1
|
Lim LWC, Egnot CT, Papaioannou P, Yip SH. The Hypothalamic Arcuate Nucleus Dopaminergic Neurons: More Than Just Prolactin Secretion. Endocrinology 2025; 166:bqaf025. [PMID: 39919032 PMCID: PMC11837187 DOI: 10.1210/endocr/bqaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/09/2025]
Abstract
The hypothalamic arcuate nucleus dopaminergic (A12) neurons are well known for their central role in regulating prolactin secretion through a sophisticated negative feedback loop. In this canonical pathway, prolactin stimulates A12 neurons to release dopamine, which suppresses further prolactin release from lactotrophs in the anterior pituitary. However, a collective of recent and past evidence strongly implies that the A12 neurons are far more dynamic and multifaceted than previously appreciated. This minireview discusses the developmental trajectory of A12 neurons, from prenatal origins to postnatal maturation, highlighting their diversity and heterogeneity. Beyond their well-characterized role in prolactin regulation, the A12 neurons contribute to a broader array of hypothalamic functions, including autoregulation, metabolism, and growth. By shedding light on these underexplored roles, this review outlines the expansive significance of A12 neurons as more than mere gatekeepers of prolactin secretion, positioning them as versatile players in endocrine and metabolic homeostasis.
Collapse
Affiliation(s)
- Luis Wei Cheng Lim
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Christopher Thomas Egnot
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Panagiotis Papaioannou
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Siew Hoong Yip
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
3
|
Wang Y, Lin D. Stress and parental behaviors. Neurosci Res 2024:S0168-0102(24)00154-8. [PMID: 39674404 DOI: 10.1016/j.neures.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
In nearly all mammalian species, newborn pups are weak and vulnerable, relying heavily on care and protection from parents for survival. Thus, developmentally hardwired neural circuits are in place to ensure the timely expression of parental behaviors. Furthermore, several neurochemical systems, including estrogen, oxytocin, and dopamine, facilitate the emergence and expression of parental behaviors. However, stress can adversely affect these systems, impairing parental behaviors. In this review, we will summarize our current knowledge regarding the impact of stress on pup-directed behavior circuits that lead to infant neglect, abuse, and, in extreme cases, killing. We will discuss various stressors that influence parental behaviors at different life stages and how stress induces changes in the neurochemical systems that support parental care, ultimately leading to its poor performance.
Collapse
Affiliation(s)
- Yifan Wang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA; Department of Neuroscience and physiology, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Pal T, McQuillan HJ, Wragg L, Brown RSE. Hormonal Actions in the Medial Preoptic Area Governing Parental Behavior: Novel Insights From New Tools. Endocrinology 2024; 166:bqae152. [PMID: 39497459 PMCID: PMC11590663 DOI: 10.1210/endocr/bqae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 11/27/2024]
Abstract
The importance of hormones in mediating a behavioral transition in mammals from a virgin or nonparenting state to parental state was established around 50 years ago. Extensive research has since revealed a highly conserved neural circuit that underlies parental behavior both between sexes and between mammalian species. Within this circuit, hormonal action in the medial preoptic area of the hypothalamus (MPOA) has been shown to be key in timing the onset of parental behavior with the birth of offspring. However, the mechanism underlying how hormones act in the MPOA to facilitate this change in behavior has been unclear. Technical advances in neuroscience, including single cell sequencing, novel transgenic approaches, calcium imaging, and optogenetics, have recently been harnessed to reveal new insights into maternal behavior. This review aims to highlight how the use of these tools has shaped our understanding about which aspects of maternal behavior are regulated by specific hormone activity within the MPOA, how hormone-sensitive MPOA neurons integrate within the wider neural circuit that governs maternal behavior, and how maternal hormones drive changes in MPOA neuronal function during different reproductive states. Finally, we review our current understanding of hormonal modulation of MPOA-mediated paternal behavior in males.
Collapse
Affiliation(s)
- Tapasya Pal
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Henry J McQuillan
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Logan Wragg
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rosemary S E Brown
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Grattan DR. Does the brain make prolactin? J Neuroendocrinol 2024; 36:e13432. [PMID: 39041379 DOI: 10.1111/jne.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The prolactin receptor (Prlr) is widely expressed in the brain, particularly in the hypothalamus. Prolactin also has an increasing range of well-characterised effects on central nervous system function. Because of this, over many years, there has been interest in whether the hormone itself is also expressed within the brain, perhaps acting as a neuropeptide to regulate brain function via its receptor in neurons. The aim of this invited review is to critically evaluate the evidence for brain production of prolactin. Unlike the evidence for the Prlr, evidence for brain prolactin is inconsistent and variable. A range of different antibodies have been used, each characterising a different distribution of prolactin-like immunoreactivity. Prolactin mRNA has been detected in the brain, but only at levels markedly lower than seen in the pituitary gland. Importantly, it has largely only been detected by highly sensitive amplification-based techniques, and the extreme sensitivity means there is a risk of false-positive data. Modern in situ hybridisation methods and single-cell RNA sequencing have not provided supporting evidence, but it is hard to prove a negative! Finally, I acknowledge and discuss the possibility that prolactin might be produced in the brain under specific circumstances, such as to promote a neuroprotective response to cell damage. Collectively, however, based on this analysis, I have formed the opinion that brain production of prolactin is unlikely, and even if occurs, it is of little physiological consequence. Most, if not all of the brain actions of prolactin can be explained by pituitary prolactin gaining access to the brain.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
6
|
Láng T, Dimén D, Oláh S, Puska G, Dobolyi A. Medial preoptic circuits governing instinctive social behaviors. iScience 2024; 27:110296. [PMID: 39055958 PMCID: PMC11269931 DOI: 10.1016/j.isci.2024.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The medial preoptic area (MPOA) has long been implicated in maternal and male sexual behavior. Modern neuroscience methods have begun to reveal the cellular networks responsible, while also implicating the MPOA in other social behaviors, affiliative social touch, and aggression. The social interactions rely on input from conspecifics whose most important modalities in rodents are olfaction and somatosensation. These inputs bypass the cerebral cortex to reach the MPOA to influence the social function. Hormonal inputs also directly act on MPOA neurons. In turn, the MPOA controls social responses via various projections for reward and motor output. The MPOA thus emerges as one of the major brain centers for instinctive social behavior. While key elements of MPOA circuits have been identified, a synthesis of these new data is now provided for further studies to reveal the mechanisms by which the area controls social interactions.
Collapse
Affiliation(s)
- Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Diána Dimén
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Addiction and Neuroplasticity Laboratory, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Szilvia Oláh
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
7
|
Cherepanov S, Heitzmann L, Fontanaud P, Guillou A, Galibert E, Campos P, Mollard P, Martin AO. Prolactin blood concentration relies on the scalability of the TIDA neurons' network efficiency in vivo. iScience 2024; 27:109876. [PMID: 38799572 PMCID: PMC11126972 DOI: 10.1016/j.isci.2024.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/09/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Our understanding and management of reproductive health and related disorders such as infertility, menstrual irregularities, and pituitary disorders depend on understanding the intricate sex-specific mechanisms governing prolactin secretion. Using ex vivo experiments in acute slices, in parallel with in vivo calcium imaging (GRIN lens technology), we found that dopamine neurons inhibiting PRL secretion (TIDA), organize as functional networks both in and ex vivo. We defined an index of efficiency of networking (Ieff) using the duration of calcium events and the ability to form plastic economic networks. It determined TIDA neurons' ability to inhibit PRL secretion in vivo. Ieff variations in both sexes demonstrated TIDA neurons' adaptability to physiological changes. A variation in the number of active neurons contributing to the network explains the sexual dimorphism in basal [PRL]blood secretion patterns. These sex-specific differences in neuronal activity and network organization contribute to the understanding of hormone regulation.
Collapse
Affiliation(s)
- Stanislav Cherepanov
- Team for networks and rhythms in endocrine glands. Institute of Functional Genomics, CNRS, INSERM. Montpellier, 34094 Occitanie, France
| | - Louise Heitzmann
- Sex and speciation team, department of genome, phenome and environment. Montpellier Institute of Evolution Science, CNRS. Montpellier, 34090 Occitanie, France
| | - Pierre Fontanaud
- Team for networks and rhythms in endocrine glands. Institute of Functional Genomics, CNRS, INSERM. Montpellier, 34094 Occitanie, France
| | - Anne Guillou
- Team for networks and rhythms in endocrine glands. Institute of Functional Genomics, CNRS, INSERM. Montpellier, 34094 Occitanie, France
| | - Evelyne Galibert
- Team for networks and rhythms in endocrine glands. Institute of Functional Genomics, CNRS, INSERM. Montpellier, 34094 Occitanie, France
| | - Pauline Campos
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Patrice Mollard
- Team for networks and rhythms in endocrine glands. Institute of Functional Genomics, CNRS, INSERM. Montpellier, 34094 Occitanie, France
| | - Agnès O. Martin
- Team for networks and rhythms in endocrine glands. Institute of Functional Genomics, CNRS, INSERM. Montpellier, 34094 Occitanie, France
| |
Collapse
|
8
|
Dudas A, Nakahara TS, Pellissier LP, Chamero P. Parenting behaviors in mice: Olfactory mechanisms and features in models of autism spectrum disorders. Neurosci Biobehav Rev 2024; 161:105686. [PMID: 38657845 DOI: 10.1016/j.neubiorev.2024.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Rodents, along with numerous other mammals, heavily depend on olfactory cues to navigate their social interactions. Processing of olfactory sensory inputs is mediated by conserved brain circuits that ultimately trigger social behaviors, such as social interactions and parental care. Although innate, parenting is influenced by internal states, social experience, genetics, and the environment, and any significant disruption of these factors can impact the social circuits. Here, we review the molecular mechanisms and social circuits from the olfactory epithelium to central processing that initiate parental behaviors and their dysregulations that may contribute to the social impairments in mouse models of autism spectrum disorders (ASD). We discuss recent advances of the crucial role of olfaction in parental care, its consequences for social interactions, and the reciprocal influence on social interaction impairments in mouse models of ASD.
Collapse
Affiliation(s)
- Ana Dudas
- Team biology of GPCR Signaling systems (BIOS), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France
| | - Thiago S Nakahara
- Team Neuroendocrine Integration of Reproduction and Behavior (INERC), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France
| | - Lucie P Pellissier
- Team biology of GPCR Signaling systems (BIOS), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France.
| | - Pablo Chamero
- Team Neuroendocrine Integration of Reproduction and Behavior (INERC), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France.
| |
Collapse
|
9
|
Kuroda KO, Fukumitsu K, Kurachi T, Ohmura N, Shiraishi Y, Yoshihara C. Parental brain through time: The origin and development of the neural circuit of mammalian parenting. Ann N Y Acad Sci 2024; 1534:24-44. [PMID: 38426943 DOI: 10.1111/nyas.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.
Collapse
Affiliation(s)
- Kumi O Kuroda
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kansai Fukumitsu
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Kurachi
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nami Ohmura
- RIKEN Center for Brain Science, Saitama, Japan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Yuko Shiraishi
- RIKEN Center for Brain Science, Saitama, Japan
- Kawamura Gakuen Woman's University, Chiba, Japan
| | - Chihiro Yoshihara
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
10
|
Marshall CJ, Blake A, Stewart C, Liddle TA, Denizli I, Cuthill F, Evans NP, Stevenson TJ. Prolactin Mediates Long-Term, Seasonal Rheostatic Regulation of Body Mass in Female Mammals. Endocrinology 2024; 165:bqae020. [PMID: 38417844 PMCID: PMC10904104 DOI: 10.1210/endocr/bqae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
A series of well-described anabolic and catabolic neuropeptides are known to provide short-term, homeostatic control of energy balance. The mechanisms that govern long-term, rheostatic control of regulated changes in energy balance are less well characterized. Using the robust and repeatable seasonal changes in body mass observed in Siberian hamsters, this report examined the role of prolactin in providing long-term rheostatic control of body mass and photoinduced changes in organ mass (ie, kidney, brown adipose tissue, uterine, and spleen). Endogenous circannual interval timing was observed after 4 months in a short photoperiod, indicated by a significant increase in body mass and prolactin mRNA expression in the pituitary gland. There was an inverse relationship between body mass and the expression of somatostatin (Sst) and cocaine- and amphetamine-regulated transcript (Cart). Pharmacological inhibition of prolactin release (via bromocriptine injection), reduced body mass of animals maintained in long photoperiods to winter-short photoperiod levels and was associated with a significant increase in hypothalamic Cart expression. Administration of ovine prolactin significantly increased body mass 24 hours after a single injection and the effect persisted after 3 consecutive daily injections. The data indicate that prolactin has pleiotropic effects on homeostatic sensors of energy balance (ie, Cart) and physiological effectors (ie, kidney, BAT). We propose that prolactin release from the pituitary gland acts as an output signal of the hypothalamic rheostat controller to regulate adaptive changes in body mass.
Collapse
Affiliation(s)
- Christopher J Marshall
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Alexandra Blake
- Institute of Molecular Biology, University of Mainz, Mainz 55122, Germany
| | - Calum Stewart
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - T Adam Liddle
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Irem Denizli
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Fallon Cuthill
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
11
|
Miyamichi K. Neural basis for behavioral plasticity during the parental life-stage transition in mice. Front Neural Circuits 2024; 17:1340497. [PMID: 38298741 PMCID: PMC10829089 DOI: 10.3389/fncir.2023.1340497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Parental care plays a crucial role in the physical and mental well-being of mammalian offspring. Although sexually naïve male mice, as well as certain strains of female mice, display aggression toward pups, they exhibit heightened parental caregiving behaviors as they approach the time of anticipating their offspring. In this Mini Review, I provide a concise overview of the current understanding of distinct limbic neural types and their circuits governing both aggressive and caregiving behaviors toward infant mice. Subsequently, I delve into recent advancements in the understanding of the molecular, cellular, and neural circuit mechanisms that regulate behavioral plasticity during the transition to parenthood, with a specific focus on the sex steroid hormone estrogen and neural hormone oxytocin. Additionally, I explore potential sex-related differences and highlight some critical unanswered questions that warrant further investigation.
Collapse
|
12
|
Stagkourakis S, Spigolon G, Marks M, Feyder M, Kim J, Perona P, Pachitariu M, Anderson DJ. Anatomically distributed neural representations of instincts in the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568163. [PMID: 38045312 PMCID: PMC10690204 DOI: 10.1101/2023.11.21.568163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Artificial activation of anatomically localized, genetically defined hypothalamic neuron populations is known to trigger distinct innate behaviors, suggesting a hypothalamic nucleus-centered organization of behavior control. To assess whether the encoding of behavior is similarly anatomically confined, we performed simultaneous neuron recordings across twenty hypothalamic regions in freely moving animals. Here we show that distinct but anatomically distributed neuron ensembles encode the social and fear behavior classes, primarily through mixed selectivity. While behavior class-encoding ensembles were spatially distributed, individual ensembles exhibited strong localization bias. Encoding models identified that behavior actions, but not motion-related variables, explained a large fraction of hypothalamic neuron activity variance. These results identify unexpected complexity in the hypothalamic encoding of instincts and provide a foundation for understanding the role of distributed neural representations in the expression of behaviors driven by hardwired circuits.
Collapse
Affiliation(s)
- Stefanos Stagkourakis
- Division of Biology and Biological Engineering 156-29, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
| | - Giada Spigolon
- Biological Imaging Facility, California Institute of Technology, Pasadena, California 91125, USA
| | - Markus Marks
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Michael Feyder
- Division of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California 94305, USA
| | - Joseph Kim
- Division of Biology and Biological Engineering 156-29, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
| | - Pietro Perona
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Marius Pachitariu
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - David J. Anderson
- Division of Biology and Biological Engineering 156-29, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Blvd, Pasadena, California 91125, USA
| |
Collapse
|
13
|
Stuber GD. Neurocircuits for motivation. Science 2023; 382:394-398. [PMID: 37883553 DOI: 10.1126/science.adh8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
The nervous system coordinates various motivated behaviors such as feeding, drinking, and escape to promote survival and evolutionary fitness. Although the precise behavioral repertoires required for distinct motivated behaviors are diverse, common features such as approach or avoidance suggest that common brain substrates are required for a wide range of motivated behaviors. In this Review, I describe a framework by which neural circuits specified for some innate drives regulate the activity of ventral tegmental area (VTA) dopamine neurons to reinforce ongoing or planned actions to fulfill motivational demands. This framework may explain why signaling from VTA dopamine neurons is ubiquitously involved in many types of diverse volitional motivated actions, as well as how sensory and interoceptive cues can initiate specific goal-directed actions.
Collapse
Affiliation(s)
- Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Adamantidis AR, de Lecea L. Sleep and the hypothalamus. Science 2023; 382:405-412. [PMID: 37883555 DOI: 10.1126/science.adh8285] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Neural substrates of wakefulness, rapid eye movement sleep (REMS), and non-REMS (NREMS) in the mammalian hypothalamus overlap both anatomically and functionally with cellular networks that support physiological and behavioral homeostasis. Here, we review the roles of sleep neurons of the hypothalamus in the homeostatic control of thermoregulation or goal-oriented behaviors during wakefulness. We address how hypothalamic circuits involved in opposing behaviors such as core body temperature and sleep compute conflicting information and provide a coherent vigilance state. Finally, we highlight some of the key unresolved questions and challenges, and the promise of a more granular view of the cellular and molecular diversity underlying the integrative role of the hypothalamus in physiological and behavioral homeostasis.
Collapse
Affiliation(s)
- Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Luis de Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford, CA, USA
- Wu Tsai Neurosciences Institute Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
16
|
Ammari R, Monaca F, Cao M, Nassar E, Wai P, Del Grosso NA, Lee M, Borak N, Schneider-Luftman D, Kohl J. Hormone-mediated neural remodeling orchestrates parenting onset during pregnancy. Science 2023; 382:76-81. [PMID: 37797007 PMCID: PMC7615220 DOI: 10.1126/science.adi0576] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
During pregnancy, physiological adaptations prepare the female body for the challenges of motherhood. Becoming a parent also requires behavioral adaptations. Such adaptations can occur as early as during pregnancy, but how pregnancy hormones remodel parenting circuits to instruct preparatory behavioral changes remains unknown. We found that action of estradiol and progesterone on galanin (Gal)-expressing neurons in the mouse medial preoptic area (MPOA) is critical for pregnancy-induced parental behavior. Whereas estradiol silences MPOAGal neurons and paradoxically increases their excitability, progesterone permanently rewires this circuit node by promoting dendritic spine formation and recruitment of excitatory synaptic inputs. This MPOAGal-specific neural remodeling sparsens population activity in vivo and results in persistently stronger, more selective responses to pup stimuli. Pregnancy hormones thus remodel parenting circuits in anticipation of future behavioral need.
Collapse
Affiliation(s)
- Rachida Ammari
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Francesco Monaca
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Mingran Cao
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Estelle Nassar
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Patty Wai
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Nicholas A. Del Grosso
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Matthew Lee
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Neven Borak
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Deborah Schneider-Luftman
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Johannes Kohl
- State-dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
17
|
Higgs MJ, Webberley AE, Allan AJ, Talat M, John RM, Isles AR. The parenting hub of the hypothalamus is a focus of imprinted gene action. PLoS Genet 2023; 19:e1010961. [PMID: 37856383 PMCID: PMC10586610 DOI: 10.1371/journal.pgen.1010961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Imprinted genes are subject to germline epigenetic modification resulting in parental-specific allelic silencing. Although genomic imprinting is thought to be important for maternal behaviour, this idea is based on serendipitous findings from a small number of imprinted genes. Here, we undertook an unbiased systems biology approach, taking advantage of the recent delineation of specific neuronal populations responsible for controlling parental care, to test whether imprinted genes significantly converge to regulate parenting behaviour. Using single-cell RNA sequencing datasets, we identified a specific enrichment of imprinted gene expression in a recognised "parenting hub", the galanin-expressing neurons of the preoptic area. We tested the validity of linking enriched expression in these neurons to function by focusing on MAGE family member L2 (Magel2), an imprinted gene not previously linked to parenting behaviour. We confirmed expression of Magel2 in the preoptic area galanin expressing neurons. We then examined the parenting behaviour of Magel2-null(+/p) mice. Magel2-null mothers, fathers and virgin females demonstrated deficits in pup retrieval, nest building and pup-directed motivation, identifying a central role for this gene in parenting. Finally, we show that Magel2-null mothers and fathers have a significant reduction in POA galanin expressing cells, which in turn contributes to a reduced c-Fos response in the POA upon exposure to pups. Our findings identify a novel imprinted gene that impacts parenting behaviour and, moreover, demonstrates the utility of using single-cell RNA sequencing data to predict gene function from expression and in doing so here, have identified a purposeful role for genomic imprinting in mediating parental behaviour.
Collapse
Affiliation(s)
- Matthew J. Higgs
- Behavioural Genetics Group, Centre for Neuropsychiatric, Genetics and Genomics, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | - Anna E. Webberley
- Behavioural Genetics Group, Centre for Neuropsychiatric, Genetics and Genomics, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Moaz Talat
- The Mary Lyon Centre, MRC Harwell, Didcot, United Kingdom
| | - Rosalind M. John
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Behavioural Genetics Group, Centre for Neuropsychiatric, Genetics and Genomics, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
18
|
Corona A, Choe J, Muñoz-Castañeda R, Osten P, Shea SD. A circuit from the locus coeruleus to the anterior cingulate cortex modulates offspring interactions in mice. Cell Rep 2023; 42:112771. [PMID: 37421626 PMCID: PMC10529180 DOI: 10.1016/j.celrep.2023.112771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/01/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023] Open
Abstract
Social sensitivity to other individuals in distress is crucial for survival. The anterior cingulate cortex (ACC) is a structure involved in making behavioral choices and is influenced by observed pain or distress. Nevertheless, our understanding of the neural circuitry underlying this sensitivity is incomplete. Here, we reveal unexpected sex-dependent activation of ACC when parental mice respond to distressed pups by returning them to the nest ("pup retrieval"). We observe sex differences in the interactions between excitatory and inhibitory ACC neurons during parental care, and inactivation of ACC excitatory neurons increased pup neglect. Locus coeruleus (LC) releases noradrenaline in ACC during pup retrieval, and inactivation of the LC-ACC pathway disrupts parental care. We conclude that ACC maintains sex-dependent sensitivity to pup distress under LC modulation. We propose that ACC's involvement in parenting presents an opportunity to identify neural circuits that support sensitivity to the emotional distress of others.
Collapse
Affiliation(s)
- Alberto Corona
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jane Choe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Stephen D Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
19
|
Csikós V, Oláh S, Dóra F, Arrasz N, Cservenák M, Dobolyi A. Microglia depletion prevents lactation by inhibition of prolactin secretion. iScience 2023; 26:106264. [PMID: 36936786 PMCID: PMC10014264 DOI: 10.1016/j.isci.2023.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Microglial cells were eliminated from the brain with sustained 3-4 weeks long inhibition of colony stimulating factor 1 receptor by Pexidartinib 3397 (PLX3397). The prepartum treated mice mothers did not feed their pups after parturition. The pups of mothers treated orally only in the postpartum period starting immediately after parturition showed reduced body weight by 15.5 ± 0.22 postnatal days as the treatment progressed without the mothers showing altered caring behaviors. The apparent weight gain of foster pups during a suckling bout was reduced in mother mice fed by PLX3397-containing diet and also in rat dams following sustained intracerebroventricular infusion of PLX3397 in a separate experiment suggesting that lactation was affected by the reduced number of microglia. Prolactin secretion and signaling were markedly reduced in PLX3397-treated mothers. The results suggest that microglial cells are required for prolactin secretion and lactation whereas maternal motivation may not be directly affected by microglia.
Collapse
Affiliation(s)
- Vivien Csikós
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Nikolett Arrasz
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Melinda Cservenák
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Corresponding author
| |
Collapse
|
20
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
21
|
Swart JM, Grattan DR, Ladyman SR, Brown RSE. Pups and prolactin are rewarding to virgin female and pregnant mice. J Neuroendocrinol 2022:e13232. [PMID: 36691950 DOI: 10.1111/jne.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Maternal interactions with offspring are highly rewarding, which reinforces expression of essential caregiving behaviours that promote offspring survival. In rats, the rewarding effect of pups depends on reproductive state, with lactating females specifically developing strong preferences for pup-associated contexts. Whether this also occurs in mice is unknown, hence we aimed to characterise pup-related preference across reproductive states in female mice. In a conditioned place preference (CPP) test, pups were a rewarding stimulus to female mice prior to lactation, with virgin and pregnant females developing a preference for a pup-associated context. We have previously shown that lactogenic hormones, acting through the prolactin receptor (Prlr), play an important role in maternal motivation. Here, we aimed to investigate whether Prlr action is important for pup-related reward behaviour in mice. We showed that prolactin itself had a reinforcing effect in a CPP test, and that exposure to pups increased blood prolactin levels in virgin female mice. Prlr expression in CamKIIα-expressing neurons and GABAergic neurons has previously been shown to be important for different aspects of parental behaviour. However, we found that conditional Prlr deletion from either of these neuronal populations did not disrupt the development of a preference for pup-associated contexts in pregnant female mice, indicating that lactogenic action on these populations is not necessary for the rewarding effect of pups. Together, these data show that while lactogenic hormones likely contribute to a rewarding effect of pups, their action on two key neuronal populations is not necessary for this effect in female mice.
Collapse
Affiliation(s)
- Judith M Swart
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Santana‐Coelho D, Womble PD, Blandin KJ, Pilcher JB, O'Neill GM, Douglas LA, Chilukuri SV, Tran DLK, Wiley TA, Lugo JN. Assessment of the effects of sex, age, and rearing condition on ultrasonic vocalizations elicited by pups during the maternal potentiation paradigm in C57BL/6J mice. Dev Psychobiol 2022; 64:e22341. [PMID: 36426792 PMCID: PMC9828101 DOI: 10.1002/dev.22341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022]
Abstract
Isolation-induced ultrasonic vocalizations (USVs) are important to elicit parental retrieval. This behavior is critical for the animal's survival and can be altered in models of developmental disorders. The potentiation of vocalizations in response to reunion with the dam, also called maternal potentiation, has been extensively studied in rats. However, the assessment of this paradigm in mice is scarce. In rats, the potentiation of vocalizations is dependent on rearing conditions. Since mice are the main species used for genetic models of diseases, we aimed to investigate how different factors such as age, sex, and rearing conditions can affect the potentiation of vocalizations in the maternal potentiation paradigm in mice. We carried out experiments using biparental (dam and sire) or uniparental rearing (dam). Pups were tested on postnatal days (PD) 9 or 12. Pups showed increased potentiation in both sexes at PD9 with uniparental rearing. Both rearing conditions and ages changed the repertoire from the first to the second isolation. Spectral parameters were affected by sex, rearing condition and reunion at PD9. At PD12, only duration was altered by reunion. We conclude that the performance of the pups in the maternal potentiation paradigm is dependent on age, sex, and rearing condition.
Collapse
Affiliation(s)
| | - Paige D. Womble
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | | | - Jacob B. Pilcher
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | - Grace M. O'Neill
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | | | | | - Doan L. K. Tran
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | - Taylor A. Wiley
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | - Joaquin N. Lugo
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| |
Collapse
|
23
|
Maciejewski MF, Bell AM. Insights into Parental Care from Studies on Non-mammalian Vertebrates. AFFECTIVE SCIENCE 2022; 3:792-798. [PMID: 36519149 PMCID: PMC9743901 DOI: 10.1007/s42761-022-00127-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/30/2022] [Indexed: 06/17/2023]
Abstract
Parental care has attracted attention from both proximate and ultimate perspectives. While understanding the adaptive significance of care has been the focus of work in diverse organisms in behavioral ecology, most of what we know about the proximate mechanisms underlying parental care behavior comes from studies in mammals. Although studies on mammals have greatly improved our understanding of care, viewing parental care solely through a mammalian lens can limit our understanding. Here, we draw upon examples from non-mammalian vertebrate systems to show that in many ways mammals are the exception rather than the rule for caregiving: across vertebrates, maternal care is often not the ancestral or the most common mode of care and fathering is not derivative of mothering. Embracing the diversity of parental care can improve our understanding of both the proximate basis and adaptive significance of parental care and the affective processes involved in caregiving.
Collapse
Affiliation(s)
- Meghan F. Maciejewski
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Alison M. Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL USA
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, IL USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL USA
- Program in Neuroscience, University of Illinois Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
24
|
Smiley KO, Brown RSE, Grattan DR. Prolactin Action Is Necessary for Parental Behavior in Male Mice. J Neurosci 2022; 42:8308-8327. [PMID: 36163141 PMCID: PMC9653282 DOI: 10.1523/jneurosci.0558-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Parental care is critical for successful reproduction in mammals. Recent work has implicated the hormone prolactin in regulating male parental behavior, similar to its established role in females. Male laboratory mice show a mating-induced suppression of infanticide (normally observed in virgins) and onset of paternal behavior 2 weeks after mating. Using this model, we sought to investigate how prolactin acts in the forebrain to regulate paternal behavior. First, using c-fos immunoreactivity in prolactin receptor (Prlr) Prlr-IRES-Cre-tdtomato reporter mouse sires, we show that the circuitry activated during paternal interactions contains prolactin-responsive neurons in multiple sites, including the medial preoptic nucleus, bed nucleus of the stria terminalis, and medial amygdala. Next, we deleted Prlr from three prominent cell types found in these regions: glutamatergic, GABAergic, and CaMKIIα. Prlr deletion from CaMKIIα, but not glutamatergic or GABAergic cells, had a profound effect on paternal behavior as none of these KO males completed the pup-retrieval task. Prolactin was increased during mating, but not in response to pups, suggesting that the mating-induced secretion of prolactin is important for establishing the switch from infanticidal to paternal behavior. Pharmacological blockade of prolactin secretion at mating, however, had no effect on paternal behavior. In contrast, suppressing prolactin secretion at the time of pup exposure resulted in failure to retrieve pups, with exogenous prolactin administration rescuing this behavior. Together, our data show that paternal behavior in sires is dependent on basal levels of circulating prolactin acting at the time of interaction with pups, mediated through Prlr on CaMKIIα-expressing neurons.SIGNIFICANCE STATEMENT Parental care is critical for offspring survival. Compared with maternal care, however, the neurobiology of paternal care is less well understood. Here we show that the hormone prolactin, which is most well known for its female-specific role in lactation, has a role in the male brain to promote paternal behavior. In the absence of prolactin signaling specifically during interactions with pups, father mice fail to show normal retrieval behavior of pups. These data demonstrate that prolactin has a similar action in both males and females to promote parental care.
Collapse
Affiliation(s)
- Kristina O Smiley
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9016, New Zealand
- Department of Anatomy, School of Biomedical Science, University of Otago, Dunedin, 9016, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9016, New Zealand
- Department of Physiology, School of Biomedical Science, University of Otago, Dunedin, 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9016, New Zealand
- Department of Anatomy, School of Biomedical Science, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| |
Collapse
|
25
|
A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice. Nat Commun 2022; 13:5944. [PMID: 36209152 PMCID: PMC9547883 DOI: 10.1038/s41467-022-33584-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
The lateral septum (LS) has been implicated in the regulation of locomotion. Nevertheless, the neurons synchronizing LS activity with the brain’s clock in the suprachiasmatic nucleus (SCN) remain unknown. By interrogating the molecular, anatomical and physiological heterogeneity of dopamine neurons of the periventricular nucleus (PeVN; A14 catecholaminergic group), we find that Th+/Dat1+ cells from its anterior subdivision innervate the LS in mice. These dopamine neurons receive dense neuropeptidergic innervation from the SCN. Reciprocal viral tracing in combination with optogenetic stimulation ex vivo identified somatostatin-containing neurons in the LS as preferred synaptic targets of extrahypothalamic A14 efferents. In vivo chemogenetic manipulation of anterior A14 neurons impacted locomotion. Moreover, chemogenetic inhibition of dopamine output from the anterior PeVN normalized amphetamine-induced hyperlocomotion, particularly during sedentary periods. Cumulatively, our findings identify a hypothalamic locus for the diurnal control of locomotion and pinpoint a midbrain-independent cellular target of psychostimulants. The psychostimulant-sensitive neural mechanism linking the circadian clock to locomotion is unknown. Here, hypothalamic A14 neurons are shown to time diurnal activity by entraining the lateral septum, and their activity is shown to be sensitive to amphetamine.
Collapse
|
26
|
Ou Y, Zhou M, Che M, Gong H, Wu G, Peng J, Li K, Yang R, Wang X, Zhang X, Liu Y, Feng Z, Qi S. Adult neurogenesis of the median eminence contributes to structural reconstruction and recovery of body fluid metabolism in hypothalamic self-repair after pituitary stalk lesion. Cell Mol Life Sci 2022; 79:458. [PMID: 35907165 PMCID: PMC11073094 DOI: 10.1007/s00018-022-04457-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Body fluid homeostasis is critical to survival. The integrity of the hypothalamo-neurohypophysial system (HNS) is an important basis of the precise regulation of body fluid metabolism and arginine vasopressin (AVP) hormone release. Clinically, some patients with central diabetes insipidus (CDI) due to HNS lesions can experience recovery compensation of body fluid metabolism. However, whether the hypothalamus has the potential for structural plasticity and self-repair under pathological conditions remains unclear. Here, we report the repair and reconstruction of a new neurohypophysis-like structure in the hypothalamic median eminence (ME) after pituitary stalk electrical lesion (PEL). We show that activated and proliferating adult neural progenitor cells differentiate into new mature neurons, which then integrate with remodeled AVP fibers to reconstruct the local AVP hormone release neural circuit in the ME after PEL. We found that the transcription factor of NK2 homeobox 1 (NKX2.1) and the sonic hedgehog signaling pathway, mediated by NKX2.1, are the key regulators of adult hypothalamic neurogenesis. Taken together, our study provides evidence that adult ME neurogenesis is involved in the structural reconstruction of the AVP release circuit and eventually restores body fluid metabolic homeostasis during hypothalamic self-repair.
Collapse
Affiliation(s)
- Yichao Ou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mengjie Che
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haodong Gong
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guangsen Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junjie Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xingqin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yawei Liu
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
27
|
The role of ciliopathy-associated type 3 adenylyl cyclase in infanticidal behavior in virgin adult male mice. iScience 2022; 25:104534. [PMID: 35754726 PMCID: PMC9218507 DOI: 10.1016/j.isci.2022.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Virgin adult male mice often display killing of alien newborns, defined as infanticide, and this behavior is dependent on olfactory signaling. Olfactory perception is achieved by the main olfactory system (MOS) or vomeronasal system (VNS). Although it has been established that the VNS is crucial for infanticide in male mice, the role of the MOS in infanticide remains unknown. Herein, by producing lesions via ZnSO4 perfusion and N-methyl-D-aspartic acid stereotactic injection, we demonstrated that the main olfactory epithelium (MOE), anterior olfactory nucleus (AON), or ventromedial hypothalamus (VMH) is crucial for infanticide in adult males. By using CRISPR-Cas9 coupled with adeno-associated viruses to induce specific knockdown of type 3 adenylyl cyclase (AC3) in these tissues, we further demonstrated that AC3, a ciliopathy-associated protein, in the MOE and the expression of related proteins in the AON or VMH are necessary for infanticidal behavior in virgin adult male mice. MOE lesions and knockdown of AC3 in the MOE result in abnormal infanticidal behavior The infanticidal behavior of male mice is impaired by lesioning of the AON or VMH AC3 knockdown in the AON or VMH affects the infanticidal behavior of male mice
Collapse
|
28
|
Buck J, Manion MTC, Zhang W, Glasper ER, Wang KH. Comparative anatomical analysis of dopamine systems in Mus musculus and Peromyscus californicus. Brain Struct Funct 2022; 227:2219-2227. [PMID: 35501609 PMCID: PMC11115318 DOI: 10.1007/s00429-022-02497-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/07/2022] [Indexed: 01/11/2023]
Abstract
Dopamine plays important roles in motivational and social behaviors in mammals, and it has been implicated in several human neurological and psychiatric disorders. Rodents are used extensively as experimental models to study dopamine function in health and disease. However, interspecies differences of dopamine systems remain incompletely characterized. Here, we assessed whether the commonly referenced anatomical organization of dopamine systems in Mus musculus differs from another rodent species, Peromyscus californicus, which exhibits unique social behaviors such as biparental care. We applied tyrosine hydroxylase immunofluorescence labeling and high-throughput microscopy to establish whole-brain maps of dopamine systems in P. californicus. By comparing these maps to those from M. musculus, we identified unexpected anatomical similarity and difference between these two species. A sex difference in dopamine neurons at the anteroventral periventricular nucleus of hypothalamus, which has been implicated in regulating the maternal behaviors of the uniparental M. musculus, is similarly present in the biparental P. californicus. In contrast, major interspecies differences from M. musculus are found in the ventral midbrain and striatum of P. californicus, including the expansion of midbrain dopamine neurons into the ventral substantia nigra and the presence of an internal capsule-like white matter tract that demarcates a dorsomedial area from the rest of the striatum. These features identified in P. californicus resemble the anatomical organization of the primate brain more closely compared to those in M. musculus. Our findings suggest that P. californicus is a unique model organism for studying the evolution of dopamine systems in mammals and the disorders of dopamine systems.
Collapse
Affiliation(s)
- Justin Buck
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Program in Neurobiology and Behavior, Columbia University, New York, NY, 10027, USA
| | - Matthew T C Manion
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, USA
| | - Wenyu Zhang
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Erica R Glasper
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, USA
- Department of Neuroscience and Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43235, USA
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
29
|
Phillipps HR, Khant Aung Z, Grattan DR. Elevated prolactin secretion during proestrus in mice: Absence of a defined surge. J Neuroendocrinol 2022; 34:e13129. [PMID: 35491086 PMCID: PMC9285400 DOI: 10.1111/jne.13129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Throughout the reproductive cycle in rodents, prolactin levels are generally low. In some species, including rats, a prolactin surge occurs on proestrus with peak concentrations coinciding with the preovulatory luteinizing hormone (LH) surge. In mice, however, there are conflicting reports relating to the occurrence and timing of a proestrous prolactin surge. To gain further insight into the incidence and characteristics of this surge in mice, we have used serial tail tip blood sampling and trunk blood collection from both C57BL/6J (inbred) and Swiss Webster (outbred) mouse strains to build a profile of prolactin secretion during proestrus in individual mice. A clearly defined LH surge was detected in most animals, suggesting the blood sampling approach was suitable for detecting patterns of hormone secretion on proestrus. Despite this, levels of prolactin were quite variable between individuals. Overall both mouse strains showed a generalized rise in prolactin levels on the day of proestrus compared with levels seen in diestrus. This pattern is quite distinct from the discreet, circadian-entrained surge observed in rats.
Collapse
Affiliation(s)
- Hollian R. Phillipps
- Centre for Neuroendocrinology and Department of AnatomySchool of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology and Department of AnatomySchool of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - David R. Grattan
- Centre for Neuroendocrinology and Department of AnatomySchool of Biomedical Sciences, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
30
|
Bailey S, Isogai Y. Parenting as a model for behavioural switches. Curr Opin Neurobiol 2022; 73:102543. [PMID: 35483309 DOI: 10.1016/j.conb.2022.102543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Adaptability to ethologically relevant cues is fundamental for social interactions. As such, reproductive success relies on the ability of an animal to transition between parental and nonparental states. Though driven by genetically pre-programmed circuits, these instinctive repertoires are reshaped by internal state and experience, making parenting a robust model for the study of behavioural flexibility. As a functional wiring diagram for parenting emerges in mice, we are well placed to identify neural substrates and posit associated mechanisms underlying caregiving transitions. In this review, we discuss the importance of comprehensively characterising behaviour, highlight the role of shared circuit elements for behavioural malleability and explore plastic mechanisms that might guide switches between parental and nonparental repertoires.
Collapse
Affiliation(s)
- Shanice Bailey
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 26 Howland Street, London, W1T 4JG, United Kingdom
| | - Yoh Isogai
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 26 Howland Street, London, W1T 4JG, United Kingdom.
| |
Collapse
|
31
|
Inada K, Hagihara M, Tsujimoto K, Abe T, Konno A, Hirai H, Kiyonari H, Miyamichi K. Plasticity of neural connections underlying oxytocin-mediated parental behaviors of male mice. Neuron 2022; 110:2009-2023.e5. [PMID: 35443152 DOI: 10.1016/j.neuron.2022.03.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
The adult brain can flexibly adapt behaviors to specific life-stage demands. For example, while sexually naive male mice are aggressive to the conspecific young, they start to provide caregiving to infants around the time when their own young are expected. How such behavioral plasticity is implemented at the level of neural connections remains poorly understood. Here, using viral-genetic approaches, we establish hypothalamic oxytocin neurons as the key regulators of the parental caregiving behaviors of male mice. We then use rabies-virus-mediated unbiased screening to identify excitatory neural connections originating from the lateral hypothalamus to the oxytocin neurons to be drastically strengthened when male mice become fathers. These connections are functionally relevant, as their activation suppresses pup-directed aggression in virgin males. These results demonstrate the life-stage associated, long-distance, and cell-type-specific plasticity of neural connections in the hypothalamus, the brain region that is classically assumed to be hard-wired.
Collapse
Affiliation(s)
- Kengo Inada
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| | - Mitsue Hagihara
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kazuko Tsujimoto
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ayumu Konno
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
32
|
Prolactin-mediated restraint of maternal aggression in lactation. Proc Natl Acad Sci U S A 2022; 119:2116972119. [PMID: 35131854 PMCID: PMC8833212 DOI: 10.1073/pnas.2116972119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Heightened intruder-directed aggressive behavior in female mice is displayed during lactation to enable a mother to protect her offspring. Although recent work has identified that the ventromedial nucleus of the hypothalamus plays an important role in governing aggressive behavior, it is unknown how the changing hormones of pregnancy and lactation might regulate this behavior during specific reproductive states. Here, we show that prolactin-responsive neurons are activated during aggression and project to multiple brain regions with known roles in regulating behavior. Through neuron-specific and region-specific deletion of the prolactin receptor, our data reveal that prolactin is an important modulator of maternal aggression. By acting on glutamatergic neurons in the ventromedial nucleus, prolactin restrains maternal aggression, specifically in lactating female mice. Aggressive behavior is rarely observed in virgin female mice but is specifically triggered in lactation where it facilitates protection of offspring. Recent studies demonstrated that the hypothalamic ventromedial nucleus (VMN) plays an important role in facilitating aggressive behavior in both sexes. Here, we demonstrate a role for the pituitary hormone, prolactin, acting through the prolactin receptor in the VMN to control the intensity of aggressive behavior exclusively during lactation. Prolactin receptor deletion from glutamatergic neurons or specifically from the VMN resulted in hyperaggressive lactating females, with a marked shift from intruder-directed investigative behavior to very high levels of aggressive behavior. Prolactin-sensitive neurons in the VMN project to a wide range of other hypothalamic and extrahypothalamic regions, including the medial preoptic area, paraventricular nucleus, and bed nucleus of the stria terminalis, all regions known to be part of a complex neuronal network controlling maternal behavior. Within this network, prolactin acts in the VMN to specifically restrain male-directed aggressive behavior in lactating females. This action in the VMN may complement the role of prolactin in other brain regions, by shifting the balance of maternal behaviors from defense-related activities to more pup-directed behaviors necessary for nurturing offspring.
Collapse
|
33
|
Costa-Brito AR, Gonçalves I, Santos CRA. The brain as a source and a target of prolactin in mammals. Neural Regen Res 2022; 17:1695-1702. [PMID: 35017416 PMCID: PMC8820687 DOI: 10.4103/1673-5374.332124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prolactin is a polypeptide hormone associated with an extensive variety of biological functions. Among the roles of prolactin in vertebrates, some were preserved throughout evolution. This is the case of its function in the brain, where prolactin receptors, are expressed in different structures of the central nervous system. In the brain, prolactin actions are principally associated with reproduction and parental behavior, and involves the modulation of adult neurogenesis, neuroprotection, and neuroplasticity, especially during pregnancy, thereby preparing the brain to parenthood. Prolactin is mainly produced by specialized cells in the anterior pituitary gland. However, during vertebrate evolution many other extrapituitary tissues do also produce prolactin, like the immune system, endothelial cells, reproductive structures and in several regions of the brain. This review summarizes the relevance of prolactin for brain function, the sources of prolactin in the central nervous system, as well as its local production and secretion. A highlight on the impact of prolactin in human neurological diseases is also provided.
Collapse
Affiliation(s)
- Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
34
|
Pereira M, Smiley KO, Lonstein JS. Parental Behavior in Rodents. ADVANCES IN NEUROBIOLOGY 2022; 27:1-53. [PMID: 36169811 DOI: 10.1007/978-3-030-97762-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Members of the order Rodentia are among the best-studied mammals for understanding the patterns, outcomes, and biological determinants of maternal and paternal caregiving. This research has provided a wealth of information but has historically focused on just a few rodents, mostly members of the two Myomorpha families that easily breed and can be studied within a laboratory setting (including laboratory rats, mice, hamsters, voles, gerbils). It is unclear how well this small collection of animals represents the over 2000 species of extant rodents. This chapter provides an overview of the hormonal and neurobiological systems involved in parental care in rodents, with a purposeful eye on providing information known or could be gleaned about parenting in various less-traditional members of Rodentia. We conclude from this analysis that the few commonly studied rodents are not necessarily even representative of the highly diverse members of Myomorpha, let alone other rodent suborders, and that additional laboratory and field studies of members of this order more broadly would surely provide invaluable information toward revealing a more representative picture of the rich diversity in rodent parenting.
Collapse
Affiliation(s)
- Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kristina O Smiley
- Centre for Neuroendocrinology & Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
35
|
Prevot V. International Neuroendocrine Federation: Year 2020 in Review. J Neuroendocrinol 2021; 33:e13059. [PMID: 34738672 DOI: 10.1111/jne.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
In this “Year 2020 in Review”, we highlight a few major achievements selected from the work of 10 member societies of the International Neuroendocrine Federation, encompassing national, regional and thematic societies from around 30 countries. Despite the Covid‐19 pandemic, many remarkable breakthroughs have come to light in 2020, testifying to the dedication of our researchers and providing a ray of optimism as we head towards the 10th International Congress of Neuroendocrinology (ICN) to be held in Glasgow in August 2022.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, 59000, France
| |
Collapse
|
36
|
Autry AE, O'Connell LA. The Parental Dilemma: How Evolution of Diverse Strategies for Infant Care Informs Social Behavior Circuits. Front Neural Circuits 2021; 15:734474. [PMID: 34867211 PMCID: PMC8636452 DOI: 10.3389/fncir.2021.734474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | | |
Collapse
|
37
|
Autry AE, Wu Z, Kapoor V, Kohl J, Bambah-Mukku D, Rubinstein ND, Marin-Rodriguez B, Carta I, Sedwick V, Tang M, Dulac C. Urocortin-3 neurons in the mouse perifornical area promote infant-directed neglect and aggression. eLife 2021; 10:e64680. [PMID: 34423776 PMCID: PMC8452308 DOI: 10.7554/elife.64680] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
While recent studies have uncovered dedicated neural pathways mediating the positive control of parenting, the regulation of infant-directed aggression and how it relates to adult-adult aggression is poorly understood. Here we show that urocortin-3 (Ucn3)-expressing neurons in the hypothalamic perifornical area (PeFAUcn3) are activated during infant-directed attacks in males and females, but not other behaviors. Functional manipulations of PeFAUcn3 neurons demonstrate the role of this population in the negative control of parenting in both sexes. PeFAUcn3 neurons receive input from areas associated with vomeronasal sensing, stress, and parenting, and send projections to hypothalamic and limbic areas. Optogenetic activation of PeFAUcn3 axon terminals in these regions triggers various aspects of infant-directed agonistic responses, such as neglect, repulsion, and aggression. Thus, PeFAUcn3 neurons emerge as a dedicated circuit component controlling infant-directed neglect and aggression, providing a new framework to understand the positive and negative regulation of parenting in health and disease.
Collapse
Affiliation(s)
- Anita E Autry
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of MedicineBronxUnited States
| | - Zheng Wu
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Vikrant Kapoor
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Johannes Kohl
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Dhananjay Bambah-Mukku
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Nimrod D Rubinstein
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Brenda Marin-Rodriguez
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Ilaria Carta
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of MedicineBronxUnited States
| | - Victoria Sedwick
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of MedicineBronxUnited States
| | - Ming Tang
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
- FAS Informatics Group, Harvard UniversityCambridgeUnited States
| | - Catherine Dulac
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| |
Collapse
|
38
|
Raam T, Hong W. Organization of neural circuits underlying social behavior: A consideration of the medial amygdala. Curr Opin Neurobiol 2021; 68:124-136. [PMID: 33940499 DOI: 10.1016/j.conb.2021.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
The medial amygdala (MeA) is critical for the expression of a broad range of social behaviors, and is also connected to many other brain regions that mediate those same behaviors. Here, we summarize recent advances toward elucidating mechanisms that enable the MeA to regulate a diversity of social behaviors, and also consider what role the MeA plays within the broader network of regions that orchestrate social sensorimotor transformations. We outline the molecular, anatomical, and electrophysiological features of the MeA that segregate distinct social behaviors, propose experimental strategies to disambiguate sensory representations from behavioral function in the context of a social interaction, and consider to what extent MeA function may overlap with other regions mediating similar behaviors.
Collapse
Affiliation(s)
- Tara Raam
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
39
|
Wei D, Talwar V, Lin D. Neural circuits of social behaviors: Innate yet flexible. Neuron 2021; 109:1600-1620. [PMID: 33705708 DOI: 10.1016/j.neuron.2021.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Social behaviors, such as mating, fighting, and parenting, are fundamental for survival of any vertebrate species. All members of a species express social behaviors in a stereotypical and species-specific way without training because of developmentally hardwired neural circuits dedicated to these behaviors. Despite being innate, social behaviors are flexible. The readiness to interact with a social target or engage in specific social acts can vary widely based on reproductive state, social experience, and many other internal and external factors. Such high flexibility gives vertebrates the ability to release the relevant behavior at the right moment and toward the right target. This maximizes reproductive success while minimizing the cost and risk associated with behavioral expression. Decades of research have revealed the basic neural circuits underlying each innate social behavior. The neural mechanisms that support behavioral plasticity have also started to emerge. Here we provide an overview of these social behaviors and their underlying neural circuits and then discuss in detail recent findings regarding the neural processes that support the flexibility of innate social behaviors.
Collapse
Affiliation(s)
- Dongyu Wei
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Vaishali Talwar
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
40
|
Valente S, Marques T, Lima SQ. No evidence for prolactin's involvement in the post-ejaculatory refractory period. Commun Biol 2021; 4:10. [PMID: 33398068 PMCID: PMC7782750 DOI: 10.1038/s42003-020-01570-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023] Open
Abstract
In many species, ejaculation is followed by a state of decreased sexual activity, the post-ejaculatory refractory period. Several lines of evidence have suggested prolactin, a pituitary hormone released around the time of ejaculation in humans and other animals, to be a decisive player in the establishment of the refractory period. However, data supporting this hypothesis is controversial. We took advantage of two different strains of house mouse, a wild derived and a classical laboratory strain that differ substantially in their sexual performance, to investigate prolactin's involvement in sexual activity and the refractory period. First, we show that there is prolactin release during sexual behavior in male mice. Second, using a pharmacological approach, we show that acute manipulations of prolactin levels, either mimicking the natural release during sexual behavior or inhibiting its occurrence, do not affect sexual activity or shorten the refractory period, respectively. Therefore, we show compelling evidence refuting the idea that prolactin released during copulation is involved in the establishment of the refractory period, a long-standing hypothesis in the field of behavioral endocrinology.
Collapse
Affiliation(s)
- Susana Valente
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, s/n Lisboa, Portugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4200-465, Porto, Portugal
| | - Tiago Marques
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA
- Center for Brains, Minds and Machines, MIT, Cambridge, MA, 02139, USA
| | - Susana Q Lima
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, s/n Lisboa, Portugal.
| |
Collapse
|
41
|
Zhuo C, Xu Y, Wang H, Fang T, Chen J, Zhou C, Li Q, Liu J, Xu S, Yao C, Yang W, Yang A, Li B, Chen Y, Tian H, Lin C. Safety and Efficacy of High-Dose Vitamin B6 as an Adjunctive Treatment for Antipsychotic-Induced Hyperprolactinemia in Male Patients With Treatment-Resistant Schizophrenia. Front Psychiatry 2021; 12:681418. [PMID: 34512411 PMCID: PMC8426548 DOI: 10.3389/fpsyt.2021.681418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the safety and efficacy of high-dose vitamin B6 (vB6) as an adjunct treatment for antipsychotic-induced hyperprolactinemia (AIHP) in male patients with treatment-resistant schizophrenia (TRS). In this randomized double-blinded controlled study, patients were randomized (1:1) into a control group given aripiprazole (ARI; 10 mg/day; n = 100) or an intervention group given vB6 (300 mg/12 h for 16 weeks; n = 100). Prolactin levels, psychotic symptoms [Positive and Negative Syndrome Scale (PANSS)], cognitive function [MATRICS Consensus Cognitive Battery (MCCB)], liver function, kidney function, growth hormone level, micronutrient levels, blood lipids, and adverse secondary effects (ASEs)[Treatment Emergent Symptom Scale (TESS) and Barnes-Akathisia scale] were monitored. After a 16-week treatment period, the vB6 group showed a 68.1% reduction in serum prolactin levels (from 95.52 ± 6.30 μg/L to 30.43 ± 18.65 μg/L) while the ARI group showed only a 37.4% reduction (from 89.07 ± 3.59 μg/L to 55.78 ± 7.39 μg/L). During weeks 1-4, both treatments reduced prolactin similarly. Subsequently, the ARI effect plateaued, while the vB6 effect remained robust. The vB6 group showed better alleviation of psychotic symptoms and cognitive impairment. No serious ASEs were observed; ASEs were more frequent in the ARI group. AIHP reduction efficacy of vB6 was associated with baseline prolactin and triglyceride levels, total vB6 dosage, and education level. In conclusion, compared with the ARI group, TRS patients given vB6 showed better attenuation of AIHP, lower ASE scores, and greater improvements in clinical symptoms and cognitive impairments. These results support further consideration of vB6 as a putative treatment for AIHP. Trial Registration: ChiCTR1800014755.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China.,Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Mental Disorder Therapy Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Tao Fang
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China.,Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China
| | - Jiayue Chen
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China.,Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Qianchen Li
- Department of Pharmacology, The First Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Jie Liu
- Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Shuli Xu
- Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Cong Yao
- Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Weiliang Yang
- Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Anqu Yang
- Department of Treatment Resistant Schizophrenia, Tianjin Kangtai Hospital, Tianjin, China
| | - Bo Li
- Department of Treatment Resistant Schizophrenia, Tianjin Kangtai Hospital, Tianjin, China
| | - Yuhui Chen
- Department of Treatment Resistant Schizophrenia, Tianjin Kangtai Hospital, Tianjin, China
| | - Hongjun Tian
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China.,Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China
| | - Chongguang Lin
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|
42
|
Zamora-Moratalla A, Martín ED. Prolactin enhances hippocampal synaptic plasticity in female mice of reproductive age. Hippocampus 2020; 31:281-293. [PMID: 33285014 PMCID: PMC7983975 DOI: 10.1002/hipo.23288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/27/2023]
Abstract
Dynamic signaling between the endocrine system (ES) and the nervous system (NS) is essential for brain and body homeostasis. In particular, reciprocal interaction occurs during pregnancy and motherhood that may involve changes in some brain plasticity processes. Prolactin (PRL), a hormone with pleiotropic effects on the NS, promotes maternal behavior and has been linked to modifications in brain circuits during motherhood; however, it is unclear whether PRL may regulate synaptic plasticity. Therefore, the main aim of the present work was to determine the cellular and molecular mechanisms triggered by PRL that regulate synaptic plasticity in the hippocampus. By analyzing extracellular recordings in CA3‐CA1 synapses of hippocampal slices, we report that PRL modifies short and long‐term synaptic plasticity in female mice of reproductive age, but not in sexually immature females or adult males. This effect is carried out through mechanisms that include participation of GABAA receptors and activation of the JAK2‐mediated signaling pathway. These findings show for the first time how PRL enhances the synaptic strength in hippocampal circuits and that this effect is sexually dimorphic, which would influence complex brain processes in physiological conditions like pregnancy and lactation.
Collapse
Affiliation(s)
- Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
43
|
Vahaba DM. Prolactin makes rodent dads care for their rug rats. J Exp Biol 2020. [DOI: 10.1242/jeb.214593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Mondal R, Lahiri D, Deb S, Bandyopadhyay D, Shome G, Sarkar S, Paria SR, Thakurta TG, Singla P, Biswas SC. COVID-19: Are we dealing with a multisystem vasculopathy in disguise of a viral infection? J Thromb Thrombolysis 2020; 50:567-579. [PMID: 32627126 PMCID: PMC7335630 DOI: 10.1007/s11239-020-02210-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
After the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the last two decades, the world is facing its new challenge in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic with unprecedented global response. With the expanding domain of presentations in COVID-19 patients, the full range of manifestations is yet to unfold. The classical clinical symptoms for SARS-CoV-2 affected patients are dry cough, high fever, dyspnoea, lethal pneumonia whereas many patients have also been found to be associated with a few additional signs and clinical manifestations of isolated vasculopathy. Albeit a deep and profound knowledge has been gained on the clinical features and management of COVID-19, less clear association has been provided on SARS-CoV-2 mediated direct or indirect vasculopathy and its possible correlation with disease prognosis. The accumulative evidences suggest that novel coronavirus, apart from its primary respiratory confinement, may also invade vascular endothelial cells of several systems including cerebral, cardio-pulmonary as well as renal microvasculature, modulating multiple visceral perfusion indices. Here we analyse the phylogenetic perspective of SARS-CoV-2 along with other strains of β-coronaviridae from a standpoint of vasculopathic derangements. Based on the existing case reports, literature and open data bases, we also analyse the differential pattern of vasculopathy related changes in COVID-19 positive patients. Besides, we debate the need of modulation in clinical approach from a hemodynamical point of view, as a measure towards reducing disease transmission, morbidity and mortality in SARS-CoV-2 affected patients.
Collapse
Affiliation(s)
- Ritwick Mondal
- Institute of Post Graduate Medical Education and Research, SSKM Hospital, 52/1A, S.N. Pandit Street, Kolkata, 700025, India
| | - Durjoy Lahiri
- Institute of Post Graduate Medical Education and Research, SSKM Hospital, 52/1A, S.N. Pandit Street, Kolkata, 700025, India.
| | - Shramana Deb
- S.N. Pradhan Centre for Neuroscience, University of Calcutta, Kolkata, India
| | - Deebya Bandyopadhyay
- Institute of Post Graduate Medical Education and Research, SSKM Hospital, 52/1A, S.N. Pandit Street, Kolkata, 700025, India
| | - Gourav Shome
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Sukanya Sarkar
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sudeb R Paria
- Institute of Post Graduate Medical Education and Research, SSKM Hospital, 52/1A, S.N. Pandit Street, Kolkata, 700025, India
| | | | - Pratibha Singla
- Gian Sagar Medical College and Hospital, Patiala, Punjab, India
| | | |
Collapse
|
45
|
|
46
|
Shibata S, Arima H, Asayama K, Hoshide S, Ichihara A, Ishimitsu T, Kario K, Kishi T, Mogi M, Nishiyama A, Ohishi M, Ohkubo T, Tamura K, Tanaka M, Yamamoto E, Yamamoto K, Itoh H. Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens Res 2020; 43:1028-1046. [PMID: 32737423 PMCID: PMC7393334 DOI: 10.1038/s41440-020-0515-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected more than seven million people worldwide, contributing to 0.4 million deaths as of June 2020. The fact that the virus uses angiotensin-converting enzyme (ACE)-2 as the cell entry receptor and that hypertension as well as cardiovascular disorders frequently coexist with COVID-19 have generated considerable discussion on the management of patients with hypertension. In addition, the COVID-19 pandemic necessitates the development of and adaptation to a “New Normal” lifestyle, which will have a profound impact not only on communicable diseases but also on noncommunicable diseases, including hypertension. Summarizing what is known and what requires further investigation in this field may help to address the challenges we face. In the present review, we critically evaluate the existing evidence for the epidemiological association between COVID-19 and hypertension. We also summarize the current knowledge regarding the pathophysiology of SARS-CoV-2 infection with an emphasis on ACE2, the cardiovascular system, and the kidney. Finally, we review evidence on the use of antihypertensive medication, namely, ACE inhibitors and angiotensin receptor blockers, in patients with COVID-19.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Hisatomi Arima
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kei Asayama
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihiko Ishimitsu
- Department of Nephrology and Hypertension, Dokkyo Medical University, Tochigi, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takuya Kishi
- Department of Graduate School of Medicine (Cardiology), International University of Health and Welfare, Fukuoka, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masami Tanaka
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Itoh
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|