1
|
Lei Y, Wang Y, Tang S, Yang J, Lai D, Qiu Q. The adaptive immune system in the retina of diabetics. Surv Ophthalmol 2024:S0039-6257(24)00137-1. [PMID: 39566563 DOI: 10.1016/j.survophthal.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
As the prevalence of diabetes mellitus increases each year, its most common microvascular complication, diabetic retinopathy (DR), is also on the rise. DR is now regarded as an inflammatory disease in which innate immunity plays a crucial role, and a large number of innate immune cells with associated cytokines are involved in the pathologic process of DR. The role of adaptive immunity in DR is seldom mentioned, probably due to the general perception of the immune privileged environment of the retina; however, in recent years there has been a gradual increase in research on the role of adaptive immunity in DR, and with the discovery of the retinal lymphatic system, it seems that the role of adaptive immunity can no longer be ignored. Here, we discuss the immunosuppressive environment of the retina, the phenomenon and potential mechanisms of lymphocyte infiltration in DR, and the role of the adaptive immune system in the diabetic retina, which may point the way for future research.
Collapse
Affiliation(s)
- Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Ding Y, Chen L, Xu J, Liu Q. NR2E3 inhibits the inflammation and apoptosis in diabetic retinopathy by regulating the AHR/IL-17A signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9081-9094. [PMID: 38884674 DOI: 10.1007/s00210-024-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Diabetic retinopathy (DR) is the most prevalent microvascular complication of diabetes mellitus, and it is the primary cause of blindness in the working-age population worldwide. Nevertheless, the pathogenic molecular mechanisms of DR remain elusive. Hub genes were identified through bioinformatics analysis in the GSE102485 and GSE60436 datasets. The DR mouse model was induced using streptozotocin (STZ, 150 mg/kg), and pathological changes in retinal tissue were assessed via HE staining. Apoptosis in retinal tissue cells was evaluated by the TUNEL assay. RT-qPCR and ELISA assays were employed to measure hub genes and inflammatory factor levels, respectively. The aryl hydrocarbon receptor (AHR)/interleukin (IL)-17A (AHR/IL-17A) pathway-associated proteins were detected by western blot. In the high glucose (HG)-induced ARPE-19 cells, CCK-8 and flow cytometry were used to perform cell function studies. Six hub genes associated with DR were screened. The expression levels of RHO, PRPH2, CRX, RCVRN, and NR2E3 were reduced, while the COL1A2 was elevated. NR2E3 overexpression reduced inflammatory factor (TNF-α, IL-1β, and IL-6) and cell apoptosis levels in DR. Furthermore, NR2E3 overexpression promoted HG-induced ARPE-19 cell proliferation. Mechanistically, NR2E3 overexpression facilitated the protein expression of AHR, while suppressing the IL-17 and ACT1 expressions. The introduction of Kyn-101, an AHR inhibitor, notably reversed the inhibitory effects of NR2E3 overexpression on inflammation and apoptosis, which were validated both in vivo and in vitro. NR2E3 inhibits the inflammation and apoptosis by regulating the AHR/IL-17A pathway, providing new insights into the DR treatment.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China
| | - Linjiang Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China
| | - Qiong Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China.
| |
Collapse
|
3
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Si Y, Chen Q, Xiong X, Zheng M. The association of inflammatory biomarkers with clinical outcomes in diabetic retinopathy participants: data from NHANES 2009-2018. Diabetol Metab Syndr 2024; 16:181. [PMID: 39075586 PMCID: PMC11285410 DOI: 10.1186/s13098-024-01419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVE The aim of this study was to assess the association of neutrophil lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), and system inflammation response index (SIRI) with the all-cause mortality and diabetes-cardiovascular mortality in participants with diabetic retinopathy (DR). METHODS A total of 572 participants with DR from NHANES were included, and divided into survival group (n = 440) and all-cause death group (n = 132). NLR = neutrophil count/lymphocyte count, MLR = monocyte count/lymphocyte count, SIRI = (neutrophil count × monocyte count)/lymphocyte count. We utilized the NHANES Public-Use Linked Mortality File through April 26, 2022, to determine mortality status. Diabetes-cardiovascular death was defined as death resulting from heart disease, cerebrovascular disease, or diabetes mellitus. The Spearson Correlation Analysis, Kaplan-Meier curves, Cox proportional hazards regression models, Restricted cubic spline plots and Decision Curve Analysis were used. RESULTS The all-cause mortality and diabetes-cardiovascular mortality were significantly higher in NLR ≥ 1.516, MLR ≥ 0.309, SIRI ≥ 0.756, and NLR + MLR + SIRI subgroups than NLR < 1.516, MLR < 0.309, SIRI < 0.756 subgroups, and other participants except NLR + MLR + SIRI (all P < 0.05). The HR of NLR, MLR, SIRI, NLR + MLR + SIRI for all-cause mortality were 1.979(1.13-3.468), 1.850(1.279-2.676), 1.821(1.096-3.025), 1.871(1.296-2.703), respectively. The hazard ratio of NLR, MLR, SIRI, NLR + MLR + SIRI for diabetes-cardiovascular mortality were 2.602(1.028-6.591), 2.673(1.483-4.818), 2.001(0.898-4.459), 2.554(1.426-4.575), respectively. In the restricted cubic spline plots, the relationship between NLR, MLR, SIRI and HR of all-cause mortality and diabetes-cardiovascular mortality was overall as "J" shaped. In both age < 60 and age > 60 years participants, the all-cause mortality and diabetes-cardiovascular mortality were significantly higher in NLR ≥ 1.516, MLR ≥ 0.309, SIRI ≥ 0.756, and NLR + MLR + SIRI subgroups than NLR < 1.516, MLR < 0.309, SIRI < 0.756 subgroups, and other participants except NLR + MLR + SIRI (all P < 0.05). CONCLUSION NLR, MLR, and SIRI may be three independent prognostic predictors for all-cause mortality and diabetes-cardiovascular mortality among individuals with DR. In practical clinical applications, combining NLR, MLR, and SIRI may enhance the prediction of all-cause mortality and diabetes-cardiovascular mortality in DR.
Collapse
Affiliation(s)
- Yueqiao Si
- Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qingwei Chen
- Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - XiaoJing Xiong
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Minming Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
5
|
Elahi R, Nazari M, Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. IL-17 in type II diabetes mellitus (T2DM) immunopathogenesis and complications; molecular approaches. Mol Immunol 2024; 171:66-76. [PMID: 38795686 DOI: 10.1016/j.molimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Chronic inflammation has long been considered the characteristic feature of type II diabetes mellitus (T2DM) Immunopathogenesis. Pro-inflammatory cytokines are considered the central drivers of the inflammatory cascade leading to β-cell dysfunction and insulin resistance (IR), two major pathologic events contributing to T2DM. Analyzing the cytokine profile of T2DM patients has also introduced interleukin-17 (IL-17) as an upstream regulator of inflammation, regarding its role in inducing the nuclear factor-kappa B (NF-κB) pathway. In diabetic tissues, IL-17 induces the expression of inflammatory cytokines and chemokines. Hence, IL-17 can deteriorate insulin signaling and β-cell function by activating the JNK pathway and inducing infiltration of neutrophils into pancreatic islets, respectively. Additionally, higher levels of IL-17 expression in patients with diabetic complications compared to non-complicated individuals have also proposed a role for IL-17 in T2DM complications. Here, we highlight the role of IL-17 in the Immunopathogenesis of T2DM and corresponding pathways, recent advances in preclinical and clinical studies targeting IL-17 in T2DM, and corresponding challenges and possible solutions.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
6
|
Li J, Zhao T, Sun Y. Interleukin-17A in diabetic retinopathy: The crosstalk of inflammation and angiogenesis. Biochem Pharmacol 2024; 225:116311. [PMID: 38788958 DOI: 10.1016/j.bcp.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetic retinopathy (DR) is a severe ocular complication of diabetes which can leads to irreversible vision loss in its late-stage. Chronic inflammation results from long-term hyperglycemia contributes to the pathogenesis and progression of DR. In recent years, the interleukin-17 (IL-17) family have attracted the interest of researchers. IL-17A is the most widely explored cytokine in IL-17 family, involved in various acute and chronic inflammatory diseases. Growing body of evidence indicate the role of IL-17A in the pathogenesis of DR. However, the pro-inflammatory and pro-angiogenic effect of IL-17A in DR have not hitherto been reviewed. Gaining an understanding of the pro-inflammatory role of IL-17A, and how IL-17A control/impact angiogenesis pathways in the eye will deepen our understanding of how IL-17A contributes to DR pathogenesis. Herein, we aimed to thoroughly review the pro-inflammatory role of IL-17A in DR, with focus in how IL-17A impact inflammation and angiogenesis crosstalk.
Collapse
Affiliation(s)
- Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
7
|
Yang Y, Wen Z, Zhang Y, Li P, Zhao J, Sun Y, Wang P, Lin W. Berberine alleviates diabetic retinopathy by regulating the Th17/Treg ratio. Immunol Lett 2024; 267:106862. [PMID: 38702033 DOI: 10.1016/j.imlet.2024.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1β, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1β, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-β) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, PR China
| | - Zexin Wen
- Department of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, PR China
| | - Yanli Zhang
- Department of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, PR China
| | - Pengfei Li
- School of Medicine, Xinjiang Tarim University, Alar 843300, Xinjiang, PR China
| | - Junyao Zhao
- Department of Public scientific research platform, School of clinical and basic medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China
| | - Yujie Sun
- Department of Public scientific research platform, School of clinical and basic medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China
| | - Peng Wang
- Department of Public scientific research platform, School of clinical and basic medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China
| | - Wei Lin
- Department of Public scientific research platform, School of clinical and basic medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China; Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China; Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250017, Shandong, PR China.
| |
Collapse
|
8
|
Li X, Qin W, Qin X, Wu D, Gao C, Luo Y, Xu M. Meta-analysis of the relationship between ocular and peripheral serum IL-17A and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1320632. [PMID: 38711982 PMCID: PMC11070548 DOI: 10.3389/fendo.2024.1320632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose A systematic evaluation and Meta-analysis were performed to determine the relationship between IL-17A levels in ocular aqueous and peripheral venous serum samples and diabetic retinopathy (DR). Methods PubMed, Embase, Web of Science, and CNKI databases were searched from the time of library construction to 2023-09-20.The results were combined using a random-effects model, sensitivity analyses were performed to determine whether the arithmetic was stable and reliable, and subgroup analyses were used to look for possible sources of heterogeneity. Results A total of 7 case-control studies were included. The level of IL-17A was higher in the Nonproliferative DR(NPDR) group than in the Non-DR(NDR) group [SMD=2.07,95%CI(0.45,3.68),P=0.01], and the level of IL-17A in the proliferating DR(PDR) group was higher than that of the NDR group [SMD=4.66,95%CI(1.23,8.08),P<0.00001]. IL-17A levels in peripheral serum and atrial fluid were significantly higher in NPDR and PDR patients than in non-DR patients in subgroup analyses, and detection of peripheral serum IL-17A concentrations could help to assess the risk of progression from NPDR to PDR. Sensitivity analyses suggested that the results of the random-effects arithmetic were stable and reliable. Subgroup analyses based on assay method and sample source showed that the choice of these factors would largely influence the relationship between IL-17A levels and DR. Conclusion Elevated peripheral serum and ocular aqueous humor IL-17A levels in diabetic patients are associated with the risk of DR, IL-17A may serve as a potential predictor or therapeutic target for DR, and IL-17A may be an important predictor of inflammation for the progression of NPDR to PDR. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024532900.
Collapse
Affiliation(s)
- Xiaodong Li
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Wei Qin
- Zhongshan Hospital of Traditional Chinese Medicine, Ophthalmology, Zhongshan, China
| | - Xuewei Qin
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Dandan Wu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Chenyuan Gao
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Yinyue Luo
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Mingchao Xu
- Traditional Chinese Medicine Hospital of Meishan, Ophthalmology, Meishan, China
| |
Collapse
|
9
|
Liao D, Fan W, Li N, Li R, Wang X, Liu J, Wang H, Hou S. A single cell atlas of circulating immune cells involved in diabetic retinopathy. iScience 2024; 27:109003. [PMID: 38327792 PMCID: PMC10847734 DOI: 10.1016/j.isci.2024.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
This study focused on examining the exact role of circulating immune cells in the development of diabetic retinopathy (DR). In vitro co-culture experiments showed that peripheral blood mononuclear cells (PBMCs) from patients with type 1 DR crucially modulated the biological functions of human retinal microvascular endothelial cells (HRMECs), consequently disrupting their normal functionality. Single-cell RNA sequencing (scRNA-seq) study revealed unique differentially expressed genes and pathways in circulating immune cells among healthy controls, non-diabetic retinopathy (NDR) patients, and DR patients. Of significance was the observed upregulation of JUND in each subset of PBMCs in patients with type 1 DR. Further studies showed that downregulating JUND in DR patient-derived PBMCs led to the amelioration of HRMEC dysfunction. These findings highlighted the notable alterations in the transcriptomic patterns of circulating immune cells in type 1 DR patients and underscored the significance of JUND as a key factor for PBMCs in participating in the pathogenesis of DR.
Collapse
Affiliation(s)
- Dan Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
- The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Wei Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| | - Na Li
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| | - Hong Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
| |
Collapse
|
10
|
Wang C, Hu Y, Liang F. Text Mining and Drug Discovery Analysis: A Comprehensive Approach to Investigate Diabetes-Induced Osteoporosis. Int J Med Sci 2024; 21:464-473. [PMID: 38250601 PMCID: PMC10797669 DOI: 10.7150/ijms.90829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose: Osteoporosis (OP) and diabetes are prevalent diseases in orthopedic and endocrinology departments, with OP potentially arising as a complication of diabetes. However, the mechanism underlying diabetes-induced osteoporosis (DOP) remains enigmatic, and drug discovery in this domain is restricted, hindering research into the DOP's etiology and treatment. With the ultimate goal of preventing OP in diabetic patients, the objective of this study is to mine the genes and pathways linked to DOP using bioinformatics and databases. Method: The present study employed text mining as the initial approach to retrieve genes commonly associated with diabetes and OP. Subsequently, functional annotation was conducted to investigate the roles and functionalities. In order to explore the interactions between proteins relevant to DOP, we constructed protein-protein interaction (PPI) networks. Furthermore, to obtain key genes and candidate drugs for DOP treatment, we conducted drug-gene interaction (DGI) analysis, complemented by a thorough examination of transcriptional factors (TFs)-miRNA co-regulation. Results: The results through text mining revealed 110 genes that are commonly associated with both diabetes and OP. Subsequent enrichment analysis narrowed down the list to 95 symbols that were involved in PPI analysis. After DGI analysis, we identified 7 genes targeted by 11 drugs, which represent candidates for treating DOP. Conclusion: This study unveils ANDECALIXIMAB, SILTUXIMAB, OLOKIZUMAB, SECUKINUMAB, and IXEKIZUMAB as promising potential drugs for DOP treatment, demonstrating the significance of utilizing text mining and pathway analysis to investigate disease mechanisms and explore existing therapeutic options.
Collapse
Affiliation(s)
| | - Yihe Hu
- ✉ Corresponding author: Feng Liang, . Yihe Hu,
| | - Feng Liang
- ✉ Corresponding author: Feng Liang, . Yihe Hu,
| |
Collapse
|
11
|
Ferreira LB, Williams KA, Best G, Haydinger CD, Smith JR. Inflammatory cytokines as mediators of retinal endothelial barrier dysfunction in non-infectious uveitis. Clin Transl Immunology 2023; 12:e1479. [PMID: 38090668 PMCID: PMC10714664 DOI: 10.1002/cti2.1479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 06/30/2024] Open
Abstract
Characterised by intraocular inflammation, non-infectious uveitis includes a large group of autoimmune and autoinflammatory diseases that either involve the eye alone or have both ocular and systemic manifestations. When non-infectious uveitis involves the posterior segment of the eye, specifically the retina, there is substantial risk of vision loss, often linked to breakdown of the inner blood-retinal barrier. This barrier is formed by non-fenestrated retinal vascular endothelial cells, reinforced by supporting cells that include pericytes, Müller cells and astrocytes. Across the published literature, a group of inflammatory cytokines stand out as prominent mediators of intraocular inflammation, with effects on the retinal endothelium that may contribute to breakdown of the inner blood-retinal barrier, namely tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-17 and chemokine C-C motif ligand (CCL)2. This article reviews the function of each cytokine and discusses the evidence for their involvement in retinal endothelial barrier dysfunction in non-infectious uveitis, including basic laboratory investigations, studies of ocular fluids collected from patients with non-infectious uveitis, and results of clinical treatment trials. The review also outlines gaps in knowledge in this area. Understanding the disease processes at a molecular level can suggest treatment alternatives that are directed against appropriate biological targets to protect the posterior segment of eye and preserve vision in non-infectious uveitis.
Collapse
Affiliation(s)
| | - Keryn A Williams
- Flinders University College of Medicine and Public HealthAdelaideSAAustralia
| | - Giles Best
- Flinders University College of Medicine and Public HealthAdelaideSAAustralia
| | - Cameron D Haydinger
- Flinders University College of Medicine and Public HealthAdelaideSAAustralia
| | - Justine R Smith
- Flinders University College of Medicine and Public HealthAdelaideSAAustralia
| |
Collapse
|
12
|
Monickaraj F, Acosta G, Cabrera AP, Das A. Transcriptomic Profiling Reveals Chemokine CXCL1 as a Mediator for Neutrophil Recruitment Associated With Blood-Retinal Barrier Alteration in Diabetic Retinopathy. Diabetes 2023; 72:781-794. [PMID: 36930735 PMCID: PMC10202768 DOI: 10.2337/db22-0619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/12/2023] [Indexed: 03/19/2023]
Abstract
Inflammation plays an important role in the pathogenesis of diabetic retinopathy (DR). To precisely define the inflammatory mediators, we examined the transcriptomic profile of human retinal endothelial cells exposed to advanced glycation end products, which revealed the neutrophil chemoattractant chemokine CXCL1 as one of the top genes upregulated. The effect of neutrophils in the alteration of the blood-retinal barrier (BRB) was further assessed in wild-type C57BL/6J mice intravitreally injected with recombinant CXCL1 as well as in streptozotocin-induced diabetic mice. Both intravitreally CXCL1-injected and diabetic animals showed significantly increased retinal vascular permeability, with significant increase in infiltration of neutrophils and monocytes in retinas and increased expression of chemokines and their receptors, proteases, and adhesion molecules. Treatment with Ly6G antibody for neutrophil depletion in both diabetic mice as well as CXCL1-injected animals showed significantly decreased retinal vascular permeability accompanied by decreased infiltration of neutrophils and monocytes and decreased expression of cytokines and proteases. CXCL1 level was significantly increased in the serum samples of patients with DR compared with samples of those without diabetes. These data reveal a novel mechanism by which the chemokine CXCL1, through neutrophil recruitment, alters the BRB in DR and, thus, serves as a potential novel therapeutic target. ARTICLE HIGHLIGHTS Intravitreal CXCL1 injection and diabetes result in increased retinal vascular permeability with neutrophil and monocyte recruitment. Ly6G antibody treatment for neutrophil depletion in both animal models showed decreased retinal permeability and decreased cytokine expression. CXCL1 is produced by retinal endothelial cells, pericytes, and astrocytes. CXCL1 level is significantly increased in serum samples of patients with diabetic retinopathy. CXCL1, through neutrophil recruitment, alters the blood-retinal barrier in diabetic retinopathy and, thus, may be used as a therapeutic target.
Collapse
Affiliation(s)
- Finny Monickaraj
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
- New Mexico VA Health Care System, Albuquerque, NM
| | - Gabriella Acosta
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
| | - Andrea P. Cabrera
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
| | - Arup Das
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
- New Mexico VA Health Care System, Albuquerque, NM
| |
Collapse
|
13
|
Hisamuddin ASDB, Naomi R, Manan KAB, Bahari H, Othman F, Embong H, Ismail A, Ahmed QU, Jumidil SH, Hussain MK, Zakaria ZA. The role of lutein-rich purple sweet potato leaf extract on the amelioration of diabetic retinopathy in streptozotocin-induced Sprague-Dawley rats. Front Pharmacol 2023; 14:1175907. [PMID: 37274105 PMCID: PMC10232805 DOI: 10.3389/fphar.2023.1175907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023] Open
Abstract
The objective of this study is to access the effect of purple sweet potato leaf (PSPL) extract on diabetic retinopathy (DR) of streptozotocin (STZ)-induced male Sprague-Dawley (SD) rats. In this study, rats were injected intraperitoneally with a single dose of 60 mg/kg STZ, and diabetes was confirmed on day 7. Rats were further divided into a few groups, which were then orally administered with one of the following treatments: 25 mg/kg of gliclazide (D25G), 200 mg/kg of PSPL extract (DT 200), and 400 mg/kg of PSPL extract (DT 400). However, the normal control (NS) and control group for diabetic (DNS) were given normal saline (NS) for 12 weeks. The results show that the treated group demonstrated a reduction in serum oral glucose tolerance test (OGTT) levels of DT 200 and DT 400, and an increase in the serum and retinal insulin levels, and restored oxidative stress markers in serum and retina on week 12. The PSPL extract exhibited protective effects in maintaining the kidney, liver, retina, and pancreas architecture in 400 mg/kg compared to the 200 mg/kg treated group and D25G, thereby restoring fully transparent lenses in diabetes-induced rats. In conclusion, 400 mg/kg PSPL is the most effective dose for the amelioration of STZ-induced DR pathology in male SD rats.
Collapse
Affiliation(s)
- Ahmad Safiyyu'd-din Bin Hisamuddin
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Sabah Universiti Malaysia, Kota Kinabalu, Sabah, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khairul Aiman Bin Manan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amin Ismail
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Kulliyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Siti Hadizah Jumidil
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Khairi Hussain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Sabah Universiti Malaysia, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
14
|
Huang Z, Liang J, Chen S, Ng TK, Brelén ME, Liu Q, Yang R, Xie B, Ke S, Chen W, Huang D. RIP3-mediated microglial necroptosis promotes neuroinflammation and neurodegeneration in the early stages of diabetic retinopathy. Cell Death Dis 2023; 14:227. [PMID: 36991017 PMCID: PMC10060420 DOI: 10.1038/s41419-023-05660-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 03/31/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness that poses significant public health concerns worldwide. Increasing evidence suggests that neuroinflammation plays a key role in the early stages of DR. Microglia, long-lived immune cells in the central nervous system, can become activated in response to pathological insults and contribute to retinal neuroinflammation. However, the molecular mechanisms of microglial activation during the early stages of DR are not fully understood. In this study, we used in vivo and in vitro assays to investigate the role of microglial activation in the early pathogenesis of DR. We found that activated microglia triggered an inflammatory cascade through a process called necroptosis, a newly discovered pathway of regulated cell death. In the diabetic retina, key components of the necroptotic machinery, including RIP1, RIP3, and MLKL, were highly expressed and mainly localized in activated microglia. Knockdown of RIP3 in DR mice reduced microglial necroptosis and decreased pro-inflammatory cytokines. Additionally, blocking necroptosis with the specific inhibitor GSK-872 improved retinal neuroinflammation and neurodegeneration, as well as visual function in diabetic mice. RIP3-mediated necroptosis was activated and contributed to inflammation in BV2 microglia under hyperglycaemic conditions. Our data demonstrate the importance of microglial necroptosis in retinal neuroinflammation related to diabetes and suggest that targeting necroptosis in microglia may be a promising therapeutic strategy for the early stages of DR.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China.
| | - Jiajian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaolang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Marten E Brelén
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
15
|
Wang C, Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev 2023; 194:114721. [PMID: 36773886 DOI: 10.1016/j.addr.2023.114721] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Eye drops are the most accessible therapy for ocular diseases, while inevitably suffering from their lower bioavailability which highly restricts the treatment efficacy. The introduction of nanotechnology has attracted considerable interest as it has advantages over conventional ones such as prolonged ocular surface retention time and enhanced ocular barrier penetrating properties, and achieving higher bioavailability and improved treatment efficacy. This review describes various ocular diseases treated with eye drops as well as the physiological and anatomical ocular barriers faced with through drug administration. It also summarizes the recent advances regarding the utilization of nanotechnology in developing eye drops, and how to optimize the nanocarrier-based ocular drug delivery systems. The prospective future research directions for nano-based eye drops are also discussed here.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
16
|
Shi Q, Wang Q, Wang Z, Lu J, Wang R. Systemic inflammatory regulators and proliferative diabetic retinopathy: A bidirectional Mendelian randomization study. Front Immunol 2023; 14:1088778. [PMID: 36845092 PMCID: PMC9950638 DOI: 10.3389/fimmu.2023.1088778] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Background Increasing evidence shows that systemic inflammation is an embedded mechanism of proliferative diabetic retinopathy (PDR). However, the specific systemic inflammatory factors involved in this process remained obscure. The study aimed to identify the upstream and downstream systemic regulators of PDR by using Mendelian randomization (MR) analyses. Methods We performed a bidirectional two-sample MR analysis implementing the results from genome-wide association studies for 41 serum cytokines from 8,293 Finnish individuals, and PDR from FinnGen consortium (2,025 cases vs. 284,826 controls) and eight cohorts of European ancestry (398 cases vs. 2,848 controls), respectively. The inverse-variance-weighted method was adopted as the main MR method, and four additional MR methods (MR-Egger, weighted-median, MR-pleiotropy residual sum and outlier (MR-PRESSO), and MR-Steiger filtering methods) were used for the sensitivity analyses. Results from FinnGen and eight cohorts were pooled into a meta-analysis. Results Our results showed that genetically predicted higher stem cell growth factor-β (SCGFb) and interleukin-8 were positively associated with an elevated risk of PDR, with a combined effect of one standard deviation (SD) increase in SCGFb and interleukin-8 causing 11.8% [95% confidence interval (CI): 0.6%, 24.2%]) and 21.4% [95% CI: 3.8%, 41.9%]) higher risk of PDR, respectively. In contrast, genetically predisposition to PDR showed a positive association with the increased levels of growth-regulated oncogene-α (GROa), stromal cell-derived factor-1 alpha (SDF1a), monocyte chemotactic protein-3 (MCP3), granulocyte colony-stimulating factor (GCSF), interleukin-12p70, and interleukin-2 receptor subunit alpha (IL-2ra). Conclusions Our MR study identified two upstream regulators and six downstream effectors of PDR, providing opportunities for new therapeutic exploitation of PDR onset. Nonetheless, these nominal associations of systemic inflammatory regulators and PDR require validation in larger cohorts.
Collapse
Affiliation(s)
- Qiqin Shi
- Department of Ophthalmology, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China
| | - Qiangsheng Wang
- Department of Haematology, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China
| | - Zhenqian Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiawen Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ruobing Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Taylor BE, Lee CA, Zapadka TE, Zhou AY, Barber KG, Taylor ZRR, Howell SJ, Taylor PR. IL-17A Enhances Retinal Neovascularization. Int J Mol Sci 2023; 24:ijms24021747. [PMID: 36675261 PMCID: PMC9866094 DOI: 10.3390/ijms24021747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Retinal neovascularization occurs in proliferative diabetic retinopathy, neovascular glaucoma, and age-related macular degeneration. This type of retinal pathology normally occurs in the later stages of these ocular diseases and is a prevalent cause of vision loss. Previously, we determined that Interleukin (IL)-17A plays a pivotal role in the onset and progression of non-proliferative diabetic retinopathy in diabetic mice. Unfortunately, none of our diabetic murine models progress to proliferative diabetic retinopathy. Hence, the role of IL-17A in vascular angiogenesis, neovascularization, and the onset of proliferative diabetic retinopathy was unclear. In the current study, we determined that diabetes-mediated IL-17A enhances vascular endothelial growth factor (VEGF) production in the retina, Muller glia, and retinal endothelial cells. Further, we determined that IL-17A can initiate retinal endothelial cell proliferation and can enhance VEGF-dependent vascular angiogenesis. Finally, by utilizing the oxygen induced retinopathy model, we determined that IL-17A enhances retinal neovascularization. Collectively, the results of this study provide evidence that IL-17A plays a pivotal role in vascular proliferation in the retina. Hence, IL-17A could be a potentially novel therapeutic target for retinal neovascularization, which can cause blindness in multiple ocular diseases.
Collapse
Affiliation(s)
- Brooklyn E. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Thomas E. Zapadka
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Amy Y. Zhou
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Zakary R. R. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott J. Howell
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
18
|
Zhou AY, Taylor BE, Barber KG, Lee CA, Taylor ZRR, Howell SJ, Taylor PR. Anti-IL17A Halts the Onset of Diabetic Retinopathy in Type I and II Diabetic Mice. Int J Mol Sci 2023; 24:ijms24021347. [PMID: 36674854 PMCID: PMC9860974 DOI: 10.3390/ijms24021347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
There are ~463 million diabetics worldwide, and more than half have diabetic retinopathy. Yet, treatments are still lacking for non-proliferative diabetic retinopathy. We and others previously provided evidence that Interleukin-17A (IL-17A) plays a pivotal role in non-proliferative diabetic retinopathy. However, all murine studies used Type I diabetes models. Hence, it was the aim of this study to determine if IL-17A induces non-proliferative diabetic retinopathy in Type II diabetic mice, as identified for Type I diabetes. While examining the efficacy of anti-IL-17A as a potential therapeutic in a short-term Type I and a long-term Type II diabetes model; using different routes of administration of anti-IL-17A treatments. Retinal inflammation was significantly decreased (p < 0.05) after Type I-diabetic mice received 1 intravitreal injection, and Type II-diabetic mice received seven intraperitoneal injections of anti-IL-17A. Further, vascular tight junction protein Zonula Occludens-1 (ZO-1) was significantly decreased in both Type I and II diabetic mice, which was significantly increased when mice received anti-IL-17A injections (p < 0.05). Similarly, tight junction protein Occludin degradation was halted in Type II diabetic mice that received anti-IL-17A treatments. Finally, retinal capillary degeneration was halted 6 months after diabetes was confirmed in Type II-diabetic mice that received weekly intraperitoneal injections of anti-IL-17A. These findings provide evidence that IL-17A plays a pivotal role in non-proliferative diabetic retinopathy in Type II diabetic mice, and suggests that anti-IL-17A could be a good therapeutic candidate for non-proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Amy Y. Zhou
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brooklyn E. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Chieh A. Lee
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zakary R. R. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott J. Howell
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
19
|
Yue T, Shi Y, Luo S, Weng J, Wu Y, Zheng X. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Front Immunol 2022; 13:1055087. [PMID: 36582230 PMCID: PMC9792618 DOI: 10.3389/fimmu.2022.1055087] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy is one of the most common complications of diabetes mellitus and the leading cause of low vision and blindness worldwide. Mounting evidence demonstrates that inflammation is a key mechanism driving diabetes-associated retinal disturbance, yet the pathophysiological process and molecular mechanisms of inflammation underlying diabetic retinopathy are not fully understood. Cytokines, chemokines, and adhesion molecules interact with each other to form a complex molecular network that propagates the inflammatory and pathological cascade of diabetic retinopathy. Therefore, it is important to understand and elucidate inflammation-related mechanisms behind diabetic retinopathy progression. Here, we review the current understanding of the pathology and pathogenesis of inflammation in diabetic retinopathy. In addition, we also summarize the relevant clinical trials to further suggest inflammation-targeted therapeutics for prevention and management of diabetic retinopathy.
Collapse
Affiliation(s)
- Tong Yue
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Shi
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Sihui Luo
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yali Wu
- Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Yali Wu, ; Xueying Zheng,
| | - Xueying Zheng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Yali Wu, ; Xueying Zheng,
| |
Collapse
|
20
|
The Role of Adaptive Immunity in Diabetic Retinopathy. J Clin Med 2022; 11:jcm11216499. [PMID: 36362727 PMCID: PMC9657718 DOI: 10.3390/jcm11216499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy (DR) is currently one of the common causes of vision loss in working-age adults. It is clinically diagnosed and classified according to the vascular changes in the fundus. However, the activation of immune cells occurs before these vascular changes become detectable. These, together with molecular studies and the positive clinical outcomes of anti-inflammatory treatment, highlight the pivotal involvement of the immune system. The role of innate immunity in DR pathophysiology has been studied in depth, but the contribution of adaptive immunity remains largely elusive. This review aims to summarize our current understanding of the activation mechanism of adaptive immunity in DR microenvironments and to discuss the relationship between adaptive immunity and local vascular units or innate immunity, which opens new avenues for clinical applications in DR treatment.
Collapse
|
21
|
Howell SJ, Lee CA, Zapadka TE, Lindstrom SI, Taylor BE, Taylor ZRR, Barber KG, Taylor PR. Inhibition of CD40-TRAF6-dependent inflammatory activity halts the onset of diabetic retinopathy in streptozotocin-diabetic mice. Nutr Diabetes 2022; 12:46. [PMID: 36309487 PMCID: PMC9617859 DOI: 10.1038/s41387-022-00225-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/11/2023] Open
Abstract
Diabetes initiates inflammation that can impair the retinal vasculature, and lead to diabetic retinopathy; one of the leading causes of blindness. Inflammatory pathways have been examined as potential therapeutic targets for diabetic retinopathy, but there is still a need for early-stage treatments. We hypothesized that the CD40-TNF Receptor Associated Factor 6 (TRAF6) axis plays a pivotal role in the onset of diabetic retinopathy, and that the CD40-TRAF6 axis would be a prime therapeutic target for early-stage non-proliferative diabetic retinopathy. The CD40-TRAF6 complex can initiate NFκB activation, inflammation, and tissue damage. Further, CD40 and TRAF6 are constitutively expressed on Muller glia, and upregulated in the diabetic retina. Yet the role of the CD40-TRAF6 complex in the onset of diabetic retinopathy is still unclear. In the current study, we examined the CD40-TRAF6 axis in diabetic retinopathy using a small molecule inhibitor (SMI-6877002) on streptozotocin-induced diabetic mice. When CD40-TRAF6-dependent inflammation was inhibited, retinal vascular leakage and capillary degeneration was ameliorated in diabetic mice. Collectively, these data suggest that the CD40-TRAF6 axis plays a pivotal role in the onset of diabetic retinopathy, and could be a novel therapeutic target for early diabetic retinopathy.
Collapse
Affiliation(s)
- Scott J. Howell
- grid.67105.350000 0001 2164 3847Department of Ophthalmology and Visual Science Case Western Reserve University, School of Medicine, Cleveland, USA ,grid.410349.b0000 0004 5912 6484Louis Stokes Cleveland VA Medical Center, Cleveland, OH USA
| | - Chieh A. Lee
- grid.67105.350000 0001 2164 3847Department of Ophthalmology and Visual Science Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Thomas E. Zapadka
- grid.67105.350000 0001 2164 3847Department of Ophthalmology and Visual Science Case Western Reserve University, School of Medicine, Cleveland, USA ,grid.410349.b0000 0004 5912 6484Louis Stokes Cleveland VA Medical Center, Cleveland, OH USA
| | - Sarah I. Lindstrom
- grid.67105.350000 0001 2164 3847Department of Ophthalmology and Visual Science Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Brooklyn E. Taylor
- grid.67105.350000 0001 2164 3847Department of Ophthalmology and Visual Science Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Zakary R. R. Taylor
- grid.67105.350000 0001 2164 3847Department of Ophthalmology and Visual Science Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Katherine G. Barber
- grid.410349.b0000 0004 5912 6484Louis Stokes Cleveland VA Medical Center, Cleveland, OH USA
| | - Patricia R. Taylor
- grid.67105.350000 0001 2164 3847Department of Ophthalmology and Visual Science Case Western Reserve University, School of Medicine, Cleveland, USA ,grid.410349.b0000 0004 5912 6484Louis Stokes Cleveland VA Medical Center, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Present Address: Department of Ophthalmology, Case Western Reserve University, Institute of Pathology, 2085 Adelbert Rd., Room 101, Cleveland, OH USA
| |
Collapse
|
22
|
Galindez SM, Keightley A, Koulen P. Differential distribution of steroid hormone signaling networks in the human choroid-retinal pigment epithelial complex. BMC Ophthalmol 2022; 22:406. [PMID: 36266625 PMCID: PMC9583547 DOI: 10.1186/s12886-022-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The retinal pigment epithelium (RPE), a layer of pigmented cells that lies between the neurosensory retina and the underlying choroid, plays a critical role in maintaining the functional integrity of photoreceptor cells and in mediating communication between the neurosensory retina and choroid. Prior studies have demonstrated neurotrophic effects of select steroids that mitigate the development and progression of retinal degenerative diseases via an array of distinct mechanisms of action. Methods Here, we identified major steroid hormone signaling pathways and their key functional protein constituents controlling steroid hormone signaling, which are potentially involved in the mitigation or propagation of retinal degenerative processes, from human proteome datasets with respect to their relative abundances in the retinal periphery, macula, and fovea. Results Androgen, glucocorticoid, and progesterone signaling networks were identified and displayed differential distribution patterns within these three anatomically distinct regions of the choroid-retinal pigment epithelial complex. Classical and non-classical estrogen and mineralocorticoid receptors were not identified. Conclusion Identified differential distribution patterns suggest both selective susceptibility to chronic neurodegenerative disease processes, as well as potential substrates for drug target discovery and novel drug development focused on steroid signaling pathways in the choroid-RPE.
Collapse
Affiliation(s)
- Sydney M Galindez
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Andrew Keightley
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Peter Koulen
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA. .,Department of Biomedical Sciences, University of Missouri - Kansas City School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
23
|
DeMaio A, Mehrotra S, Sambamurti K, Husain S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflammation 2022; 19:251. [PMID: 36209107 PMCID: PMC9548183 DOI: 10.1186/s12974-022-02605-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
The adaptive immune system and associated inflammation are vital in surveillance and host protection against internal and external threats, but can secondarily damage host tissues. The central nervous system is immune-privileged and largely protected from the circulating inflammatory pathways. However, T cell involvement and the disruption of the blood-brain barriers have been linked to several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Under normal physiological conditions, regulatory T cells (Treg cells) dampen the inflammatory response of effector T cells. In the pathological states of many neurodegenerative disorders, the ability of Treg cells to mitigate inflammation is reduced, and a pro-inflammatory environment persists. This perspective review provides current knowledge on the roles of T cell subsets (e.g., effector T cells, Treg cells) in neurodegenerative and ocular diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, and glaucoma. Many neurodegenerative and ocular diseases have been linked to immune dysregulation, but the cellular events and molecular mechanisms involved in such processes remain largely unknown. Moreover, the role of T cells in ocular pathologies remains poorly defined and limited literature is available in this area of research. Adoptive transfer of Treg cells appears to be a vital immunological approach to control ocular pathologies. Similarities in T cell dysfunction seen among non-ocular neurodegenerative diseases suggest that this area of research has a great potential to develop better therapeutic agents for ocular diseases and warrants further studies. Overall, this perspective review article provides significant information on the roles of T cells in numerous ocular and non-ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexa DeMaio
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA.
| |
Collapse
|
24
|
Wu J, Hu J, Zhang F, Jin Q, Sun X. High glucose promotes IL-17A-induced gene expression through histone acetylation in retinal pigment epithelium cells. Int Immunopharmacol 2022; 110:108893. [DOI: 10.1016/j.intimp.2022.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
25
|
Zhu M, Gao S, Gao S, Wang Y, Li N, Shen X. Interleukin-17A attenuates photoreceptor cell apoptosis in streptozotocin-induced diabetic mouse model. Bioengineered 2022; 13:14175-14187. [PMID: 35730427 PMCID: PMC9342149 DOI: 10.1080/21655979.2022.2084241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) represents an important microvascular complication of diabetes, which is the top etiology of vision impairment worldwide. Although interleukin (IL)-17A is increasingly implicated in DR development, the underlying cellular mechanisms remain poorly defined. This work aims to evaluate IL-17A levels in the retina of streptozotocin (STZ)-induced diabetic mice and elucidate their potential roles. We found IL-17A was upregulated in diabetic retina after intraperitoneal injection of STZ and high-glucose (HG)-cultured primary Müller cells. IL-17A knockout (IL-17A−/−) downregulated glial fibrillary acidic protein (GFAP) and inhibited the conversion of proneurotrophin-3 (proNT-3) to mature NT-3 in retinal specimens from diabetic mice as well as in Müller cells cultured under HG conditions. Induced apoptosis and upregulated Bax and cleaved caspase-3 were observed in retinal specimens from IL-17A−/− diabetic mice and photoreceptor (661 W) cells after co-culture with IL-17A−/− Müller cells. Moreover, RNA interference-induced gene silencing of tyrosine kinase C receptor (TrkC) in 661 W cells reversed the anti-apoptotic effect of IL-17A under HG conditions. Taken together, our findings suggest that IL-17A/NT-3/TrkC axis regulation suppresses apoptosis in photoreceptor cells, providing a new treatment strategy for DR.
Collapse
Affiliation(s)
- Minqi Zhu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Zhong H, Sun X. Contribution of Interleukin-17A to Retinal Degenerative Diseases. Front Immunol 2022; 13:847937. [PMID: 35392087 PMCID: PMC8980477 DOI: 10.3389/fimmu.2022.847937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Retinal degenerative diseases are a leading cause of vision loss and blindness throughout the world, characterized by chronic and progressive loss of neurons and/or myelin. One of the common features of retinal degenerative diseases and central neurodegenerative diseases is chronic neuroinflammation. Interleukin-17A (IL-17A) is the cytokine most closely related to disease in its family. Accumulating evidence suggests that IL-17A plays a key role in human retinal degenerative diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. This review aims to provide an overview of the role of IL-17A participating in the pathogenesis of retinal degenerative diseases, which may open new avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
- Huimin Zhong
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaodong Sun
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
27
|
Hammond CL, Roztocil E, Gupta V, Feldon SE, Woeller CF. More than Meets the Eye: The Aryl Hydrocarbon Receptor is an Environmental Sensor, Physiological Regulator and a Therapeutic Target in Ocular Disease. FRONTIERS IN TOXICOLOGY 2022; 4:791082. [PMID: 35295218 PMCID: PMC8915869 DOI: 10.3389/ftox.2022.791082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor originally identified as an environmental sensor of xenobiotic chemicals. However, studies have revealed that the AHR regulates crucial aspects of cell growth and metabolism, development and the immune system. The importance of the AHR and AHR signaling in eye development, toxicology and disease is now being uncovered. The AHR is expressed in many ocular tissues including the retina, choroid, cornea and the orbit. A significant role for the AHR in age-related macular degeneration (AMD), autoimmune uveitis, and other ocular diseases has been identified. Ligands for the AHR are structurally diverse organic molecules from exogenous and endogenous sources. Natural AHR ligands include metabolites of tryptophan and byproducts of the microbiome. Xenobiotic AHR ligands include persistent environmental pollutants such as dioxins, benzo (a) pyrene [B (a) P] and polychlorinated biphenyls (PCBs). Pharmaceutical agents including the proton pump inhibitors, esomeprazole and lansoprazole, and the immunosuppressive drug, leflunomide, activate the AHR. In this review, we highlight the role of the AHR in the eye and discuss how AHR signaling is involved in responding to endogenous and environmental stimuli. We also present the emerging concept that the AHR is a promising therapeutic target for eye disease.
Collapse
Affiliation(s)
| | | | | | | | - Collynn F. Woeller
- Flaum Eye Institute, Rochester, NY, United States
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- *Correspondence: Collynn F. Woeller,
| |
Collapse
|
28
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
29
|
Qiu AW, Huang DR, Li B, Fang Y, Zhang WW, Liu QH. IL-17A injury to retinal ganglion cells is mediated by retinal Müller cells in diabetic retinopathy. Cell Death Dis 2021; 12:1057. [PMID: 34750361 PMCID: PMC8575984 DOI: 10.1038/s41419-021-04350-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
Diabetic retinopathy (DR), the most common and serious ocular complication, recently has been perceived as a neurovascular inflammatory disease. However, role of adaptive immune inflammation driven by T lymphocytes in DR is not yet well elucidated. Therefore, this study aimed to clarify the role of interleukin (IL)-17A, a proinflammatory cytokine mainly produced by T lymphocytes, in retinal pathophysiology particularly in retinal neuronal death during DR process. Ins2Akita (Akita) diabetic mice 12 weeks after the onset of diabetes were used as a DR model. IL-17A-deficient diabetic mice were obtained by hybridization of IL-17A-knockout (IL-17A-KO) mouse with Akita mouse. Primarily cultured retinal Müller cells (RMCs) and retinal ganglion cells (RGCs) were treated with IL-17A in high-glucose (HG) condition. A transwell coculture of RGCs and RMCs whose IL-17 receptor A (IL-17RA) gene had been silenced with IL-17RA-shRNA was exposed to IL-17A in HG condition and the cocultured RGCs were assessed on their survival. Diabetic mice manifested increased retinal microvascular lesions, RMC activation and dysfunction, as well as RGC apoptosis. IL-17A-KO diabetic mice showed reduced retinal microvascular impairments, RMC abnormalities, and RGC apoptosis compared with diabetic mice. RMCs expressed IL-17RA. IL-17A exacerbated HG-induced RMC activation and dysfunction in vitro and silencing IL-17RA gene in RMCs abolished the IL-17A deleterious effects. In contrast, RGCs did not express IL-17RA and IL-17A did not further alter HG-induced RGC death. Notably, IL-17A aggravated HG-induced RGC death in the presence of intact RMCs but not in the presence of RMCs in which IL-17RA gene had been knocked down. These findings establish that IL-17A is actively involved in DR pathophysiology and particularly by RMC mediation it promotes RGC death. Collectively, we propose that antagonizing IL-17RA on RMCs may prevent retinal neuronal death and thereby slow down DR progression.
Collapse
Affiliation(s)
- Ao-Wang Qiu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Da-Rui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Bin Li
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Yuan Fang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Wei-Wei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| |
Collapse
|
30
|
Howell SJ, Lee CA, Batoki JC, Zapadka TE, Lindstrom SI, Taylor BE, Taylor PR. Retinal Inflammation, Oxidative Stress, and Vascular Impairment Is Ablated in Diabetic Mice Receiving XMD8-92 Treatment. Front Pharmacol 2021; 12:732630. [PMID: 34456740 PMCID: PMC8385489 DOI: 10.3389/fphar.2021.732630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
The global number of diabetics continues to rise annually. As diabetes progresses, almost all of Type I and more than half of Type II diabetics develop diabetic retinopathy. Diabetic retinopathy is a microvascular disease of the retina, and is the leading cause of blindness in the working-age population worldwide. With such a significant health impact, new drugs are required to halt the blinding threat posed by this visual disorder. The cause of diabetic retinopathy is multifactorial, and an optimal therapeutic would halt inflammation, cease photoreceptor cell dysfunction, and ablate vascular impairment. XMD8-92 is a small molecule inhibitor that blocks inflammatory activity downstream of ERK5 (extracellular signal-related kinase 5) and BRD4 (bromodomain 4). ERK5 elicits inflammation, is increased in Type II diabetics, and plays a pathologic role in diabetic nephropathy, while BRD4 induces retinal inflammation and plays a role in retinal degeneration. Further, we provide evidence that suggests both pERK5 and BRD4 expression are increased in the retinas of our STZ (streptozotocin)-induced diabetic mice. Taken together, we hypothesized that XMD8-92 would be a good therapeutic candidate for diabetic retinopathy, and tested XMD8-92 in a murine model of diabetic retinopathy. In the current study, we developed an in vivo treatment regimen by administering one 100 μL subcutaneous injection of saline containing 20 μM of XMD8-92 weekly, to STZ-induced diabetic mice. XMD8-92 treatments significantly decreased diabetes-mediated retinal inflammation, VEGF production, and oxidative stress. Further, XMD8-92 halted the degradation of ZO-1 (zonula occludens-1), which is a tight junction protein associated with vascular permeability in the retina. Finally, XMD8-92 treatment ablated diabetes-mediated vascular leakage and capillary degeneration, which are the clinical hallmarks of non-proliferative diabetic retinopathy. Taken together, this study provides strong evidence that XMD8-92 could be a potentially novel therapeutic for diabetic retinopathy.
Collapse
Affiliation(s)
- Scott J. Howell
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Julia C. Batoki
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas E. Zapadka
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Sarah I. Lindstrom
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Brooklyn E. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| |
Collapse
|
31
|
Al-Hussaini H, Kittaneh RS, Kilarkaje N. Effects of trans-resveratrol on type 1 diabetes-induced up-regulation of apoptosis and mitogen-activated protein kinase signaling in retinal pigment epithelium of Dark Agouti rats. Eur J Pharmacol 2021; 904:174167. [PMID: 33974882 DOI: 10.1016/j.ejphar.2021.174167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/29/2022]
Abstract
Microvascular changes and retinal degeneration precede diabetic retinopathy. Oxidative stress alters several intracellular signaling pathways, which form the basis of diabetic retinopathy. Many antioxidants have been investigated as possible preventive and therapeutic remedies for diabetic retinopathy. The current study investigated the modulatory effects of trans-resveratrol on streptozotocin-induced type 1 diabetes mediated changes in the transcription and levels of apoptosis-related proteins and mitogen-activated protein kinases (MAPKs) in the retinal pigment epithelium (RPE) of adult male dark Agouti rats. In control rats, 5 mg/kg/d trans-resveratrol administration for 30 days increased gene expressions of tumor suppressor protein 53, Bcl2-associated X protein, B-cell lymphoma-2 (Bcl2), Caspase-3 (CASP3), CASP8 and CASP9, p38αMAPK, c-Jun N-terminal kinase-1 (JNK1), and extracellular signal-regulated kinase-1 (ERK1). On the other hand, diabetes decreased gene expressions of CASP3, CASP8, p38αMAPK, JNK, and ERK1. Trans-resveratrol reversed the inhibited gene expressions of CASP8, p38αMAPK, JNK, and ERK1 to normal control levels in diabetic rats. Trans-resveratrol normalized diabetes-induced upregulation of CASP3 and -9, cytochrome-c, Bcl-2, and ERK1 proteins. In conclusion, Trans-resveratrol-induced alterations in gene expressions do not seem to affect RPE functions as they do not reflect as altered protein functions. Trans-resveratrol imparts its protective effects by normalizing apoptosis-related proteins and ERK1 but does not affect JNK proteins. Trans-resveratrol causes cytostasis in RPE of normal rats by upregulating Bcl2 protein and apoptotic proteins.
Collapse
Affiliation(s)
- Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait.
| | | | | |
Collapse
|
32
|
Zhou T, Liu Y, Yang Z, Ni B, Zhu X, Huang Z, Xu H, Feng Q, Lin X, He C, Liu X. IL-17 signaling induces iNOS+ microglia activation in retinal vascular diseases. Glia 2021; 69:2644-2657. [PMID: 34288126 DOI: 10.1002/glia.24063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Activation of microglia and inflammation-mediated vascular damages are suggested to play a decisive role in the pathogenesis of various retinopathies. The inducible nitric oxide synthase (iNOS) was required for activated microglia-mediated injuries. However, the induction mechanism of microglia activation during retinal vascular diseases is still elusive. Here we showed that IL-17 induced microglia activation with high expression of iNOS and promoted the development of retinal vascular diseases. IL-17-dependent activation of the STAT3-iNOS pathway was essentially required for microglia activation, which promoted endothelial cell growth and accelerated vascular leakage and leukostasis via IL-6 in vitro and in vivo. Taken together, our data provide novel mechanistic insights on microglia activation-mediated retinopathy, unveil the specific role of IL-17 on microglia, and define novel therapeutic targets for treating retinal vascular diseases.
Collapse
Affiliation(s)
- Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ziqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Biyan Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiaowei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zijing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Huiyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Qiumin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiaojing Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
33
|
Byrne EM, Llorián-Salvador M, Tang M, Margariti A, Chen M, Xu H. IL-17A Damages the Blood-Retinal Barrier through Activating the Janus Kinase 1 Pathway. Biomedicines 2021; 9:831. [PMID: 34356895 PMCID: PMC8301352 DOI: 10.3390/biomedicines9070831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
Blood-retinal barrier (BRB) dysfunction underlies macular oedema in many sight-threatening conditions, including diabetic macular oedema, neovascular age-related macular degeneration and uveoretinitis. Inflammation plays an important role in BRB dysfunction. This study aimed to understand the role of the inflammatory cytokine IL-17A in BRB dysfunction and the mechanism involved. Human retinal pigment epithelial (RPE) cell line ARPE19 and murine brain endothelial line bEnd.3 were cultured on transwell membranes to model the outer BRB and inner BRB, respectively. IL-17A treatment (3 days in bEnd.3 cells and 6 days in ARPE19 cells) disrupted the distribution of claudin-5 in bEnd.3 cells and ZO-1 in ARPE19 cells, reduced the transepithelial/transendothelial electrical resistance (TEER) and increased permeability to FITC-tracers in vitro. Intravitreal (20 ng/1 μL/eye) or intravenous (20 ng/g) injection of recombinant IL-17A induced retinal albumin leakage within 48 h in C57BL/6J mice. Mechanistically, IL-17A induced Janus kinase 1 (JAK1) phosphorylation in bEnd.3 but not ARPE19 cells. Blocking JAK1 with Tofacitinib prevented IL-17A-mediated claudin-5 dysmorphia in bEnd.3 cells and reduced albumin leakage in IL-17A-treated mice. Our results suggest that IL-17A can damage the BRB through the activating the JAK1 signaling pathway, and targeting this pathway may be a novel approach to treat inflammation-induced macular oedema.
Collapse
Affiliation(s)
| | | | | | | | | | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (E.M.B.); (M.L.-S.); (M.T.); (A.M.); (M.C.)
| |
Collapse
|
34
|
Nath M, Shan Y, Myers AM, Fort PE. HspB4/αA-Crystallin Modulates Neuroinflammation in the Retina via the Stress-Specific Inflammatory Pathways. J Clin Med 2021; 10:jcm10112384. [PMID: 34071438 PMCID: PMC8198646 DOI: 10.3390/jcm10112384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 01/28/2023] Open
Abstract
PURPOSE We have previously demonstrated that HspB4/αA-crystallin, a molecular chaperone, plays an important intrinsic neuroprotective role during diabetes, by its phosphorylation on residue 148. We also reported that HspB4/αA-crystallin is highly expressed by glial cells. There is a growing interest in the potential causative role of low-grade inflammation in diabetic retinopathy pathophysiology and retinal Müller glial cells' (MGCs') participation in the inflammatory response. MGCs indeed play a central role in retinal homeostasis via secreting various cytokines and other mediators. Hence, this study was carried out to delineate and understand the regulatory function of HspB4/αA-crystallin in the inflammatory response associated with metabolic stresses. METHODS Primary MGCs were isolated from knockout HspB4/αA-crystallin mice. These primary cells were then transfected with plasmids encoding either wild-type (WT), phosphomimetic (T148D), or non-phosphorylatable mutants (T148A) of HspB4/αA-crystallin. The cells were exposed to multiple metabolic stresses including serum starvation (SS) or high glucose with TNF-alpha (HG + T) before being further evaluated for the expression of inflammatory markers by qPCR. The total protein expression along with subcellular localization of NF-kB and the NLRP3 component was assessed by Western blot. RESULTS Elevated levels of IL-6, IL-1β, MCP-1, and IL-18 in SS were significantly diminished in MGCs overexpressing WT and further in T148D as compared to EV. The HG + T-induced increase in these inflammatory markers was also dampened by WT and even more significantly by T148D overexpression, whereas T148A was ineffective in either stress. Further analysis revealed that overexpression of WT or the T148D, also led to a significant reduction of Nlrp3, Asc, and caspase-1 transcript expression in serum-deprived MGCs and nearly abolished the NF-kB induction in HG + T diabetes-like stress. This mechanistic effect was further evaluated at the protein level and confirmed the stress-dependent regulation of NLRP3 and NF-kB by αA-crystallin. CONCLUSIONS The data gathered in this study demonstrate the central regulatory role of HspB4/αA-crystallin and its modulation by phosphorylation on T148 in retinal MGCs. For the first time, this study demonstrates that HspB4/αA-crystallin can dampen the stress-induced expression of pro-inflammatory cytokines through the modulation of multiple key inflammatory pathways, therefore, suggesting its potential as a therapeutic target for the modulation of chronic neuroinflammation.
Collapse
Affiliation(s)
- Madhu Nath
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.N.); (Y.S.); (A.M.M.)
| | - Yang Shan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.N.); (Y.S.); (A.M.M.)
| | - Angela M. Myers
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.N.); (Y.S.); (A.M.M.)
| | - Patrice Elie Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.N.); (Y.S.); (A.M.M.)
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
- Correspondence:
| |
Collapse
|
35
|
Zapadka TE, Lindstrom SI, Batoki JC, Lee CA, Taylor BE, Howell SJ, Taylor PR. Aryl Hydrocarbon Receptor Agonist VAF347 Impedes Retinal Pathogenesis in Diabetic Mice. Int J Mol Sci 2021; 22:4335. [PMID: 33919327 PMCID: PMC8122442 DOI: 10.3390/ijms22094335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy is the leading cause of blindness in the working-age population worldwide. Although the cause of diabetic retinopathy is multifactorial, IL-17A is a prevalent inflammatory cytokine involved in the promotion of diabetes-mediated retinal inflammation and the progression of diabetic retinopathy. The primary source of IL-17A is Th17 cells, which are T helper cells that have been differentiated by dendritic cells in a proinflammatory cytokine environment. Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can manipulate dendritic cell maturation, halt the production of IL-6 (a proinflammatory cytokine), and suppress Th17 cell differentiation. In the current study, we examined the efficacy of an AhR agonist, VAF347, as a potential therapeutic for the onset of non-proliferative diabetic retinopathy in streptozotocin (STZ)-induced diabetic C57BL/6 mice. We determined that diabetes-mediated leukostasis, oxidative stress, and inflammation in the retina of STZ-diabetic mice were all significantly lower when treated with the AhR agonist VAF347. Furthermore, when VAF347 was subcutaneously injected into STZ-diabetic mice, retinal capillary degeneration was ameliorated, which is the hallmark of non-proliferative diabetic retinopathy in this diabetes murine model. Collectively, these findings provide evidence that the AhR agonist VAF347 could be a potentially novel therapeutic for non-proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Thomas E. Zapadka
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Sarah I. Lindstrom
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Julia C. Batoki
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Brooklyn E. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Scott J. Howell
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
36
|
Yakuwa K, Miyaji K, Kitamura T, Miyamoto T, Ono M, Kaneko Y. Neutrophil-to-lymphocyte ratio is prognostic factor of prolonged pleural effusion after pediatric cardiac surgery. JRSM Cardiovasc Dis 2021; 10:20480040211009438. [PMID: 34262699 PMCID: PMC8252915 DOI: 10.1177/20480040211009438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives Postoperative pleural effusion (PE) is common after pediatric cardiac
surgery, and if prolonged can lead to the deterioration of the general
condition due to malnutrition and result in death. This study aims at
identifying the prognostic factors of prolonged PE after pediatric cardiac
surgery. Design and settings: Patients were divided into the effective
(with chest tube removal within 10 days after medical therapy) and
ineffective (with chest tube in place for more than 10 days) groups. The
factors were compared between the two groups retrospectively. Participants Participants included patients who had prolonged PE after cardiac surgery in
national center for child and health development between October 2014 and
October 2017. Main outcome measures Baseline characteristics and procedure details were compared between the two
groups to determine the predictor of prolonged PE. White blood cell count,
platelet count, neutrophil-to-lymphocyte ratio, hemoglobin level, serum
total protein level, serum albumin level, blood fibrinogen level, serum
creatinine level, etc. were examined. Results Twenty patients were included. Between the two groups, no significant
differences in baseline characteristics, such as age, weight, and sex were
found, and significant differences were observed only in the NLR change
ratio (effective group, 5.1 [4.1–8.0] versus ineffective group, 11.9
[9.9–14.1]; P = 0.01). Conclusions NLR change ratio is a potential prognostic factor of prolonged PE, including
chylothorax, after pediatric cardiac surgery.
Collapse
Affiliation(s)
- Kazuki Yakuwa
- Division of Cardiovascular Surgery, National Center for Child Health and Development, Tokyo, Japan.,Department of Cardiovascular Surgery, Kitasato School of Medicine, Sagamihara, Japan
| | - Kagami Miyaji
- Department of Cardiovascular Surgery, Kitasato School of Medicine, Sagamihara, Japan
| | - Tadashi Kitamura
- Department of Cardiovascular Surgery, Kitasato School of Medicine, Sagamihara, Japan
| | - Takashi Miyamoto
- Department of Cardiovascular Surgery, Kitasato School of Medicine, Sagamihara, Japan
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Kaneko
- Division of Cardiovascular Surgery, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
37
|
Liu F, Han F, Liu X, Yang L, Jiang C, Cui C, Yuan F, Zhang X, Gong L, Hou X, Liu Y, Chen L. Cross-Sectional Analysis of the Involvement of Interleukin-17A in Diabetic Retinopathy in Elderly Individuals with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:4199-4207. [PMID: 34675572 PMCID: PMC8517528 DOI: 10.2147/dmso.s302199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To investigate the correlation between serum interleukin-17A (IL-17A) levels and diabetic retinopathy (DR) in elderly individuals with type 2 diabetes mellitus (T2DM). METHODS The study included 194 elderly patients (94 males and 100 females) with T2DM. Digital retinal photography as well as fundus fluorescein angiography was employed to distinguish between nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). In addition, multiple logistic regression analysis was conducted to determine the correlation between serum IL-17A levels and DR status. RESULTS The average age of the study cohort was 69.14 ± 6.33 years, of which 52.08% were male. The study participants with the highest IL-17A (Q4) levels had higher TC, DBP, and low-density lipoprotein cholesterol (LDL-C) values than those the other groups. Analysis using unadjusted and adjusted linear regression revealed that the effect size of 1.09 for DR in the unadjusted model indicates that IL-17A is associated with an increase of 1.09 in DR (mmol/L) (β 1.09, 95% confidence interval (CI) 1.03, 1.16). Using the minimum-adjusted model (the model 2), as IL-17A increased, DR was higher by 1.11 (β 1.11, 95% CI 1.04, 1.18). With the fully adjusted model (the model 3), for each additional IL-17A increase, DR was higher by 1.15 (β 1.15, 95% CI 1.06, 1.24). CONCLUSION Serum IL-17A levels are apparently positively correlated to DR in Chinese elderly individuals with T2DM.
Collapse
Affiliation(s)
- Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Feng Han
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Xiaoli Liu
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Lina Yang
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Caixia Jiang
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Fang Yuan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xin Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Lei Gong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Yuan Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Correspondence: Yuan Liu; Li Chen Email ;
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
38
|
Yamamoto Y, Morozumi T, Hirata T, Takahashi T, Fuchida S, Toyoda M, Nakajima S, Minabe M. Effect of Periodontal Disease on Diabetic Retinopathy in Type 2 Diabetic Patients: A Cross-sectional Pilot Study. J Clin Med 2020; 9:E3234. [PMID: 33050355 PMCID: PMC7600038 DOI: 10.3390/jcm9103234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Both periodontal disease and diabetes are common chronic inflammatory diseases. One of the major problems with type 2 diabetes is that unregulated blood glucose levels damage the vascular endothelium and cause complications. A bidirectional relationship between periodontal disease and diabetic complications has been reported previously. However, whether periodontal disease affects the presence of diabetic complications has not been clarified. Therefore, we examined the effect of the periodontal disease status on diabetic complications in patients with type 2 diabetes. Periodontal doctors examined the periodontal disease status of 104 type 2 diabetic patients who visited a private diabetes medical clinic once a month between 2016 and 2018. The subject's diabetic status was obtained from their medical records. Bayesian network analysis showed that bleeding on probing directly influenced the presence of diabetic retinopathy in type 2 diabetes patients. In addition, bleeding on probing was higher in the diabetic retinopathy group (n = 36) than in the group without diabetic retinopathy (n = 68, p = 0.006, Welch's t-test). Bleeding on probing represents gingival inflammation, which might affect the presence of diabetic retinopathy in type 2 diabetes patients who regularly visit diabetic clinics.
Collapse
Affiliation(s)
- Yuko Yamamoto
- Department of Dental Hygiene, Kanagawa Dental University, Junior College, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan;
| | - Toshiya Morozumi
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (T.H.); (M.M.)
| | - Takahisa Hirata
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (T.H.); (M.M.)
| | - Toru Takahashi
- Department of Health and Nutrition, Faculty of Human Health, Kanazawa Gakuin University, 10 Sue-machi, Kanazawa 9201392, Ishikawa, Japan;
| | - Shinya Fuchida
- Department of Disaster Medicine and Dental Sociology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan;
| | - Masami Toyoda
- Nakajima Internal Medicine Clinic, 1-17 Yonegahamadori, Yokosuka 2380011, Kanagawa, Japan; (M.T.); (S.N.)
| | - Shigeru Nakajima
- Nakajima Internal Medicine Clinic, 1-17 Yonegahamadori, Yokosuka 2380011, Kanagawa, Japan; (M.T.); (S.N.)
| | - Masato Minabe
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (T.H.); (M.M.)
| |
Collapse
|
39
|
Microbiota and Diabetes Mellitus: Role of Lipid Mediators. Nutrients 2020; 12:nu12103039. [PMID: 33023000 PMCID: PMC7600362 DOI: 10.3390/nu12103039] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes Mellitus (DM) is an inflammatory clinical entity with different mechanisms involved in its physiopathology. Among these, the dysfunction of the gut microbiota stands out. Currently, it is understood that lipid products derived from the gut microbiota are capable of interacting with cells from the immune system and have an immunomodulatory effect. In the presence of dysbiosis, the concentration of lipopolysaccharides (LPS) increases, favoring damage to the intestinal barrier. Furthermore, a pro-inflammatory environment prevails, and a state of insulin resistance and hyperglycemia is present. Conversely, during eubiosis, the production of short-chain fatty acids (SCFA) is fundamental for the maintenance of the integrity of the intestinal barrier as well as for immunogenic tolerance and appetite/satiety perception, leading to a protective effect. Additionally, it has been demonstrated that alterations or dysregulation of the gut microbiota can be reversed by modifying the eating habits of the patients or with the administration of prebiotics, probiotics, and symbiotics. Similarly, different studies have demonstrated that drugs like Metformin are capable of modifying the composition of the gut microbiota, promoting changes in the biosynthesis of LPS, and the metabolism of SCFA.
Collapse
|
40
|
Ma T, Liu T, Xie P, Jiang S, Yi W, Dai P, Guo X. UPLC-MS-based urine nontargeted metabolic profiling identifies dysregulation of pantothenate and CoA biosynthesis pathway in diabetic kidney disease. Life Sci 2020; 258:118160. [PMID: 32730837 DOI: 10.1016/j.lfs.2020.118160] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
AIMS Diabetic kidney disease (DKD) is a major prevalent chronic microvascular complication of type 2 diabetes (T2D). However, the present diagnostic indicators have limitations in the early diagnosis of DKD. This study concentrated on the sensitive and specific biomarkers in early diagnosis of DKD by metabolomics. MATERIALS AND METHODS In this cross-sectional study, we performed a UPLC-MS based nontargeted metabolomics assay to profile the urinary metabolites in patients with DKD. Principal Component Analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) were used for screening out the metabolomic variables. KEY FINDINGS A total of 147 urinary metabolites were identified and 5 metabolic pathways were correlated with DKD pathophysiology. Pantothenate and coenzyme A biosynthesis pathway alteration was found the most prominent in DKD subjects. 4 metabolites, including dihydrouracil, ureidopropionic acid, pantothenic acid (PA), and adenosine 3',5'-diphosphate involved in pantothenate and CoA biosynthesis were significantly down-regulated. SIGNIFICANCE Our finding indicates that PA would be served as a novel predictive biomarker associated with DKD development and progression. Furthermore, our results provide a promising prospect that PA and CoA biosynthesis pathway can be potential therapeutic targets for DKD treatment.
Collapse
Affiliation(s)
- Tao Ma
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peifeng Xie
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Sheng Jiang
- The First Teaching Hospital of Xinjiang Medical University, Urumuqi 830013, China
| | - Wenming Yi
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Pei Dai
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Xiangyu Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
41
|
Zapadka TE, Lindstrom SI, Taylor BE, Lee CA, Tang J, Taylor ZRR, Howell SJ, Taylor PR. RORγt Inhibitor-SR1001 Halts Retinal Inflammation, Capillary Degeneration, and the Progression of Diabetic Retinopathy. Int J Mol Sci 2020; 21:E3547. [PMID: 32429598 PMCID: PMC7279039 DOI: 10.3390/ijms21103547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Diabetic retinopathy is a diabetes-mediated retinal microvascular disease that is the leading cause of blindness in the working-age population worldwide. Interleukin (IL)-17A is an inflammatory cytokine that has been previously shown to play a pivotal role in the promotion and progression of diabetic retinopathy. Retinoic acid-related orphan receptor gammaT (RORγt) is a ligand-dependent transcription factor that mediates IL-17A production. However, the role of RORγt in diabetes-mediated retinal inflammation and capillary degeneration, as well as its potential therapeutic attributes for diabetic retinopathy has not yet been determined. In the current study, we examined retinal inflammation and vascular pathology in streptozotocin-induced diabetic mice. We found RORγt expressing cells in the retinal vasculature of diabetic mice. Further, diabetes-mediated retinal inflammation, oxidative stress, and retinal endothelial cell death were all significantly lower in RORγt-/- mice. Finally, when a RORγt small molecule inhibitor (SR1001) was subcutaneously injected into diabetic mice, retinal inflammation and capillary degeneration were ameliorated. These findings establish a pathologic role for RORγt in the onset of diabetic retinopathy and identify a potentially novel therapeutic for this blinding disease.
Collapse
MESH Headings
- Animals
- Capillaries/drug effects
- Capillaries/pathology
- Cell Death/genetics
- Cell Survival/drug effects
- Cell Survival/genetics
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Retinopathy/chemically induced
- Diabetic Retinopathy/drug therapy
- Diabetic Retinopathy/metabolism
- Drug Inverse Agonism
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Hyperglycemia/blood
- Hyperglycemia/genetics
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Interleukin-17/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Oxidative Stress/genetics
- Retinal Vessels/drug effects
- Retinal Vessels/metabolism
- Retinal Vessels/pathology
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Thiazoles/pharmacology
- Thiazoles/therapeutic use
Collapse
Affiliation(s)
- Thomas E. Zapadka
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (B.E.T.); (C.A.L.); (J.T.); (Z.R.R.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Sarah I. Lindstrom
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (B.E.T.); (C.A.L.); (J.T.); (Z.R.R.T.); (S.J.H.)
| | - Brooklyn E. Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (B.E.T.); (C.A.L.); (J.T.); (Z.R.R.T.); (S.J.H.)
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (B.E.T.); (C.A.L.); (J.T.); (Z.R.R.T.); (S.J.H.)
| | - Jie Tang
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (B.E.T.); (C.A.L.); (J.T.); (Z.R.R.T.); (S.J.H.)
| | - Zakary R. R. Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (B.E.T.); (C.A.L.); (J.T.); (Z.R.R.T.); (S.J.H.)
| | - Scott J. Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (B.E.T.); (C.A.L.); (J.T.); (Z.R.R.T.); (S.J.H.)
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (B.E.T.); (C.A.L.); (J.T.); (Z.R.R.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
42
|
Fan Z, Yang B, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. The prophylactic effects of different Lactobacilli on collagen-induced arthritis in rats. Food Funct 2020; 11:3681-3694. [PMID: 32301444 DOI: 10.1039/c9fo02556a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have shed light on the prophylactic effects of Lactobacilli on rheumatoid arthritis (RA). However, the modulatory mechanisms of Lactobacilli remain unclear. The current study evaluated different Lactobacillus species' ability to alleviate arthritis induced by collagen. Rats were intragastrically administered different lactobacilli cocktails two weeks before arthritis induction. The results revealed that the performance of Lactobacillus in relieving arthritis was different for some species. L. reuteri, L. casei, L. rhamnosus and L. fermentum attenuated RA through species-independent pathways that inhibited pro-inflammatory cytokines and anti-CII-antibodies; and through species-dependent immune regulation that was based on rebalancing the intestinal microbiota, and metabolites such as short-chain fatty acids. In particular, L. reuteri and L. casei weaken the Th1 immune response, while L. rhamnosus and L. fermentum impaired Th17 responses. Interestingly, L. plantarum did not alleviate arthritis although it did suppress Th1 and Th17 immune responses, while L. salivarius only delayed the onset of arthritis without influencing the immune response. In conclusion, Lactobacilli protect against collagen-induced-arthritis through both common and individual pathways.
Collapse
Affiliation(s)
- Zhexin Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu H, Lessieur EM, Saadane A, Lindstrom SI, Taylor PR, Kern TS. Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy. Diabetologia 2019; 62:2365-2374. [PMID: 31612267 PMCID: PMC6866660 DOI: 10.1007/s00125-019-04998-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Levels of neutrophil elastase, a serine protease secreted by neutrophils, are elevated in diabetes. The purpose of this study was to determine whether neutrophil elastase (NE) contributes to the diabetes-induced increase in retinal vascular permeability in mice with streptozotocin-induced diabetes, and, if so, to investigate the potential role of IL-17 in this process. METHODS In vivo, diabetes was induced in neutrophil elastase-deficient (Elane-/-), Il-17a-/- and wild-type mice. After 8 months of diabetes, Elane-/- mice and wild-type age-matched control mice were injected with FITC-BSA. Fluorescence microscopy was used to assess leakage of FITC-BSA from the retinal vasculature into the neural retina. The level of NE in Il-17a-/- diabetic retina and sera were determined by ELISA. In vitro, the effect of NE on the permeability and viability of human retinal endothelial cells and the expression of junction proteins and adhesion molecules were studied. RESULTS Eight months of diabetes resulted in increased retinal vascular permeability and levels of NE in retina and plasma of wild-type animals. All of these abnormalities were significantly inhibited in mice lacking the elastase. The diabetes-induced increase in NE was inhibited in mice lacking IL-17. In vitro, NE increased retinal endothelial cell permeability, which was partially inhibited by a myeloid differentiation primary response 88 (MyD88) inhibitor, NF-κB inhibitor, and protease-activated receptor (PAR)2 inhibitor. NE degraded vascular endothelial-cadherin (VE-cadherin) in a concentration-dependent manner. CONCLUSIONS/INTERPRETATION IL-17 regulates NE expression in diabetes. NE contributes to vascular leakage in diabetic retinopathy, partially through activation of MyD88, NF-κB and PAR2 and degradation of VE-cadherin.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People's Republic of China
| | - Emma M Lessieur
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine, University of California-Irvine, 829 Health Sciences Rd. Gillespie Neuroscience Research Facility, Room 2107, Irvine, CA, 92697, USA
| | - Aicha Saadane
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine, University of California-Irvine, 829 Health Sciences Rd. Gillespie Neuroscience Research Facility, Room 2107, Irvine, CA, 92697, USA
| | - Sarah I Lindstrom
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Patricia R Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Veterans Administration Medical Center Research Service 151, Cleveland, OH, USA
| | - Timothy S Kern
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine, University of California-Irvine, 829 Health Sciences Rd. Gillespie Neuroscience Research Facility, Room 2107, Irvine, CA, 92697, USA.
- Veterans Administration Medical Center Research Service 151, Cleveland, OH, USA.
- Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
44
|
Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clin Sci (Lond) 2019; 133:2121-2141. [DOI: 10.1042/cs20190067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
AbstractDiabetes mellitus (DM) is an important metabolic disorder characterized by persistent hyperglycemia resulting from inadequate production and secretion of insulin, impaired insulin action, or a combination of both. Genetic disorders and insulin receptor disorders, environmental factors, lifestyle choices and toxins are key factors that contribute to DM. While it is often referred to as a metabolic disorder, modern lifestyle choices and nutrient excess induce a state of systemic chronic inflammation that results in the increased production and secretion of inflammatory cytokines that contribute to DM. It is chronic hyperglycemia and the low-grade chronic-inflammation that underlies the development of microvascular and macrovascular complications leading to damage in a number of tissues and organs, including eyes, vasculature, heart, nerves, and kidneys. Improvements in the management of risk factors have been beneficial, including focus on intensified glycemic control, but most current approaches only slow disease progression. Even with recent studies employing SGLT2 inhibitors demonstrating protection against cardiovascular and kidney diseases, kidney function continues to decline in people with established diabetic kidney disease (DKD). Despite the many advances and a greatly improved understanding of the pathobiology of diabetes and its complications, there remains a major unmet need for more effective therapeutics to prevent and reverse the chronic complications of diabetes. More recently, there has been growing interest in the use of specialised pro-resolving mediators (SPMs) as an exciting therapeutic strategy to target diabetes and the chronic complications of diabetes.
Collapse
|