto N, Mahamed D, Boeijen LL, Alatrakchi N, Oetheimer C, Vilme M, Drake R, Fleming I, Tran N, Tzouanas C, Joseph-Chazan J, Arreola Villanueva M, van de Werken HJG, van Oord GW, Groothuismink ZMA, Beudeker BJ, Osmani Z, Nkongolo S, Mehrotra A, Spittaels K, Feld J, Chung RT, de Knegt RJ, Janssen HLA, Aerssens J, Bollekens J, Hacohen N, Lauer GM, Boonstra A, Shalek AK, Gehring AJ. Single-cell RNA sequencing of liver fine-needle aspirates captures immune diversity in the blood and liver in chronic hepatitis B patients. Hepatology 2023; 78:1525-1541. [PMID: 37158243 PMCID: PMC10581444 DOI: 10.1097/hep.0000000000000438] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS HBV infection is restricted to the liver, where it drives exhaustion of virus-specific T and B cells and pathogenesis through dysregulation of intrahepatic immunity. Our understanding of liver-specific events related to viral control and liver damage has relied almost solely on animal models, and we lack useable peripheral biomarkers to quantify intrahepatic immune activation beyond cytokine measurement. Our objective was to overcome the practical obstacles of liver sampling using fine-needle aspiration and develop an optimized workflow to comprehensively compare the blood and liver compartments within patients with chronic hepatitis B using single-cell RNA sequencing. APPROACH AND RESULTS We developed a workflow that enabled multi-site international studies and centralized single-cell RNA sequencing. Blood and liver fine-needle aspirations were collected, and cellular and molecular captures were compared between the Seq-Well S 3 picowell-based and the 10× Chromium reverse-emulsion droplet-based single-cell RNA sequencing technologies. Both technologies captured the cellular diversity of the liver, but Seq-Well S 3 effectively captured neutrophils, which were absent in the 10× dataset. CD8 T cells and neutrophils displayed distinct transcriptional profiles between blood and liver. In addition, liver fine-needle aspirations captured a heterogeneous liver macrophage population. Comparison between untreated patients with chronic hepatitis B and patients treated with nucleoside analogs showed that myeloid cells were highly sensitive to environmental changes while lymphocytes displayed minimal differences. CONCLUSIONS The ability to electively sample and intensively profile the immune landscape of the liver, and generate high-resolution data, will enable multi-site clinical studies to identify biomarkers for intrahepatic immune activity in HBV and beyond.
Collapse
Affiliation(s)
- Alex S. Genshaft
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sonu Subudhi
- Liver Center, Division of Gastroenterology and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Arlin Keo
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Juan Diego Sanchez Vasquez
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nádia Conceição-Neto
- Infectious Diseases Biomarkers, Janssen Research and Development, Beerse, Belgium
| | - Deeqa Mahamed
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lauke L. Boeijen
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nadia Alatrakchi
- Liver Center, Division of Gastroenterology and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chris Oetheimer
- Liver Center, Division of Gastroenterology and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mike Vilme
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Riley Drake
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ira Fleming
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nancy Tran
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Constantine Tzouanas
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jasmin Joseph-Chazan
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Arreola Villanueva
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Harmen J. G. van de Werken
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Gertine W. van Oord
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Zwier M. A. Groothuismink
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Boris J. Beudeker
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Zgjim Osmani
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Shirin Nkongolo
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kurt Spittaels
- Infectious Diseases Biomarkers, Janssen Research and Development, Beerse, Belgium
| | - Jordan Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Raymond T. Chung
- Liver Center, Division of Gastroenterology and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J. de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Harry L. A. Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jeroen Aerssens
- Infectious Diseases Biomarkers, Janssen Research and Development, Beerse, Belgium
| | - Jacques Bollekens
- Infectious Diseases Biomarkers, Janssen Research and Development, Beerse, Belgium
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Georg M. Lauer
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Alex K. Shalek
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Adam J. Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Singh S, Barik D, Arukha AP, Prasad S, Mohapatra I, Singh A, Singh G. Small Molecule Targeting Immune Cells: A Novel Approach for Cancer Treatment. Biomedicines 2023; 11:2621. [PMID: 37892995 PMCID: PMC10604364 DOI: 10.3390/biomedicines11102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, Telangana, India
| | | | | | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota—Twin Cities, Saint Paul, MN 55108, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W, Pu N. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Mol Cancer 2023; 22:148. [PMID: 37679744 PMCID: PMC10483725 DOI: 10.1186/s12943-023-01843-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Neutrophils, the most prevalent innate immune cells in humans, have garnered significant attention in recent years due to their involvement in cancer progression. This comprehensive review aimed to elucidate the important roles and underlying mechanisms of neutrophils in cancer from the perspective of their whole life cycle, tracking them from development in the bone marrow to circulation and finally to the tumor microenvironment (TME). Based on an understanding of their heterogeneity, we described the relationship between abnormal neutrophils and clinical manifestations in cancer. Specifically, we explored the function, origin, and polarization of neutrophils within the TME. Furthermore, we also undertook an extensive analysis of the intricate relationship between neutrophils and clinical management, including neutrophil-based clinical treatment strategies. In conclusion, we firmly assert that directing future research endeavors towards comprehending the remarkable heterogeneity exhibited by neutrophils is of paramount importance.
Collapse
Affiliation(s)
- Siyao Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yueshan Du
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisheng Yu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Yu
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
47
|
Ye H, Lu M, Tu C, Min L. Necroptosis in the sarcoma immune microenvironment: From biology to therapy. Int Immunopharmacol 2023; 122:110603. [PMID: 37467689 DOI: 10.1016/j.intimp.2023.110603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Apoptosis resistance remains a major obstacle to treatment failure in sarcoma. Necroptosis is a caspase-independent programmed cell death, investigated as a novel strategy to eradicate anti-apoptotic tumor cells. The process is mediated by the receptor-interacting proteins kinase family and mixed lineage kinase domain-like proteins, which is morphologically similar to necrosis. Recent studies suggest that necroptosis in the tumor microenvironment has pro- or anti-tumor effects on immune response and cancer development. Necroptosis-related molecules display a remarkable value in prognosis prediction and therapeutic response evaluation of sarcoma. Furthermore, the induction of tumor necroptosis has been explored as a feasible therapeutic strategy against sarcoma and to synergize with immunotherapy. This review discusses the dual roles of necroptosis in the immune microenvironment and tumor progression, and explores the potential of necroptosis as a new target for sarcoma treatment.
Collapse
Affiliation(s)
- Huali Ye
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Russo M, Panini N, Fabbrizio P, Formenti L, Becchetti R, Matteo C, Meroni M, Nastasi C, Cappelleri A, Frapolli R, Nardo G, Scanziani E, Ponzetta A, Bani MR, Ghilardi C, Giavazzi R. Chemotherapy-induced neutropenia elicits metastasis formation in mice by promoting proliferation of disseminated tumor cells. Oncoimmunology 2023; 12:2239035. [PMID: 37538353 PMCID: PMC10395252 DOI: 10.1080/2162402x.2023.2239035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Chemotherapy is the standard of care for most malignancies. Its tumor debulking effect in adjuvant or neoadjuvant settings is unquestionable, although secondary effects have been reported that paradoxically promote metastasis. Chemotherapy affects the hematopoietic precursors leading to myelosuppression, with neutropenia being the main hematological toxicity induced by cytotoxic therapy. We used renal and lung murine tumor models metastatic to the lung to study chemotherapy-induced neutropenia (CIN) in the metastatic process. Cyclophosphamide and doxorubicin, two myelosuppressive drugs, but not cisplatin, increased the burden of artificial metastases to the lung, by reducing neutrophils. This effect was recapitulated by treatment with anti-Ly6G, the selective antibody-mediated neutrophil depletion that unleashed the formation of lung metastases in both artificial and spontaneous metastasis settings. The increased cancer dissemination was reversed by granulocyte-colony stimulating factor-mediated boosting of neutrophils in combination with chemotherapy. CIN affected the early metastatic colonization of the lung, quite likely promoting the proliferation of tumor cells extravasated into the lung at 24-72 hours. CIN did not affect the late events of the metastatic process, with established metastasis to the lung, nor was there any effect on the release of cancer cells from the primary, whose growth was, in fact, somewhat inhibited. This work suggests a role of neutrophils associated to a common cancer treatment side effect and claims a deep dive into the relationship between chemotherapy-induced neutropenia and metastasis.
Collapse
Affiliation(s)
- Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nicolò Panini
- Laboratory of Anticancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Formenti
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Riccardo Becchetti
- Laboratory of Anticancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Matteo
- Laboratory of Anticancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marina Meroni
- Laboratory of Anticancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Claudia Nastasi
- Laboratory of Anticancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Andrea Cappelleri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
- Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Roberta Frapolli
- Laboratory of Anticancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
- Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Maria Rosa Bani
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Ghilardi
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
49
|
Kotsari M, Dimopoulou V, Koskinas J, Armakolas A. Immune System and Hepatocellular Carcinoma (HCC): New Insights into HCC Progression. Int J Mol Sci 2023; 24:11471. [PMID: 37511228 PMCID: PMC10380581 DOI: 10.3390/ijms241411471] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
According to the WHO's recently released worldwide cancer data for 2020, liver cancer ranks sixth in morbidity and third in mortality among all malignancies. Hepatocellular carcinoma (HCC), the most common kind of liver cancer, accounts approximately for 80% of all primary liver malignancies and is one of the leading causes of death globally. The intractable tumor microenvironment plays an important role in the development and progression of HCC and is one of three major unresolved issues in clinical practice (cancer recurrence, fatal metastasis, and the refractory tumor microenvironment). Despite significant advances, improved molecular and cellular characterization of the tumor microenvironment is still required since it plays an important role in the genesis and progression of HCC. The purpose of this review is to present an overview of the HCC immune microenvironment, distinct cellular constituents, current therapies, and potential immunotherapy methods.
Collapse
Affiliation(s)
- Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki Dimopoulou
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
50
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|