1
|
Härm J, Fan YT, Brenner D. Navigating the metabolic landscape of regulatory T cells: from autoimmune diseases to tumor microenvironments. Curr Opin Immunol 2024; 92:102511. [PMID: 39674060 DOI: 10.1016/j.coi.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, playing crucial roles in modulating autoimmune conditions and contributing to the suppressive tumor microenvironment. Their cellular metabolism governs their generation, stability, proliferation, and suppressive function. Enhancing Treg metabolism to boost their suppressive function offers promising therapeutic potential for alleviating inflammatory symptoms in autoimmune diseases. Conversely, inhibiting Treg metabolism to reduce their suppressive function can enhance the efficacy of traditional immunotherapy in cancer patients. This review explores recent advances in targeting Treg metabolism in autoimmune diseases and the metabolic adaptations of Tregs within the tumor microenvironment that increase their immunosuppressive function.
Collapse
Affiliation(s)
- Janika Härm
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Yu-Tong Fan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
2
|
Yahia Z, Yahia A, Abdelaziz T. N-acetylcysteine Clinical Applications. Cureus 2024; 16:e72252. [PMID: 39450216 PMCID: PMC11499967 DOI: 10.7759/cureus.72252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
This study aims to evaluate the therapeutic application of N-acetylcysteine (NAC) as a treatment or adjunct therapy for various medical conditions. While its efficacy in treating acetaminophen overdose, cystic fibrosis, and chronic obstructive pulmonary disease is well-established, emerging evidence suggests that NAC may also benefit a broader spectrum of illnesses due to its safety, simplicity, and affordability. A comprehensive review was conducted by searching PubMed, relevant books, and conference proceedings for publications discussing NAC about the specified health conditions. The clinically relevant data were analysed using the American Family Physician Evidence-Based Medicine Toolkit, following a standard integrated review methodology. NAC shows potential as an adjunctive treatment for a wide range of medical conditions, particularly chronic diseases. It may be beneficial for polycystic ovary syndrome, endometriosis, male infertility, cataracts, glaucoma, dry eye syndrome, parkinsonism, multiple sclerosis, Alzheimer's disease, stroke outcomes, non-acetaminophen-induced acute liver failure, Crohn's disease, ulcerative colitis, schizophrenia, bipolar disorder, and obsessive-compulsive disorder. Although evidence for some conditions is less robust, NAC's therapeutic potential warrants further investigation. Given the aging population and the decline in glutathione levels, the use of NAC should be considered across a variety of medical conditions. This paper suggests that NAC supplementation could play a significant role in reducing morbidity and mortality associated with numerous chronic diseases.
Collapse
Affiliation(s)
- Zoubaida Yahia
- General Practice, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, GBR
| | - Amer Yahia
- Medical Assessment Unit, Royal Derby Hospital, Derby, GBR
| | | |
Collapse
|
3
|
Holwerda AM, Dirks ML, Barbeau P, Goessens J, Gijsen A, van Loon LJ, Holloway GP. Mitochondrial bioenergetics are not associated with myofibrillar protein synthesis rates. J Cachexia Sarcopenia Muscle 2024; 15:1811-1822. [PMID: 39007407 PMCID: PMC11446679 DOI: 10.1002/jcsm.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Mitochondria represent key organelles influencing cellular homeostasis and have been implicated in the signalling events regulating protein synthesis. METHODS We examined whether mitochondrial bioenergetics (oxidative phosphorylation and reactive oxygen species (H2O2) emission, ROS) measured in vitro in permeabilized muscle fibres represent regulatory factors for integrated daily muscle protein synthesis rates and skeletal muscle mass changes across the spectrum of physical activity, including free-living and bed-rest conditions: n = 19 healthy, young men (26 ± 4 years, 23.4 ± 3.3 kg/m2) and following 12 weeks of resistance-type exercise training: n = 10 healthy older men (70 ± 3 years, 25.2 ± 2.1 kg/m2). Additionally, we evaluated the direct relationship between attenuated mitochondrial ROS emission and integrated daily myofibrillar and sarcoplasmic protein synthesis rates in genetically modified mice (mitochondrial-targeted catalase, MCAT). RESULTS Neither oxidative phosphorylation nor H2O2 emission were associated with muscle protein synthesis rates in healthy young men under free-living conditions or following 1 week of bed rest (both P > 0.05). Greater increases in GSSG concentration were associated with greater skeletal muscle mass loss following bed rest (r = -0.49, P < 0.05). In older men, only submaximal mitochondrial oxidative phosphorylation (corrected for mitochondrial content) was positively associated with myofibrillar protein synthesis rates during exercise training (r = 0.72, P < 0.05). However, changes in oxidative phosphorylation and H2O2 emission were not associated with changes in skeletal muscle mass following training (both P > 0.05). Additionally, MCAT mice displayed no differences in myofibrillar (2.62 ± 0.22 vs. 2.75 ± 0.15%/day) and sarcoplasmic (3.68 ± 0.35 vs. 3.54 ± 0.35%/day) protein synthesis rates when compared with wild-type mice (both P > 0.05). CONCLUSIONS Mitochondrial oxidative phosphorylation and reactive oxygen emission do not seem to represent key factors regulating muscle protein synthesis or muscle mass regulation across the spectrum of physical activity.
Collapse
Affiliation(s)
- Andrew M. Holwerda
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
| | - Marlou L. Dirks
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
- Department of Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Pierre‐Andre Barbeau
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
| | - Joy Goessens
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Annemie Gijsen
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Luc J.C. van Loon
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Graham P. Holloway
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
| |
Collapse
|
4
|
Mohammadi E, Nikbakht F, Vazifekhah S, Babae JF, Jogataei MT. Evaluation the cognition-improvement effects of N-acetyl cysteine in experimental temporal lobe epilepsy in rat. Behav Brain Res 2023; 440:114263. [PMID: 36563904 DOI: 10.1016/j.bbr.2022.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Memory impairment is a critical issue in patients with temporal lobe epilepsy (TLE). Neuronal loss within the hippocampus and recurrent seizures may cause cognitive impairment in TLE. N -acetyl cysteine (NAC) is a sulfur-containing amino acid cysteine that is currently being investigated due to its protective effects on neurodegenerative disorders. NAC was orally administrated at a dose of 100 mg/kg for 8 days (7-day pretreatment and 1-day post-surgery). Neuronal viability, mTOR protein level, and spatial memory were detected in the kainite temporal epilepsy model via Nissl staining, western blot method, and Morris water maze task, respectively. Results showed that NAC delayed seizure activity and ameliorated memory deficit induced by Kainic acid. Histological analysis showed that NAC significantly increased the number of intact neurons in CA3 and hilar areas of the hippocampus following the induction of epilepsy. NAC also modulated the mTOR protein level 5 days after epilepsy compared to the KA-induced group. CONCLUSION: These results suggest that NAC improved memory impairment via anticonvulsant and neuroprotective activity and, in all probability, by lowering the level of mTOR.
Collapse
Affiliation(s)
- Ekram Mohammadi
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, University of Medical Sciences, Tehran Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, University of Medical Sciences, Tehran Iran.
| | - Somayeh Vazifekhah
- Department of Basic Sciences, Sari Branch. Islamic Azad University, Sari, Iran
| | - Javad Fahanik Babae
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Taghi Jogataei
- Cellular and Molecular Research Center and Department of Anatomy, School of Medicine, University of Medical Sciences, Tehran Iran
| |
Collapse
|
5
|
The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease. Antioxidants (Basel) 2022; 11:antiox11040755. [PMID: 35453440 PMCID: PMC9026549 DOI: 10.3390/antiox11040755] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The contractile activity, high oxygen consumption and metabolic rate of skeletal muscle cause it to continuously produce moderate levels of oxidant species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Under normal physiological conditions, there is a dynamic balance between the production and elimination of ROS/RNS. However, when the oxidation products exceed the antioxidant defense capacity, the body enters a state of oxidative stress. Myogenesis is an important process to maintain muscle homeostasis and the physiological function of skeletal muscle. Accumulating evidence suggests that oxidative stress plays a key role in myogenesis and skeletal muscle physiology and pathology. In this review, we summarize the sources of reactive oxygen species in skeletal muscle and the causes of oxidative stress and analyze the key role of oxidative stress in myogenesis. Then, we discuss the relationship between oxidative stress and muscle homeostasis and physiopathology. This work systematically summarizes the role of oxidative stress in myogenesis and muscle diseases and provides targets for subsequent antioxidant therapy and repair of inflammatory damage in noninflammatory muscle diseases.
Collapse
|
6
|
Teng X, Brown J, Morel L. Redox Homeostasis Involvement in the Pharmacological Effects of Metformin in Systemic Lupus Erythematosus. Antioxid Redox Signal 2022; 36:462-479. [PMID: 34619975 PMCID: PMC8982129 DOI: 10.1089/ars.2021.0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022]
Abstract
Significance: Metformin has been proposed as a treatment for systemic lupus erythematosus (SLE). The primary target of metformin, the electron transport chain complex I in the mitochondria, is associated with redox homeostasis in immune cells, which plays a critical role in the pathogenesis of autoimmune diseases. This review addresses the evidence and knowledge gaps on whether a beneficial effect of metformin in lupus may be due to a restoration of a balanced redox state. Recent Advances: Clinical trials in SLE patients with mild-to-moderate disease activity and preclinical studies in mice have provided encouraging results for metformin. The mechanism by which this therapeutic effect was achieved is largely unknown. Metformin regulates redox homeostasis in a context-specific manner. Multiple cell types contribute to SLE, with evidence of increased mitochondrial oxidative stress in T cells and neutrophils. Critical Issues: The major knowledge gaps are whether the efficacy of metformin is linked to a restored redox homeostasis in the immune system, and if it does, in which cell types it occurs? We also need to know which patients may have a better response to metformin, and whether it corresponds to a specific mechanism? Finally, the identification of biomarkers to predict treatment outcomes would be of great value. Future Directions: Mechanistic studies must address the context-dependent pharmacological effects of metformin. Multiple cell types as well as a complex disease etiology should be considered. These studies must integrate the rapid advances made in understanding how metabolic programs direct the effector functions of immune cells. Antioxid. Redox Signal. 36, 462-479.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Josephine Brown
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Abstract
Despite progress in the treatment of systemic lupus erythematosus (SLE), remission rates and health-related quality of life remain disappointingly low. The paucity of successful SLE clinical trials reminds us that we still have a long way to go. Nevertheless, there are clear signs of hope. We highlight results from recent studies of novel therapeutic strategies based on emerging insights into our understanding of SLE disease mechanisms. We also highlight several studies that inform optimal use of existing treatments to improve efficacy and/or limit toxicity. These developments suggest we may yet unlock the key toward more satisfactory treatment outcomes in SLE.
Collapse
Affiliation(s)
- Yashaar Chaichian
- Division of Immunology and Rheumatology, Stanford University, 1000 Welch Road, Suite 203, Palo Alto, CA 94304, USA.
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, 8750 Wilshire Boulevard Suite 350, Beverly Hills, CA 90211
| |
Collapse
|
8
|
Schwalfenberg GK. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J Nutr Metab 2021; 2021:9949453. [PMID: 34221501 PMCID: PMC8211525 DOI: 10.1155/2021/9949453] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To review the clinical usefulness of N-acetylcysteine (NAC) as treatment or adjunctive therapy in a number of medical conditions. Use in Tylenol overdose, cystic fibrosis, and chronic obstructive lung disease has been well documented, but there is emerging evidence many other conditions would benefit from this safe, simple, and inexpensive intervention. Quality of Evidence. PubMed, several books, and conference proceedings were searched for articles on NAC and health conditions listed above reviewing supportive evidence. This study uses a traditional integrated review format, and clinically relevant information is assessed using the American Family Physician Evidence-Based Medicine Toolkit. A table summarizing the potential mechanisms of action for N-acetylcysteine in these conditions is presented. Main Message. N-acetylcysteine may be useful as an adjuvant in treating various medical conditions, especially chronic diseases. These conditions include polycystic ovary disease, male infertility, sleep apnea, acquired immune deficiency syndrome, influenza, parkinsonism, multiple sclerosis, peripheral neuropathy, stroke outcomes, diabetic neuropathy, Crohn's disease, ulcerative colitis, schizophrenia, bipolar illness, and obsessive compulsive disorder; it can also be useful as a chelator for heavy metals and nanoparticles. There are also a number of other conditions that may show benefit; however, the evidence is not as robust. CONCLUSION The use of N-acetylcysteine should be considered in a number of conditions as our population ages and levels of glutathione drop. Supplementation may contribute to reducing morbidity and mortality in some chronic conditions as outlined in the article.
Collapse
Affiliation(s)
- Gerry K. Schwalfenberg
- Department of Family Medicine, University of Alberta, No. 301, 9509-156 Street, Edmonton T5P 4J5, AB, Canada
| |
Collapse
|
9
|
Hyatt HW, Powers SK. Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity. Antioxidants (Basel) 2021; 10:antiox10040588. [PMID: 33920468 PMCID: PMC8070615 DOI: 10.3390/antiox10040588] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle is the most abundant tissue in the body and is required for numerous vital functions, including breathing and locomotion. Notably, deterioration of skeletal muscle mass is also highly correlated to mortality in patients suffering from chronic diseases (e.g., cancer). Numerous conditions can promote skeletal muscle wasting, including several chronic diseases, cancer chemotherapy, aging, and prolonged inactivity. Although the mechanisms responsible for this loss of muscle mass is multifactorial, mitochondrial dysfunction is predicted to be a major contributor to muscle wasting in various conditions. This systematic review will highlight the biochemical pathways that have been shown to link mitochondrial dysfunction to skeletal muscle wasting. Importantly, we will discuss the experimental evidence that connects mitochondrial dysfunction to muscle wasting in specific diseases (i.e., cancer and sepsis), aging, cancer chemotherapy, and prolonged muscle inactivity (e.g., limb immobilization). Finally, in hopes of stimulating future research, we conclude with a discussion of important future directions for research in the field of muscle wasting.
Collapse
|
10
|
Sun L, Fan J, Song G, Cai S, Fan C, Zhong Y, Li Y. Exposure to phthalates is associated with grip strength in US adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111787. [PMID: 33333342 DOI: 10.1016/j.ecoenv.2020.111787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The potential association of exposure to phthalates with muscle strength was reported in previous animal experiments. However, their association was rarely directly investigated in general populations. Thus, we aimed to ascertain the association of exposure to phthalates with grip strength using cross-sectional analysis which included 2436 individuals aged ≥ 20 years from the National Health and Nutrition Examination Survey (NHANES) during 2011-2014. The multivariable linear regression models were performed with the adjustment of related covariates. The results suggested that a one-unit increase in log-transformed phthalate metabolites (μg/g creatinine) was inversely associated with grip strength, including Mono-(2-ethyl)-hexyl phthalate (β: -2.727 kg, 95% CI: -3.452, -2.002), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (β: -3.721 kg, 95% CI: -4.836, -2.607), Mono-(2-ethyl-5-oxohexl) phthalate (β: -4.669 kg, 95% CI: -5.761, -3.577), Mono-2-ethyl-5-carboxypentyl phthalate (β: -4.756 kg, 95% CI: -5.957, -3.554), Mono-carboxyoctyl phthalate (β: -1.324 kg, 95% CI: -2.412, -0.235), Mono-carboxynonyl phthalate (β: -2.036 kg, 95% CI: -3.185, -0.886), Mono-benzyl phthalate (β: -2.940 kg, 95% CI: -3.853, -2.026), Mono-n-butyl phthalate (β: -2.100 kg, 95% CI: -3.474, -0.726), Mono-isobutyl phthalate (β: -2.982 kg, 95% CI: -4.331, -1.633), and Mono-ethyl phthalate (β: -1.709 kg, 95% CI: -2.368, -1.050). In subgroup analyses, the associations remained largely unchanged when the samples were stratified by gender and age; However they became ambiguous among underweight subjects when the samples were stratified by BMI status. Overall, exposure to phthalates was inversely associated with grip strength among US adults, regardless of their genders and ages. The suggestive potential BMI status-specific effects of phthalates on grip strength were observed.
Collapse
Affiliation(s)
- Lingling Sun
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiayao Fan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Guangzhong Song
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Shaofang Cai
- Department of Science and Education, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Chunhong Fan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yaohong Zhong
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
11
|
Brown JL, Lawrence MM, Ahn B, Kneis P, Piekarz KM, Qaisar R, Ranjit R, Bian J, Pharaoh G, Brown C, Peelor FF, Kinter MT, Miller BF, Richardson A, Van Remmen H. Cancer cachexia in a mouse model of oxidative stress. J Cachexia Sarcopenia Muscle 2020; 11:1688-1704. [PMID: 32918528 PMCID: PMC7749559 DOI: 10.1002/jcsm.12615] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cancer is associated with muscle atrophy (cancer cachexia) that is linked to up to 40% of cancer-related deaths. Oxidative stress is a critical player in the induction and progression of age-related loss of muscle mass and weakness (sarcopenia); however, the role of oxidative stress in cancer cachexia has not been defined. The purpose of this study was to examine if elevated oxidative stress exacerbates cancer cachexia. METHODS Cu/Zn superoxide dismutase knockout (Sod1KO) mice were used as an established mouse model of elevated oxidative stress. Cancer cachexia was induced by injection of one million Lewis lung carcinoma (LLC) cells or phosphate-buffered saline (saline) into the hind flank of female wild-type mice or Sod1KO mice at approximately 4 months of age. The tumour developed for 3 weeks. Muscle mass, contractile function, neuromuscular junction (NMJ) fragmentation, metabolic proteins, mitochondrial function, and motor neuron function were measured in wild-type and Sod1KO saline and tumour-bearing mice. Data were analysed by two-way ANOVA with Tukey-Kramer post hoc test when significant F ratios were determined and α was set at 0.05. Unless otherwise noted, results in abstract are mean ±SEM. RESULTS Muscle mass and cross-sectional area were significantly reduced, in tumour-bearing mice. Metabolic enzymes were dysregulated in Sod1KO mice and cancer exacerbated this phenotype. NMJ fragmentation was exacerbated in tumour-bearing Sod1KO mice. Myofibrillar protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.00847 ± 0.00205; wildtype LLC, 0.0211 ± 0.00184) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0180 ± 0.00118; Sod1KO LLC, 0.0490 ± 0.00132). Muscle mitochondrial oxygen consumption was reduced in tumour-bearing mice compared with saline-injected wild-type mice. Mitochondrial protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.0204 ± 0.00159; wild-type LLC, 0.167 ± 0.00157) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0231 ± 0.00108; Sod1 KO LLC, 0.0645 ± 0.000631). Sciatic nerve conduction velocity was decreased in tumour-bearing wild-type mice (wild-type saline, 38.2 ± 0.861; wild-type LLC, 28.8 ± 0.772). Three out of eleven of the tumour-bearing Sod1KO mice did not survive the 3-week period following tumour implantation. CONCLUSIONS Oxidative stress does not exacerbate cancer-induced muscle loss; however, cancer cachexia may accelerate NMJ disruption.
Collapse
Affiliation(s)
- Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Parker Kneis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Katarzyna M Piekarz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jan Bian
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chase Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fredrick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA.,Reynolds Center for Aging Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
12
|
Shin SK, Cho HW, Song SE, Im SS, Bae JH, Song DK. Oxidative stress resulting from the removal of endogenous catalase induces obesity by promoting hyperplasia and hypertrophy of white adipocytes. Redox Biol 2020; 37:101749. [PMID: 33080438 PMCID: PMC7575809 DOI: 10.1016/j.redox.2020.101749] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is regarded as an abnormal expansion and excessive accumulation of fat mass in white adipose tissue. The involvement of oxidative stress in the development of obesity is still unclear. Although mainly present in peroxisomes, catalase scavenges intracellular H2O2 at toxic levels. Therefore, we used catalase-knockout (CKO) mice to elucidate the involvement of excessive H2O2 in the development of obesity. CKO mice with C57BL/6J background gained more weight with higher body fat mass with age than age-matched wild-type (WT) mice fed with either chow or high-fat diets. This phenomenon was attenuated by concomitant treatment with the antioxidants, melatonin or N-acetyl cysteine. Moreover, CKO mouse embryonic fibroblasts (MEFs) appeared to differentiate to adipocytes more easily than WT MEFs, showing increased H2O2 concentrations. Using 3T3-L1-derived adipocytes transfected with catalase-small interfering RNA, we confirmed that a more prominent lipogenesis occurred in catalase-deficient cells than in WT cells. Catalase-deficient adipocytes presented increased nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression but decreased adenosine monophosphate-activated protein kinase (AMPK) expression. Treatment with a NOX4 inhibitor or AMPK activator rescued the propensity for obesity of CKO mice. These findings suggest that excessive H2O2 and related oxidative stress increase body fat mass via both adipogenesis and lipogenesis. Manipulating NOX4 and AMPK in white adipocytes may be a therapeutic tool against obesity augmented by oxidative stress.
Collapse
Affiliation(s)
- Su-Kyung Shin
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, 42601, South Korea
| | - Hyun-Woo Cho
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, 42601, South Korea
| | - Seung-Eun Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, 42601, South Korea
| | - Seung-Soon Im
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, 42601, South Korea
| | - Jae-Hoon Bae
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, 42601, South Korea
| | - Dae-Kyu Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, 42601, South Korea.
| |
Collapse
|
13
|
Ganesan H, Balasubramanian V, Iyer M, Venugopal A, Subramaniam MD, Cho SG, Vellingiri B. mTOR signalling pathway - A root cause for idiopathic autism? BMB Rep 2020. [PMID: 31186084 PMCID: PMC6675248 DOI: 10.5483/bmbrep.2019.52.7.137] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental monogenic disorder with a strong genetic influence. Idiopathic autism could be defined as a type of autism that does not have a specific causative agent. Among signalling cascades, mTOR signalling pathway plays a pivotal role not only in cell cycle, but also in protein synthesis and regulation of brain homeostasis in ASD patients. The present review highlights, underlying mechanism of mTOR and its role in altered signalling cascades as a triggering factor in the onset of idiopathic autism. Further, this review discusses how distorted mTOR signalling pathway stimulates truncated translation in neuronal cells and leads to downregulation of protein synthesis at dendritic spines of the brain. This review concludes by suggesting downstream regulators such as p70S6K, eIF4B, eIF4E of mTOR signalling pathway as promising therapeutic targets for idiopathic autistic individuals. [BMB Reports 2019; 52(7): 424-433].
Collapse
Affiliation(s)
- Harsha Ganesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Venkatesh Balasubramanian
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Anila Venugopal
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
14
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
15
|
Savikj M, Kostovski E, Lundell LS, Iversen PO, Massart J, Widegren U. Altered oxidative stress and antioxidant defence in skeletal muscle during the first year following spinal cord injury. Physiol Rep 2019; 7:e14218. [PMID: 31456346 PMCID: PMC6712236 DOI: 10.14814/phy2.14218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress promotes protein degradation and apoptosis in skeletal muscle undergoing atrophy. We aimed to determine whether spinal cord injury leads to changes in oxidative stress, antioxidant capacity, and apoptotic signaling in human skeletal muscle during the first year after spinal cord injury. Vastus lateralis biopsies were obtained from seven individuals 1, 3, and 12 months after spinal cord injury and from seven able-bodied controls. Protein content of enzymes involved in reactive oxygen species production and detoxification, and apoptotic signaling were analyzed by western blot. Protein carbonylation and 4-hydroxynonenal protein adducts were measured as markers of oxidative damage. Glutathione content was determined fluorometrically. Protein content of NADPH oxidase 2, xanthine oxidase, and pro-caspase-3 was increased at 1 and 3 months after spinal cord injury compared to able-bodied controls. Furthermore, total and reduced glutathione content was increased at 1 and 3 months after spinal cord injury. Conversely, mitochondrial complexes and superoxide dismutase 2 protein content were decreased 12 months after spinal cord injury compared to able-bodied controls. In conclusion, we provide indirect evidence of increased reactive oxygen species production and increased apoptotic signaling at 1 and 3 months after spinal cord injury. Concomitant increases in glutathione antioxidant defences may reflect adaptations poised to maintain redox homeostasis in skeletal muscle following spinal cord injury.
Collapse
Affiliation(s)
| | - Emil Kostovski
- Faculty of MedicineUniversity of OsloOsloNorway
- Department of ResearchSunnaas Rehabilitation HospitalNesoddenNorway
| | - Leonidas S. Lundell
- Department of Physiology and Pharmacology, Section for Integrative PhysiologyKarolinska InstitutetStockholmSweden
| | - Per O. Iversen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of HaematologyOslo University HospitalOsloNorway
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative PhysiologyKarolinska InstitutetStockholmSweden
| | - Ulrika Widegren
- Department of Molecular Medicine and Surgery, Section for Integrative PhysiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
16
|
The Immunomodulatory Effect of Alpha-Lipoic Acid in Autoimmune Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8086257. [PMID: 31016198 PMCID: PMC6446120 DOI: 10.1155/2019/8086257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 01/08/2023]
Abstract
Αlpha-lipoic acid is a naturally occurring antioxidant in human body and has been widely used as an antioxidant clinically. Accumulating evidences suggested that α-lipoic acid might have immunomodulatory effects on both adaptive and innate immune systems. This review focuses on the evidences and potential targets involved in the immunomodulatory effects of α-lipoic acid. It highlights the fact that α-lipoic acid may have beneficial effects in autoimmune diseases once the immunomodulatory effects can be confirmed by further investigation.
Collapse
|
17
|
Ruiz-Moreno C, Jimenez-Del-Rio M, Sierra-Garcia L, Lopez-Osorio B, Velez-Pardo C. Vitamin E synthetic derivate-TPGS-selectively induces apoptosis in jurkat t cells via oxidative stress signaling pathways: implications for acute lymphoblastic leukemia. Apoptosis 2018; 21:1019-32. [PMID: 27364951 DOI: 10.1007/s10495-016-1266-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) is a water-soluble derivative of natural vitamin E commonly used as a drug delivery agent. Recently, TPGS alone has been reported to induce cell death in lung, breast and prostate cancer. However, the effect of TPGS on cancer cell viability remains unclear. Thus, this study was aimed to evaluate the cytotoxic effect of TPGS on human periphral blood lymphocytes (PBL) and on T cell acute lymphocytic leukemia (ALL) Jurkat clone E6-1 cells and its possible mechanism of action. PBL and Jurkat cells were treated with TPGS (10, 20, 40, 60, and 80 μM), and morphological changes in the cell nucleus, mitochondrial membrane potential (ΔΨm), and intracellular reactive oxygen species levels were determined by immune-fluorescence microscopy and flow cytometry. Cellular apoptosis markers were also evaluated by immunocytochemistry. In this study, TPGS induced apoptotic cell death in Jurkat cells, but not in PBL, in a dose-response manner with increasing nuclear DNA fragmentation, increasing cell cycle arrest, and decreasing ΔΨm. Additionally, TPGS increased dichlorofluorescein fluorescence intensity, indicative of H2O2 production, in a dose-independent fashion. TPGS increased DJ-1 Cys(106)-sulfonate, as a marker of intracellular stress and induced the activation of NF-κB, p53 and c-Jun transcription factors. Additionally, it increased the expression of apoptotic markers Bcl-2 related pro-apoptotic proteins Bax and PUMAand activated caspase-3. The antioxidant N-acetyl-L-cysteine and known pharmacological inhibitors protected the cells from the TPGS induced effects. In conclusion, TPGS selectively induces apoptosis in Jurkat cells through two independent but complementary H2O2-mediated signaling pathways. Our findings support the use of TPGS as a potential treatment for ALL.
Collapse
Affiliation(s)
- Cristian Ruiz-Moreno
- Neuroscience Research Group, Faculty of Medicine, Medical Research Institute, University of Antioquia, Calle 70 N° 52-21, and Calle 62 #52-59, Building 1, Room 412, SIU, P. O. Box 1226, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Faculty of Medicine, Medical Research Institute, University of Antioquia, Calle 70 N° 52-21, and Calle 62 #52-59, Building 1, Room 412, SIU, P. O. Box 1226, Medellín, Colombia
| | - Ligia Sierra-Garcia
- Material Science Group, Faculty of Chemistry, University of Antioquia, Calle 70 N° 52-21, and Calle 62 #52-59, Building 1, Room 310, SIU, P. O. Box 1226, Medellin, Colombia
| | - Betty Lopez-Osorio
- Material Science Group, Faculty of Chemistry, University of Antioquia, Calle 70 N° 52-21, and Calle 62 #52-59, Building 1, Room 310, SIU, P. O. Box 1226, Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Faculty of Medicine, Medical Research Institute, University of Antioquia, Calle 70 N° 52-21, and Calle 62 #52-59, Building 1, Room 412, SIU, P. O. Box 1226, Medellín, Colombia.
| |
Collapse
|
18
|
Brown JL, Rosa‐Caldwell ME, Lee DE, Blackwell TA, Brown LA, Perry RA, Haynie WS, Hardee JP, Carson JA, Wiggs MP, Washington TA, Greene NP. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J Cachexia Sarcopenia Muscle 2017; 8:926-938. [PMID: 28845591 PMCID: PMC5700433 DOI: 10.1002/jcsm.12232] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer cachexia is largely irreversible, at least via nutritional means, and responsible for 20-40% of cancer-related deaths. Therefore, preventive measures are of primary importance; however, little is known about muscle perturbations prior to onset of cachexia. Cancer cachexia is associated with mitochondrial degeneration; yet, it remains to be determined if mitochondrial degeneration precedes muscle wasting in cancer cachexia. Therefore, our purpose was to determine if mitochondrial degeneration precedes cancer-induced muscle wasting in tumour-bearing mice. METHODS First, weight-stable (MinStable) and cachectic (MinCC) ApcMin/+ mice were compared with C57Bl6/J controls for mRNA contents of mitochondrial quality regulators in quadriceps muscle. Next, Lewis lung carcinoma (LLC) cells or PBS (control) were injected into the hind flank of C57Bl6/J mice at 8 week age, and tumour allowed to develop for 1, 2, 3, or 4 weeks to examine time course of cachectic development. Succinate dehydrogenase stain was used to measure oxidative phenotype in tibialis anterior muscle. Mitochondrial quality and function were assessed using the reporter MitoTimer by transfection to flexor digitorum brevis and mitochondrial function/ROS emission in permeabilized adult myofibres from plantaris. RT-qPCR and immunoblot measured the expression of mitochondrial quality control and antioxidant proteins. Data were analysed by one-way ANOVA with Student-Newman-Kuels post hoc test. RESULTS MinStable mice displayed ~50% lower Pgc-1α, Pparα, and Mfn2 compared with C57Bl6/J controls, whereas MinCC exhibited 10-fold greater Bnip3 content compared with C57Bl6/J controls. In LLC, cachectic muscle loss was evident only at 4 weeks post-tumour implantation. Oxidative capacity and mitochondrial content decreased by ~40% 4 weeks post-tumour implantation. Mitochondrial function decreased by ~25% by 3 weeks after tumour implantation. Mitochondrial degeneration was evident by 2 week LLC compared with PBS control, indicated by MitoTimer red/green ratio and number of pure red puncta. Mitochondrial ROS production was elevated by ~50 to ~100% when compared with PBS at 1-3 weeks post-tumour implantation. Mitochondrial quality control was dysregulated throughout the progression of cancer cachexia in tumour-bearing mice. In contrast, antioxidant proteins were not altered in cachectic muscle wasting. CONCLUSIONS Functional mitochondrial degeneration is evident in LLC tumour-bearing mice prior to muscle atrophy. Contents of mitochondrial quality regulators across ApcMin/+ and LLC mice suggest impaired mitochondrial quality control as a commonality among pre-clinical models of cancer cachexia. Our data provide novel evidence for impaired mitochondrial health prior to cachectic muscle loss and provide a potential therapeutic target to prevent cancer cachexia.
Collapse
Affiliation(s)
- Jacob L. Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleAR72701USA
| | - Megan E. Rosa‐Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleAR72701USA
| | - David E. Lee
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleAR72701USA
| | - Thomas A. Blackwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleAR72701USA
| | - Lemuel A. Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleAR72701USA
| | - Richard A. Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleAR72701USA
| | - Wesley S. Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleAR72701USA
| | - Justin P. Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise ScienceUniversity of South CarolinaColumbiaSC29208USA
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Department of Exercise ScienceUniversity of South CarolinaColumbiaSC29208USA
| | - Michael P. Wiggs
- Integrated Physiology and Nutrition Laboratory, Department of Health and KinesiologyUniversity of Texas at TylerTylerTX75799USA
| | - Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleAR72701USA
| | - Nicholas P. Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleAR72701USA
| |
Collapse
|
19
|
Abstract
Drug development for the treatment of systemic lupus erythematosus (SLE) has largely focused on B-cell therapies. A greater understanding of the immunopathogenesis of SLE coupled with advanced bioengineering has allowed for clinical trials centered on other targets for SLE therapy. The authors discuss the benefits and shortcomings of focusing on T-cell-directed therapies in SLE and lupus nephritis clinical trials.
Collapse
Affiliation(s)
- P Nandkumar
- Division of Rheumatology, Northwell Health, Great Neck, NY, USA
| | - R Furie
- Division of Rheumatology, Northwell Health, Great Neck, NY, USA
| |
Collapse
|
20
|
Lee SY, Moon SJ, Kim EK, Seo HB, Yang EJ, Son HJ, Kim JK, Min JK, Park SH, Cho ML. Metformin Suppresses Systemic Autoimmunity in Roquinsan/san Mice through Inhibiting B Cell Differentiation into Plasma Cells via Regulation of AMPK/mTOR/STAT3. THE JOURNAL OF IMMUNOLOGY 2017; 198:2661-2670. [PMID: 28242651 DOI: 10.4049/jimmunol.1403088] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/11/2017] [Indexed: 01/18/2023]
Abstract
Circulating autoantibodies and immune complex deposition are pathological hallmarks of systemic lupus erythematosus (SLE). B cell differentiation into plasma cells (PCs) and some T cell subsets that function as B cell helpers can be therapeutic targets of SLE. Mechanistic target of rapamycin (mTOR) signaling is implicated in the formation of B cells and germinal centers (GCs). We assessed the effect of metformin, which inhibits mTOR, on the development of autoimmunity using Roquinsan/san mice. Oral administration of metformin inhibited the formation of splenic follicles and inflammation in kidney and liver tissues. It also decreased serum levels of anti-dsDNA Abs without affecting serum glucose levels. Moreover, metformin inhibited CD21highCD23low marginal zone B cells, B220+GL7+ GC B cells, B220-CD138+ PCs, and GC formation. A significant reduction in ICOS+ follicular helper T cells was found in the spleens of the metformin-treated group compared with the vehicle-treated group. In addition, metformin inhibited Th17 cells and induced regulatory T cells. These alterations in B and T cell subsets by metformin were associated with enhanced AMPK expression and inhibition of mTOR-STAT3 signaling. Furthermore, metformin induced p53 and NF erythroid-2-related factor-2 activity in splenic CD4+ T cells. Taken together, metformin-induced alterations in AMPK-mTOR-STAT3 signaling may have therapeutic value in SLE by inhibiting B cell differentiation into PCs and GCs.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea.,Immune Network, Convergent Research Consortium for Immunologic Disease, The Catholic University of Korea, Seoul 137-701, South Korea; and
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Eun-Kyung Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hyeon-Beom Seo
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Eun-Ji Yang
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hye-Jin Son
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Jae-Kyung Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Jun-Ki Min
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, South Korea; .,Immune Network, Convergent Research Consortium for Immunologic Disease, The Catholic University of Korea, Seoul 137-701, South Korea; and
| |
Collapse
|
21
|
Powers SK, Morton AB, Ahn B, Smuder AJ. Redox control of skeletal muscle atrophy. Free Radic Biol Med 2016; 98:208-217. [PMID: 26912035 PMCID: PMC5006677 DOI: 10.1016/j.freeradbiomed.2016.02.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States.
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
22
|
Wu T, Ye Y, Min SY, Zhu J, Khobahy E, Zhou J, Yan M, Hemachandran S, Pathak S, Zhou XJ, Andreeff M, Mohan C. Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid. Arthritis Rheumatol 2015; 66:3129-39. [PMID: 25047252 DOI: 10.1002/art.38782] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 07/08/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Current treatment options for lupus are far from optimal. Previously, we reported that phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, MEK-1/ERK-1,2, p38, STAT-3, STAT-5, NF-κB, multiple Bcl-2 family members, and various cell cycle molecules were overexpressed in splenic B cells in an age-dependent and gene dose-dependent manner in mouse strains with spontaneous lupus. Since the synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) has been shown to inhibit AKT, MEK-1/2, and NF-κB, and to induce caspase-mediated apoptosis, we tested the therapeutic potential of this agent in murine lupus nephritis. METHODS The synthetic triterpenoid CDDO-Me or placebo was administered to 2-month-old B6.Sle1.Sle3 mice or MRL/lpr mice, which develop spontaneous lupus. All mice were phenotyped for disease. RESULTS CDDO-Me-treated mice exhibited significantly reduced splenic cellularity, with decreased numbers of both CD4+ T cells and activated CD69+/CD4+ T cells compared to the placebo-treated mice. These mice also exhibited a significant reduction in serum autoantibody levels, including anti-double-stranded DNA (anti-dsDNA) and antiglomerular antibodies. Finally, CDDO-Me treatment attenuated renal disease in mice, as indicated by reduced 24-hour proteinuria, blood urea nitrogen, and glomerulonephritis. At the mechanistic level, CDDO-Me treatment dampened MEK-1/2, ERK, and STAT-3 signaling within lymphocytes and oxidative stress. Importantly, the NF-E2-related factor 2 pathway was activated after CDDO-Me treatment, indicating that CDDO-Me may modulate renal damage in lupus via the inhibition of oxidative stress. CONCLUSION These findings underscore the importance of AKT/MEK-1/2/NF-κB signaling in engendering murine lupus. Our findings indicate that the blockade of multiple signaling nodes and oxidative stress may effectively prevent and reverse the hematologic, autoimmune, and pathologic manifestations of lupus.
Collapse
Affiliation(s)
- Tianfu Wu
- University of Texas Southwestern Medical Center at Dallas and University of Houston, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stavropoulos-Kalinoglou A, Deli C, Kitas GD, Jamurtas AZ. Muscle wasting in rheumatoid arthritis: The role of oxidative stress. World J Rheumatol 2014; 4:44-53. [DOI: 10.5499/wjr.v4.i3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA), the commonest inflammatory arthritis, is a debilitating disease leading to functional and social disability. In addition to the joints, RA affects several other tissues of the body including the muscle. RA patients have significantly less muscle mass compared to the general population. Several theories have been proposed to explain this. High grade inflammation, a central component in the pathophysiology of the disease, has long been proposed as the key driver of muscle wasting. More recent findings however, indicate that inflammation on its own cannot fully explain the high prevalence of muscle wasting in RA. Thus, the contribution of other potential confounders, such as nutrition and physical activity, has also been studied. Results indicate that they play a significant role in muscle wasting in RA, but again neither of these factors seems to be able to fully explain the condition. Oxidative stress is one of the major mechanisms thought to contribute to the development and progression of RA but its potential contribution to muscle wasting in these patients has received limited attention. Oxidative stress has been shown to promote muscle wasting in healthy populations and people with several chronic conditions. Moreover, all of the aforementioned potential contributors to muscle wasting in RA (i.e., inflammation, nutrition, and physical activity) may promote pro- or anti-oxidative mechanisms. This review aims to highlight the importance of oxidative stress as a driving mechanism for muscle wasting in RA and discusses potential interventions that may promote muscle regeneration via reduction in oxidative stress.
Collapse
|
24
|
Acute and Chronic Administration of the Branched-Chain Amino Acids Decreases Nerve Growth Factor in Rat Hippocampus. Mol Neurobiol 2013; 48:581-9. [DOI: 10.1007/s12035-013-8447-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/14/2013] [Indexed: 12/17/2022]
|
25
|
Lai ZW, Hanczko R, Bonilla E, Caza TN, Clair B, Bartos A, Miklossy G, Jimah J, Doherty E, Tily H, Francis L, Garcia R, Dawood M, Yu J, Ramos I, Coman I, Faraone SV, Phillips PE, Perl A. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. ACTA ACUST UNITED AC 2012; 64:2937-46. [PMID: 22549432 DOI: 10.1002/art.34502] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) patients exhibit T cell dysfunction, which can be regulated through mitochondrial transmembrane potential (Δψm) and mammalian target of rapamycin (mTOR) by glutathione (GSH). This randomized, double-blind, placebo-controlled study was undertaken to examine the safety, tolerance, and efficacy of the GSH precursor N-acetylcysteine (NAC). METHODS A total of 36 SLE patients received either daily placebo or 1.2 gm, 2.4 gm, or 4.8 gm of NAC. Disease activity was evaluated monthly by the British Isles Lupus Assessment Group (BILAG) index, the SLE Disease Activity Index (SLEDAI), and the Fatigue Assessment Scale (FAS) before, during, and after a 3-month treatment period. Mitochondrial transmembrane potential and mTOR were assessed by flow cytometry. Forty-two healthy subjects matched to patients for age, sex, and ethnicity were studied as controls. RESULTS NAC up to 2.4 gm/day was tolerated by all patients, while 33% of those receiving 4.8 gm/day had reversible nausea. Placebo or NAC 1.2 gm/day did not influence disease activity. Considered together, 2.4 gm and 4.8 gm NAC reduced the SLEDAI score after 1 month (P = 0.0007), 2 months (P = 0.0009), 3 months (P = 0.0030), and 4 months (P = 0.0046); the BILAG score after 1 month (P = 0.029) and 3 months (P = 0.009); and the FAS score after 2 months (P = 0.0006) and 3 months (P = 0.005). NAC increased Δψm (P = 0.0001) in all T cells, profoundly reduced mTOR activity (P = 0.0009), enhanced apoptosis (P = 0.0004), reversed expansion of CD4-CD8- T cells (mean ± SEM 1.35 ± 0.12-fold change; P = 0.008), stimulated FoxP3 expression in CD4+CD25+ T cells (P = 0.045), and reduced anti-DNA production (P = 0.049). CONCLUSION This pilot study suggests that NAC safely improves lupus disease activity by blocking mTOR in T lymphocytes.
Collapse
Affiliation(s)
- Zhi-Wei Lai
- State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York 13210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This review will discuss the evidence both for and against the concept that reactive oxygen species (ROS) play an important role in the regulation of inactivity-induced skeletal muscle atrophy. RECENT FINDINGS It is well established that prolonged skeletal muscle inactivity causes muscle fiber atrophy and a decrease in muscle force production. This disuse-induced muscle atrophy is the consequence of a loss in muscle protein resulting from increased protein degradation and decreased protein synthesis. Recent studies suggest that oxidative stress can influence cell-signaling pathways that regulate both muscle protein breakdown and synthesis during prolonged periods of disuse. Specifically, it is feasible that increased ROS production in muscle fibers can promote increased proteolysis and also depress protein synthesis during periods of skeletal muscle inactivity. SUMMARY Although it is established that oxidants can participate in the regulation of protein turnover in cells, there remains debate as to whether oxidative stress is required for disuse skeletal muscle atrophy. Nonetheless, based on emerging evidence we conclude that increased ROS production in skeletal muscles significantly contributes to inactivity-induced muscle atrophy.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
27
|
Hernández-Jiménez M, Ayuso MI, Pérez-Morgado MI, García-Recio EM, Alcázar A, Martín ME, González VM. eIF4F complex disruption causes protein synthesis inhibition during hypoxia in nerve growth factor (NGF)-differentiated PC12 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:430-8. [PMID: 22178387 DOI: 10.1016/j.bbamcr.2011.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/15/2011] [Accepted: 11/28/2011] [Indexed: 02/08/2023]
Abstract
Poor oxygenation (hypoxia) influences important physiological and pathological situations, including development, ischemia, stroke and cancer. Hypoxia induces protein synthesis inhibition that is primarily regulated at the level of initiation step. This regulation generally takes place at two stages, the phosphorylation of the subunit α of the eukaryotic initiation factor (eIF) 2 and the inhibition of the eIF4F complex availability by dephosphorylation of the inhibitory protein 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1). The contribution of each of them is mainly dependent of the extent of the oxygen deprivation. We have evaluated the regulation of hypoxia-induced translation inhibition in nerve growth factor (NGF)-differentiated PC12 cells subjected to a low oxygen concentration (0.1%) at several times. Our findings indicate that protein synthesis inhibition occurs primarily by the disruption of eIF4F complex through 4E-BP1 dephosphorylation, which is produced by the inhibition of the mammalian target of rapamycin (mTOR) activity via the activation of REDD1 (regulated in development and DNA damage 1) protein in a hypoxia-inducible factor 1 (HIF1)-dependent manner, as well as the translocation of eIF4E to the nucleus. In addition, this mechanism is reinforced by the increase in 4E-BP1 levels, mainly at prolonged times of hypoxia.
Collapse
|
28
|
Powers SK, Smuder AJ, Criswell DS. Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal 2011; 15:2519-28. [PMID: 21457104 PMCID: PMC3208252 DOI: 10.1089/ars.2011.3973] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Long periods of skeletal muscle inactivity promote a loss of muscle protein resulting in fiber atrophy. This disuse-induced muscle atrophy results from decreased protein synthesis and increased protein degradation. Recent studies have increased our insight into this complicated process, and evidence indicates that disturbed redox signaling is an important regulator of cell signaling pathways that control both protein synthesis and proteolysis in skeletal muscle. The objective of this review is to outline the role that reactive oxygen species play in the regulation of inactivity-induced skeletal muscle atrophy. Specifically, this report will provide an overview of experimental models used to investigate disuse muscle atrophy and will also highlight the intracellular sources of reactive oxygen species and reactive nitrogen species in inactive skeletal muscle. We then will provide a detailed discussion of the evidence that links oxidants to the cell signaling pathways that control both protein synthesis and degradation. Finally, by presenting unresolved issues related to oxidative stress and muscle atrophy, we hope that this review will serve as a stimulus for new research in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, USA.
| | | | | |
Collapse
|
29
|
Gong M, Ling SSM, Lui SY, Yeoh KG, Ho B. Helicobacter pylori gamma-glutamyl transpeptidase is a pathogenic factor in the development of peptic ulcer disease. Gastroenterology 2010; 139:564-73. [PMID: 20347814 DOI: 10.1053/j.gastro.2010.03.050] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/03/2010] [Accepted: 03/11/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS gamma-Glutamyl transpeptidase (GGT) has been reported to be a virulence factor of Helicobacter pylori associated with bacterial colonization and cell apoptosis. But its mechanism of pathogenesis is not firmly established. This study aims to examine its role in H pylori-mediated infection. METHODS Various H pylori isogenic mutants were constructed by a polymerase chain reaction (PCR) approach. H pylori native GGT protein (HP-nGGT) was purified with ion-exchange and gel-filtration chromatography. Generation of H2O2 was measured with fluorimetric analysis, whereas nuclear factor-kappaB (NF-kappaB) activation was determined by luciferase assay and Western blot. Cytokine production was examined by enzyme-linked immunoabsorbent assay and real-time PCR. DNA damage was assessed with comet assay and flow cytometry. The GGT activity of 98 H pylori isolates was analyzed by an enzymatic assay. RESULTS Purified HP-nGGT generated H2O2 in primary gastric epithelial cells and AGS gastric cancer cells, resulting in the activation of NF-kappaB and up-regulation of interleukin-8 (IL-8) production. In addition, HP-nGGT caused an increase in the level of 8-OH-dG, indicative of oxidative DNA damage. In contrast, Deltaggt showed significantly reduced levels of H2O2 generation, IL-8 production, and DNA damage in cells compared with the wild type (P<.05). The clinical importance of GGT was indicated by significantly higher (P<.001) activity in H pylori isolates obtained from patients with peptic ulcer disease (n=54) than isolates from patients with nonulcer dyspepsia (n=44). CONCLUSION Our findings provide evidence that GGT is a pathogenic factor associated with H pylori-induced peptic ulcer disease.
Collapse
Affiliation(s)
- Min Gong
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
30
|
Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. J Transl Med 2010; 90:762-73. [PMID: 20142804 PMCID: PMC2861733 DOI: 10.1038/labinvest.2010.36] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress results in apoptosis of neuronal cells, leading to neurodegenerative disorders. However, the underlying molecular mechanism remains to be elucidated. Here, we show that hydrogen peroxide (H(2)O(2)), a major oxidant generated when oxidative stress occurs, induced apoptosis of neuronal cells (PC12 cells and primary murine neurons), by inhibiting the mammalian target of rapamycin (mTOR)-mediated phosphorylation of ribosomal p70 S6 kinase (S6K1) and eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS), blocked H(2)O(2) inhibition of mTOR signaling. Ectopic expression of wild-type (wt) mTOR, constitutively active S6K1 or downregulation of 4E-BP1 partially prevented H(2)O(2) induction of apoptosis. Furthermore, we identified that H(2)O(2) induction of ROS inhibited the upstream kinases, Akt and phosphoinositide-dependent kinase 1 (PDK1), but not the type I insulin-like growth factor receptor (IGFR), and activated the negative regulator, AMP-activated protein kinase alpha (AMPKalpha), but not the phosphatase and tensin homolog (PTEN) in the cells. Expression of a dominant negative AMPKalpha or downregulation of AMPKalpha1 conferred partial resistance to H(2)O(2) inhibition of phosphorylation of S6K1 and 4E-BP1, as well as cell viability, indicating that H(2)O(2) inhibition of mTOR signaling is at least in part through activation of AMPK. Our findings suggest that AMPK inhibitors may be exploited for prevention of H(2)O(2)-induced neurodegenerative diseases.
Collapse
|
31
|
Involvement of ERK1/2 Pathway in Neuroprotection by Salidroside Against Hydrogen Peroxide-Induced Apoptotic Cell Death. J Mol Neurosci 2009; 40:321-31. [DOI: 10.1007/s12031-009-9292-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
|
32
|
Shenberger JS, Zhang L, Kimball SR, Jefferson LS. Hydrogen peroxide impairs insulin-stimulated assembly of mTORC1. Free Radic Biol Med 2009; 46:1500-9. [PMID: 19281842 PMCID: PMC2677139 DOI: 10.1016/j.freeradbiomed.2009.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/02/2009] [Accepted: 03/03/2009] [Indexed: 12/21/2022]
Abstract
Oxidants are well recognized for their capacity to reduce the phosphorylation of the mammalian target of rapamycin (mTOR) substrates, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and p70 S6 kinase 1 (S6K1), thereby hindering mRNA translation at the level of initiation. mTOR functions to regulate mRNA translation by forming the signaling complex mTORC1 (mTOR, raptor, GbetaL). Insulin signaling to mTORC1 is dependent upon phosphorylation of Akt/PKB and the inhibition of the tuberous sclerosis complex (TSC1/2), thereby enhancing the phosphorylation of 4E-BP1 and S6K1. In this study we report the effect of H(2)O(2) on insulin-stimulated mTORC1 activity and assembly using A549 and bovine aortic smooth muscle cells. We show that insulin stimulated the phosphorylation of TSC2 leading to a reduction in raptor-mTOR binding and in the quantity of proline-rich Akt substrate 40 (PRAS40) precipitating with mTOR. Insulin also increased 4E-BP1 coprecipitating with mTOR and the phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1. H(2)O(2), on the other hand, opposed the effects of insulin by increasing raptor-mTOR binding and the ratio of PRAS40/raptor derived from the mTOR immunoprecipitates in both cell types. These effects occurred in conjunction with a reduction in 4E-BP1 phosphorylation and the 4E-BP1/raptor ratio. siRNA-mediated knockdown of PRAS40 in A549 cells partially reversed the effect of H(2)O(2) on 4E-BP1 phosphorylation but not on S6K1. These findings are consistent with PRAS40 functioning as a negative regulator of insulin-stimulated mTORC1 activity during oxidant stress.
Collapse
Affiliation(s)
- Jeffrey S. Shenberger
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey PA
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey PA
| | - Lianqin Zhang
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey PA
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey PA
| | - Leonard S. Jefferson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey PA
| |
Collapse
|
33
|
Pérez de Obanos MP, López-Zabalza MJ, Arriazu E, Modol T, Prieto J, Herraiz MT, Iraburu MJ. Reactive oxygen species (ROS) mediate the effects of leucine on translation regulation and type I collagen production in hepatic stellate cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1681-8. [PMID: 17707924 DOI: 10.1016/j.bbamcr.2007.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/29/2007] [Accepted: 07/13/2007] [Indexed: 01/23/2023]
Abstract
The amino acid leucine causes an increase of collagen alpha1(I) synthesis in hepatic stellate cells through the activation of translational regulatory mechanisms and PI3K/Akt/mTOR and ERK signaling pathways. The aim of the present study was to evaluate the role played by reactive oxygen species on these effects. Intracellular reactive oxygen species levels were increased in hepatic stellate cells incubated with leucine 5 mM at early time points, and this effect was abolished by pretreatment with the antioxidant glutathione. Preincubation with glutathione also prevented 4E-BP1, eIF4E and Mnk-1 phosphorylation induced by leucine, as well as enhancement of procollagen alpha1(I) protein levels. Inhibitors for MEK-1 (PD98059), PI3K (wortmannin) or mTOR (rapamycin) did not affect leucine-induced reactive oxygen species production. However, preincubation with glutathione prevented ERK, Akt and mTOR phosphorylation caused by treatment with leucine. The mitochondrial electron chain inhibitor rotenone and the NADPH oxidase inhibitor apocynin prevented reactive oxygen species production caused by leucine. Leucine also induced an increased phosphorylation of IR/IGF-R that was abolished by pretreatment with either rotenone or apocynin. Therefore, leucine exerts on hepatic stellate cells a prooxidant action through NADPH oxidase and mitochondrial Reactive oxygen species production and these effects mediate the activation of IR/IGF-IR and signaling pathways, finally leading to changes in translational regulation of collagen synthesis.
Collapse
Affiliation(s)
- María P Pérez de Obanos
- Departamento de Bioquímica y Biología Molecular, Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Shenberger JS, Zhang L, Hughlock MK, Ueda T, Watanabe-Fukunaga R, Fukunaga R. Roles of mitogen-activated protein kinase signal-integrating kinases 1 and 2 in oxidant-mediated eIF4E phosphorylation. Int J Biochem Cell Biol 2007; 39:1828-42. [PMID: 17689282 PMCID: PMC2001257 DOI: 10.1016/j.biocel.2007.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/16/2007] [Accepted: 05/01/2007] [Indexed: 01/21/2023]
Abstract
Oxidative stress alters cellular metabolic processes including protein synthesis. The eukaryotic initiation factor, eIF4E, acts in the rate-limiting steps of initiation and promotes nuclear export. Phosphorylation of eIF4E by mitogen activated protein kinase signal-integrating kinases 1 and 2 (Mnk) influences the affinity of eIF4E for the 5'-mRNA cap and fosters nuclear export activity. Although phosphorylation of eIF4E on Ser209 is observed following oxidant exposure, the contribution of Mnk isoforms and the significance of phosphorylation remain elusive. Using a Mnk inhibitor and fibroblasts derived from Mnk knockout mice, we demonstrate that that H2O2 enhances eIF4E phosphorylation in cells containing Mnk1. In contrast, cells containing only Mnk2 show little change or a decrease in eIF4E phosphorylation in response to H2O2. H2O2 also shifted eIF4GI protein from the nucleus to the cytoplasm suggesting that the increases in eIF4E phosphorylation may reflect enhanced substrate availability to cytoplasmic Mnk1. In Mnk1(+/+) cells, H2O2 also enhanced eIF4E phosphorylation in the nucleus to a greater degree than in the cytoplasm, an effect not observed in cells containing Mnk2. In response to H2O2, all MEFs showed increased eIF4E:4E-BP1 and 4E-BP2:eIF4E binding and reduced eIF4E:eIF4GI binding. We also observed a dramatic increase in the amount of Mnk1 associated with eIF4E following affinity chromatography. These changes coincided with a smaller reduction in global protein synthesis in response to H2O2 in the DKO cells. These findings suggest that changes in eIF4GI distribution may enhance eIF4E phosphorylation and that the presence of either Mnk1 or 2 or any degree of eIF4E phosphorylation negatively regulates global protein synthesis in response to oxidant stress.
Collapse
Affiliation(s)
- Jeffrey S Shenberger
- Department of Pediatrics, The Pennsylvania State University College of Medicine, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Zamay TN, Zamay AS. Influence of ATP on Ehrlich ascites carcinoma cell free cytoplasmic calcium concentration in the course of tumor growth. BIOCHEMISTRY (MOSCOW) 2007; 71:1090-5. [PMID: 17125456 DOI: 10.1134/s0006297906100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The changes in free cytoplasmic calcium concentration ([Ca2+](in)) and the effects of extracellular ATP on [Ca2+](in) have been studied in Ehrlich ascites carcinoma cells in the dynamics of their growth. The basal level of [Ca2+](in) and the effects of ATP on the ascites cells were determined by the stage of tumor growth and depended on the content of reactive oxygen species (ROS). The sharp increase in basal and ATP-induced elevation of [Ca2+](in) levels were observed at the 12th day of ascites cell growth. Inhibition of ROS formation by N-acetyl-L-cysteine decreased [Ca2+](in) and suppressed the cell reaction to ATP. We suggest that the increased sensitivity of the ascites cells to ATP observed on the 12th day may be also attributed to a decrease in ecto-ATPase activity.
Collapse
Affiliation(s)
- T N Zamay
- Krasnoyarsk State University, Krasnoyarsk, 660041, Russia
| | | |
Collapse
|
36
|
Tapia PC. Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: "Mitohormesis" for health and vitality. Med Hypotheses 2005; 66:832-43. [PMID: 16242247 DOI: 10.1016/j.mehy.2005.09.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Accepted: 09/02/2005] [Indexed: 01/01/2023]
Abstract
The precise mechanistic sequence producing the beneficial effects on health and lifespan seen with interventions as diverse as caloric restriction, intermittent fasting, exercise, and consumption of dietary phytonutrients is still under active characterization, with large swaths of the research community kept in relative isolation from one another. Among the explanatory models capable of assisting in the identification of precipitating elements responsible for beneficial influences on physiology seen in these states, the hormesis perspective on biological systems under stress has yielded considerable insight into likely evolutionarily consistent organizing principles functioning in all four conditions. Recent experimental findings provide the tantalizing initial lodestones for an entirely new research front examining molecular substrates of stress resistance. In this novel body of research, a surprising new twist has emerged: Reactive oxygen species, derived from the mitochondrial electron transport system, may be necessary triggering elements for a sequence of events that result in benefits ranging from the transiently cytoprotective to organismal-level longevity. With the recent appreciation that reactive oxygen species and reactive nitrogen species function as signaling elements in a interconnected matrix of signal transduction, the entire basis of many widely accepted theories of aging that predominated in the past may need to be reconsidered to facilitate the formulation of an new perspective more correctly informed by the most contemporaneous experimental findings. This perspective, the mitohormesis theory, can be used in many disparate domains of inquiry to potentially explain previous findings, as well as point to new targets of research. The utility of this perspective for research on aging is significant, but beyond that this perspective emphasizes the pressing need to rigorously characterize the specific contribution of the stoichiometry of reactive oxygen species and reactive nitrogen species in the various compartments of the cell to cytoprotection and vitality. Previous findings regarding the influences of free radical chemistry on cellular physiology may have represented assessments examining the consequences of isolated elevation of signaling elements within a larger signal transductive apparatus, rather than definitive characterizations of the only modality of reactive oxygen species (and reactive nitrogen species) influence. In applying this perspective, it may be necessary for the research community, as well as the practicing clinician, to engender a more sanguine perspective on organelle level physiology, as it is now plausible that such entities have an evolutionarily orchestrated capacity to self-regulate that may be pathologically disturbed by overzealous use of antioxidants, particularly in the healthy.
Collapse
Affiliation(s)
- Patrick C Tapia
- University of Alabama School of Medicine, Medical Student Service, VH P-100, 1530 3rd Avenue S, Birmingham, AL 35294-0019, USA.
| |
Collapse
|