1
|
Dixit S, Shrivastava P, Jeevan Sequeira J, Mustak MS, Rana M, Kushwaha P, Shrivastava D, Kumawat RK, Pratap Singh P, Tiwary SK, Chauhan NK, Chaubey G. The maternal genetic history of tribal populations of Chhattisgarh, India. Mitochondrion 2024; 79:101970. [PMID: 39341361 DOI: 10.1016/j.mito.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The central region of India boasts a rich tribal heritage and the highest number of tribal populations in the country. Analysing the genetic history of this population can offer valuable insights into various demographic processes that shaped the gene pool of present-day settlers of this region. In this study, we utilize a recently validated Next-generation sequencing (NGS) technique to sequence 24 tribal mitogenomes from the Chhattisgarh population for genetic ancestry and forensic analysis. The identified ancient haplogroups in this population can be traced back to the pre-Last Glacial Maximum (LGM) period. Our Bayesian analysis provides evidence for maternal ancestral expansion following the earliest Out-of-Africa migration, followed by a prolonged steady phase. We identified three basal founding haplogroups, M2, R5, and U2 in the Chhattisgarh region that diversified during the Neolithic period. Indistinct distribution pattern of these haplogroups among tribes and castes suggests that the maternal ancestry of Chhattisgarh population predates any kind of social stratification that exists today in the Indian subcontinent. Furthermore, our analysis suggests that this region remained unaffected by the Last Glacial Maximum. The forensic analysis of the mitogenomes demonstrates a high power of discrimination (0.9256) within the Chhattisgarh population, thus supporting the applicability of mitogenome NGS technology in forensic contexts.
Collapse
Affiliation(s)
- Shivani Dixit
- DNA Division, Central Forensic Science Laboratory, Chandigarh 160036, India; Jaipur National University, Jaipur 302017, Rajasthan, India
| | - Pankaj Shrivastava
- DNA Unit, Regional Forensic Science Laboratory, Jabalpur 482001, Madhya Pradesh, India.
| | | | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalagangothri 574199, India
| | - Manisha Rana
- DNA Division, State Forensic Science Laboratory, Rajasthan, Jaipur 302016, India
| | - Pushpesh Kushwaha
- DNA Division, State Forensic Science Laboratory, Rajasthan, Jaipur 302016, India
| | | | - R K Kumawat
- DNA Division, State Forensic Science Laboratory, Rajasthan, Jaipur 302016, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sachin K Tiwary
- Department of Ancient Indian History Culture and Archaeology, Faculty of Arts, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India
| | - Neeraj K Chauhan
- Thermofisher Scientific India Pvt. Limited, Gurgaon 122016, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Pathak AK, Simonian H, Ibrahim IAA, Hrechdakian P, Behar DM, Ayub Q, Arsanov P, Metspalu E, Yepiskoposyan L, Rootsi S, Endicott P, Villems R, Sahakyan H. Human Y chromosome haplogroup L1-M22 traces Neolithic expansion in West Asia and supports the Elamite and Dravidian connection. iScience 2024; 27:110016. [PMID: 38883810 PMCID: PMC11177204 DOI: 10.1016/j.isci.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
West and South Asian populations profoundly influenced Eurasian genetic and cultural diversity. We investigate the genetic history of the Y chromosome haplogroup L1-M22, which, while prevalent in these regions, lacks in-depth study. Robust Bayesian analyses of 165 high-coverage Y chromosomes favor a West Asian origin for L1-M22 ∼20.6 thousand years ago (kya). Moreover, this haplogroup parallels the genome-wide genetic ancestry of hunter-gatherers from the Iranian Plateau and the Caucasus. We characterized two L1-M22 harboring population groups during the Early Holocene. One expanded with the West Asian Neolithic transition. The other moved to South Asia ∼8-6 kya but showed no expansion. This group likely participated in the spread of Dravidian languages. These South Asian L1-M22 lineages expanded ∼4-3 kya, coinciding with the Steppe ancestry introduction. Our findings advance the current understanding of Eurasian historical dynamics, emphasizing L1-M22's West Asian origin, associated population movements, and possible linguistic impacts.
Collapse
Affiliation(s)
- Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hovann Simonian
- Armenian DNA Project at Family Tree DNA, Houston, TX 77008, USA
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Qasim Ayub
- Monash University Malaysia Genomics Platform, School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Pakhrudin Arsanov
- Chechen-Noahcho DNA Project at Family Tree DNA, Kostanay 110008, Kazakhstan
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Phillip Endicott
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Archaeology and Anthropology, Bournemouth University, Fern Barrow, Poole, Dorset BH12 5BB, UK
- Department of Linguistics, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, USA
- DFG Center for Advanced Studies, University of Tübingen, 72074 Tübingen, Germany
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| |
Collapse
|
3
|
Bai F, Liu Y, Wangdue S, Wang T, He W, Xi L, Tsho Y, Tsering T, Cao P, Dai Q, Liu F, Feng X, Zhang M, Ran J, Ping W, Payon D, Mao X, Tong Y, Tsring T, Chen Z, Fu Q. Ancient genomes revealed the complex human interactions of the ancient western Tibetans. Curr Biol 2024; 34:2594-2605.e7. [PMID: 38781957 DOI: 10.1016/j.cub.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The western Tibetan Plateau is the crossroad between the Tibetan Plateau, Central Asia, and South Asia, and it is a potential human migration pathway connecting these regions. However, the population history of the western Tibetan Plateau remains largely unexplored due to the lack of ancient genomes covering a long-time interval from this area. Here, we reported genome-wide data of 65 individuals dated to 3,500-300 years before present (BP) in the Ngari prefecture. The ancient western Tibetan Plateau populations share the majority of their genetic components with the southern Tibetan Plateau populations and have maintained genetic continuity since 3,500 BP while maintaining interactions with populations within and outside the Tibetan Plateau. Within the Tibetan Plateau, the ancient western Tibetan Plateau populations were influenced by the additional expansion from the south to the southwest plateau before 1,800 BP. Outside the Tibetan Plateau, the western Tibetan Plateau populations interacted with both South and Central Asian populations at least 2,000 years ago, and the South Asian-related genetic influence, despite being very limited, was from the Indus Valley Civilization (IVC) migrants in Central Asia instead of the IVC populations from the Indus Valley. In light of the new genetic data, our study revealed the complex population interconnections across and within the Tibetan Plateau.
Collapse
Affiliation(s)
- Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Lin Xi
- Shaanxi Academy of Archaeology, Xi'an 710054, China
| | - Yang Tsho
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tashi Tsering
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Jingkun Ran
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Danzin Payon
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Lazaridis I, Patterson N, Anthony D, Vyazov L, Fournier R, Ringbauer H, Olalde I, Khokhlov AA, Kitov EP, Shishlina NI, Ailincăi SC, Agapov DS, Agapov SA, Batieva E, Bauyrzhan B, Bereczki Z, Buzhilova A, Changmai P, Chizhevsky AA, Ciobanu I, Constantinescu M, Csányi M, Dani J, Dashkovskiy PK, Évinger S, Faifert A, Flegontov PN, Frînculeasa A, Frînculeasa MN, Hajdu T, Higham T, Jarosz P, Jelínek P, Khartanovich VI, Kirginekov EN, Kiss V, Kitova A, Kiyashko AV, Koledin J, Korolev A, Kosintsev P, Kulcsár G, Kuznetsov P, Magomedov R, Malikovich MA, Melis E, Moiseyev V, Molnár E, Monge J, Negrea O, Nikolaeva NA, Novak M, Ochir-Goryaeva M, Pálfi G, Popovici S, Rykun MP, Savenkova TM, Semibratov VP, Seregin NN, Šefčáková A, Serikovna MR, Shingiray I, Shirokov VN, Simalcsik A, Sirak K, Solodovnikov KN, Tárnoki J, Tishkin AA, Trifonov V, Vasilyev S, Akbari A, Brielle ES, Callan K, Candilio F, Cheronet O, Curtis E, Flegontova O, Iliev L, Kearns A, Keating D, Lawson AM, Mah M, Micco A, Michel M, Oppenheimer J, Qiu L, Noah Workman J, Zalzala F, Szécsényi-Nagy A, Palamara PF, Mallick S, Rohland N, Pinhasi R, Reich D. The Genetic Origin of the Indo-Europeans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589597. [PMID: 38659893 PMCID: PMC11042377 DOI: 10.1101/2024.04.17.589597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The Yamnaya archaeological complex appeared around 3300BCE across the steppes north of the Black and Caspian Seas, and by 3000BCE reached its maximal extent from Hungary in the west to Kazakhstan in the east. To localize the ancestral and geographical origins of the Yamnaya among the diverse Eneolithic people that preceded them, we studied ancient DNA data from 428 individuals of which 299 are reported for the first time, demonstrating three previously unknown Eneolithic genetic clines. First, a "Caucasus-Lower Volga" (CLV) Cline suffused with Caucasus hunter-gatherer (CHG) ancestry extended between a Caucasus Neolithic southern end in Neolithic Armenia, and a steppe northern end in Berezhnovka in the Lower Volga. Bidirectional gene flow across the CLV cline created admixed intermediate populations in both the north Caucasus, such as the Maikop people, and on the steppe, such as those at the site of Remontnoye north of the Manych depression. CLV people also helped form two major riverine clines by admixing with distinct groups of European hunter-gatherers. A "Volga Cline" was formed as Lower Volga people mixed with upriver populations that had more Eastern hunter-gatherer (EHG) ancestry, creating genetically hyper-variable populations as at Khvalynsk in the Middle Volga. A "Dnipro Cline" was formed as CLV people bearing both Caucasus Neolithic and Lower Volga ancestry moved west and acquired Ukraine Neolithic hunter-gatherer (UNHG) ancestry to establish the population of the Serednii Stih culture from which the direct ancestors of the Yamnaya themselves were formed around 4000BCE. This population grew rapidly after 3750-3350BCE, precipitating the expansion of people of the Yamnaya culture who totally displaced previous groups on the Volga and further east, while admixing with more sedentary groups in the west. CLV cline people with Lower Volga ancestry contributed four fifths of the ancestry of the Yamnaya, but also, entering Anatolia from the east, contributed at least a tenth of the ancestry of Bronze Age Central Anatolians, where the Hittite language, related to the Indo-European languages spread by the Yamnaya, was spoken. We thus propose that the final unity of the speakers of the "Proto-Indo-Anatolian" ancestral language of both Anatolian and Indo-European languages can be traced to CLV cline people sometime between 4400-4000 BCE.
Collapse
Affiliation(s)
- Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - David Anthony
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Hartwick College, Dept. of Anthropology, USA
| | - Leonid Vyazov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | | | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Iñigo Olalde
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU,Vitoria-Gasteiz, Spain
- Ikerbasque-Basque Foundation of Science, Bilbao, Spain
| | | | - Egor P. Kitov
- Center of Human Ecology, Institute of Ethnology and Anthropology, Russian Academy of Science, Moscow, Russia
| | | | | | - Danila S. Agapov
- Samara Regional Public Organization “Historical, ecological and cultural Association “Povolzje”
| | - Sergey A. Agapov
- Samara Regional Public Organization “Historical, ecological and cultural Association “Povolzje”
| | - Elena Batieva
- Azov History, Archaeology and Palaeontology Museum-Reserve, Azov, Russia
| | | | - Zsolt Bereczki
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | | | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Andrey A. Chizhevsky
- Institute of Archeology named after A. Kh. Khalikov Tatarstan Academy of Sciences, Kazan, Russia
| | - Ion Ciobanu
- Orheiul Vechi Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, Chișinău, Republic of Moldova
| | - Mihai Constantinescu
- Fr. I Rainer Institute of Anthropology, University of Bucharest, Bucharest, Romania
| | | | - János Dani
- Department of Archaeology, University of Szeged, Szeged, Hungary
- Déri Museum, 4026 Debrecen, Hungary
| | - Peter K. Dashkovskiy
- Department of Regional Studies of Russia, National and State-Confessional Relations, Altai State University, Barnaul, Russia
| | - Sándor Évinger
- Hungarian Natural History Museum, Department of Anthropology, Budapest, Hungary
| | - Anatoly Faifert
- Research Institute GAUK RO “Don Heritage”, Rostov-on-Don, Russia
| | - Pavel N. Flegontov
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Alin Frînculeasa
- Prahova County Museum of History and Archaeology, Ploiești, Romania
| | - Mădălina N. Frînculeasa
- Department of Geography, Faculty of Humanities, University Valahia of Târgoviște, Târgovişte, Romania
| | - Tamás Hajdu
- Eötvös Loránd University (Department of Biological Anthropology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tom Higham
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Paweł Jarosz
- Department of Mountain and Highland Archaeology, Institute Archaeology and Ethnology Polish Academy of Science, Kraków, Poland
| | - Pavol Jelínek
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Valeri I. Khartanovich
- Peter the Great Museum of Anthropology and Ethnography, Department of Physical Anthropology, St. Petersburg, Russia
| | - Eduard N. Kirginekov
- State Autonomous Cultural Institution of the Republic of Khakassia “Khakassian National Museum of Local Lore named after L.R. Kyzlasova”, Republic of Khakassia, Abakan, Russia
| | - Viktória Kiss
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Alexandera Kitova
- Centre for Egyptological Studies of the Russian Academy of Sciences, Russian Academy of Sciences, Moscow, Russia
| | - Alexeiy V. Kiyashko
- Department of Archaeology and History of the Ancient World of the Southern Federal University, Rostov-on-Don, Russia
| | | | - Arkady Korolev
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Pavel Kosintsev
- Department of History of the Institute of Humanities, Ural Federal University, Ekaterinburg, Russia
- Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Gabriella Kulcsár
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Pavel Kuznetsov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Rabadan Magomedov
- Institute of History, Archaeology and Ethnography, Dagestan branch of the Russian Academy of Science, Makhachkala. Dagestan, Russia
| | | | - Eszter Melis
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography, Department of Physical Anthropology, St. Petersburg, Russia
| | - Erika Molnár
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | - Janet Monge
- Independent Researcher, 106 Federal Street, Philadelphia PA, USA
| | - Octav Negrea
- Prahova County Museum of History and Archaeology, Ploiești, Romania
| | - Nadezhda A. Nikolaeva
- Department of General History, Historical and Literary Institute of the State University of Education, Ministry of Education Moscow, Moscow, Russia
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, Koper, Slovenia
| | - Maria Ochir-Goryaeva
- Kalmyk Scientific Centre of the Russian Academy of Sciences, Elista, Republic of Kalmykia, Russia
| | - György Pálfi
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | - Sergiu Popovici
- National Agency for Archaeology, Chișinău, Republic of Moldova
| | | | | | - Vladimir P. Semibratov
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Nikolai N. Seregin
- Laboratory of Ancient and Medieval Archaeology of Eurasia, Altai State University, Barnaul, Russia
| | - Alena Šefčáková
- Slovak National Museum-Natural History Museum, Bratislava, Slovak Republic
| | | | - Irina Shingiray
- University of Oxford, Faculty of History, Oxford, United Kingdom
| | - Vladimir N. Shirokov
- Center for Stone Age Archeology, Institute of History and Archaeology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Angela Simalcsik
- Orheiul Vechi Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, Chișinău, Republic of Moldova
- Olga Necrasov Centre for Anthropological Research, Romanian Academy, Iași Branch, Iași, Romania
| | - Kendra Sirak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Konstantin N. Solodovnikov
- Tyumen Scientific Center of the Siberian Branch of Russian Academy of Sciences, Institute of Problems of Northern Development, Tyumen, Russia
| | | | - Alexey A. Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Viktov Trifonov
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russia
| | - Sergey Vasilyev
- Russian Academy of Sciences, Institute of Ethnology and Anthropology, Moscow, Russia
| | - Ali Akbari
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Esther S. Brielle
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Lora Iliev
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Denise Keating
- School of Archaeology, University College Dublin, Ireland
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Megan Michel
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Lijun Qiu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - J. Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Pier Francesco Palamara
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Sirak K, Jansen Van Rensburg J, Brielle E, Chen B, Lazaridis I, Ringbauer H, Mah M, Mallick S, Micco A, Rohland N, Callan K, Curtis E, Kearns A, Lawson AM, Workman JN, Zalzala F, Ahmed Al-Orqbi AS, Ahmed Salem EM, Salem Hasan AM, Britton DC, Reich D. Medieval DNA from Soqotra points to Eurasian origins of an isolated population at the crossroads of Africa and Arabia. Nat Ecol Evol 2024; 8:817-829. [PMID: 38332026 PMCID: PMC11009077 DOI: 10.1038/s41559-024-02322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024]
Abstract
Soqotra, an island situated at the mouth of the Gulf of Aden in the northwest Indian Ocean between Africa and Arabia, is home to ~60,000 people subsisting through fishing and semi-nomadic pastoralism who speak a Modern South Arabian language. Most of what is known about Soqotri history derives from writings of foreign travellers who provided little detail about local people, and the geographic origins and genetic affinities of early Soqotri people has not yet been investigated directly. Here we report genome-wide data from 39 individuals who lived between ~650 and 1750 CE at six locations across the island and document strong genetic connections between Soqotra and the similarly isolated Hadramawt region of coastal South Arabia that likely reflects a source for the peopling of Soqotra. Medieval Soqotri can be modelled as deriving ~86% of their ancestry from a population such as that found in the Hadramawt today, with the remaining ~14% best proxied by an Iranian-related source with up to 2% ancestry from the Indian sub-continent, possibly reflecting genetic exchanges that occurred along with archaeologically documented trade from these regions. In contrast to all other genotyped populations of the Arabian Peninsula, genome-level analysis of the medieval Soqotri is consistent with no sub-Saharan African admixture dating to the Holocene. The deep ancestry of people from medieval Soqotra and the Hadramawt is also unique in deriving less from early Holocene Levantine farmers and more from groups such as Late Pleistocene hunter-gatherers from the Levant (Natufians) than other mainland Arabians. This attests to migrations by early farmers having less impact in southernmost Arabia and Soqotra and provides compelling evidence that there has not been complete population replacement between the Pleistocene and Holocene throughout the Arabian Peninsula. Medieval Soqotra harboured a small population that showed qualitatively different marriage practices from modern Soqotri, with first-cousin unions occurring significantly less frequently than today.
Collapse
Affiliation(s)
- Kendra Sirak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | | - Esther Brielle
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bowen Chen
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew Mah
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Swapan Mallick
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - J Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
6
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
7
|
Martiniano R, Haber M, Almarri MA, Mattiangeli V, Kuijpers MCM, Chamel B, Breslin EM, Littleton J, Almahari S, Aloraifi F, Bradley DG, Lombard P, Durbin R. Ancient genomes illuminate Eastern Arabian population history and adaptation against malaria. CELL GENOMICS 2024; 4:100507. [PMID: 38417441 PMCID: PMC10943591 DOI: 10.1016/j.xgen.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/01/2024]
Abstract
The harsh climate of Arabia has posed challenges in generating ancient DNA from the region, hindering the direct examination of ancient genomes for understanding the demographic processes that shaped Arabian populations. In this study, we report whole-genome sequence data obtained from four Tylos-period individuals from Bahrain. Their genetic ancestry can be modeled as a mixture of sources from ancient Anatolia, Levant, and Iran/Caucasus, with variation between individuals suggesting population heterogeneity in Bahrain before the onset of Islam. We identify the G6PD Mediterranean mutation associated with malaria resistance in three out of four ancient Bahraini samples and estimate that it rose in frequency in Eastern Arabia from 5 to 6 kya onward, around the time agriculture appeared in the region. Our study characterizes the genetic composition of ancient Arabians, shedding light on the population history of Bahrain and demonstrating the feasibility of studies of ancient DNA in the region.
Collapse
Affiliation(s)
- Rui Martiniano
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates; College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Berenice Chamel
- Institut Français du Proche-Orient (MEAE/CNRS), Beirut, Lebanon
| | - Emily M Breslin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Judith Littleton
- School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Salman Almahari
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain
| | - Fatima Aloraifi
- Mersey and West Lancashire Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot, L35 5DR Liverpool, UK
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Pierre Lombard
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain; Archéorient UMR 5133, CNRS, Université Lyon 2, Maison de l'Orient et de la Méditerranée - Jean Pouilloux, Lyon, France
| | - Richard Durbin
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, UK.
| |
Collapse
|
8
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
9
|
Dokuru DR, Horwitz TB, Freis SM, Stallings MC, Ehringer MA. South Asia: The Missing Diverse in Diversity. Behav Genet 2024; 54:51-62. [PMID: 37917228 PMCID: PMC11129896 DOI: 10.1007/s10519-023-10161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
South Asia, making up around 25% of the world's population, encompasses a wide range of individuals with tremendous genetic and environmental diversity. This region, which spans eight countries, is home to over 4500 anthropologically defined groups that speak numerous languages and have an array of religious beliefs and cultures, making it one of the most diverse places in the world. Much of the region's rich genetic diversity and structure is the result of a complex combination of population history, migration patterns, and endogamous practices. Despite the overwhelming size and diversity, South Asians have often been underrepresented in genetic research, making up less than 2% of the participants in genetic studies. This has led to a lack of population specific understanding of genetic disease risks. We aim to raise awareness about underlying genetic diversity in this ancestry group, call attention to the lack of representation of the group, and to highlight strategies for future studies in South Asians.
Collapse
Affiliation(s)
- Deepika R Dokuru
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| | - Tanya B Horwitz
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Samantha M Freis
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
10
|
Irving-Pease EK, Refoyo-Martínez A, Barrie W, Ingason A, Pearson A, Fischer A, Sjögren KG, Halgren AS, Macleod R, Demeter F, Henriksen RA, Vimala T, McColl H, Vaughn AH, Speidel L, Stern AJ, Scorrano G, Ramsøe A, Schork AJ, Rosengren A, Zhao L, Kristiansen K, Iversen AKN, Fugger L, Sudmant PH, Lawson DJ, Durbin R, Korneliussen T, Werge T, Allentoft ME, Sikora M, Nielsen R, Racimo F, Willerslev E. The selection landscape and genetic legacy of ancient Eurasians. Nature 2024; 625:312-320. [PMID: 38200293 PMCID: PMC10781624 DOI: 10.1038/s41586-023-06705-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2023] [Indexed: 01/12/2024]
Abstract
The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.
Collapse
Affiliation(s)
- Evan K Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Alba Refoyo-Martínez
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - William Barrie
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Andrés Ingason
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
| | - Alice Pearson
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Anders Fischer
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
- Sealand Archaeology, Kalundborg, Denmark
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Alma S Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Ruairidh Macleod
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- UCL Genetics Institute, University College London, London, UK
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Eco-anthropologie, Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme, Paris, France
| | - Rasmus A Henriksen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tharsika Vimala
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew H Vaughn
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Leo Speidel
- UCL Genetics Institute, University College London, London, UK
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Aaron J Stern
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Gabriele Scorrano
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Abigail Ramsøe
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), Phoenix, AZ, USA
| | - Anders Rosengren
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
| | - Lei Zhao
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Astrid K N Iversen
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Daniel J Lawson
- Institute of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Thorfinn Korneliussen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct Hans, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Science, Curtin University, Perth, Western Australia, Australia
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Nielsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Departments of Integrative Biology and Statistics, UC Berkeley, Berkeley, CA, USA.
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
- MARUM Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
11
|
Ávila-Arcos MC, Raghavan M, Schlebusch C. Going local with ancient DNA: A review of human histories from regional perspectives. Science 2023; 382:53-58. [PMID: 37797024 DOI: 10.1126/science.adh8140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Ancient DNA (aDNA) has added a wealth of information about our species' history, including insights on genetic origins, migrations and gene flow, genetic admixture, and health and disease. Much early work has focused on continental-level questions, leaving many regional questions, especially those relevant to the Global South, comparatively underexplored. A few success stories of aDNA studies from smaller laboratories involve more local aspects of human histories and health in the Americas, Africa, Asia, and Oceania. In this Review, we cover some of these contributions by synthesizing finer-scale questions of importance to the archaeogenetics field, as well as to Indigenous and Descendant communities. We further highlight the potential of aDNA to uncover past histories in regions where colonialism has neglected the oral histories of oppressed peoples.
Collapse
Affiliation(s)
- María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maanasa Raghavan
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Carina Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- SciLifeLab, Uppsala, Sweden
| |
Collapse
|
12
|
Heggarty P, Anderson C, Scarborough M, King B, Bouckaert R, Jocz L, Kümmel MJ, Jügel T, Irslinger B, Pooth R, Liljegren H, Strand RF, Haig G, Macák M, Kim RI, Anonby E, Pronk T, Belyaev O, Dewey-Findell TK, Boutilier M, Freiberg C, Tegethoff R, Serangeli M, Liosis N, Stroński K, Schulte K, Gupta GK, Haak W, Krause J, Atkinson QD, Greenhill SJ, Kühnert D, Gray RD. Language trees with sampled ancestors support a hybrid model for the origin of Indo-European languages. Science 2023; 381:eabg0818. [PMID: 37499002 DOI: 10.1126/science.abg0818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
The origins of the Indo-European language family are hotly disputed. Bayesian phylogenetic analyses of core vocabulary have produced conflicting results, with some supporting a farming expansion out of Anatolia ~9000 years before present (yr B.P.), while others support a spread with horse-based pastoralism out of the Pontic-Caspian Steppe ~6000 yr B.P. Here we present an extensive database of Indo-European core vocabulary that eliminates past inconsistencies in cognate coding. Ancestry-enabled phylogenetic analysis of this dataset indicates that few ancient languages are direct ancestors of modern clades and produces a root age of ~8120 yr B.P. for the family. Although this date is not consistent with the Steppe hypothesis, it does not rule out an initial homeland south of the Caucasus, with a subsequent branch northward onto the steppe and then across Europe. We reconcile this hybrid hypothesis with recently published ancient DNA evidence from the steppe and the northern Fertile Crescent.
Collapse
Affiliation(s)
- Paul Heggarty
- Departamento de Humanidades, Pontificia Universidad Católica del Perú, 15088 Lima, Peru
- Waves Group, Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Cormac Anderson
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Matthew Scarborough
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Nordic Studies and Linguistics, University of Copenhagen, S 2300 København, Denmark
| | - Benedict King
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Remco Bouckaert
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
| | - Lechosław Jocz
- Faculty of Humanities, Jacob of Paradies University, 66-400 Gorzów Wielkopolski, Poland
| | - Martin Joachim Kümmel
- Seminar for Indo-European Studies, Institut für Orientalistik, Indogermanistik, Ur- und Frühgeschichtliche Archäologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Thomas Jügel
- Center for Religious Studies (CERES), Ruhr University Bochum, 44789 Bochum, Germany
| | - Britta Irslinger
- Saxon Academy of Sciences and Humanities, 04107 Leipzig, Germany
| | - Roland Pooth
- Department of Linguistics, Ghent University, 9000 Ghent, Belgium
| | - Henrik Liljegren
- Department of Linguistics, Stockholm University, 10691 Stockholm, Sweden
| | | | - Geoffrey Haig
- Department of General Linguistics, University of Bamberg, 96047 Bamberg, Germany
| | | | - Ronald I Kim
- Department of Older Germanic Languages, Faculty of English, Adam Mickiewicz University in Poznań, 60-780 Poznań, Poland
| | - Erik Anonby
- School of Linguistics and Language Studies, Carleton University, Ottawa, ON K1S 5B6, Canada
- Leiden University Centre for Linguistics, 2300 RA Leiden, Netherlands
| | - Tijmen Pronk
- Leiden University Centre for Linguistics, 2300 RA Leiden, Netherlands
| | - Oleg Belyaev
- Department of Theoretical and Applied Linguistics, Lomonosov Moscow State University, 119991 GSP-1 Moscow, Russia
- Department of Iranian Languages, Institute of Linguistics RAS, Moscow 125009, Russia
| | - Tonya Kim Dewey-Findell
- Centre for the Study of the Viking Age, School of English, University of Nottingham NG7 2RD, UK
| | - Matthew Boutilier
- Department of German, Nordic, and Slavic, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cassandra Freiberg
- Institut für deutsche Sprache und Linguistik, Sprach- und literaturwissenschaftliche Fakultät, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Robert Tegethoff
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Seminar for Indo-European Studies, Institut für Orientalistik, Indogermanistik, Ur- und Frühgeschichtliche Archäologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Matilde Serangeli
- Seminar for Indo-European Studies, Institut für Orientalistik, Indogermanistik, Ur- und Frühgeschichtliche Archäologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Nikos Liosis
- Institute of Modern Greek Studies, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Krzysztof Stroński
- Faculty of Modern Languages, Adam Mickiewicz University in Poznań, 61-874 Poznań, Poland
| | - Kim Schulte
- Department of Translation and Communication, Jaume I University, 12006 Castelló de la Plana, Spain
| | - Ganesh Kumar Gupta
- Faculty of Modern Languages, Adam Mickiewicz University in Poznań, 61-874 Poznań, Poland
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Quentin D Atkinson
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Centre for the Study of Social Cohesion, University of Oxford, Oxford OX2 6PN, UK
| | - Simon J Greenhill
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- ARC Center of Excellence for the Dynamics of Language, ANU College of Asia and the Pacific, The Australian National University, Canberra, ACT 2600, Australia
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute of Geoanthropology, 07745 Jena, Germany
| | - Russell D Gray
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
13
|
Changmai P, Phongbunchoo Y, Kočí J, Flegontov P. Reanalyzing the genetic history of Kra-Dai speakers from Thailand and new insights into their genetic interactions beyond Mainland Southeast Asia. Sci Rep 2023; 13:8371. [PMID: 37225753 DOI: 10.1038/s41598-023-35507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Thailand is a country where over 60 languages from five language families (Austroasiatic, Austronesian, Hmong-Mien, Kra-Dai, and Sino-Tibetan) are spoken. The Kra-Dai language family is the most prevalent, and Thai, the official language of the country, belongs to it. Previous genome-wide studies on Thailand populations revealed a complex population structure and put some hypotheses forward concerning the population history of the country. However, many published populations have not been co-analyzed, and some aspects of population history were not explored adequately. In this study, we employ new methods to re-analyze published genome-wide genetic data on Thailand populations, with a focus on 14 Kra-Dai-speaking groups. Our analyses reveal South Asian ancestry in Kra-Dai-speaking Lao Isan and Khonmueang, and in Austroasiatic-speaking Palaung, in contrast to a previous study in which the data were generated. We support the admixture scenario for the formation of Kra-Dai-speaking groups from Thailand who harbor both Austroasiatic-related ancestry and Kra-Dai-related ancestry from outside of Thailand. We also provide evidence of bidirectional admixture between Southern Thai and Nayu, an Austronesian-speaking group from Southern Thailand. Challenging some previously reported genetic analyses, we reveal a close genetic relationship between Nayu and Austronesian-speaking groups from Island Southeast Asia (ISEA).
Collapse
Affiliation(s)
- Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Yutthaphong Phongbunchoo
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Kočí
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Kalmykia, Russia.
| |
Collapse
|
14
|
Dalal V, Pasupuleti N, Chaubey G, Rai N, Shinde V. Advancements and Challenges in Ancient DNA Research: Bridging the Global North-South Divide. Genes (Basel) 2023; 14:479. [PMID: 36833406 PMCID: PMC9956214 DOI: 10.3390/genes14020479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Ancient DNA (aDNA) research first began in 1984 and ever since has greatly expanded our understanding of evolution and migration. Today, aDNA analysis is used to solve various puzzles about the origin of mankind, migration patterns, and the spread of infectious diseases. The incredible findings ranging from identifying the new branches within the human family to studying the genomes of extinct flora and fauna have caught the world by surprise in recent times. However, a closer look at these published results points out a clear Global North and Global South divide. Therefore, through this research, we aim to emphasize encouraging better collaborative opportunities and technology transfer to support researchers in the Global South. Further, the present research also focuses on expanding the scope of the ongoing conversation in the field of aDNA by reporting relevant literature published around the world and discussing the advancements and challenges in the field.
Collapse
Affiliation(s)
- Vasundhra Dalal
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | | | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Niraj Rai
- Ancient DNA Lab, Birbal Sahni Institute of Palaeosciences, Lucknow 226007, Uttar Pradesh, India
| | - Vasant Shinde
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| |
Collapse
|
15
|
Abstract
Nearly 20 y ago, Jared Diamond and Peter Bellwood reviewed the evidence for the associated spread of farming and large language families by the demographic expansions of farmers. Since then, advances in obtaining and analyzing genomic data from modern and ancient populations have transformed our knowledge of human dispersals during the Holocene. Here, we provide an overview of Holocene dispersals in the light of genomic evidence and conclude that they have a complex history. Even when there is a demonstrated connection between a demographic expansion of people, the spread of agriculture, and the spread of a particular language family, the outcome in the results of contact between expanding and resident groups is highly variable. Further research is needed to identify the factors and social circumstances that have influenced this variation and complex history.
Collapse
|
16
|
Lazaridis I, Alpaslan-Roodenberg S, Acar A, Açıkkol A, Agelarakis A, Aghikyan L, Akyüz U, Andreeva D, Andrijašević G, Antonović D, Armit I, Atmaca A, Avetisyan P, Aytek Aİ, Bacvarov K, Badalyan R, Bakardzhiev S, Balen J, Bejko L, Bernardos R, Bertsatos A, Biber H, Bilir A, Bodružić M, Bonogofsky M, Bonsall C, Borić D, Borovinić N, Bravo Morante G, Buttinger K, Callan K, Candilio F, Carić M, Cheronet O, Chohadzhiev S, Chovalopoulou ME, Chryssoulaki S, Ciobanu I, Čondić N, Constantinescu M, Cristiani E, Culleton BJ, Curtis E, Davis J, Demcenco TI, Dergachev V, Derin Z, Deskaj S, Devejyan S, Djordjević V, Duffett Carlson KS, Eccles LR, Elenski N, Engin A, Erdoğan N, Erir-Pazarcı S, Fernandes DM, Ferry M, Freilich S, Frînculeasa A, Galaty ML, Gamarra B, Gasparyan B, Gaydarska B, Genç E, Gültekin T, Gündüz S, Hajdu T, Heyd V, Hobosyan S, Hovhannisyan N, Iliev I, Iliev L, Iliev S, İvgin İ, Janković I, Jovanova L, Karkanas P, Kavaz-Kındığılı B, Kaya EH, Keating D, Kennett DJ, Deniz Kesici S, Khudaverdyan A, Kiss K, Kılıç S, Klostermann P, Kostak Boca Negra Valdes S, Kovačević S, Krenz-Niedbała M, Krznarić Škrivanko M, Kurti R, Kuzman P, Lawson AM, Lazar C, Leshtakov K, Levy TE, Liritzis I, Lorentz KO, Łukasik S, Mah M, Mallick S, Mandl K, Martirosyan-Olshansky K, Matthews R, Matthews W, McSweeney K, Melikyan V, Micco A, Michel M, Milašinović L, Mittnik A, Monge JM, Nekhrizov G, Nicholls R, Nikitin AG, Nikolov V, Novak M, Olalde I, Oppenheimer J, Osterholtz A, Özdemir C, Özdoğan KT, Öztürk N, Papadimitriou N, Papakonstantinou N, Papathanasiou A, Paraman L, Paskary EG, Patterson N, Petrakiev I, Petrosyan L, Petrova V, Philippa-Touchais A, Piliposyan A, Pocuca Kuzman N, Potrebica H, Preda-Bălănică B, Premužić Z, Price TD, Qiu L, Radović S, Raeuf Aziz K, Rajić Šikanjić P, Rasheed Raheem K, Razumov S, Richardson A, Roodenberg J, Ruka R, Russeva V, Şahin M, Şarbak A, Savaş E, Schattke C, Schepartz L, Selçuk T, Sevim-Erol A, Shamoon-Pour M, Shephard HM, Sideris A, Simalcsik A, Simonyan H, Sinika V, Sirak K, Sirbu G, Šlaus M, Soficaru A, Söğüt B, Sołtysiak A, Sönmez-Sözer Ç, Stathi M, Steskal M, Stewardson K, Stocker S, Suata-Alpaslan F, Suvorov A, Szécsényi-Nagy A, Szeniczey T, Telnov N, Temov S, Todorova N, Tota U, Touchais G, Triantaphyllou S, Türker A, Ugarković M, Valchev T, Veljanovska F, Videvski Z, Virag C, Wagner A, Walsh S, Włodarczak P, Workman JN, Yardumian A, Yarovoy E, Yavuz AY, Yılmaz H, Zalzala F, Zettl A, Zhang Z, Çavuşoğlu R, Rohland N, Pinhasi R, Reich D. The genetic history of the Southern Arc: A bridge between West Asia and Europe. Science 2022; 377:eabm4247. [PMID: 36007055 PMCID: PMC10064553 DOI: 10.1126/science.abm4247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
By sequencing 727 ancient individuals from the Southern Arc (Anatolia and its neighbors in Southeastern Europe and West Asia) over 10,000 years, we contextualize its Chalcolithic period and Bronze Age (about 5000 to 1000 BCE), when extensive gene flow entangled it with the Eurasian steppe. Two streams of migration transmitted Caucasus and Anatolian/Levantine ancestry northward, and the Yamnaya pastoralists, formed on the steppe, then spread southward into the Balkans and across the Caucasus into Armenia, where they left numerous patrilineal descendants. Anatolia was transformed by intra-West Asian gene flow, with negligible impact of the later Yamnaya migrations. This contrasts with all other regions where Indo-European languages were spoken, suggesting that the homeland of the Indo-Anatolian language family was in West Asia, with only secondary dispersals of non-Anatolian Indo-Europeans from the steppe.
Collapse
Affiliation(s)
- Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Songül Alpaslan-Roodenberg
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Ayşe Acar
- Department of Anthropology, Faculty of Letters, Mardin Artuklu University, 47510 Artuklu, Mardin, Turkey
| | - Ayşen Açıkkol
- Department of Anthropology, Faculty of Letters, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | | | - Levon Aghikyan
- Institute of Archaeology and Ethnography, NAS RA, 0025 Yerevan, Armenia
| | - Uğur Akyüz
- Samsun Museum of Archeology and Ethnography, Kale Mahallesi, Merkez, İlkadım, 55030 Samsun, Turkey
| | | | | | | | - Ian Armit
- Department of Archaeology, University of York, York YO1 7EP, UK
| | - Alper Atmaca
- Amasya Archaeology Museum, Mustafa Kemal Paşa Caddesi, 05000 Amasya, Turkey
| | - Pavel Avetisyan
- Institute of Archaeology and Ethnography, NAS RA, 0025 Yerevan, Armenia
| | - Ahmet İhsan Aytek
- Department of Anthropology, Faculty of Arts and Science, Burdur Mehmet Akif University, 15100 Burdur, Turkey
| | - Krum Bacvarov
- National Institute of Archaeology and Museum, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Ruben Badalyan
- Institute of Archaeology and Ethnography, NAS RA, 0025 Yerevan, Armenia
| | | | | | - Lorenc Bejko
- Department of Archaeology and Heritage Studies, University of Tirana, 1010 Tirana, Albania
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andreas Bertsatos
- Department of Animal and Human Physiology, Faculty of Biology, School of Sciences, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Hanifi Biber
- Department of Archaeology, Faculty of Humanities, Van Yüzüncü Yıl University, 65090 Tuşba, Van, Turkey
| | - Ahmet Bilir
- Department of Archaeology, Faculty of Science and Letters, Düzce University, 81620 Düzce, Turkey
| | | | | | - Clive Bonsall
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Dušan Borić
- The Italian Academy for Advanced Studies in America, Columbia University, New York, NY 10027, USA
| | - Nikola Borovinić
- Center for Conservation and Archaeology of Montenegro, 81250 Cetinje, Montenegro
| | | | - Katharina Buttinger
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Mario Carić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Stefan Chohadzhiev
- Department of Archaeology, University of Veliko Tarnovo "St. Cyril and St. Methodius," 5003 Veliko Tarnovo, Bulgaria
| | - Maria-Eleni Chovalopoulou
- Department of Animal and Human Physiology, Faculty of Biology, School of Sciences, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Stella Chryssoulaki
- Hellenic Ministry of Culture and Sports, Ephorate of Antiquities of Piraeus and the Islands, 10682 Piraeus, Greece
| | - Ion Ciobanu
- "Orheiul Vechi" Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, 3552 Butuceni, Moldova.,National Archaeological Agency, 2012 Chișinău, Moldova
| | | | | | - Emanuela Cristiani
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Brendan J Culleton
- Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jack Davis
- Department of Classics, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - Valentin Dergachev
- Center of Archaeology, Institute of Cultural Heritage, Academy of Science of Moldova, 2001 Chișinău, Moldova
| | - Zafer Derin
- Department of Archaeology, Faculty of Letters, Ege University, 35100 Bornova-Izmir, Turkey
| | - Sylvia Deskaj
- Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seda Devejyan
- Institute of Archaeology and Ethnography, NAS RA, 0025 Yerevan, Armenia
| | | | | | - Laurie R Eccles
- Human Paleoecology and Isotope Geochemistry Lab, Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nedko Elenski
- Regional Museum of History - Veliko Tarnovo, 5000 Veliko Tarnovo, Bulgaria
| | - Atilla Engin
- Department of Archaeology, Faculty of Science and Letters, Gaziantep University, 27310 Gaziantep, Turkey
| | - Nihat Erdoğan
- Mardin Archaeological Museum, Şar, Cumhuriyet Meydanı üstü, 47100 Artuklu, Mardin, Turkey
| | | | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria.,Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Matthew Ferry
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Suzanne Freilich
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Alin Frînculeasa
- Prahova County Museum of History and Archaeology, 100042 Ploiești, Romania
| | - Michael L Galaty
- Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Beatriz Gamarra
- Institut Català de Paleoecologia Humana i Evolució Social, 43007 Tarragona, Spain.,Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, 43002 Tarragona, Spain.,School of Archaeology and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, NAS RA, 0025 Yerevan, Armenia
| | | | - Elif Genç
- Department of Archaeology, Faculty of Science and Letters, Çukurova University, 01330 Balçalı-Sarıçam-Adana, Turkey
| | - Timur Gültekin
- Department of Anthropology, Faculty of Humanities, Ankara University, 06100 Sıhhiye, Ankara, Turkey
| | - Serkan Gündüz
- Department of Archaeology, Faculty of Science and Letters, Bursa Uludağ University, 16059 Görükle, Bursa, Turkey
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Eötvös Loránd University, 1053 Budapest, Hungary
| | - Volker Heyd
- Department of Cultures, University of Helsinki, 00100 Helsinki, Finland
| | - Suren Hobosyan
- Institute of Archaeology and Ethnography, NAS RA, 0025 Yerevan, Armenia
| | - Nelli Hovhannisyan
- Department of Ecology and Nature Protection, Yerevan State University, 0025 Yerevan, Armenia
| | - Iliya Iliev
- Yambol Regional Historical Museum, 8600 Yambol, Bulgaria
| | - Lora Iliev
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - İlkay İvgin
- Ministry of Culture and Tourism, İsmet İnönü Bulvarı, 06100 Emek, Ankara, Turkey
| | - Ivor Janković
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Lence Jovanova
- Museum of the City of Skopje, 1000 Skopje, North Macedonia
| | - Panagiotis Karkanas
- Malcolm H. Wiener Laboratory, American School of Classical Studies at Athens, 10676 Athens, Greece
| | - Berna Kavaz-Kındığılı
- Department of Archaeology, Faculty of Letters, Atatürk University, 25100 Erzurum, Turkey
| | - Esra Hilal Kaya
- Muğla Archaeological Museum and Yatağan Thermal Power Generation Company, Rescue Excavations, 48000 Muğla, Turkey
| | - Denise Keating
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Douglas J Kennett
- Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Seda Deniz Kesici
- Bodrum Museum of Underwater Archeology, Çarşı Neighbourhood, 48400 Bodrum, Muğla, Turkey
| | | | - Krisztián Kiss
- Department of Biological Anthropology, Institute of Biology, Eötvös Loránd University, 1053 Budapest, Hungary.,Department of Anthropology, Hungarian Natural History Museum, 1117 Budapest, Hungary
| | - Sinan Kılıç
- Department of Archaeology, Faculty of Humanities, Van Yüzüncü Yıl University, 65090 Tuşba, Van, Turkey
| | - Paul Klostermann
- Department of Anthropology, Natural History Museum Vienna, 1010 Vienna, Austria
| | | | | | | | | | - Rovena Kurti
- Prehistory Department, Albanian Institute of Archaeology, Academy of Albanian Studies, 1000 Tirana, Albania
| | - Pasko Kuzman
- National Museum in Ohrid, 6000 Ohrid, North Macedonia
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Catalin Lazar
- ArchaeoSciences Division, Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania
| | - Krassimir Leshtakov
- Department of Archaeology, St. Kliment Ohridski University of Sofia, 1504 Sofia, Bulgaria
| | - Thomas E Levy
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ioannis Liritzis
- Key Research Institute of Yellow River Civilization and Sustainable Development and the Collaborative Innovation Center on Yellow River Civilization of Henan Province, Laboratory of Yellow River Cultural Heritage, Henan University, 475001 Kaifeng, China.,European Academy of Sciences and Arts, 5020 Salzburg, Austria
| | - Kirsi O Lorentz
- Science and Technology in Archaeology and Culture Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
| | - Sylwia Łukasik
- Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | | | - Roger Matthews
- Department of Archaeology, University of Reading, Reading RG6 6AB, UK
| | - Wendy Matthews
- Department of Archaeology, University of Reading, Reading RG6 6AB, UK
| | - Kathleen McSweeney
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Varduhi Melikyan
- Institute of Archaeology and Ethnography, NAS RA, 0025 Yerevan, Armenia
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Megan Michel
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Alissa Mittnik
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Janet M Monge
- University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia, PA 19104, USA
| | - Georgi Nekhrizov
- National Institute of Archaeology and Museum, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Rebecca Nicholls
- School of Archaeological and Forensic Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Alexey G Nikitin
- Department of Biology, Grand Valley State University, Allendale, MI 49401, USA
| | - Vassil Nikolov
- National Institute of Archaeology and Museum, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,BIOMICs Research Group, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Osterholtz
- Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Mississippi State, MS 39762, USA
| | - Celal Özdemir
- Amasya Archaeology Museum, Mustafa Kemal Paşa Caddesi, 05000 Amasya, Turkey
| | - Kadir Toykan Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Nurettin Öztürk
- Department of Archaeology, Faculty of Letters, Atatürk University, 25100 Erzurum, Turkey
| | | | - Niki Papakonstantinou
- Faculty of Philosophy, School of History and Archaeology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia Papathanasiou
- Ephorate of Paleoantropology and Speleology, Greek Ministry of Culture, 11636 Athens, Greece
| | | | | | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ilian Petrakiev
- Regional Museum of History - Veliko Tarnovo, 5000 Veliko Tarnovo, Bulgaria
| | - Levon Petrosyan
- Institute of Archaeology and Ethnography, NAS RA, 0025 Yerevan, Armenia
| | - Vanya Petrova
- Department of Archaeology, St. Kliment Ohridski University of Sofia, 1504 Sofia, Bulgaria
| | | | - Ashot Piliposyan
- Department of Armenian History, Armenian State Pedagogical University After Khachatur Abovyan, 0010 Yerevan, Armenia
| | | | - Hrvoje Potrebica
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | - T Douglas Price
- Laboratory for Archaeological Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lijun Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Siniša Radović
- Institute for Quaternary Paleontology and Geology, Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Kamal Raeuf Aziz
- Sulaymaniyah Directorate of Antiquities and Heritage, 46010 Sulaymaniyah, Iraq
| | - Petra Rajić Šikanjić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | | | - Sergei Razumov
- Pridnestrovian University named after Taras Shevchenko, 3300 Tiraspol, Moldova
| | - Amy Richardson
- Department of Archaeology, University of Reading, Reading RG6 6AB, UK
| | - Jacob Roodenberg
- The Netherlands Institute for the Near East, 2311 Leiden, Netherlands
| | - Rudenc Ruka
- Prehistory Department, Albanian Institute of Archaeology, Academy of Albanian Studies, 1000 Tirana, Albania
| | - Victoria Russeva
- Institute of Experimental Morphology, Pathology and Archeology with Museum, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Mustafa Şahin
- Department of Archaeology, Faculty of Science and Letters, Bursa Uludağ University, 16059 Görükle, Bursa, Turkey
| | - Ayşegül Şarbak
- Department of Anthropology, Faculty of Science and Letters, Hitit University, 19040 Çorum, Turkey
| | - Emre Savaş
- Bodrum Museum of Underwater Archeology, Çarşı Neighbourhood, 48400 Bodrum, Muğla, Turkey
| | - Constanze Schattke
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Lynne Schepartz
- School of Anatomical Sciences, The University of the Witwatersrand, 2193 Johannesburg, South Africa
| | - Tayfun Selçuk
- Bodrum Museum of Underwater Archeology, Çarşı Neighbourhood, 48400 Bodrum, Muğla, Turkey
| | - Ayla Sevim-Erol
- Department of Anthropology, Faculty of Language and History - Geography, Ankara University, 06100 Sıhhiye, Ankara, Turkey
| | - Michel Shamoon-Pour
- Department of Anthropology, Binghamton University, Binghamton, NY 13902, USA
| | | | - Athanasios Sideris
- Institute of Classical Archaeology, Charles University, 11636 Prague, Czechia
| | - Angela Simalcsik
- "Orheiul Vechi" Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, 3552 Butuceni, Moldova.,"Olga Necrasov" Centre of Anthropological Research, Romanian Academy Iași Branch, 2012 Iaşi Romania
| | - Hakob Simonyan
- Scientific Research Center of the Historical and Cultural Heritage, 0010 Yerevan, Armenia
| | - Vitalij Sinika
- Pridnestrovian University named after Taras Shevchenko, 3300 Tiraspol, Moldova
| | - Kendra Sirak
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ghenadie Sirbu
- Thracology Scientific Research Laboratory of the State University of Moldova, Department of Academic Management, Academy of Science of Moldova, 2009 Chișinău, Moldova
| | - Mario Šlaus
- Anthropological Center of the Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Andrei Soficaru
- "Francisc I. Rainer" Institute of Anthropology, 050711 Bucharest, Romania
| | - Bilal Söğüt
- Department of Archaeology, Faculty of Science and Arts, Pamukkale University, 20070 Denizli, Turkey
| | | | - Çilem Sönmez-Sözer
- Department of Anthropology, Faculty of Language and History - Geography, Ankara University, 06100 Sıhhiye, Ankara, Turkey
| | - Maria Stathi
- Ephorate of Antiquities of East Attica, Ministry of Culture and Sports, 10682 Athens, Greece
| | - Martin Steskal
- Austrian Archaeological Institute at the Austrian Academy of Sciences, 1190 Vienna, Austria
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon Stocker
- Department of Classics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Fadime Suata-Alpaslan
- Department of Anthropology, Faculty of Letters, Istanbul University, 34134 Istanbul, Turkey
| | - Alexander Suvorov
- Department of Cultures, University of Helsinki, 00100 Helsinki, Finland
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, 1097 Budapest, Hungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Eötvös Loránd University, 1053 Budapest, Hungary
| | - Nikolai Telnov
- Pridnestrovian University named after Taras Shevchenko, 3300 Tiraspol, Moldova
| | - Strahil Temov
- Archaeology Museum of North Macedonia, 1000 Skopje, North Macedonia
| | - Nadezhda Todorova
- Department of Archaeology, St. Kliment Ohridski University of Sofia, 1504 Sofia, Bulgaria
| | - Ulsi Tota
- Prehistory Department, Albanian Institute of Archaeology, Academy of Albanian Studies, 1000 Tirana, Albania.,Culture and Patrimony Department, University of Avignon, F-84029 Avignon, France
| | - Gilles Touchais
- Department of the History of Art and Archaeology, Université Paris 1 Panthéon-Sorbonne, 75006 Paris, France
| | - Sevi Triantaphyllou
- Faculty of Philosophy, School of History and Archaeology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Atila Türker
- Department of Archaeology, Faculty of Science and Letters, Ondokuz Mayıs University, 55139 Atakum-Samsun, Turkey
| | | | - Todor Valchev
- Yambol Regional Historical Museum, 8600 Yambol, Bulgaria
| | | | - Zlatko Videvski
- Archaeology Museum of North Macedonia, 1000 Skopje, North Macedonia
| | | | - Anna Wagner
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Sam Walsh
- School of Natural Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Piotr Włodarczak
- Institute of Archaeology and Ethnology, Polish Academy of Sciences, 31-016 Kraków, Poland
| | - J Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aram Yardumian
- Department of History and Social Sciences, Bryn Athyn College, Bryn Athyn, PA 19009, USA.,Penn Museum, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evgenii Yarovoy
- History of the Ancient World and Middle Ages Department, Moscow Region State University, Moscow Region, 141014 Mytishi, Russia
| | - Alper Yener Yavuz
- Department of Anthropology, Burdur Mehmet Akif Ersoy University, Istiklal Campus, 15100 Burdur, Turkey
| | - Hakan Yılmaz
- Department of Archaeology, Faculty of Humanities, Van Yüzüncü Yıl University, 65090 Tuşba, Van, Turkey
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Zettl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Zhao Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rafet Çavuşoğlu
- Department of Archaeology, Faculty of Humanities, Van Yüzüncü Yıl University, 65090 Tuşba, Van, Turkey
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria.,Human Evolution and Archaeological Sciences, University of Vienna, 1030 Vienna, Austria
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Guarino-Vignon P, Marchi N, Chimènes A, Monnereau A, Kroll S, Mashkour M, Lhuillier J, Bendezu-Sarmiento J, Heyer E, Bon C. Genetic analysis of a bronze age individual from Ulug-depe (Turkmenistan). Front Genet 2022; 13:884612. [PMID: 36072661 PMCID: PMC9441711 DOI: 10.3389/fgene.2022.884612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The Oxus Civilisation (or Bactrio-Margian Archaeological Complex, BMAC) was the main archaeological culture of the Bronze Age in southern Central Asia. Paleogenetic analyses were previously conducted mainly on samples from the eastern part of BMAC. The population associated with BMAC descends from local Chalcolithic populations, with some outliers of steppe or South-Asian descent. Here, we present new genome-wide data for one individual from Ulug-depe (Turkmenistan), one of the main BMAC sites, located at the southwestern edge of the BMAC. We demonstrate that this individual genetically belongs to the BMAC cluster. Using this genome, we confirm that modern Indo-Iranian–speaking populations from Central Asia derive their ancestry from BMAC populations, with additional gene flow from the western and the Altai steppes in higher proportions among the Tajiks than the Yagnobi ethnic group.
Collapse
Affiliation(s)
- Perle Guarino-Vignon
- Eco-Anthropologie (EA), Muséum National D'Histoire Naturelle, CNRS, Université de Paris, Paris, France
- CAGT, UMR 5288, CNRS, Université Paul Sabatier Toulouse III, Toulouse, France
- *Correspondence: Perle Guarino-Vignon, ; Céline Bon,
| | - Nina Marchi
- CMPG, Institute of Ecology and Evolution, University of Berne, Berne, Switzerland
| | - Amélie Chimènes
- Eco-Anthropologie (EA), Muséum National D'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Aurore Monnereau
- Eco-Anthropologie (EA), Muséum National D'Histoire Naturelle, CNRS, Université de Paris, Paris, France
- BioArCh, Department of Archaeology, University of York, York, United Kingdom
| | - Sonja Kroll
- Archéozoologie, Archéobotanique Sociétés, Pratiques et Environnements (AASPE), Muséum National D'Histoire Naturelle, CNRS, Paris, France
| | - Marjan Mashkour
- Archéozoologie, Archéobotanique Sociétés, Pratiques et Environnements (AASPE), Muséum National D'Histoire Naturelle, CNRS, Paris, France
| | - Johanna Lhuillier
- Archéorient, Environnements et Sociétés de L'Orient Ancien, CNRS/Université Lyon 2, Lyon, France
| | - Julio Bendezu-Sarmiento
- Eco-Anthropologie (EA), Muséum National D'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Evelyne Heyer
- Eco-Anthropologie (EA), Muséum National D'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Céline Bon
- Eco-Anthropologie (EA), Muséum National D'Histoire Naturelle, CNRS, Université de Paris, Paris, France
- *Correspondence: Perle Guarino-Vignon, ; Céline Bon,
| |
Collapse
|
18
|
Scott CB, Cárdenas A, Mah M, Narasimhan VM, Rohland N, Toth LT, Voolstra CR, Reich D, Matz MV. Millennia-old coral holobiont DNA provides insight into future adaptive trajectories. Mol Ecol 2022; 31:4979-4990. [PMID: 35943423 DOI: 10.1111/mec.16642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Ancient DNA (aDNA) has been applied to evolutionary questions across a wide variety of taxa. Here, for the first time, we leverage aDNA from millennia-old fossil coral fragments to gain new insights into a rapidly declining western Atlantic reef ecosystem. We sampled four Acropora palmata fragments (dated 4215 BCE - 1099 CE) obtained from two Florida Keys reef cores. From these samples, we established that it is possible both to sequence ancient DNA from reef cores and place the data in the context of modern-day genetic variation. We recovered varying amounts of nuclear DNA exhibiting the characteristic signatures of aDNA from the A. palmata fragments. To describe the holobiont sensu lato, which plays a crucial role in reef health, we utilized metagenome-assembled genomes as a reference to identify a large additional proportion of ancient microbial DNA from the samples. The samples shared many common microbes with modern-day coral holobionts from the same region, suggesting remarkable holobiont stability over time. Despite efforts, we were unable to recover ancient Symbiodiniaceae reads from the samples. Comparing the ancient A. palmata data to whole-genome sequencing data from living acroporids, we found that while slightly distinct, ancient samples were most closely related to individuals of their own species. Together, these results provide a proof-of-principle showing that it is possible to carry out direct analysis of coral holobiont change over time, which lays a foundation for studying the impacts of environmental stress and evolutionary constraints.
Collapse
Affiliation(s)
- Carly B Scott
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA, Austin, TX, USA
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lauren T Toth
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL
| | | | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA, Austin, TX, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| |
Collapse
|
19
|
Mendes M, Jonnalagadda M, Ozarkar S, Lima Torres FC, Borda Pua V, Kendall C, Tarazona-Santos E, Parra EJ. Identifying signatures of natural selection in Indian populations. PLoS One 2022; 17:e0271767. [PMID: 35925921 PMCID: PMC9352006 DOI: 10.1371/journal.pone.0271767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we present the results of a genome-wide scan for signatures of positive selection using data from four tribal groups (Kokana, Warli, Bhil, and Pawara) and two caste groups (Deshastha Brahmin and Kunbi Maratha) from West of the Maharashtra State In India, as well as two samples of South Asian ancestry from the 1KG project (Gujarati Indian from Houston, Texas and Indian Telugu from UK). We used an outlier approach based on different statistics, including PBS, xpEHH, iHS, CLR, Tajima's D, as well as two recently developed methods: Graph-aware Retrieval of Selective Sweeps (GRoSS) and Ascertained Sequentially Markovian Coalescent (ASMC). In order to minimize the risk of false positives, we selected regions that are outliers in all the samples included in the study using more than one method. We identified putative selection signals in 107 regions encompassing 434 genes. Many of the regions overlap with only one gene. The signals observed using microarray-based data are very consistent with our analyses using high-coverage sequencing data, as well as those identified with a novel coalescence-based method (ASMC). Importantly, at least 24 of these genomic regions have been identified in previous selection scans in South Asian populations or in other population groups. Our study highlights genomic regions that may have played a role in the adaptation of anatomically modern humans to novel environmental conditions after the out of Africa migration.
Collapse
Affiliation(s)
- Marla Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| | - Manjari Jonnalagadda
- Symbiosis School for Liberal Arts (SSLA), Symbiosis International University (SIU), Pune, India
| | - Shantanu Ozarkar
- Department of Anthropology, Savitribai Phule Pune University, Pune, India
| | - Flávia Carolina Lima Torres
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Borda Pua
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Christopher Kendall
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Esteban J. Parra
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| |
Collapse
|
20
|
Environmental effects on the spread of the Neolithic crop package to South Asia. PLoS One 2022; 17:e0268482. [PMID: 35816489 PMCID: PMC9273075 DOI: 10.1371/journal.pone.0268482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
The emergence of Neolithic economies and their spread through Eurasia was one of the most crucial transitions of the Holocene, with different mechanisms of diffusion—demic, cultural—being proposed. While this phenomenon has been exhaustively studied in Europe, with repeated attempts to model the speed of Neolithic diffusion based on radiocarbon dates, much less attention has been devoted to the dispersal towards the East, and in particular to South Asia. The Neolithic in the latter region at least partly derived from southwest Asia, given the presence of “founder crops” such as wheat and barley. The process of their eastward diffusion, however, may have been significantly different to the westward dispersal, which was mainly due to demic diffusion, as local domesticates were already available and farming was already practiced in parts of South Asia. Here, we use radiocarbon dates specifically related to the spread of the southwest Asian Neolithic crops to model the speed of dispersal of this agricultural package towards South Asia. To assess potential geographical and environmental effects on the dispersal, we simulate different speeds depending on the biomes being crossed, employing a genetic algorithm to search for the values that most closely approach the radiocarbon dates. We find that the most important barrier to be crossed were the Zagros mountains, where the speed was lowest, possibly due to topography and climate. A large portion of the study area is dominated by deserts and shrublands, where the speed of advance, albeit closer to the range expected for demic diffusion, was lower than observed in Europe, which can also potentially be attributed to environmental constraints in the adaptation of the crops. Finally, a notable acceleration begins in the Indus valley, exceeding the range of demic diffusion in the tropical and subtropical environments east of the Indus. We propose that the latter is due to the rapid diffusion among populations already familiar with plant cultivation.
Collapse
|
21
|
Sehrawat JS, Agrawal S, Sankhyan D, Singh M, Kumar S, Prakash S, Rajpal R, Chaubey G, Thangaraj K, Rai N. Pinpointing the Geographic Origin of 165-Year-Old Human Skeletal Remains Found in Punjab, India: Evidence From Mitochondrial DNA and Stable Isotope Analysis. Front Genet 2022; 13:813934. [PMID: 35571044 PMCID: PMC9095824 DOI: 10.3389/fgene.2022.813934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
In 2014, 157 years after the Sepoy Mutiny of 1857, several unidentified human skeletons were discovered in an abandoned well at Ajnala, Punjab. The most prevailing hypothesis suggested them as Indian soldiers who mutinied during the Indian uprising of 1857. However, there is an intense debate on their geographic affinity. Therefore, to pinpoint their area of origin, we have successfully isolated DNA from cementum-rich material of 50 good-quality random teeth samples and analyzed mtDNA haplogroups. In addition to that, we analyzed 85 individuals for oxygen isotopes (δ18O values). The mtDNA haplogroup distribution and clustering pattern rejected the local ancestry and indicated their genetic link with the populations living east of Punjab. In addition, the oxygen isotope analysis (δ18O values) from archaeological skeletal remains corroborated the molecular data and suggested the closest possible geographical affinity of these skeletal remains toward the eastern part of India, largely covering the Gangetic plain region. The data generated from this study are expected to expand our understanding of the ancestry and population affinity of martyr soldiers.
Collapse
Affiliation(s)
- J S Sehrawat
- Department of Anthropology, Panjab University, Chandigarh, India
| | | | - Deeksha Sankhyan
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Monika Singh
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Sachin Kumar
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | - Satya Prakash
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | - Richa Rajpal
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | - Gyaneshwer Chaubey
- Cytogenetic Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
| |
Collapse
|
22
|
Kumar V, Wang W, Zhang J, Wang Y, Ruan Q, Yu J, Wu X, Hu X, Wu X, Guo W, Wang B, Niyazi A, Lv E, Tang Z, Cao P, Liu F, Dai Q, Yang R, Feng X, Ping W, Zhang L, Zhang M, Hou W, Liu Y, Bennett EA, Fu Q. Bronze and Iron Age population movements underlie Xinjiang population history. Science 2022; 376:62-69. [PMID: 35357918 DOI: 10.1126/science.abk1534] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Xinjiang region in northwest China is a historically important geographical passage between East and West Eurasia. By sequencing 201 ancient genomes from 39 archaeological sites, we clarify the complex demographic history of this region. Bronze Age Xinjiang populations are characterized by four major ancestries related to Early Bronze Age cultures from the central and eastern Steppe, Central Asian, and Tarim Basin regions. Admixtures between Middle and Late Bronze Age Steppe cultures continued during the Late Bronze and Iron Ages, along with an inflow of East and Central Asian ancestry. Historical era populations show similar admixed and diverse ancestries as those of present-day Xinjiang populations. These results document the influence that East and West Eurasian populations have had over time in the different regions of Xinjiang.
Collapse
Affiliation(s)
- Vikas Kumar
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,National Centre for Archaeology, Beijing 100013, China
| | - Jie Zhang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Yongqiang Wang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Qiurong Ruan
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jianjun Yu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Xingjun Hu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xinhua Wu
- Institute of Archaeology, Chinese Academy of Social Science, Beijing 100710, China
| | - Wu Guo
- Institute of Archaeology, Chinese Academy of Social Science, Beijing 100710, China
| | - Bo Wang
- Xinjiang Uygur Autonomous Region Museum, Urumqi 830002, China
| | - Alipujiang Niyazi
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Enguo Lv
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Zihua Tang
- Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100020, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Weihong Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Wohns AW, Wong Y, Jeffery B, Akbari A, Mallick S, Pinhasi R, Patterson N, Reich D, Kelleher J, McVean G. A unified genealogy of modern and ancient genomes. Science 2022; 375:eabi8264. [PMID: 35201891 PMCID: PMC10027547 DOI: 10.1126/science.abi8264] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The sequencing of modern and ancient genomes from around the world has revolutionized our understanding of human history and evolution. However, the problem of how best to characterize ancestral relationships from the totality of human genomic variation remains unsolved. Here, we address this challenge with nonparametric methods that enable us to infer a unified genealogy of modern and ancient humans. This compact representation of multiple datasets explores the challenges of missing and erroneous data and uses ancient samples to constrain and date relationships. We demonstrate the power of the method to recover relationships between individuals and populations as well as to identify descendants of ancient samples. Finally, we introduce a simple nonparametric estimator of the geographical location of ancestors that recapitulates key events in human history.
Collapse
Affiliation(s)
- Anthony Wilder Wohns
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ben Jeffery
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ali Akbari
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Swapan Mallick
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna; 1090 Vienna, Austria
| | - Nick Patterson
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - David Reich
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
- Corresponding author.
| |
Collapse
|
24
|
Pathak AK, Sukhavasi K, Marnetto D, Chaubey G, Pandey AK. Human population genomics approach in food metabolism. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
25
|
Lv FH, Cao YH, Liu GJ, Luo LY, Lu R, Liu MJ, Li WR, Zhou P, Wang XH, Shen M, Gao L, Yang JQ, Yang H, Yang YL, Liu CB, Wan PC, Zhang YS, Pi WH, Ren YL, Shen ZQ, Wang F, Wang YT, Li JQ, Salehian-Dehkordi H, Hehua E, Liu YG, Chen JF, Wang JK, Deng XM, Esmailizadeh A, Dehghani-Qanatqestani M, Charati H, Nosrati M, Štěpánek O, Rushdi HE, Olsaker I, Curik I, Gorkhali NA, Paiva SR, Caetano AR, Ciani E, Amills M, Weimann C, Erhardt G, Amane A, Mwacharo JM, Han JL, Hanotte O, Periasamy K, Johansson AM, Hallsson JH, Kantanen J, Coltman DW, Bruford MW, Lenstra JA, Li MH. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression and agronomically important loci. Mol Biol Evol 2021; 39:6459180. [PMID: 34893856 PMCID: PMC8826587 DOI: 10.1093/molbev/msab353] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3′-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.
Collapse
Affiliation(s)
- Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yin-Hong Cao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | | | - Ling-Yun Luo
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ran Lu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Jun Liu
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Wen-Rong Li
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xin-Hua Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Min Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jing-Quan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yong-Lin Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Chang-Bin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Peng-Cheng Wan
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yun-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Wen-Hui Pi
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Eer Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jian-Fei Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Kui Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Mei Deng
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Hadi Charati
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Nosrati
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Ondřej Štěpánek
- Department of Virology, State Veterinary Institute Jihlava, Jihlava, Czech Republic
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ingrid Olsaker
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Neena A Gorkhali
- Animal Breeding Division, National Animal Science Institute, Nepal Agriculture Research Council (NARC), Kathmandu, Nepal
| | - Samuel R Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, DF, Brazil
| | - Alexandre R Caetano
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, DF, Brazil
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo 24 Moro, Bari, Italy
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Christina Weimann
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Georg Erhardt
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Agraw Amane
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
- CTLGH and SRUC, The Roslin Institute Building, Easter Bush Campus, Edinburgh, Scotland
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Olivier Hanotte
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jón H Hallsson
- Faculty of Natural Resources and Environmental Sciences, Agricultural University of Iceland, Borgarnes, Iceland
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff, Wales, United Kingdom
- Sustainable Places Research Institute, Cardiff University, Wales, United Kingdom
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Corresponding author: E-mail:
| |
Collapse
|
26
|
Scheidel W. Fitness and Power: The Contribution of Genetics to the History of Differential Reproduction. EVOLUTIONARY PSYCHOLOGY 2021; 19:14747049211066599. [PMID: 34918580 PMCID: PMC10303451 DOI: 10.1177/14747049211066599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Textual evidence from pre-modern societies supports the prediction that status differences among men translate to variance in reproductive success. In recent years, analysis of genetic data has opened up new ways of studying this relationship. By investigating cases that range over several millennia, these analyses repeatedly document the replacement of local men by newcomers and reveal instances of exceptional reproductive success of specific male lineages. These findings suggest that violent population transfers and conquests could generate considerable reproductive advantages for male dominants. At the same time, this does not always seem to have been the case. Moreover, it is difficult to link such outcomes to particular historical characters or events, or to identify status-biased reproductive inequalities within dominant groups. The proximate factors that mediated implied imbalances in reproductive success often remain unclear. A better understanding of the complex interplay between social power and genetic fitness will only arise from sustained transdisciplinary engagement.
Collapse
|
27
|
Liu Y, Mao X, Krause J, Fu Q. Insights into human history from the first decade of ancient human genomics. Science 2021; 373:1479-1484. [PMID: 34554811 DOI: 10.1126/science.abi8202] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Wang T, Wang W, Xie G, Li Z, Fan X, Yang Q, Wu X, Cao P, Liu Y, Yang R, Liu F, Dai Q, Feng X, Wu X, Qin L, Li F, Ping W, Zhang L, Zhang M, Liu Y, Chen X, Zhang D, Zhou Z, Wu Y, Shafiey H, Gao X, Curnoe D, Mao X, Bennett EA, Ji X, Yang MA, Fu Q. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago. Cell 2021; 184:3829-3841.e21. [PMID: 34171307 DOI: 10.1016/j.cell.2021.05.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
Past human genetic diversity and migration between southern China and Southeast Asia have not been well characterized, in part due to poor preservation of ancient DNA in hot and humid regions. We sequenced 31 ancient genomes from southern China (Guangxi and Fujian), including two ∼12,000- to 10,000-year-old individuals representing the oldest humans sequenced from southern China. We discovered a deeply diverged East Asian ancestry in the Guangxi region that persisted until at least 6,000 years ago. We found that ∼9,000- to 6,000-year-old Guangxi populations were a mixture of local ancestry, southern ancestry previously sampled in Fujian, and deep Asian ancestry related to Southeast Asian Hòabìnhian hunter-gatherers, showing broad admixture in the region predating the appearance of farming. Historical Guangxi populations dating to ∼1,500 to 500 years ago are closely related to Tai-Kadai and Hmong-Mien speakers. Our results show heavy interactions among three distinct ancestries at the crossroads of East and Southeast Asia.
Collapse
Affiliation(s)
- Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Northwest University, Xi'an 710069, China; Shanghai Qi Zhi Institute, Shanghai 200232, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Institute of Cultural Heritage, Shandong University, Qingdao 266237, China
| | - Guangmao Xie
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China; College of History, Culture and Tourism, Guangxi Normal University, Guilin 541001, China
| | - Zhen Li
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China
| | - Xuechun Fan
- International Research Center for Austronesian Archaeology, Pingtan 350000, China; Fujian Museum, Fuzhou 350001, China
| | - Qingping Yang
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China
| | - Xichao Wu
- Fujian Longyan Museum, Longyan 364000, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Ling Qin
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Fajun Li
- Department of Anthropology, School of Sociology and Anthropology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yalin Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongju Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhenyu Zhou
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China
| | - Yun Wu
- Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; Archaeological Institute for Yangtze Civilization, Wuhan University, Wuhan 430072, China
| | - Hassan Shafiey
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Darren Curnoe
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xueping Ji
- Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, China.
| | - Melinda A Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Complete mitogenomes document substantial genetic contribution from the Eurasian Steppe into northern Pakistani Indo-Iranian speakers. Eur J Hum Genet 2021; 29:1008-1018. [PMID: 33637889 DOI: 10.1038/s41431-021-00829-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
To elucidate whether Bronze Age population dispersals from the Eurasian Steppe to South Asia contributed to the gene pool of Indo-Iranian-speaking groups, we analyzed 19,568 mitochondrial DNA (mtDNA) sequences from northern Pakistani and surrounding populations, including 213 newly generated mitochondrial genomes (mitogenomes) from Iranian and Dardic groups, both speakers from the ancient Indo-Iranian branch in northern Pakistan. Our results showed that 23% of mtDNA lineages with west Eurasian origin arose in situ in northern Pakistan since ~5000 years ago (kya), a time depth very close to the documented Indo-European dispersals into South Asia during the Bronze Age. Together with ancient mitogenomes from western Eurasia since the Neolithic, we identified five haplogroups (~8.4% of maternal gene pool) with roots in the Steppe region and subbranches arising (age ~5-2 kya old) in northern Pakistan as genetic legacies of Indo-Iranian speakers. Some of these haplogroups, such as W3a1b that have been found in the ancient samples from the late Bronze Age to the Iron Age period individuals of Swat Valley northern Pakistan, even have sub-lineages (age ~4 kya old) in the southern subcontinent, consistent with the southward spread of Indo-Iranian languages. By showing that substantial genetic components of Indo-Iranian speakers in northern Pakistan can be traced to Bronze Age in the Steppe region, our study suggests a demographic link with the spread of Indo-Iranian languages, and further highlights the corridor role of northern Pakistan in the southward dispersal of Indo-Iranian-speaking groups.
Collapse
|
30
|
Etter AJ. Creating Suitable Evidence of the Past? Archaeology, Politics, and Hindu Nationalism in India from the End of the Twentieth Century to the Present. SOUTH ASIA MULTIDISCIPLINARY ACADEMIC JOURNAL 2020. [DOI: 10.4000/samaj.6926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Evaluation of the Ion AmpliSeq™ PhenoTrivium Panel: MPS-Based Assay for Ancestry and Phenotype Predictions Challenged by Casework Samples. Genes (Basel) 2020; 11:genes11121398. [PMID: 33255693 PMCID: PMC7760956 DOI: 10.3390/genes11121398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
As the field of forensic DNA analysis has started to transition from genetics to genomics, new methods to aid in crime scene investigations have arisen. The development of informative single nucleotide polymorphism (SNP) markers has led the forensic community to question if DNA can be a reliable "eye-witness" and whether the data it provides can shed light on unknown perpetrators. We have developed an assay called the Ion AmpliSeq™ PhenoTrivium Panel, which combines three groups of markers: 41 phenotype- and 163 ancestry-informative autosomal SNPs together with 120 lineage-specific Y-SNPs. Here, we report the results of testing the assay's sensitivity and the predictions obtained for known reference samples. Moreover, we present the outcome of a blind study performed on real casework samples in order to understand the value and reliability of the information that would be provided to police investigators. Furthermore, we evaluated the accuracy of admixture prediction in Converge™ Software. The results show the panel to be a robust and sensitive assay which can be used to analyze casework samples. We conclude that the combination of the obtained predictions of phenotype, biogeographical ancestry, and male lineage can serve as a potential lead in challenging police investigations such as cold cases or cases with no suspect.
Collapse
|
32
|
Abstract
The study of ancient genomes has burgeoned at an incredible rate in the last decade. The result is a shift in archaeological narratives, bringing with it a fierce debate on the place of genetics in anthropological research. Archaeogenomics has challenged and scrutinized fundamental themes of anthropological research, including human origins, movement of ancient and modern populations, the role of social organization in shaping material culture, and the relationship between culture, language, and ancestry. Moreover, the discussion has inevitably invoked new debates on indigenous rights, ownership of ancient materials, inclusion in the scientific process, and even the meaning of what it is to be a human. We argue that the broad and seemingly daunting ethical, methodological, and theoretical challenges posed by archaeogenomics, in fact, represent the very cutting edge of social science research. Here, we provide a general review of the field by introducing the contemporary discussion points and summarizing methodological and ethical concerns, while highlighting the exciting possibilities of ancient genome studies in archaeology from an anthropological perspective.
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14221, USA
| | - Michael Frachetti
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
33
|
Mahal DG. Y-DNA genetic evidence reveals several different ancient origins in the Brahmin population. Mol Genet Genomics 2020; 296:67-78. [PMID: 32978661 DOI: 10.1007/s00438-020-01725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
The ancient geographical origins of Brahmins-a prominent ethnic group in the Indian subcontinent-have remained controversial for a long time. This study employed the AMOVA (analysis of molecular variance) test to evaluate genetic affinities of this group with thirty populations of Central Asia and Europe. A domestic comparison was performed with fifty non-Brahmin groups in India. The results showed that Brahmins had genetic affinities with several foreign populations and also shared their genetic heritage with several domestic non-Brahmin groups. The study identified the deep ancient origins of Brahmins by tracing their Y-chromosome haplogroups and genetic markers on the Y-DNA phylogenetic tree. It was confirmed that the progenitors of this group emerged from at least 12 different geographic regions of the world. The study concluded that about 83% of the Brahmins in the dataset belonged to four major haplogroups, of which two emerged from Central Asia, one from the Fertile Crescent, and one was of an indigenous Indian origin.
Collapse
Affiliation(s)
- David G Mahal
- DGM Associates, Pacific Palisades, CA, USA. .,Institut Avrio de Geneve, Geneva, Switzerland.
| |
Collapse
|
34
|
Lipson M. Applying f 4 -statistics and admixture graphs: Theory and examples. Mol Ecol Resour 2020; 20:1658-1667. [PMID: 32717097 DOI: 10.1111/1755-0998.13230] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/02/2020] [Indexed: 01/25/2023]
Abstract
A popular approach to learning about admixture from population genetic data is by computing the allele-sharing summary statistics known as f-statistics. Compared to some methods in population genetics, f-statistics are relatively simple, but interpreting them can still be complicated at times. In addition, f-statistics can be used to build admixture graphs (multi-population trees allowing for admixture events), which provide more explicit and thorough modelling capabilities but are correspondingly more complex to work with. Here, I discuss some of these issues to provide users of these tools with a basic guide for protocols and procedures. My focus is on the kinds of conclusions that can or cannot be drawn from the results of f4 -statistics and admixture graphs, illustrated with real-world examples involving human populations.
Collapse
Affiliation(s)
- Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
35
|
Chaubey G. Coronavirus (SARS-CoV-2) and Mortality Rate in India: The Winning Edge. Front Public Health 2020; 8:397. [PMID: 32850604 PMCID: PMC7396667 DOI: 10.3389/fpubh.2020.00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
36
|
Novel insights on demographic history of tribal and caste groups from West Maharashtra (India) using genome-wide data. Sci Rep 2020; 10:10075. [PMID: 32572090 PMCID: PMC7308293 DOI: 10.1038/s41598-020-66953-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The South Asian subcontinent is characterized by a complex history of human migrations and population interactions. In this study, we used genome-wide data to provide novel insights on the demographic history and population relationships of six Indo-European populations from the Indian State of West Maharashtra. The samples correspond to two castes (Deshastha Brahmins and Kunbi Marathas) and four tribal groups (Kokana, Warli, Bhil and Pawara). We show that tribal groups have had much smaller effective population sizes than castes, and that genetic drift has had a higher impact in tribal populations. We also show clear affinities between the Bhil and Pawara tribes, and to a lesser extent, between the Warli and Kokana tribes. Our comparisons with available modern and ancient DNA datasets from South Asia indicate that the Brahmin caste has higher Ancient Iranian and Steppe pastoralist contributions than the Kunbi Marathas caste. Additionally, in contrast to the two castes, tribal groups have very high Ancient Ancestral South Indian (AASI) contributions. Indo-European tribal groups tend to have higher Steppe contributions than Dravidian tribal groups, providing further support for the hypothesis that Steppe pastoralists were the source of Indo-European languages in South Asia, as well as Europe.
Collapse
|
37
|
Abstract
Shinde et al. report the first genome-wide data from an ancient individual from the Indus Valley Civilization in South Asia. Their findings have implications for the origins and spread of farming and Indo-European languages in the region and the makings of the South Asian gene pool.
Collapse
Affiliation(s)
- Maanasa Raghavan
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Hannes Schroeder
- Section for Evolutionary Genomics, The Globe Institute, University of Copenhagen, 1553 Copenhagen, Denmark
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne & Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| |
Collapse
|