1
|
Kondo M, Sawada K, Matsuda Y, Abe M, Sanechika N, Takanashi Y, Mori Y, Kimura M, Toyoda M. Study of the Effects of Deuterium-Depleted Water on the Expression of GLUT4 and Insulin Resistance in the Muscle Cell Line C2C12. Biomedicines 2024; 12:1771. [PMID: 39200235 PMCID: PMC11351524 DOI: 10.3390/biomedicines12081771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Deuterium-depleted water (DDW) is used in the treatment of many diseases, including cancer and diabetes. To detect the effect of DDW on gene expression and activation of the insulin-responsive transporter GLUT4 as a mechanism for improving the pathology of diabetes, we investigated the GLUT4 expression and glucose uptake at various concentrations of DDW using the myoblast cell line C2C12 differentiated into myotubes. GLUT4 gene expression significantly increased under deuterium depletion, reaching a maximum value at a deuterium concentration of approximately 50 ppm, which was approximately nine times that of natural water with a deuterium concentration of 150 ppm. GLUT4 protein also showed an increase at similar DDW concentrations. The membrane translocation of GLUT4 by insulin stimulation reached a maximum value at a deuterium concentration of approximately 50-75 ppm, which was approximately 2.2 times that in natural water. Accordingly, glucose uptake also increased by up to 2.2 times at a deuterium concentration of approximately 50 ppm. Drug-induced insulin resistance was attenuated, and the glucose uptake was four times higher in the presence of 10 ng/mL TNF-α and three times higher in the presence of 1 μg/mL resistin at a deuterium concentration of approximately 50 ppm relative to natural water. These results suggest that DDW promotes GLUT4 expression and insulin-stimulated activation in muscle cells and reduces insulin resistance, making it an effective treatment for diabetes.
Collapse
Affiliation(s)
- Masumi Kondo
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University Hachioji Hospital, 1838 Ishikawacho, Hachioji 192-0032, Japan; (M.K.); (M.A.)
| | - Kaichiro Sawada
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Yosuke Matsuda
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Makiko Abe
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University Hachioji Hospital, 1838 Ishikawacho, Hachioji 192-0032, Japan; (M.K.); (M.A.)
| | - Noriyuki Sanechika
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Yumi Takanashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Yoshitaka Mori
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Moritsugu Kimura
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| |
Collapse
|
2
|
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int J Mol Sci 2024; 25:8369. [PMID: 39125938 PMCID: PMC11313400 DOI: 10.3390/ijms25158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| |
Collapse
|
3
|
Chen S, Xi M, Gao F, Li M, Dong T, Geng Z, Liu C, Huang F, Wang J, Li X, Wei P, Miao F. Evaluation of mulberry leaves’ hypoglycemic properties and hypoglycemic mechanisms. Front Pharmacol 2023; 14:1045309. [PMID: 37089923 PMCID: PMC10117911 DOI: 10.3389/fphar.2023.1045309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The effectiveness of herbal medicine in treating diabetes has grown in recent years, but the precise mechanism by which it does so is still unclear to both medical professionals and diabetics. In traditional Chinese medicine, mulberry leaf is used to treat inflammation, colds, and antiviral illnesses. Mulberry leaves are one of the herbs with many medicinal applications, and as mulberry leaf study grows, there is mounting evidence that these leaves also have potent anti-diabetic properties. The direct role of mulberry leaf as a natural remedy in the treatment of diabetes has been proven in several studies and clinical trials. However, because mulberry leaf is a more potent remedy for diabetes, a deeper understanding of how it works is required. The bioactive compounds flavonoids, alkaloids, polysaccharides, polyphenols, volatile oils, sterols, amino acids, and a variety of inorganic trace elements and vitamins, among others, have been found to be abundant in mulberry leaves. Among these compounds, flavonoids, alkaloids, polysaccharides, and polyphenols have a stronger link to diabetes. Of course, trace minerals and vitamins also contribute to blood sugar regulation. Inhibiting alpha glucosidase activity in the intestine, regulating lipid metabolism in the body, protecting pancreatic -cells, lowering insulin resistance, accelerating glucose uptake by target tissues, and improving oxidative stress levels in the body are some of the main therapeutic properties mentioned above. These mechanisms can effectively regulate blood glucose levels. The therapeutic effects of the bioactive compounds found in mulberry leaves on diabetes mellitus and their associated molecular mechanisms are the main topics of this paper’s overview of the state of the art in mulberry leaf research for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Sikai Chen
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Miaomiao Xi
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an TANK Medicinal Biology Institute, Xi’an, China
| | - Feng Gao
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - TaiWei Dong
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhixin Geng
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chunyu Liu
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fengyu Huang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Wang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xingyu Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Peifeng Wei
- Shaanxi University of Chinese Medicine, Xianyang, China
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| | - Feng Miao
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| |
Collapse
|
4
|
Charidemou E, Tsiarli MA, Theophanous A, Yilmaz V, Pitsouli C, Strati K, Griffin JL, Kirmizis A. Histone acetyltransferase NAA40 modulates acetyl-CoA levels and lipid synthesis. BMC Biol 2022; 20:22. [PMID: 35057804 PMCID: PMC8781613 DOI: 10.1186/s12915-021-01225-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Epigenetic regulation relies on the activity of enzymes that use sentinel metabolites as cofactors to modify DNA or histone proteins. Thus, fluctuations in cellular metabolite levels have been reported to affect chromatin modifications. However, whether epigenetic modifiers also affect the levels of these metabolites and thereby impinge on downstream metabolic pathways remains largely unknown. Here, we tested this notion by investigating the function of N-alpha-acetyltransferase 40 (NAA40), the enzyme responsible for N-terminal acetylation of histones H2A and H4, which has been previously implicated with metabolic-associated conditions such as age-dependent hepatic steatosis and calorie-restriction-mediated longevity. RESULTS Using metabolomic and lipidomic approaches, we found that depletion of NAA40 in murine hepatocytes leads to significant increase in intracellular acetyl-CoA levels, which associates with enhanced lipid synthesis demonstrated by upregulation in de novo lipogenesis genes as well as increased levels of diglycerides and triglycerides. Consistently, the increase in these lipid species coincide with the accumulation of cytoplasmic lipid droplets and impaired insulin signalling indicated by decreased glucose uptake. However, the effect of NAA40 on lipid droplet formation is independent of insulin. In addition, the induction in lipid synthesis is replicated in vivo in the Drosophila melanogaster larval fat body. Finally, supporting our results, we find a strong association of NAA40 expression with insulin sensitivity in obese patients. CONCLUSIONS Overall, our findings demonstrate that NAA40 affects the levels of cellular acetyl-CoA, thereby impacting lipid synthesis and insulin signalling. This study reveals a novel path through which histone-modifying enzymes influence cellular metabolism with potential implications in metabolic disorders.
Collapse
Affiliation(s)
- Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Maria A Tsiarli
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Andria Theophanous
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Vural Yilmaz
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Hammersmith Campus, UK Dementia Research Institute at Imperial College, Burlington Danes Building, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Section of Biomolecular Medicine, Department of Metabolism, Division of Systems Medicine, Digestion and Reproduction, The Sir Alexander Fleming Building, Exhibition Road, South Kensington, Imperial College London, London, SW7 2AZ, UK
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.
| |
Collapse
|
5
|
Louis F, Sowa Y, Kitano S, Matsusaki M. High-throughput drug screening models of mature adipose tissues which replicate the physiology of patients' Body Mass Index (BMI). Bioact Mater 2022; 7:227-241. [PMID: 34466729 PMCID: PMC8379425 DOI: 10.1016/j.bioactmat.2021.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
Obesity is a complex and incompletely understood disease, but current drug screening strategies mostly rely on immature in vitro adipose models which cannot recapitulate it properly. To address this issue, we developed a statistically validated high-throughput screening model by seeding human mature adipocytes from patients, encapsulated in physiological collagen microfibers. These drop tissues ensured the maintenance of adipocyte viability and functionality for controlling glucose and fatty acids uptake, as well as glycerol release. As such, patients' BMI and insulin sensitivity displayed a strong inverse correlation: the healthy adipocytes were associated with the highest insulin-induced glucose uptake, while insulin resistance was confirmed in the underweight and severely obese adipocytes. Insulin sensitivity recovery was possible with two type 2 diabetes treatments, rosiglitazone and melatonin. Finally, the addition of blood vasculature to the model seemed to more accurately recapitulate the in vivo physiology, with particular respect to leptin secretion metabolism.
Collapse
Affiliation(s)
- Fiona Louis
- Osaka University, Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, 2-1 Yamadaoka, Suita Osaka, 565-0871, Japan
| | - Yoshihiro Sowa
- Kyoto Prefectural University of Medicine, Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kamigyo-ku Kajii-cho, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
- Corresponding author. Kyoto, 602-8566, Kamigyo-ku Kajii-cho, Kawaramachi-Hirokoji, Japan.
| | - Shiro Kitano
- Osaka University, Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, 2-1 Yamadaoka, Suita Osaka, 565-0871, Japan
- TOPPAN PRINTING CO., LTD., Technical Research Institute, 4-2-3 Takanodaiminami, Sugito-machi, Saitama, 345-8508, Japan
| | - Michiya Matsusaki
- Osaka University, Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, 2-1 Yamadaoka, Suita Osaka, 565-0871, Japan
- Osaka University, Graduate School of Engineering, Department of Applied Chemistry, 2-1 Yamadaoka, Suita Osaka, 565-0871, Japan
- Corresponding author. Osaka, 565-0871, 2-1 Yamadaoka, Suita, Japan.
| |
Collapse
|
6
|
de Wendt C, Espelage L, Eickelschulte S, Springer C, Toska L, Scheel A, Bedou AD, Benninghoff T, Cames S, Stermann T, Chadt A, Al-Hasani H. Contraction-Mediated Glucose Transport in Skeletal Muscle Is Regulated by a Framework of AMPK, TBC1D1/4, and Rac1. Diabetes 2021; 70:2796-2809. [PMID: 34561225 DOI: 10.2337/db21-0587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022]
Abstract
The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4, both substrates for AMPK, play important roles in exercise metabolism and contraction-dependent translocation of GLUT4 in skeletal muscle. However, the specific contribution of each RabGAP in contraction signaling is mostly unknown. In this study, we investigated the cooperative AMPK-RabGAP signaling axis in the metabolic response to exercise/contraction using a novel mouse model deficient in active skeletal muscle AMPK combined with knockout of either Tbc1d1, Tbc1d4, or both RabGAPs. AMPK deficiency in muscle reduced treadmill exercise performance. Additional deletion of Tbc1d1 but not Tbc1d4 resulted in a further decrease in exercise capacity. In oxidative soleus muscle, AMPK deficiency reduced contraction-mediated glucose uptake, and deletion of each or both RabGAPs had no further effect. In contrast, in glycolytic extensor digitorum longus muscle, AMPK deficiency reduced contraction-stimulated glucose uptake, and deletion of Tbc1d1, but not Tbc1d4, led to a further decrease. Importantly, skeletal muscle deficient in AMPK and both RabGAPs still exhibited residual contraction-mediated glucose uptake, which was completely abolished by inhibition of the GTPase Rac1. Our results demonstrate a novel mechanistic link between glucose transport and the GTPase signaling framework in skeletal muscle in response to contraction.
Collapse
Affiliation(s)
- Christian de Wendt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Samaneh Eickelschulte
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Laura Toska
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Awovi Didi Bedou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
7
|
Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020; 11:76-98. [PMID: 33274014 PMCID: PMC7672939 DOI: 10.4331/wjbc.v11.i3.76] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.
Collapse
Affiliation(s)
- Tiannan Wang
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Xinge Hu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
8
|
Green tea polyphenols ameliorate metabolic abnormalities and insulin resistance by enhancing insulin signalling in skeletal muscle of Zucker fatty rats. Clin Sci (Lond) 2020; 134:1167-1180. [PMID: 32458968 DOI: 10.1042/cs20200107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
In the present study, we evaluated the metabolic effects of green tea polyphenols (GTPs) in high-fat diet (HFD) fed Zucker fatty (ZF) rats, in particular the effects of GTP on skeletal muscle insulin sensitivity. Body weight, visceral fat, glucose tolerance, lipid profiles and whole-body insulin sensitivity were measured in HFD-fed ZF rats after 8-week-treatment with GTP (200 mg/kg of body weight) or saline (5 ml/kg of body weight). Zucker lean rats were studied as controls. Ex vivo insulin-mediated muscle glucose uptake was assessed. Immunoblotting was used to evaluate the expression of key insulin signalling proteins in skeletal muscle. GTP treatment attenuated weight gain (P<0.05) and visceral fat accumulation (27.6%, P<0.05), and significantly reduced fasting serum glucose (P<0.05) and insulin (P<0.01) levels. Homoeostasis model assessment of insulin resistance (HOMA-IR), a measure of insulin resistance, was lower (P<0.01) in GTP-treated animals compared with ZF controls. Moreover, insulin-stimulated glucose uptake by isolated soleus muscle was increased (P<0.05) in GTP-ZF rats compared with ZF-controls. GTP treatment attenuated the accumulation of ectopic lipids (triacyl- and diacyl-glycerols), enhanced the expression and translocation of glucose transporter-4, and decreased pSer612IRS-1 and increased pSer473Akt2 expression in skeletal muscle. These molecular changes were also associated with significantly decreased activation of the inhibitory (muscle-specific) protein kinase (PKC) isoform, PKC-θ. Taken together, the present study has shown that regular ingestion of GTP exerts a number of favourable metabolic and molecular effects in an established animal model of obesity and insulin resistance. The benefits of GTP are mediated in part by inhibiting PKC-θ and improving muscle insulin sensitivity.
Collapse
|
9
|
Maelfeyt B, Tabei SMA, Gopinathan A. Anomalous intracellular transport phases depend on cytoskeletal network features. Phys Rev E 2019; 99:062404. [PMID: 31330659 DOI: 10.1103/physreve.99.062404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 01/06/2023]
Abstract
Intracellular transport in eukaryotic cells consists of phases of passive, diffusion-based transport and active, motor-driven transport along filaments that make up the cell's cytoskeleton. The interplay between superdiffusive transport along cytoskeletal filaments and the anomalous nature of subdiffusion in the bulk can lead to novel effects in transport behavior at the cellular scale. Here we develop a computational model of the process with cargo being ballistically transported along explicitly modeled cytoskeletal filament networks and passively transported in the cytoplasm by a subdiffusive continuous-time random walk (CTRW). We show that, over a physiologically relevant range of filament lengths and numbers, the network introduces a filament-length sensitive superdiffusive phase at early times which crosses over to a phase where the CTRW is dominant and produces subdiffusion at late times. We apply our approach to the problem of insulin secretion from cells and show that the superdiffusive phase introduced by the filament network manifests as a peak in the secretion at early times followed by an extended sustained release phase that is dominated by the CTRW process at late times. Our results are consistent with in vivo observations of insulin transport in healthy cells and shed light on the potential for the cell to tune functionally important transport phases by altering its cytoskeletal network.
Collapse
Affiliation(s)
- Bryan Maelfeyt
- Department of Physics, University of California Merced, Merced California, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls Iowa, USA
| | - Ajay Gopinathan
- Department of Physics, University of California Merced, Merced California, USA
| |
Collapse
|
10
|
Choi EM, Suh KS, Park SY, Chin SO, Rhee SY, Chon S. Biochanin A prevents 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced adipocyte dysfunction in cultured 3T3-L1 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:865-873. [PMID: 31007129 DOI: 10.1080/10934529.2019.1603746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant. TCDD accumulates in the food chain, mainly in the fatty tissues of the human body where it causes various toxic effects. Biochanin A is a natural organic compound in the class of phytochemicals known as flavonoids. We investigated whether biochanin A suppresses TCDD-induced loss of adipogenic action using 3T3-L1 adipocytes as a cell culture model of wasting syndrome. In the present study, biochanin A suppressed TCDD-induced loss of lipid accumulation. Pretreating the cells with biochanin A increased the levels of the adipogenesis-associated factors peroxisome proliferator-activated receptor γ and adiponectin, which were inhibited by TCDD. TCDD decreased insulin-stimulated glucose uptake, which was effectively restored by pretreatment with biochanin A. Biochanin A also inhibited the TCDD-driven decrease in production of insulin receptor substrate-1 and glucose transporter 4. These results suggest a preventive effect of biochanin A against TCDD in the development of insulin resistance and diabetes. TCDD increased production of intracellular calcium ([Ca2+]i), prostaglandin E2, cytosolic phospholipase A2, and cyclooxygenase-1, while reducing the level of peroxisome proliferator-activated receptor gamma coactivator 1-alpha. However, biochanin A inhibited these TCDD-induced effects. We conclude that biochanin A is an attractive compound for preventing TCDD-induced wasting syndrome.
Collapse
Affiliation(s)
- Eun Mi Choi
- a Department of Endocrinology & Metabolism, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Kwang Sik Suh
- a Department of Endocrinology & Metabolism, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - So Young Park
- b Department of Medicine, Graduate School , Kyung Hee University , Seoul , Republic of Korea
- c Department of Endocrinology & Metabolism , Kyung Hee University Hospital , Seoul , Republic of Korea
| | - Sang Ouk Chin
- a Department of Endocrinology & Metabolism, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
- c Department of Endocrinology & Metabolism , Kyung Hee University Hospital , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology & Metabolism, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
- c Department of Endocrinology & Metabolism , Kyung Hee University Hospital , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology & Metabolism, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
- c Department of Endocrinology & Metabolism , Kyung Hee University Hospital , Seoul , Republic of Korea
| |
Collapse
|
11
|
Reduced Insulin Resistance Contributes to the Beneficial Effect of Protein Tyrosine Phosphatase-1B Deletion in a Mouse Model of Sepsis. Shock 2018; 48:355-363. [PMID: 28272165 DOI: 10.1097/shk.0000000000000853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hyperglycemia is a common feature of septic patients and has been associated with poor outcome and high mortality. In contrast, insulin has been shown to decrease mortality and to prevent the incidence of multiorgan failure but is often associated with deleterious hypoglycemia. Protein Tyrosine Phosphatase 1B (PTP1B) is a negative regulator of both insulin signaling and NO production, and has been shown to be an aggravating factor in septic shock. To evaluate the potential therapeutic effect of PTP1B blockade on glucose metabolism and insulin resistance in an experimental model of sepsis, we assessed the effect of PTP1B gene deletion in a cecal ligation and puncture (CLP) model of sepsis. PTP1B gene deletion significantly limited CLP-induced insulin resistance, improved AMP-activated protein kinase signaling pathway and Glucose Transporter 4 translocation, and decreased inflammation. These effects were associated with a reduction of sepsis-induced endothelial dysfunction/impaired NO production and especially of insulin-mediated dilatation. This modulation of insulin resistance may contribute to the beneficial effect of PTP1B blockade in septic shock, especially in terms of inflammation and cardiac metabolism.
Collapse
|
12
|
Huttala O, Palmroth M, Hemminki P, Toimela T, Heinonen T, Ylikomi T, Sarkanen JR. Development of Versatile HumanIn VitroVascularized Adipose Tissue Model with Serum-Free Angiogenesis and Natural Adipogenesis Induction. Basic Clin Pharmacol Toxicol 2018; 123 Suppl 5:62-71. [DOI: 10.1111/bcpt.12987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Outi Huttala
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Maaria Palmroth
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Pauliina Hemminki
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Tarja Toimela
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Tuula Heinonen
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Timo Ylikomi
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
- Cell Biology; Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Jertta-Riina Sarkanen
- Cell Biology; Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| |
Collapse
|
13
|
Alkhateeb H, Qnais E. Preventive effect of oleate on palmitate-induced insulin resistance in skeletal muscle and its mechanism of action. J Physiol Biochem 2017; 73:605-612. [PMID: 28971334 DOI: 10.1007/s13105-017-0594-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Insulin resistance in skeletal muscle is a feature associated with exposure to an excess of saturated fatty acids such as palmitate. Oleic acid has been shown to blunt palmitate-induced insulin resistance in muscle cells. However, there is no literature available regarding the effect of oleic acid on palmitate-induced insulin resistance in intact muscle. Therefore, this study investigated the effect of oleic acid on palmitate-induced insulin resistance in rat soleus muscle and its underlying mechanisms. For these purposes, oleic acid (1 mM) was administered for 12 h in the absence or presence of palmitate (2 mM). At the end of the experiment, plasmalemmal GLUT4, the phosphorylation of AS160 and Akt-2, and the total expression of these signaling proteins were examined. We found that treatment with palmitate for 12 h reduced insulin-stimulated GLUT4 translocation and the phosphorylation of AS160 and Akt-2. However, the administration of oleic acid fully restored insulin-stimulated GLUT4 translocation (P < 0.05), as well as AS160 and Akt-2 phosphorylation (P < 0.05) despite the continuous presence of palmitate. Wortmannin, an inhibitor of PI3-K, only slightly prevented the oleic acid-induced improvements in insulin-stimulated GLUT4 translocation, and AS160 phosphorylation. However, this treatment completely inhibited the oleic acid-induced improvement in insulin-stimulated Akt-2 phosphorylation. In contrast, the oleic acid-induced improvement in insulin signaling was not affected by compound C, an AMPK specific inhibitor. In conclusion, the results clearly indicate that oleic acid administration alleviates palmitate-induced insulin resistance by promoting GLUT4 translocation in muscle, at least in part, by activating the PI3K pathway.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, Hashemite University, Zarqa, Jordan
| |
Collapse
|
14
|
Hasan MM, Ahmed QU, Soad SZM, Latip J, Taher M, Syafiq TMF, Sarian MN, Alhassan AM, Zakaria ZA. Flavonoids from Tetracera indica Merr. induce adipogenesis and exert glucose uptake activities in 3T3-L1 adipocyte cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:431. [PMID: 28854906 PMCID: PMC5577826 DOI: 10.1186/s12906-017-1929-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tetracera indica Merr. (Family: Dilleniaceae), known to the Malay as 'Mempelas paya', is one of the medicinal plants used in the treatment of diabetes in Malaysia. However, no proper scientific study has been carried out to verify the traditional claim of T. indica as an antidiabetic agent. Hence, the aims of the present study were to determine the in vitro antidiabetic potential of the T. indica stems ethanol extract, subfractions and isolated compounds. METHODS The ethanol extract and its subfractions, and isolated compounds from T. indica stems were subjected to cytotoxicity test using MTT viability assay on 3T3-L1 pre-adipocytes. Then, the test groups were subjected to the in vitro antidiabetic investigation using 3T3-L1 pre-adipocytes and differentiated adipocytes to determine the insulin-like and insulin sensitizing activities. Rosiglitazone was used as a standard antidiabetic agent. All compounds were also subjected to fluorescence glucose (2-NBDG) uptake test on differentiated adipocytes. Test solutions were introduced to the cells in different safe concentrations as well as in different adipogenic cocktails, which were modified by the addition of compounds to be investigated and in the presence or absence of insulin. Isolation of bioactive compounds from the most effective subfraction (ethyl acetate) was performed through repeated silica gel and sephadex LH-20 column chromatographies and their structures were elucidated through 1H-and 13C-NMR spectroscopy. RESULTS Four monoflavonoids, namely, wogonin, norwogonin, quercetin and techtochrysin were isolated from the T. indica stems ethanol extract. Wogonin, norwogonin and techtochrysin induced significant (P < 0.05) adipogenesis like insulin and enhanced adipogenesis like rosiglitazone. Wogonin and norwogonin also exhibited significant (P < 0.05) glucose uptake activity. CONCLUSION The present study demonstrated that the flavonoids isolated from the T. indica stems possess antidiabetic potential revealing insulin-like and insulin-sensitizing effects which were significant among the compounds. This also rationalizes the traditional use of T. indica in the management of diabetes in Malaysia.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang DM, 25200 Kuantan, Malaysia
| | - Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang DM, 25200 Kuantan, Malaysia
| | - Siti Zaiton Mat Soad
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang DM, 25200 Kuantan, Malaysia
| | - Jalifah Latip
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang DM, 25200 Kuantan, Malaysia
| | - Tengku Muhamad Faris Syafiq
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang DM, 25200 Kuantan, Malaysia
| | - Murni Nazira Sarian
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang DM, 25200 Kuantan, Malaysia
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang DM, 25200 Kuantan, Malaysia
| | | |
Collapse
|
15
|
Youssef FS, Ashour ML, Ebada SS, Sobeh M, El-Beshbishy HA, Singab AN, Wink M. Antihyperglycaemic activity of the methanol extract from leaves of Eremophila maculata (Scrophulariaceae) in streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2017; 69:733-742. [PMID: 28321889 DOI: 10.1111/jphp.12690] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/11/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This study was designed to evaluate the antihyperglycaemic activity of the methanol leaf extract of Eremophila maculata (EMM) both in vitro and in vivo. METHODS The antihyperglycaemic activity was assessed in vitro using differentiated 3T3-L1 adipocytes, whereas in-vivo effect was evaluated in streptozotocin-induced diabetic rats. Chemical profiling of EMM was done using LC-ESI-MS techniques. Molecular modelling experiments of the identified compounds were performed using C-Docker protocol. KEY FINDINGS Eremophila maculata slightly enhanced cellular glucose uptake and utilization in vitro by 3.92% relative to the untreated control. A stronger in-vivo effect was observed for EMM and its dichloromethane fraction. A pronounced elevation in serum insulin by 88.89 and 66.67%, respectively, accompanied by an apparent decline in fasting blood glucose (FBG) level by 65.60 and 70.37% comparable to streptozotocin-induced diabetic rats was observed. This effect was stronger than that of the reference drug glibenclamide (GLB). Chemical profiling of EMM revealed that leucoseptoside A, verbascoside, syringaresinol-4-O-β-D-glucopyranoside, pinoresinol-4-O-β-D-glucopyranoside and pinoresinol-4-O-[6″-O-(E)-feruloyl]-β-D-glucopyranoside are the major compounds. Molecular modelling showed that martynoside, verbascoside and phillygenin exhibited the highest inhibition to human pancreatic α-amylase (HPA), maltase glucoamylase (MGAM) and aldose reductase (AR), respectively. CONCLUSION Eremophila maculata offers an interesting relatively safer antihyperglycaemic candidate comparable to synthetic analogues.
Collapse
Affiliation(s)
- Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Sherif S Ebada
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Hesham A El-Beshbishy
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sceinces, Jeddah, Saudi Arabia.,Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Barrientos G, Sánchez-Aguilera P, Jaimovich E, Hidalgo C, Llanos P. Membrane Cholesterol in Skeletal Muscle: A Novel Player in Excitation-Contraction Coupling and Insulin Resistance. J Diabetes Res 2017; 2017:3941898. [PMID: 28367451 PMCID: PMC5358446 DOI: 10.1155/2017/3941898] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions.
Collapse
Affiliation(s)
- G. Barrientos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - P. Sánchez-Aguilera
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - E. Jaimovich
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Cell and Molecular Biology Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C. Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - P. Llanos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- *P. Llanos:
| |
Collapse
|
17
|
Huttala O, Mysore R, Sarkanen JR, Heinonen T, Olkkonen VM, Ylikomi T. Differentiation of human adipose stromal cells in vitro into insulin-sensitive adipocytes. Cell Tissue Res 2016; 366:63-74. [DOI: 10.1007/s00441-016-2409-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/05/2016] [Indexed: 12/28/2022]
|
18
|
Qin JH, Ma JZ, Yang XW, Hu YJ, Zhou J, Fu LC, Tian RH, Liu S, Xu G, Shen XL. A Triterpenoid Inhibited Hormone-Induced Adipocyte Differentiation and Alleviated Dexamethasone-Induced Insulin Resistance in 3T3-L1 adipocytes. NATURAL PRODUCTS AND BIOPROSPECTING 2015; 5:159-66. [PMID: 26077651 PMCID: PMC4488152 DOI: 10.1007/s13659-015-0063-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/25/2015] [Indexed: 05/15/2023]
Abstract
6α-Hydroxylup-20(29)-en-3-on-28-oic acid (1), a natural triterpenoid, was found to possess the ability in a dose-dependent manner inhibiting hormone-induced adipocyte differentiation in 3T3-L1 preadipocytes, and restoring glucose consuming ability in dexamethasone (DXM)-induced insulin resistant 3T3-L1 adipocytes. Compound 1 was also found to ameliorate DXM-induced adipocyte dysfunction in lipolysis and adipokine secretion. Mechanistic studies revealed that 1 inhibited adipocyte differentiation in 3T3-L1 preadipocytes via down-regulating hormone-stimulated gene transcription of peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding protein alpha which are key factors in lipogenesis, and restored DXM-impaired glucose consuming ability in differentiated 3T3-L1 adipocytes via repairing insulin signaling pathway and activating down-stream signaling transduction by phosphorylation of signaling molecules PI3K/p85, Akt2 and AS160, thus leading to increased translocation of glucose transporter type 4 and transportation of glucose.
Collapse
Affiliation(s)
- Ji-Huan Qin
- />Laboratory of Chinese Herbal Drug Discovery, Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
| | - Jun-Zeng Ma
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| | - Xing-Wei Yang
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| | - Ying-Jie Hu
- />Laboratory of Chinese Herbal Drug Discovery, Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
| | - Juan Zhou
- />Laboratory of Chinese Herbal Drug Discovery, Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
| | - Lin-Chun Fu
- />Laboratory of Chinese Herbal Drug Discovery, Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
| | - Ru-Hua Tian
- />Laboratory of Chinese Herbal Drug Discovery, Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
| | - Shan Liu
- />Laboratory of Chinese Herbal Drug Discovery, Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
| | - Gang Xu
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| | - Xiao-Ling Shen
- />Laboratory of Chinese Herbal Drug Discovery, Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
| |
Collapse
|
19
|
Taher M, Mohamed Amiroudine MZA, Tengku Zakaria TMFS, Susanti D, Ichwan SJA, Kaderi MA, Ahmed QU, Zakaria ZA. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:740238. [PMID: 25873982 PMCID: PMC4385643 DOI: 10.1155/2015/740238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 02/06/2023]
Abstract
Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[(3)H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future.
Collapse
Affiliation(s)
- Muhammad Taher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Mohamed Zaffar Ali Mohamed Amiroudine
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Tengku Muhamad Faris Syafiq Tengku Zakaria
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Deny Susanti
- Department of Chemistry, Faculty of Science, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Solachuddin J. A. Ichwan
- Faculty of Dentistry, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Pahang, Malaysia
| | - Mohd Arifin Kaderi
- Faculty of Allied Health Science, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Abstract
Soluble sugars serve five main purposes in multicellular organisms: as sources of carbon skeletons, osmolytes, signals, and transient energy storage and as transport molecules. Most sugars are derived from photosynthetic organisms, particularly plants. In multicellular organisms, some cells specialize in providing sugars to other cells (e.g., intestinal and liver cells in animals, photosynthetic cells in plants), whereas others depend completely on an external supply (e.g., brain cells, roots and seeds). This cellular exchange of sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is critical for plants, animals, and humans. At present, three classes of eukaryotic sugar transporters have been characterized, namely the glucose transporters (GLUTs), sodium-glucose symporters (SGLTs), and SWEETs. This review presents the history and state of the art of sugar transporter research, covering genetics, biochemistry, and physiology-from their identification and characterization to their structure, function, and physiology. In humans, understanding sugar transport has therapeutic importance (e.g., addressing diabetes or limiting access of cancer cells to sugars), and in plants, these transporters are critical for crop yield and pathogen susceptibility.
Collapse
Affiliation(s)
- Li-Qing Chen
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305;
| | | | | | | | | |
Collapse
|
21
|
Nagano K, Takeuchi H, Gao J, Mori Y, Otani T, Wang D, Hirata M. Tomosyn is a novel Akt substrate mediating insulin-dependent GLUT4 exocytosis. Int J Biochem Cell Biol 2015; 62:62-71. [PMID: 25725259 DOI: 10.1016/j.biocel.2015.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/31/2015] [Accepted: 02/18/2015] [Indexed: 12/28/2022]
Abstract
Insulin triggers glucose uptake into skeletal muscle and adipose tissues by gaining the available number of glucose transporter 4 (GLUT4) on the cell surface. GLUT4-loaded vesicles are targeted to plasma membrane from the intracellular reservoir through multiple trafficking and fusion processes that are mainly regulated by Akt. However, it is still largely unknown how GLUT4 expression in the cell surface is promoted by insulin. In the present study, we identified tomosyn at Ser-783 as a possible Akt-substrate motif and examined whether the phosphorylation at Ser-783 is involved in the regulation of GLUT4 expression. Both Akt1 and Akt2 phosphorylated the wild-type tomosyn, but not the mutant tomosyn in which Ser-783 was replaced with Ala. Phosphorylation of tomosyn at Ser-783 was also observed in the intact cells by insulin stimulation, which was blocked by PI3K inhibitor, LY294002. In vitro pull-down assay showed that phosphorylation of tomosyn at Ser-783 by Akt inhibited the interaction with syntaxin 4. Insulin stimulation increased GLUT4 in the cell surface of CHO-K1 cells to promote glucose uptake, however exogenous expression of the mutant tomosyn attenuated the increase by insulin. These results suggest that Ser-783 of tomosyn is a target of Akt and is implicated in the interaction with syntaxin 4.
Collapse
Affiliation(s)
- Koki Nagano
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu 803-8580, Japan.
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihide Mori
- Section of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takahito Otani
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - DaGuang Wang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
22
|
Tropomodulin3 is a novel Akt2 effector regulating insulin-stimulated GLUT4 exocytosis through cortical actin remodeling. Nat Commun 2015; 6:5951. [PMID: 25575350 PMCID: PMC4354152 DOI: 10.1038/ncomms6951] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022] Open
Abstract
Akt2 and its downstream effectors mediate insulin-stimulated GLUT4-storage vesicle (GSV) translocation and fusion with the plasma membrane (PM). Using mass spectrometry, we identify actin-capping protein Tropomodulin 3 (Tmod3) as an Akt2-interacting partner in 3T3-L1 adipocytes. We demonstrate that Tmod3 is phosphorylated at Ser71 on insulin-stimulated Akt2 activation, and Ser71 phosphorylation is required for insulin-stimulated GLUT4 PM insertion and glucose uptake. Phosphorylated Tmod3 regulates insulin-induced actin remodelling, an essential step for GSV fusion with the PM. Furthermore, the interaction of Tmod3 with its cognate tropomyosin partner, Tm5NM1 is necessary for GSV exocytosis and glucose uptake. Together these results establish Tmod3 as a novel Akt2 effector that mediates insulin-induced cortical actin remodelling and subsequent GLUT4 membrane insertion. Our findings suggest that defects in cytoskeletal remodelling may contribute to impaired GLUT4 exocytosis and glucose uptake.
Collapse
|
23
|
Jensen VFH, Bøgh IB, Lykkesfeldt J. Effect of insulin-induced hypoglycaemia on the central nervous system: evidence from experimental studies. J Neuroendocrinol 2014; 26:123-50. [PMID: 24428753 DOI: 10.1111/jne.12133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Insulin-induced hypoglycaemia (IIH) is a major acute complication in type 1 as well as in type 2 diabetes, particularly during intensive insulin therapy. The brain plays a central role in the counter-regulatory response by eliciting parasympathetic and sympathetic hormone responses to restore normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous system glycogen as a glucose reserve. However, during sustained hypoglycaemia, the brain cannot maintain a sufficient glucose influx and, as the cerebral hypoglycaemia becomes severe, electroencephalogram changes, oxidative stress and regional neuronal death ensues. With particular focus on evidence from experimental studies on nondiabetic IIH, this review outlines the central mechanisms behind the counter-regulatory response to IIH, as well as cerebral adaption to avoid sequelae of cerebral neuroglycopaenia, including seizures and coma.
Collapse
Affiliation(s)
- V F H Jensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Diabetes Toxicology and Safety Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | | | | |
Collapse
|
24
|
Nikolaou A, Stijlemans B, Laoui D, Schouppe E, Tran HTT, Tourwé D, Chai SY, Vanderheyden PML, Van Ginderachter JA. Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. J Renin Angiotensin Aldosterone Syst 2014; 15:466-79. [DOI: 10.1177/1470320313507621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Alexandros Nikolaou
- Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Benoit Stijlemans
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Elio Schouppe
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Huyen TT Tran
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Dirk Tourwé
- Laboratory of Organic Chemistry, Vrije Universiteit Brussel, Belgium
| | - Siew Y Chai
- Department of Physiology, Monash University, Australia
| | | | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
25
|
van Oort MM, Drost R, Janβen L, Van Doorn JM, Kerver J, Van der Horst DJ, Luiken JJFP, Rodenburg KCW. Each of the four intracellular cysteines of CD36 is essential for insulin- or AMP-activated protein kinase-induced CD36 translocation. Arch Physiol Biochem 2014; 120:40-9. [PMID: 24377880 DOI: 10.3109/13813455.2013.876049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stimulation of cellular fatty acid uptake by induction of insulin signalling or AMP-kinase (AMPK) activation is due to translocation of the fatty acid-transporter CD36 from intracellular stores to the plasma membrane (PM). For investigating the role of the four Cys-residues within CD36's cytoplasmic tails in CD36 translocation, we constructed CHO-cells expressing CD36 mutants in which all four, two, or one of the intracellular Cys were replaced by Ser. Intracellular and PM localization of all mutants was similar to wild-type CD36 (CD36wt). Hence, the four Cys do not regulate sub-cellular CD36 localization. However, in contrast to CD36wt, insulin or AMPK activation failed to induce translocation of any of the mutants, indicating that all four intracellular Cys residues are essential for CD36 translocation. The mechanism of defective translocation of mutant CD36 is unknown, but appears not due to loss of S-palmitoylation of the cytoplasmic tails or to aberrant oligomerization of the mutants.
Collapse
Affiliation(s)
- Masja M van Oort
- Division of Endocrinology and Metabolism, Department of Biology and Institute of Biomembranes, Utrecht University , NL-3584 CH Utrecht , The Netherlands and
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 2013; 3:1-58. [PMID: 23720280 DOI: 10.1002/cphy.c110062] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome (MS) is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Regardless of the true definition, based on current population estimates, nearly 100 million have MS. It is often characterized by insulin resistance, which some have suggested is a major underpinning link between physical inactivity and MS. The purpose of this review is to: (i) provide an overview of the history, causes and clinical aspects of MS, (ii) review the molecular mechanisms of insulin action and the causes of insulin resistance, and (iii) discuss the epidemiological and intervention data on the effects of exercise on MS and insulin sensitivity.
Collapse
Affiliation(s)
- Christian K Roberts
- Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California at Los Angeles, Los Angeles, California, USA.
| | | | | |
Collapse
|
27
|
Crivat G, Lizunov VA, Li CR, Stenkula KG, Zimmerberg J, Cushman SW, Pick L. Insulin stimulates translocation of human GLUT4 to the membrane in fat bodies of transgenic Drosophila melanogaster. PLoS One 2013; 8:e77953. [PMID: 24223128 PMCID: PMC3819322 DOI: 10.1371/journal.pone.0077953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/05/2013] [Indexed: 12/23/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in 'diabetic' flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4), the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM). We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to monitor insulin-signaling pathways in Drosophila, demonstrating the utility of TIRFM of tagged sugar transporters to monitor signaling pathways in insects.
Collapse
Affiliation(s)
- Georgeta Crivat
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir A. Lizunov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline R. Li
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Karin G. Stenkula
- Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samuel W. Cushman
- Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ikonomov OC, Sbrissa D, Delvecchio K, Feng HZ, Cartee GD, Jin JP, Shisheva A. Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity, and hyperinsulinemia but not muscle fiber-type switching. Am J Physiol Endocrinol Metab 2013; 305:E119-31. [PMID: 23673157 PMCID: PMC3725567 DOI: 10.1152/ajpendo.00030.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolutionarily conserved kinase PIKfyve that synthesizes PtdIns5P and PtdIns(3,5)P₂ has been implicated in insulin-regulated GLUT4 translocation/glucose entry in 3T3-L1 adipocytes. To decipher PIKfyve's role in muscle and systemic glucose metabolism, here we have developed a novel mouse model with Pikfyve gene disruption in striated muscle (MPIfKO). These mice exhibited systemic glucose intolerance and insulin resistance at an early age but had unaltered muscle mass or proportion of slow/fast-twitch muscle fibers. Insulin stimulation of in vivo or ex vivo glucose uptake and GLUT4 surface translocation was severely blunted in skeletal muscle. These changes were associated with premature attenuation of Akt phosphorylation in response to in vivo insulin, as tested in young mice. Starting at 10-11 wk of age, MPIfKO mice progressively accumulated greater body weight and fat mass. Despite increased adiposity, serum free fatty acid and triglyceride levels were normal until adulthood. Together with the undetectable lipid accumulation in liver, these data suggest that lipotoxicity and muscle fiber switching do not contribute to muscle insulin resistance in MPIfKO mice. Furthermore, the 80% increase in total fat mass resulted from increased fat cell size rather than altered fat cell number. The observed profound hyperinsulinemia combined with the documented increases in constitutive Akt activation, in vivo glucose uptake, and gene expression of key enzymes for fatty acid biosynthesis in MPIfKO fat tissue suggest that the latter is being sensitized for de novo lipid anabolism. Our data provide the first in vivo evidence that PIKfyve is essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, Gonzalez-Campoy JM, Jones SR, Kumar R, La Forge R, Samuel VT. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol 2013; 7:304-83. [PMID: 23890517 DOI: 10.1016/j.jacl.2013.04.001] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/04/2023]
Abstract
The term "fat" may refer to lipids as well as the cells and tissue that store lipid (ie, adipocytes and adipose tissue). "Lipid" is derived from "lipos," which refers to animal fat or vegetable oil. Adiposity refers to body fat and is derived from "adipo," referring to fat. Adipocytes and adipose tissue store the greatest amount of body lipids, including triglycerides and free cholesterol. Adipocytes and adipose tissue are active from an endocrine and immune standpoint. Adipocyte hypertrophy and excessive adipose tissue accumulation can promote pathogenic adipocyte and adipose tissue effects (adiposopathy), resulting in abnormal levels of circulating lipids, with dyslipidemia being a major atherosclerotic coronary heart disease risk factor. It is therefore incumbent upon lipidologists to be among the most knowledgeable in the understanding of the relationship between excessive body fat and dyslipidemia. On September 16, 2012, the National Lipid Association held a Consensus Conference with the goal of better defining the effect of adiposity on lipoproteins, how the pathos of excessive body fat (adiposopathy) contributes to dyslipidemia, and how therapies such as appropriate nutrition, increased physical activity, weight-management drugs, and bariatric surgery might be expected to impact dyslipidemia. It is hoped that the information derived from these proceedings will promote a greater appreciation among clinicians of the impact of excess adiposity and its treatment on dyslipidemia and prompt more research on the effects of interventions for improving dyslipidemia and reducing cardiovascular disease risk in overweight and obese patients.
Collapse
Affiliation(s)
- Harold E Bays
- Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Avenue, Louisville, KY 40213, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Engelbrecht B, Stratmann B, Hess C, Tschoepe D, Gawlowski T. Impact of GLO1 knock down on GLUT4 trafficking and glucose uptake in L6 myoblasts. PLoS One 2013; 8:e65195. [PMID: 23717693 PMCID: PMC3662699 DOI: 10.1371/journal.pone.0065195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/26/2013] [Indexed: 11/23/2022] Open
Abstract
Methylglyoxal (MG), a highly reactive α-dicarbonyl metabolite of glucose degradation pathways, protein and fatty acid metabolism, plays an important role in the pathogenesis of diabetic complications. Hyperglycemia triggers enhanced production of MG and increased generation of advanced glycation endproducts (AGEs). In non-enzymatic reactions, MG reacts with arginine residues of proteins to form the AGEs argpyrimidine and hydroimidazolone. Glyoxalase 1 (GLO1), in combination with glyoxalase 2 and the co-factor glutathione constitute the glyoxalase system, which is responsible for the detoxification of MG. A GLO1 specific knock down results in accumulation of MG in targeted cells. The aim of this study was to investigate the effect of intracellularly accumulated MG on insulin signaling and on the translocation of the glucose transporter 4 (GLUT4). Therefore, L6 cells stably expressing a myc-tagged GLUT4 were examined. For the intracellular accumulation of MG, GLO1, the first enzyme of the glyoxalase pathway, was down regulated by siRNA knock down and cells were cultivated under hyperglycemic conditions (25 mM glucose) for 48 h. Here we show that GLO1 knock down augmented GLUT4 level on the cell surface of L6 myoblasts at least in part through reduction of GLUT4 internalization, resulting in increased glucose uptake. However, intracellular accumulation of MG had no effect on GLUT4 concentration or modification. The antioxidant and MG scavenger NAC prevented the MG-induced GLUT4 translocation. Tiron, which is also a well-known antioxidant, had no impact on MG-induced GLUT4 translocation.
Collapse
Affiliation(s)
- Britta Engelbrecht
- Ruhr-University Bochum, Diabetes Center, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | | | | | | | | |
Collapse
|
31
|
Intracellular transport of insulin granules is a subordinated random walk. Proc Natl Acad Sci U S A 2013; 110:4911-6. [PMID: 23479621 DOI: 10.1073/pnas.1221962110] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We quantitatively analyzed particle tracking data on insulin granules expressing fluorescent fusion proteins in MIN6 cells to better understand the motions contributing to intracellular transport and, more generally, the means for characterizing systems far from equilibrium. Care was taken to ensure that the statistics reflected intrinsic features of the individual granules rather than details of the measurement and overall cell state. We find anomalous diffusion. Interpreting such data conventionally requires assuming that a process is either ergodic with particles working against fluctuating obstacles (fractional brownian motion) or nonergodic with a broad distribution of dwell times for traps (continuous-time random walk). However, we find that statistical tests based on these two models give conflicting results. We resolve this issue by introducing a subordinated scheme in which particles in cages with random dwell times undergo correlated motions owing to interactions with a fluctuating environment. We relate this picture to the underlying microtubule structure by imaging in the presence of vinblastine. Our results provide a simple physical picture for how diverse pools of insulin granules and, in turn, biphasic secretion could arise.
Collapse
|
32
|
Ramalingam L, Oh E, Yoder SM, Brozinick JT, Kalwat MA, Groffen AJ, Verhage M, Thurmond DC. Doc2b is a key effector of insulin secretion and skeletal muscle insulin sensitivity. Diabetes 2012; 61:2424-32. [PMID: 22698913 PMCID: PMC3447898 DOI: 10.2337/db11-1525] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/02/2012] [Indexed: 11/13/2022]
Abstract
Exocytosis of intracellular vesicles, such as insulin granules, is carried out by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. An additional regulatory protein, Doc2b (double C2 domain), has recently been implicated in exocytosis from clonal β-cells and 3T3-L1 adipocytes. Here, we investigated the role of Doc2b in insulin secretion, insulin sensitivity, and the maintenance of whole-body glucose homeostasis. Doc2b heterozygous (Doc2b(+/-)) and homozygous (Doc2b(-/-)) knockout mice exhibited significant whole-body glucose intolerance and peripheral insulin resistance, compared with wild-type littermates. Correspondingly, Doc2b(+/-) and Doc2b(-/-) mice exhibited decreased responsiveness of pancreatic islets to glucose in vivo, with significant attenuation of both phases of insulin secretion ex vivo. Peripheral insulin resistance correlated with ablated insulin-stimulated glucose uptake and GLUT4 vesicle translocation in skeletal muscle from Doc2b-deficient mice, which was coupled to impairments in Munc18c-syntaxin 4 dissociation and in SNARE complex assembly. Hence, Doc2b is a key positive regulator of Munc18c-syntaxin 4-mediated insulin secretion as well as of insulin responsiveness in skeletal muscle, and thus a key effector for glucose homeostasis in vivo. Doc2b's actions in glucose homeostasis may be related to its ability to bind Munc18c and/or directly promote fusion of insulin granules and GLUT4 vesicles in a stimulus-dependent manner.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eunjin Oh
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephanie M. Yoder
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Michael A. Kalwat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexander J. Groffen
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, the Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, the Netherlands
| | - Debbie C. Thurmond
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Herman B Wells Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
33
|
Choi SS, Cha BY, Lee YS, Yonezawa T, Teruya T, Nagai K, Woo JT. Honokiol and magnolol stimulate glucose uptake by activating PI3K-dependent Akt in L6 myotubes. Biofactors 2012; 38:372-7. [PMID: 22674833 DOI: 10.1002/biof.1029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/27/2012] [Indexed: 01/09/2023]
Abstract
Honokiol and magnolol, ingredients of Magnolia officinalis, which is used in traditional Chinese and Japanese medicines, have been reported to have antioxidant, anticancer, and antiangiogenic effects. Effects of these compounds on glucose metabolism in adipocytes have also been reported. However, their effects on skeletal muscle glucose uptake and the underlying molecular mechanisms are still unknown. Here, we investigated the direct effects and signaling pathways activated by honokiol and magnolol in skeletal muscle cells using L6 myotubes. We found that honokiol and magnolol dose-dependently acutely stimulated glucose uptake without synergistic effects of combined administration in L6 myotubes. Treatment with honokiol and magnolol also stimulated glucose transporter-4 translocation to the cell surface. Honokiol- and magnolol-stimulated glucose uptake was blocked by the phosphatidylinositol-3 kinase inhibitor, wortmannin. Both honokiol and magnolol stimulated Akt phosphorylation, a key element in the insulin signaling pathway, which was completely inhibited by wortmannin. These results suggest that honokiol and magnolol might have beneficial effects on glucose metabolism by activating the insulin signaling pathway.
Collapse
Affiliation(s)
- Sun-Sil Choi
- Research Institute for Biological Functions, Chubu University, Kasugai, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Boguslavsky S, Chiu T, Foley KP, Osorio-Fuentealba C, Antonescu CN, Bayer KU, Bilan PJ, Klip A. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles. Mol Biol Cell 2012; 23:4065-78. [PMID: 22918957 PMCID: PMC3469521 DOI: 10.1091/mbc.e12-04-0263] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells.
Collapse
Affiliation(s)
- Shlomit Boguslavsky
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules. PLoS One 2012; 7:e43662. [PMID: 22916292 PMCID: PMC3423385 DOI: 10.1371/journal.pone.0043662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/23/2012] [Indexed: 12/25/2022] Open
Abstract
In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF) microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin), preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.
Collapse
|
36
|
Hunyadi A, Veres K, Danko B, Kele Z, Weber E, Hetenyi A, Zupko I, Hsieh TJ. In vitroAnti-diabetic Activity and Chemical Characterization of an Apolar Fraction ofMorus albaLeaf Water Extract. Phytother Res 2012; 27:847-51. [DOI: 10.1002/ptr.4803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/31/2012] [Accepted: 07/17/2012] [Indexed: 12/18/2022]
Affiliation(s)
| | - Katalin Veres
- Institute of Pharmacognosy; University of Szeged; Eötvös str. 6; 6720; Szeged; Hungary
| | - Balazs Danko
- Institute of Pharmacognosy; University of Szeged; Eötvös str. 6; 6720; Szeged; Hungary
| | - Zoltan Kele
- Department of Medical Chemistry; University of Szeged; Dóm tér 8; 6720; Szeged; Hungary
| | - Edit Weber
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös str. 6; 6720; Szeged; Hungary
| | | | - Istvan Zupko
- Department of Pharmacodynamics and Biopharmacy; University of Szeged; Eötvös str. 6; 6720; Szeged; Hungary
| | - Tusty-Jiuan Hsieh
- Department of Medical Genetics; Kaohsiung Medical University; 100 ShihChuan 1st rd.; 807; Kaohsiung; Taiwan, R.O.C
| |
Collapse
|
37
|
Fargesin, a component of Flos Magnoliae, stimulates glucose uptake in L6 myotubes. J Nat Med 2012; 67:320-6. [PMID: 22791412 DOI: 10.1007/s11418-012-0685-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
Flos Magnoliae (FM) is a commonly used Chinese medicinal herb for symptomatic relief of allergic rhinitis, sinusitis and headache. Although several FM species have been used as substitutes or adulterants for clinical use, possible differences in their pharmacological actions have not been reported. To confirm the effects of FM on skeletal muscle glucose metabolism, we tested the effects of several compounds isolated from FM on glucose uptake by L6 myotubes. We found that fargesin, a component of FM, dose-dependently stimulated glucose consumption in L6 myotubes, which was accompanied by enhanced glucose transporter (GLUT)-4 translocation to the cell surface. Fargesin-stimulated glucose uptake was blocked by wortmannin, a phosphatidylinositol-3 kinase (PI3 K) inhibitor. Fargesin stimulated Akt phosphorylation, a key component in the insulin signaling pathway, which was completely inhibited by wortmannin. Here, we demonstrated that fargesin, a bioactive component of Flos Magnoliae, increases basal glucose uptake and GLUT4 translocation in L6 myotubes by activating the PI3 K-Akt pathway.
Collapse
|
38
|
Jensen M, Hoerndli FJ, Brockie PJ, Wang R, Johnson E, Maxfield D, Francis MM, Madsen DM, Maricq AV. Wnt signaling regulates acetylcholine receptor translocation and synaptic plasticity in the adult nervous system. Cell 2012; 149:173-87. [PMID: 22464329 DOI: 10.1016/j.cell.2011.12.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/08/2011] [Accepted: 12/30/2011] [Indexed: 12/20/2022]
Abstract
The adult nervous system is plastic, allowing us to learn, remember, and forget. Experience-dependent plasticity occurs at synapses--the specialized points of contact between neurons where signaling occurs. However, the mechanisms that regulate the strength of synaptic signaling are not well understood. Here, we define a Wnt-signaling pathway that modifies synaptic strength in the adult nervous system by regulating the translocation of one class of acetylcholine receptors (AChRs) to synapses. In Caenorhabditis elegans, we show that mutations in CWN-2 (Wnt ligand), LIN-17 (Frizzled), CAM-1 (Ror receptor tyrosine kinase), or the downstream effector DSH-1 (disheveled) result in similar subsynaptic accumulations of ACR-16/α7 AChRs, a consequent reduction in synaptic current, and predictable behavioral defects. Photoconversion experiments revealed defective translocation of ACR-16/α7 to synapses in Wnt-signaling mutants. Using optogenetic nerve stimulation, we demonstrate activity-dependent synaptic plasticity and its dependence on ACR-16/α7 translocation mediated by Wnt signaling via LIN-17/CAM-1 heteromeric receptors.
Collapse
Affiliation(s)
- Michael Jensen
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hsieh CT, Hsieh TJ, El-Shazly M, Chuang DW, Tsai YH, Yen CT, Wu SF, Wu YC, Chang FR. Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorg Med Chem Lett 2012; 22:3912-5. [PMID: 22608392 DOI: 10.1016/j.bmcl.2012.04.108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/12/2012] [Accepted: 04/24/2012] [Indexed: 12/26/2022]
|
40
|
Anti-diabetic properties of non-polar Toona sinensis Roem extract prepared by supercritical-CO2 fluid. Food Chem Toxicol 2012; 50:779-89. [DOI: 10.1016/j.fct.2011.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 08/25/2011] [Accepted: 12/16/2011] [Indexed: 12/25/2022]
|
41
|
Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 2011; 302:C327-59. [PMID: 21900692 DOI: 10.1152/ajpcell.00168.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.
Collapse
Affiliation(s)
- Max Lafontan
- Institut National de la Santé et de la Recherche Médicale, UMR, Hôpital Rangueil, Toulouse, France.
| |
Collapse
|
42
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hoffman NJ, Elmendorf JS. Signaling, cytoskeletal and membrane mechanisms regulating GLUT4 exocytosis. Trends Endocrinol Metab 2011; 22:110-6. [PMID: 21216617 PMCID: PMC3049829 DOI: 10.1016/j.tem.2010.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 10/25/2022]
Abstract
Solving how insulin regulates glucose transport into skeletal muscle and adipose tissue remains a fundamental challenge in biology and a significant issue in medicine. A central feature of this process is the coordinated accumulation of the glucose transporter GLUT4 into the plasma membrane. New signaling and cytoskeletal mechanisms of insulin-stimulated GLUT4 exocytosis are of emerging interest, particularly those at or just beneath the plasma membrane. This review examines signals that functionally engage GLUT4 exocytosis, considers cytoskeletal regulation of the stimulated GLUT4 itinerary, and appraises the involvement of plasma membrane parameters in GLUT4 control. We also explore how these newly-defined signaling, cytoskeletal and membrane mechanisms could be of therapeutic interest in the treatment and/or prevention of GLUT4 dysregulation in disease.
Collapse
Affiliation(s)
- Nolan J Hoffman
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Centers for Diabetes Research, Membrane Biosciences, and Vascular Biology and Medicine, VanNuys Medical Science Building Room 308A, Indianapolis, IN 46202, USA
| | | |
Collapse
|
44
|
Waller AP, Kohler K, Burns TA, Mudge MC, Belknap JK, Lacombe VA. Naturally occurring compensated insulin resistance selectively alters glucose transporters in visceral and subcutaneous adipose tissues without change in AS160 activation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1098-103. [PMID: 21352908 DOI: 10.1016/j.bbadis.2011.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/24/2011] [Accepted: 02/17/2011] [Indexed: 12/17/2022]
Abstract
Although the importance of adipose tissue (AT) glucose transport in regulating whole-body insulin sensitivity is becoming increasingly evident and insulin resistance (IR) has been widely recognized, the underlying mechanisms of IR are still not well understood. The purpose of the present study was to determine the early pathological changes in glucose transport by characterizing the alterations in glucose transporters (GLUT) in multiple visceral and subcutaneous adipose depots in a large animal model of naturally occurring compensated IR. AT biopsies were collected from horses, which were classified as insulin-sensitive (IS) or compensated IR based on the results of an insulin-modified frequently sampled intravenous glucose tolerance test. Protein expression of GLUT4 (major isoform) and GLUT12 (one of the most recently discovered isoforms) were measured by Western blotting in multiple AT depots, as well as AS160 (a potential key player in GLUT trafficking pathway). Using a biotinylated bis-mannose photolabeled technique, active cell surface GLUT content was quantified. Omental AT had the highest total GLUT content compared to other sites during the IS state. IR was associated with a significantly reduced total GLUT4 content in omental AT, without a change in content in other visceral or subcutaneous adipose sites. In addition, active cell surface GLUT-4, but not -12, was significantly lower in AT of IR compared to IS horses, without change in AS160 phosphorylation between groups. Our data suggest that GLUT4, but not GLUT12, is a pathogenic factor in AT during naturally occurring compensated IR, despite normal AS160 activation.
Collapse
Affiliation(s)
- A P Waller
- College of Pharmacy, 500 W. 12th Avenue, The Ohio State University, Columbus, OH 43215, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wheatley KE, Nogueira LM, Perkins SN, Hursting SD. Differential effects of calorie restriction and exercise on the adipose transcriptome in diet-induced obese mice. J Obes 2011; 2011:265417. [PMID: 21603264 PMCID: PMC3092555 DOI: 10.1155/2011/265417] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/01/2011] [Indexed: 11/18/2022] Open
Abstract
We tested the hypothesis that obesity reversal by calorie restriction (CR) versus treadmill exercise (EX) differentially modulates adipose gene expression using 48 female C57BL/6 mice administered a diet-induced obesity (DIO) regimen for 8 weeks, then randomized to receive for 8 weeks either: (1) a control (AIN-76A) diet, fed ad libitum (DIO control); (2) a 30% CR regimen; (3) a treadmill EX regimen (with AIN-76A diet fed ad libitum); or (4) continuation of the DIO diet. Relative to the DIO controls, both CR and EX reduced adiposity by 35-40% and serum leptin levels by 80%, but only CR increased adiponectin and insulin sensitivity. Gene expression microarray analysis of visceral white adipose tissue revealed 209 genes responsive to both CR and EX, relative to the DIO group. However, CR uniquely altered expression of an additional 496 genes, whereas only 20 were uniquely affected by EX. Of the genes distinctly responsive to CR, 17 related to carbohydrate metabolism and glucose transport, including glucose transporter (GLUT) 4. Chromatin immunoprecipitation assays of the Glut4 promoter revealed that, relative to the DIO controls, CR significantly increased histone 4 acetylation, suggesting epigenetic regulation may underlie some of the differential effects of CR versus EX on the adipose transcriptome.
Collapse
Affiliation(s)
- Karrie E. Wheatley
- Department of Nutritional Sciences, University of Texas, Austin, TX 78712, USA
- Department of Molecular Carcinogenesis, UT-MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Leticia M. Nogueira
- Department of Molecular Carcinogenesis, UT-MD Anderson Cancer Center, Smithville, TX 78957, USA
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
- Cancer Prevention Fellowship Program, National Cancer Institute, Bethesda, MD 20852, USA
| | - Susan N. Perkins
- Department of Nutritional Sciences, University of Texas, Austin, TX 78712, USA
| | - Stephen D. Hursting
- Department of Nutritional Sciences, University of Texas, Austin, TX 78712, USA
- Department of Molecular Carcinogenesis, UT-MD Anderson Cancer Center, Smithville, TX 78957, USA
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
- *Stephen D. Hursting:
| |
Collapse
|
46
|
Liu Q, Anderson C, Broyde A, Polizzi C, Fernandez R, Baron A, Parkes DG. Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 2010; 9:76. [PMID: 21080957 PMCID: PMC2996354 DOI: 10.1186/1475-2840-9-76] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/16/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests glucagon-like peptide-1 (GLP-1) exerts cardioprotective effects in animal models of myocardial infarction (MI). We hypothesized that chronic treatment with GLP-1 or the exenatide analog AC3174 would improve cardiac function, cardiac remodeling, insulin sensitivity, and exercise capacity (EC) in rats with MI-induced chronic heart failure (CHF) caused by coronary artery ligation. METHODS Two weeks post-MI, male Sprague-Dawley rats were treated with GLP-1 (2.5 or 25 pmol/kg/min), AC3174 (1.7 or 5 pmol/kg/min) or vehicle via subcutaneous infusion for 11 weeks. Cardiac function and morphology were assessed by echocardiography during treatment. Metabolic, hemodynamic, exercise-capacity, and body composition measurements were made at study end. RESULTS Compared with vehicle-treated rats with CHF, GLP-1 or AC3174 significantly improved cardiac function, including left ventricular (LV) ejection fraction, and end diastolic pressure. Cardiac dimensions also improved as evidenced by reduced LV end diastolic and systolic volumes and reduced left atrial volume. Vehicle-treated CHF rats exhibited fasting hyperglycemia and hyperinsulinemia. In contrast, GLP-1 or AC3174 normalized fasting plasma insulin and glucose levels. GLP-1 or AC3174 also significantly reduced body fat and fluid mass and improved exercise capacity and respiratory efficiency. Four of 16 vehicle control CHF rats died during the study compared with 1 of 44 rats treated with GLP-1 or AC3174. The cellular mechanism by which GLP-1 or AC3174 exert cardioprotective effects appears unrelated to changes in GLUT1 or GLUT4 translocation or expression. CONCLUSIONS Chronic treatment with either GLP-1 or AC3174 showed promising cardioprotective effects in a rat model of CHF. Hence, GLP-1 receptor agonists may represent a novel approach for the treatment of patients with CHF or cardiovascular disease associated with type 2 diabetes.
Collapse
Affiliation(s)
- Que Liu
- Amylin Pharmaceuticals Inc, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Augustin R. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life 2010; 62:315-33. [PMID: 20209635 DOI: 10.1002/iub.315] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein family of facilitative glucose transporters comprises 14 isoforms that share common structural features such as 12 transmembrane domains, N- and C-termini facing the cytoplasm of the cell, and a N-glycosylation side either within the first or fifth extracellular loop. Based on their sequence homology, three classes can be distinguished: class I includes GLUT1-4 and GLUT14, class II the "odd transporters" GLUT5, 7, 9, 11, and class III the "even transporters" GLUT6, 8, 10, 12 and the proton driven myoinositol transporter HMIT (or GLUT13). With the cloning and characterization of the more recent class II and III isoforms, it became apparent that despite their structural similarities, the different isoforms not only show a distinct tissue-specific expression pattern but also show distinct characteristics such as alternative splicing, specific (sub)cellular localization, and affinities for a spectrum of substrates. This review summarizes the current understanding of the physiological role for the various transport facilitators based on human genetically inherited disorders or single-nucleotide polymorphisms and knockout mice models. The emphasis of the review will be on the potential functional role of the more recent isoforms.
Collapse
Affiliation(s)
- Robert Augustin
- Department of Cardiometabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH&Co KG, Biberach a.d. Riss, Germany.
| |
Collapse
|
48
|
Letinic K, Sebastian R, Barthel A, Toomre D. Deciphering subcellular processes in live imaging datasets via dynamic probabilistic networks. ACTA ACUST UNITED AC 2010; 26:2029-36. [PMID: 20581401 DOI: 10.1093/bioinformatics/btq331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MOTIVATION Designing mathematical tools that can formally describe the dynamics of complex intracellular processes remains a challenge. Live cell imaging reveals changes in the cellular states, but current simple approaches extract only minimal information of a static snapshot. RESULTS We implemented a novel approach for analyzing organelle behavior in live cell imaging data based on hidden Markov models (HMMs) and showed that it can determine the number and evolution of distinct cellular states involved in a biological process. We analyzed insulin-mediated exocytosis of single Glut4-vesicles, a process critical for blood glucose homeostasis and impaired in type II diabetes, by using total internal reflection fluorescence microscopy (TIRFM). HMM analyses of movie sequences of living cells reveal that insulin controls spatial and temporal dynamics of exocytosis via the exocyst, a putative tethering protein complex. Our studies have validated the proof-of-principle of HMM for cellular imaging and provided direct evidence for the existence of complex spatial-temporal regulation of exocytosis in non-polarized cells. We independently confirmed insulin-dependent spatial regulation by using static spatial statistics methods. CONCLUSION We propose that HMM-based approach can be exploited in a wide avenue of cellular processes, especially those where the changes of cellular states in space and time may be highly complex and non-obvious, such as in cell polarization, signaling and developmental processes.
Collapse
Affiliation(s)
- Kresimir Letinic
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Insulin resistance has long been associated with obesity. More than 40 years ago, Randle and colleagues postulated that lipids impaired insulin-stimulated glucose use by muscles through inhibition of glycolysis at key points. However, work over the past two decades has shown that lipid-induced insulin resistance in skeletal muscle stems from defects in insulin-stimulated glucose transport activity. The steatotic liver is also resistant to insulin in terms of inhibition of hepatic glucose production and stimulation of glycogen synthesis. In muscle and liver, the intracellular accumulation of lipids-namely, diacylglycerol-triggers activation of novel protein kinases C with subsequent impairments in insulin signalling. This unifying hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, lipodystrophy, and ageing; and the insulin-sensitising effects of thiazolidinediones.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06536-8012, USA
| | | | | |
Collapse
|
50
|
Protzek AOP, Rafacho A, Viscelli BA, Bosqueiro JR, Cappelli AP, Paula FMM, Boschero AC, Pinheiro EC. Insulin and glucose sensitivity, insulin secretion and beta-cell distribution in endocrine pancreas of the fruit bat Artibeus lituratus. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:142-8. [PMID: 20566319 DOI: 10.1016/j.cbpa.2010.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/28/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
Abstract
The fruit bat Artibeus lituratus absorbs large amounts of glucose in short periods of time and maintains normoglycemia even after a prolonged starvation period. Based on these data, we aimed to investigate various aspects related with glucose homeostasis analyzing: blood glucose and insulin levels, intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT), glucose-stimulated insulin secretion (2.8, 5.6 or 8.3 mmol/L glucose) in pancreas fragments, cellular distribution of beta cells, and the amount of pAkt/Akt in the pectoral muscle and liver. Blood glucose levels were higher in fed bats (6.88+/-0.5 mmol/L) than fasted bats (4.0+/-0.8 mmol/L), whereas insulin levels were similar in both conditions. The values of the area-under-the curve obtained from ipGTT were significantly higher when bats received 2 (5.5-fold) or 3g/kg glucose (7.5-fold) b.w compared to control (saline). These bats also exhibited a significant decrease of blood glucose values after insulin administration during the ipITT. Insulin secretion from fragments of pancreas under physiological concentrations of glucose (5.6 or 8.3 mmol/L) was similar but higher than in 2.8 mmol/L glucose 1.8- and 2.0-fold, respectively. These bats showed a marked beta-cell distribution along the pancreas, and the pancreatic beta cells are not exclusively located at the central part of the islet. The insulin-induced Akt phosphorylation was more pronounced in the pectoral muscle, compared to liver. The high sensitivity to glucose and insulin, the proper insulin response to glucose, and the presence of an apparent large beta-cell population could represent benefits for the management of high influx of glucose from a carbohydrate-rich meal, which permits appropriate glucose utilization.
Collapse
Affiliation(s)
- A O P Protzek
- Department of Physiological Sciences, Institute of Biological Science, University of Brasília, DF, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|