1
|
Zhong X, Wang K, Wang Y, Wang L, Wang S, Huang W, Jia Z, Dai SS, Huang Z. Angiotension II directly bind P2X7 receptor to induce myocardial ferroptosis and remodeling by activating human antigen R. Redox Biol 2024; 72:103154. [PMID: 38626575 PMCID: PMC11035111 DOI: 10.1016/j.redox.2024.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 04/18/2024] Open
Abstract
Continuous remodeling of the heart can result in adverse events such as reduced myocardial function and heart failure. Available evidence indicates that ferroptosis is a key process in the emergence of cardiac disease. P2 family purinergic receptor P2X7 receptor (P2X7R) activation plays a crucial role in numerous aspects of cardiovascular disease. The aim of this study was to elucidate any potential interactions between P2X7R and ferroptosis in cardiac remodeling stimulated by angiotensin II (Ang II), and P2X7R knockout mice were utilized to explore the role of P2X7R and elucidate its underlying mechanism through molecular biological methods. Ferroptosis is involved in cardiac remodeling, and P2X7R deficiency significantly alleviates cardiac dysfunction, remodeling, and ferroptosis induced by Ang II. Mechanistically, Ang II interacts with P2X7R directly, and LYS-66 and MET-212 in the in the ATP binding pocket form a binding complex with Ang II. P2X7R blockade influences HuR-targeted GPX4 and HO-1 mRNA stability by affecting the shuttling of HuR from the nucleus to the cytoplasm and its expression. These results suggest that focusing on P2X7R could be a possible therapeutic approach for the management of hypertensive heart failure.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Kangwei Wang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Yonghua Wang
- Department of Physical Education, WenZhou Medical University, WenZhou, ZheJiang, China
| | - Luya Wang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Sudan Wang
- Department of Respiratory, Wenzhou People's Hospital of Zhejiang Province, WenZhou, ZheJiang, China
| | - Weijian Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Zhuyin Jia
- Department of Cardiology, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China.
| | - Shan-Shan Dai
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, Zhejiang, China.
| | - Zhouqing Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| |
Collapse
|
2
|
Turan G, Olgun ÇE, Ayten H, Toker P, Ashyralyyev A, Savaş B, Karaca E, Muyan M. Dynamic proximity interaction profiling suggests that YPEL2 is involved in cellular stress surveillance. Protein Sci 2024; 33:e4859. [PMID: 38145972 PMCID: PMC10804680 DOI: 10.1002/pro.4859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/27/2023]
Abstract
YPEL2 is a member of the evolutionarily conserved YPEL family involved in cellular proliferation, mobility, differentiation, senescence, and death. However, the mechanism by which YPEL2, or YPEL proteins, mediates its effects is largely unknown. Proteins perform their functions in a network of proteins whose identities, amounts, and compositions change spatiotemporally in a lineage-specific manner in response to internal and external stimuli. Here, we explored interaction partners of YPEL2 by using dynamic TurboID-coupled mass spectrometry analyses to infer a function for the protein. Our results using inducible transgene expressions in COS7 cells indicate that proximity interaction partners of YPEL2 are mainly involved in RNA and mRNA metabolic processes, ribonucleoprotein complex biogenesis, regulation of gene silencing by miRNA, and cellular responses to stress. We showed that YPEL2 interacts with the RNA-binding protein ELAVL1 and the selective autophagy receptor SQSTM1. We also found that YPEL2 localizes stress granules in response to sodium arsenite, an oxidative stress inducer, which suggests that YPEL2 participates in stress granule-related processes. Establishing a point of departure in the delineation of structural/functional features of YPEL2, our results suggest that YPEL2 may be involved in stress surveillance mechanisms.
Collapse
Affiliation(s)
- Gizem Turan
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Çağla Ece Olgun
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Hazal Ayten
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Pelin Toker
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | | | - Büşra Savaş
- İzmir Biomedicine and Genome CenterİzmirTürkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTürkiye
| | - Ezgi Karaca
- İzmir Biomedicine and Genome CenterİzmirTürkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTürkiye
| | - Mesut Muyan
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
- CanSyl LaboratoriesMiddle East Technical UniversityAnkaraTürkiye
| |
Collapse
|
3
|
Ermisch AF, Wood JR. Regulation of Oocyte mRNA Metabolism: A Key Determinant of Oocyte Developmental Competence. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:23-46. [PMID: 39030353 DOI: 10.1007/978-3-031-55163-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The regulation of mRNA transcription and translation is uncoupled during oogenesis. The reason for this uncoupling is two-fold. Chromatin is only accessible to the transcriptional machinery during the growth phase as it condenses prior to resumption of meiosis to ensure faithful segregation of chromosomes during meiotic maturation. Thus, transcription rates are high during this time period in order to produce all of the transcripts needed for meiosis, fertilization, and embryo cleavage until the newly formed embryonic genome becomes transcriptionally active. To ensure appropriate timing of key developmental milestones including chromatin condensation, resumption of meiosis, segregation of chromosomes, and polar body extrusion, the translation of protein from transcripts synthesized during oocyte growth must be temporally regulated. This is achieved by the regulation of mRNA interaction with RNA binding proteins and shortening and lengthening of the poly(A) tail. This chapter details the essential factors that regulate the dynamic changes in mRNA synthesis, storage, translation, and degradation during oocyte growth and maturation.
Collapse
Affiliation(s)
- Alison F Ermisch
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
4
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-Protein Interactions with Subcellular Resolution Using Colocalization CLIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563984. [PMID: 37961159 PMCID: PMC10634835 DOI: 10.1101/2023.10.26.563984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP, a method that combines CrossLinking and ImmunoPrecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the well-studied RNA-binding protein HuR. Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule compartments. We uncover HuR's unique binding preferences within stress granules during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP:RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
|
5
|
Eraso P, Mazón MJ, Jiménez V, Pizarro-García P, Cuevas EP, Majuelos-Melguizo J, Morillo-Bernal J, Cano A, Portillo F. New Functions of Intracellular LOXL2: Modulation of RNA-Binding Proteins. Molecules 2023; 28:molecules28114433. [PMID: 37298909 DOI: 10.3390/molecules28114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process-the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2's nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs' targets, points to six RBPs as candidates to be substrates of LOXL2's action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process.
Collapse
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - María J Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Victoria Jiménez
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Patricia Pizarro-García
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Eva P Cuevas
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Jara Majuelos-Melguizo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Jesús Morillo-Bernal
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Guha A, Husain MA, Si Y, Nabors LB, Filippova N, Promer G, Smith R, King PH. RNA regulation of inflammatory responses in glia and its potential as a therapeutic target in central nervous system disorders. Glia 2023; 71:485-508. [PMID: 36380708 DOI: 10.1002/glia.24288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1β, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.
Collapse
Affiliation(s)
- Abhishek Guha
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammed Amir Husain
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ying Si
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - L Burt Nabors
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalia Filippova
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Grace Promer
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reed Smith
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Department of Veterans Health Care System, Birmingham, Alabama, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
7
|
Liao Y, Liao Y, Li J, Li Y, Fan Y. The Prognostic Role of HuR Varies Between Different Subtypes of Breast Cancer Patients: Data Mining and Retrospective Analysis. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:135-146. [PMID: 36816839 PMCID: PMC9930679 DOI: 10.2147/bctt.s395984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/28/2023] [Indexed: 02/13/2023]
Abstract
Objective Human-antigen R (HuR) is an RNA-binding protein, which regulates the expression of several oncogenes and tumor suppressor genes through post-transcriptional mechanisms. But the role of HuR in breast cancer remains controversial. The aim of this study was to verify the association between cytoplasmic HuR level and prognosis of breast cancer patients. Methods Data mining from the Human Protein Atlas (HPA) and Kaplan-Meier Plotter (KMP) databases was performed. Then, 394 patients with stage I-III primary breast cancer were enrolled between January 2005 and December 2016. We investigated the association between cytoplasmic HuR level and clinicopathological characteristics or survival of these patients. Immunohistochemical analysis was performed to determine HuR expression level. SPSS 21.0 statistical software was used for analysis. Results In the HPA and KMP datasets, HuR protein and mRNA expression level were not significantly associated with overall survival of all breast cancer patients enrolled. Results from our 394 patients indicated that higher expression level of cytoplasmic HuR was associated with larger tumor size, lymph node positive, ER negative and triple-negative subtype. For all patients enrolled, the results indicated that compared with HuR negative patients, the DFS (disease-free survival) of HuR 1+ was longer (60.5% vs 78.8, P=0.053, HR=0.616, 95% CI: 0.378-1.005), the P value was borderline. In the triple-negative breast cancer (TNBC) subgroup, HuR positive patients had significantly longer DFS than HuR negative patients (65.5% vs 30.8%, P=0.001, HR=0.345, 95% CI: 0.180-0.658). In the HR+HER2- subgroup, HuR low (0~1+) patients had significantly longer OS than HuR high (2+~3+) patients (97.0% vs 89.5%, P=0.033, HR=2.482, 95% CI: 1.074-5.736). Conclusion In conclusion, our results revealed that higher expression level of HuR was related to aggressive biological characteristics which supported the findings from previous researches. In the HR+HER2- subgroup, lower HuR expression level patients had better survival time, while in the TNBC subgroup we got the opposite results. Our work indicated that HuR might play different roles in different breast cancer subtypes.
Collapse
Affiliation(s)
- Yuqian Liao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yulu Liao
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, People’s Republic of China
| | - Jun Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yong Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China,Yong Li, Department of Oncology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizhengjie, Donghu, Nanchang, 330006, Jiangxi Province, People’s Republic of China, Tel +86 15879155066, Email
| | - Ying Fan
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, People’s Republic of China,Correspondence: Ying Fan, Department of Medical Oncology, Cancer institute and hospital, Peking Union Medical college, Chinese Academy of Medical science, No. 17, Nan Li, Panjiayuan, Beijing, 100021, People’s Republic of China, Tel +86 13693656671, Email
| |
Collapse
|
8
|
Majumder M, Chakraborty P, Mohan S, Mehrotra S, Palanisamy V. HuR as a molecular target for cancer therapeutics and immune-related disorders. Adv Drug Deliv Rev 2022; 188:114442. [PMID: 35817212 DOI: 10.1016/j.addr.2022.114442] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
Abstract
The control of eukaryotic gene expression occurs at multiple levels, from transcription to messenger RNA processing, transport, localization, turnover, and translation. RNA-binding proteins control gene expression and are involved in different stages of mRNA processing, including splicing, maturation, turnover, and translation. A ubiquitously expressed RBP Human antigen R is engaged in the RNA processes mentioned above but, most importantly, controls mRNA stability and turnover. Dysregulation of HuR is linked to many diseases, including cancer and other immune-related disorders. HuR targets mRNAs containing AU-rich elements at their 3'untranslated region, which encodes proteins involved in cell growth, proliferation, tumor formation, angiogenesis, immune evasion, inflammation, invasion, and metastasis. HuR overexpression has been reported in many tumor types, which led to a poor prognosis for patients. Hence, HuR is considered an appealing drug target for cancer treatment. Therefore, multiple attempts have been made to identify small molecule inhibitors for blocking HuR functions. This article reviews the current prospects of drugs that target HuR in numerous cancer types, their mode of action, and off-target effects. Furthermore, we will summarize drugs that interfered with HuR-RNA interactions and established themselves as novel therapeutics. We will also highlight the significance of HuR overexpression in multiple cancers and discuss its role in immune functions. This review provides evidence of a new era of HuR-targeted small molecules that can be used for cancer therapeutics either as a monotherapy or in combination with other cancer treatment modalities.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sarumathi Mohan
- Department of Biochemistry and Molecular Biology, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
9
|
Chen Y, Qin H, Zheng L. Research progress on RNA−binding proteins in breast cancer. Front Oncol 2022; 12:974523. [PMID: 36059653 PMCID: PMC9433872 DOI: 10.3389/fonc.2022.974523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women and has a high incidence rate and mortality. Abnormal regulation of gene expression plays an important role in breast cancer occurrence and development. RNA-binding proteins (RBPs) are one kind of the key regulators for gene expression. By interacting with RNA, RBPs are widely involved in RNA cutting, transport, editing, intracellular localization, and translation regulation. RBPs are important during breast cancer occurrence and progression by engaging in many aspects, like proliferation, migration, invasion, and stemness. Therefore, comprehensively understanding the role of RBPs in breast cancer progression can facilitate early diagnosis, timely treatment, and long-term survival and quality of life of breast cancer patients.
Collapse
Affiliation(s)
- Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang, China
- *Correspondence: Lufeng Zheng, ; Hai Qin,
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Hai Qin,
| |
Collapse
|
10
|
Sobolewski C, Dubuquoy L, Legrand N. MicroRNAs, Tristetraprolin Family Members and HuR: A Complex Interplay Controlling Cancer-Related Processes. Cancers (Basel) 2022; 14:cancers14143516. [PMID: 35884580 PMCID: PMC9319505 DOI: 10.3390/cancers14143516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AU-rich Element Binding Proteins (AUBPs) represent important post-transcriptional regulators of gene expression by regulating mRNA decay and/or translation. Importantly, AUBPs can interfere with microRNA-dependent regulation by (i) competing with the same binding sites on mRNA targets, (ii) sequestering miRNAs, thereby preventing their binding to their specific targets or (iii) promoting miRNA-dependent regulation. These data highlight a new paradigm where both miRNA and RNA binding proteins form a complex regulatory network involved in physiological and pathological processes. However, this interplay is still poorly considered, and our current models do not integrate this level of complexity, thus potentially giving misleading interpretations regarding the role of these regulators in human cancers. This review summarizes the current knowledge regarding the crosstalks existing between HuR, tristetraprolin family members and microRNA-dependent regulation. Abstract MicroRNAs represent the most characterized post-transcriptional regulators of gene expression. Their altered expression importantly contributes to the development of a wide range of metabolic and inflammatory diseases but also cancers. Accordingly, a myriad of studies has suggested novel therapeutic approaches aiming at inhibiting or restoring the expression of miRNAs in human diseases. However, the influence of other trans-acting factors, such as long-noncoding RNAs or RNA-Binding-Proteins, which compete, interfere, or cooperate with miRNAs-dependent functions, indicate that this regulatory mechanism is much more complex than initially thought, thus questioning the current models considering individuals regulators. In this review, we discuss the interplay existing between miRNAs and the AU-Rich Element Binding Proteins (AUBPs), HuR and tristetraprolin family members (TTP, BRF1 and BRF2), which importantly control the fate of mRNA and whose alterations have also been associated with the development of a wide range of chronic disorders and cancers. Deciphering the interplay between these proteins and miRNAs represents an important challenge to fully characterize the post-transcriptional regulation of pro-tumorigenic processes and design new and efficient therapeutic approaches.
Collapse
|
11
|
Agarwal A, Alagar S, Kant S, Bahadur RP. Molecular insights into binding dynamics of tandem RNA recognition motifs (tRRMs) of human antigen R (HuR) with mRNA and the effect of point mutations in impaired HuR-mRNA recognition. J Biomol Struct Dyn 2022:1-17. [PMID: 35538713 DOI: 10.1080/07391102.2022.2073270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human antigen R (HuR) is a key regulatory protein with prominent roles in RNA metabolism and post-transcriptional gene regulation. Many studies have shown the involvement of HuR in plethora of human diseases, which are often manifestations of impaired HuR-RNA interactions. However, the inherent complexities of highly flexible protein-RNA interactions have limited our understanding of the structural basis of HuR-RNA recognition. In this study, we dissect the underlying molecular mechanism of interaction between N-terminal tandem RNA-recognition motifs (tRRMs) of HuR and mRNA using molecular dynamics simulation. We have also explored the effect of point mutations (T90A, R97A and R136A) of three reported critical residues in HuR-mRNA binding specificity. Our findings show that N-terminal tRRMs exhibit conformational stability upon RNA binding. We further show that R136A and R97A mutants significantly lose their binding affinity owing to the loss of critical interactions with mRNA. This may be attributed to the larger domain rearrangements in the mutant complexes, especially the β2β3 loops in both the tRRMs, leading to unfavourable conformations and loss of binding affinity. We have identified critical binding residues in tRRMs of HuR, contributing favourable binding energy in mRNA recognition. This study contributes significantly to understand the molecular mechanism of RNA recognition by tandem RRMs and provides a platform to modulate binding affinities through mutations. This may further guide in future structure-based drug-therapies targeting impaired HuR-RNA interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ankita Agarwal
- School of Bio Science, Indian Institute of Technology Kharagpur, Kharagpur, India.,Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Suresh Alagar
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shri Kant
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
12
|
Wu X, Xu L. The RNA-binding protein HuR in human cancer: A friend or foe? Adv Drug Deliv Rev 2022; 184:114179. [PMID: 35248670 PMCID: PMC9035123 DOI: 10.1016/j.addr.2022.114179] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/27/2022] [Indexed: 12/12/2022]
Abstract
The RNA-binding proteins (RBPs) are critical trans factors that associate with specific cis elements present in mRNAs whose stability and translation are subject to regulation. The RBP Hu antigen R (HuR) is overexpressed in a wide variety of human cancers and serves as a prognostic factor of poor clinical outcome. HuR promotes tumorigenesis by interacting with a subset of oncogenic mRNAs implicated in different cancer hallmarks, and resistance to therapy. Reduction of HuR levels in cancer cells leads to tumor regression in mouse xenograft models. These findings prompt a working model whereby cancer cells use HuR, a master switch of multiple oncogenic mRNAs, to drive drug resistance and promote cell survival and metastasis, thus rendering the tumor cells with high cytoplasmic HuR more progressive and resistant to therapy. This review summarizes the roles of HuR in cancer and other diseases, therapeutic potential of HuR inhibition, and the current status of drug discovery on HuR.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA.
| | - Liang Xu
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA; Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
13
|
Subramanian P, Gargani S, Palladini A, Chatzimike M, Grzybek M, Peitzsch M, Papanastasiou AD, Pyrina I, Ntafis V, Gercken B, Lesche M, Petzold A, Sinha A, Nati M, Thangapandi VR, Kourtzelis I, Andreadou M, Witt A, Dahl A, Burkhardt R, Haase R, Domingues AMDJ, Henry I, Zamboni N, Mirtschink P, Chung KJ, Hampe J, Coskun Ü, Kontoyiannis DL, Chavakis T. The RNA binding protein human antigen R is a gatekeeper of liver homeostasis. Hepatology 2022; 75:881-897. [PMID: 34519101 DOI: 10.1002/hep.32153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD is initiated by steatosis and can progress through fibrosis and cirrhosis to HCC. The RNA binding protein human antigen R (HuR) controls RNAs at the posttranscriptional level; hepatocyte HuR has been implicated in the regulation of diet-induced hepatic steatosis. The present study aimed to understand the role of hepatocyte HuR in NAFLD development and progression to fibrosis and HCC. APPROACH AND RESULTS Hepatocyte-specific, HuR-deficient mice and control HuR-sufficient mice were fed either a normal diet or an NAFLD-inducing diet. Hepatic lipid accumulation, inflammation, fibrosis, and HCC development were studied by histology, flow cytometry, quantitative PCR, and RNA sequencing. The liver lipidome was characterized by lipidomics analysis, and the HuR-RNA interactions in the liver were mapped by RNA immunoprecipitation sequencing. Hepatocyte-specific, HuR-deficient mice displayed spontaneous hepatic steatosis and fibrosis predisposition compared to control HuR-sufficient mice. On an NAFLD-inducing diet, hepatocyte-specific HuR deficiency resulted in exacerbated inflammation, fibrosis, and HCC-like tumor development. A multi-omic approach, including lipidomics, transcriptomics, and RNA immunoprecipitation sequencing revealed that HuR orchestrates a protective network of hepatic-metabolic and lipid homeostasis-maintaining pathways. Consistently, HuR-deficient livers accumulated, already at steady state, a triglyceride signature resembling that of NAFLD livers. Moreover, up-regulation of secreted phosphoprotein 1 expression mediated, at least partially, fibrosis development in hepatocyte-specific HuR deficiency on an NAFLD-inducing diet, as shown by experiments using antibody blockade of osteopontin. CONCLUSIONS HuR is a gatekeeper of liver homeostasis, preventing NAFLD-related fibrosis and HCC, suggesting that the HuR-dependent network could be exploited therapeutically.
Collapse
Affiliation(s)
- Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Sofia Gargani
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Margarita Chatzimike
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Michal Grzybek
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Anastasios D Papanastasiou
- Department of Biomedical SciencesUniversity of West AtticaAthensGreece.,Histopathology UnitBiomedical Sciences Research Center "Alexander Fleming"VariGreece
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Vasileios Ntafis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Mathias Lesche
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Andreas Petzold
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Veera Raghavan Thangapandi
- Department of Internal Medicine IUniversity Hospital and Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany.,National Center for Tumor DiseasesPartner Site Dresden, Dresden and German Cancer Research CenterHeidelbergGermany.,York Biomedical Research Institute, Hull York Medical SchoolUniversity of YorkYorkUK
| | - Margarita Andreadou
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Anke Witt
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Andreas Dahl
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Robert Haase
- Scientific Computing FacilityMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Ian Henry
- Scientific Computing FacilityMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Jochen Hampe
- Department of Internal Medicine IUniversity Hospital and Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Dimitris L Kontoyiannis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece.,Department of Genetics, Development & Molecular Biology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany.,Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany.,National Center for Tumor DiseasesPartner Site Dresden, Dresden and German Cancer Research CenterHeidelbergGermany
| |
Collapse
|
14
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
15
|
Louis JM, Agarwal A, Mondal S, Talukdar I. A global analysis on the differential regulation of RNA binding proteins (RBPs) by TNF–α as potential modulators of metabolic syndromes. BBA ADVANCES 2022; 2:100037. [PMID: 37082594 PMCID: PMC10074950 DOI: 10.1016/j.bbadva.2021.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Metabolic syndrome (MetS) is associated with a group of conditions, which enhances the risk of diabetes, heart diseases and stroke in the affected individuals. Earlier reports from our lab have shown that Tumor necrosis factor-α (TNF-α) significantly modulates the expression of 56 genes at the alternative splicing level which are involved in various signaling and metabolic pathways (MetS genes) connected to MetS. These MetS genes were predicted to interact with various RNA-binding proteins (RBPs) when exposed to TNF-α, resulting changes in their alternative splicing patterns. Here we are presenting data of an RNA-Seq analysis, which identified 1218 unique, and significantly regulated genes by TNF-α, 15% of which are RBPs . Among the 1218 genes, 204 genes have been identified as MetS genes by the ingenuity pathway analysis, and 10% of the MetS genes are found as RBPs. Our results also show that TNF-α changes the phosphorylation status of certain RBPs such as SR proteins, crucial players in alternative splicing, possibly via changing the activation status of certain upstream signaling molecules which also act as upstream kinases for these proteins. Taken together, these findings suggest that TNF-α influences the regulation of the RBPs at the various levels for their expression, which may lead to the alteration of the splicing pattern of the MetS genes. MetS genes acting as RBPs and are modulated by TNF-α, predict the existence of highly interconnected mechanisms which require further analysis to understand their dual roles on the onset of these diseases.
Collapse
|
16
|
Delgado ME, Cárdenas BI, Farran N, Fernandez M. Metabolic Reprogramming of Liver Fibrosis. Cells 2021; 10:3604. [PMID: 34944111 PMCID: PMC8700241 DOI: 10.3390/cells10123604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is an excessive and imbalanced deposition of fibrous extracellular matrix (ECM) that is associated with the hepatic wound-healing response. It is also the common mechanism that contributes to the impairment of the liver function that is observed in many chronic liver diseases (CLD). Despite the efforts, no effective therapy against fibrosis exists yet. Worryingly, due to the growing obesity pandemic, fibrosis incidence is on the rise. Here, we aim to summarize the main components and mechanisms involved in the progression of liver fibrosis, with special focus on the metabolic regulation of key effectors of fibrogenesis, hepatic stellate cells (HSCs), and their role in the disease progression. Hepatic cells that undergo metabolic reprogramming require a tightly controlled, fine-tuned cellular response, allowing them to meet their energetic demands without affecting cellular integrity. Here, we aim to discuss the role of ribonucleic acid (RNA)-binding proteins (RBPs), whose dynamic nature being context- and stimuli-dependent make them very suitable for the fibrotic situation. Thus, we will not only summarize the up-to-date literature on the metabolic regulation of HSCs in liver fibrosis, but also on the RBP-dependent post-transcriptional regulation of this metabolic switch that results in such important consequences for the progression of fibrosis and CLD.
Collapse
Affiliation(s)
- M. Eugenia Delgado
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| | | | | | - Mercedes Fernandez
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| |
Collapse
|
17
|
Morgan D, Berggren KL, Spiess CD, Smith HM, Tejwani A, Weir SJ, Lominska CE, Thomas SM, Gan GN. Mitogen-activated protein kinase-activated protein kinase-2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Mol Carcinog 2021; 61:173-199. [PMID: 34559922 DOI: 10.1002/mc.23348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
Cancer and the immune system share an intimate relationship. Chronic inflammation increases the risk of cancer occurrence and can also drive inflammatory mediators into the tumor microenvironment enhancing tumor growth and survival. The p38 MAPK pathway is activated both acutely and chronically by stress, inflammatory chemokines, chronic inflammatory conditions, and cancer. These properties have led to extensive efforts to find effective drugs targeting p38, which have been unsuccessful. The immediate downstream serine/threonine kinase and substrate of p38 MAPK, mitogen-activated-protein-kinase-activated-protein-kinase-2 (MK2) protects cells against stressors by regulating the DNA damage response, transcription, protein and messenger RNA stability, and motility. The phosphorylation of downstream substrates by MK2 increases inflammatory cytokine production, drives an immune response, and contributes to wound healing. By binding directly to p38 MAPK, MK2 is responsible for the export of p38 MAPK from the nucleus which gives MK2 properties that make it unique among the large number of p38 MAPK substrates. Many of the substrates of both p38 MAPK and MK2 are separated between the cytosol and nucleus and interfering with MK2 and altering this intracellular translocation has implications for the actions of both p38 MAPK and MK2. The inhibition of MK2 has shown promise in combination with both chemotherapy and radiotherapy as a method for controlling cancer growth and metastasis in a variety of cancers. Whereas the current data are encouraging the field requires the development of selective and well tolerated drugs to target MK2 and a better understanding of its effects for effective clinical use.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kiersten L Berggren
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, UNM School of Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Colby D Spiess
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hannah M Smith
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ajay Tejwani
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christopher E Lominska
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sufi M Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
18
|
Chen H, Padia R, Li T, Li Y, Li B, Jin L, Huang S. Signaling of MK2 sustains robust AP1 activity for triple negative breast cancer tumorigenesis through direct phosphorylation of JAB1. NPJ Breast Cancer 2021; 7:91. [PMID: 34244488 PMCID: PMC8270897 DOI: 10.1038/s41523-021-00300-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) cells are generally more invasive than estrogen receptor-positive (ER + ) breast cancer cells. Consistent with the importance of activator protein 1 (AP1) transcription factors in invasion, AP1 activity is much higher in TNBC lines than ER + lines. In TNBC cells, robust AP1 activity is facilitated by both ERK and p38MAPK signaling pathways. While ERK signaling pathway regulates AP1 activity by controlling the abundance of AP1 transcription factors, p38MAPK signaling pathway does it by enhancing AP1 binding to AP1 sites without altering their abundance. Here, we show that p38MAPK regulation of AP1 activity involves both MAPKAPK2 (MK2) and JAB1, a known JUN-binding protein. MK2 not only interacts with JAB1 but also directly phosphorylates JAB1 at Ser177 in TNBC cells. Interestingly, Ser177 phosphorylation does not affect JAB1 and JUN interaction. Instead, interfering with p38MAPK signaling pathway or introducing an S to A point mutation at Ser177 of JAB1 reduces JUN recruitment to the AP1 sites in cyclin D1, urokinase plasminogen activator (uPA) and uPA receptor promoters. Moreover, knockdown of JAB1 diminishes >60% of AP1 transcriptional activity in TNBC cells. Taken together, these results indicate that MK2-mediated phosphorylation of JAB1 facilitates JUN recruitment to AP1 sites, thus augmenting AP1 activity. In line with the role of JAB1 in AP1 activity, silencing JAB1 leads to dramatic reduction in TNBC cell growth, in vitro invasion and in vivo tumor outgrowth. This study suggests that the p38MAPK-MK2 signaling pathway promotes TNBC tumorigenesis by sustaining robust AP1 activity.
Collapse
Affiliation(s)
- Haoming Chen
- grid.8547.e0000 0001 0125 2443The Ministry of Education Key Laboratory of Contemporary Anthropology, College of Life Science, Fudan University, Shanghai, China
| | - Ravi Padia
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Tao Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Yue Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Bin Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Lingtao Jin
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Shuang Huang
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| |
Collapse
|
19
|
Guarnieri AR, Anthony SR, Gozdiff A, Green LC, Fleifil SM, Slone S, Nieman ML, Alam P, Benoit JB, Owens AP, Kanisicak O, Tranter M. Adipocyte-specific deletion of HuR induces spontaneous cardiac hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 2021; 321:H228-H241. [PMID: 34018851 DOI: 10.1152/ajpheart.00957.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR-/-. We found that Adipo-HuR-/- mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression. Furthermore, hearts from Adipo-HuR-/- mice display increased fibrosis via picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene coexpression network analysis (WGCNA) across both cardiac and adipose tissue to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and cardiac fibrosis. RNA-seq results demonstrated a significant increase in proinflammatory gene expression in both cardiac and subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. In addition to inflammation-related genes, WGCNA identified a significant enrichment in extracellular vesicle-mediated transport and exosome-associated genes in scWAT, whose expression most significantly associated with the degree of cardiac fibrosis observed in Adipo-HuR-/- mice, implicating these processes as a likely adipose-to-cardiac paracrine mechanism. These results are significant in that they demonstrate the spontaneous onset of cardiovascular pathology in an adipose tissue-specific gene deletion model and contribute to our understanding of how disruptions in adipose tissue homeostasis may mediate cardiovascular disease.NEW & NOTEWORTHY The presence of functional brown adipose tissue in humans is known to be associated with cardiovascular health. Here, we show that adipocyte-specific deletion of the RNA binding protein HuR, which we have previously shown to reduce BAT-mediated thermogenesis, is sufficient to mediate a spontaneous development of cardiac hypertrophy and fibrosis. These results may have implications on the mechanisms by which BAT function and adipose tissue homeostasis directly mediate cardiovascular disease.
Collapse
Affiliation(s)
- Adrienne R Guarnieri
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sarah R Anthony
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Anamarie Gozdiff
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa C Green
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Salma M Fleifil
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sam Slone
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michelle L Nieman
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Perwez Alam
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
20
|
ELAV Proteins Bind and Stabilize C/EBP mRNA in the Induction of Long-Term Memory in Aplysia. J Neurosci 2020; 41:947-959. [PMID: 33298536 DOI: 10.1523/jneurosci.2284-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Long-term memory (LTM) formation is a critical survival process by which an animal retains information about prior experiences to guide future behavior. In the experimentally advantageous marine mollusk Aplysia, LTM for sensitization can be induced by the presentation of two aversive shocks to the animal's tail. Each of these training trials recruits distinct growth factor signaling systems that promote LTM formation. Specifically, whereas intact TrkB signaling during Trial 1 promotes an initial and transient increase of the immediate early gene apc/ebp mRNA, a prolonged increase in apc/ebp gene expression required for LTM formation requires the addition of TGFβ signaling during Trial 2. Here we explored the molecular mechanisms by which Trial 2 achieves the essential prolonged gene expression of apc/ebp We find that this prolonged gene expression is not dependent on de novo transcription, but that apc/ebp mRNA synthesized by Trial 1 is post-transcriptionally stabilized by interacting with the RNA-binding protein ApELAV. This interaction is promoted by p38 MAPK activation initiated by TGFβ. We further demonstrate that blocking the interaction of ApELAV with its target mRNA during Trial 2 blocks both the prolonged increase in apc/ebp gene expression and the behavioral induction of LTM. Collectively, our findings elucidate both when and how ELAV proteins are recruited for the stabilization of mRNA in LTM formation. Stabilization of a transiently expressed immediate early gene mRNA by a repeated training trial may therefore serve as a "filter" for learning, permitting only specific events to cause lasting transcriptional changes and behavioral LTM.SIGNIFICANCE STATEMENT: In the present paper, we significantly extend the general field of molecular processing in long-term memory (LTM) by describing a novel form of pretranslational processing required for LTM, which relies on the stabilization of a newly synthesized mRNA by a class of RNA binding proteins (ELAVs). There are now compelling data showing that important processing can occur after transcription of a gene, but before translation of the message into protein. Although the potential importance of ELAV proteins in LTM formation has previously been reported, the specific actions of ELAV proteins during LTM formation remained to be understood. Our new findings thus complement and extend this literature by demonstrating when and how this post-transcriptional gene regulation is mediated in the induction of LTM.
Collapse
|
21
|
Anthony SR, Guarnieri A, Lanzillotta L, Gozdiff A, Green LC, O’Grady K, Helsley RN, Owens AP, Tranter M. HuR expression in adipose tissue mediates energy expenditure and acute thermogenesis independent of UCP1 expression. Adipocyte 2020; 9:335-345. [PMID: 32713230 PMCID: PMC7469577 DOI: 10.1080/21623945.2020.1782021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to define the functional role of adipocyte-specific expression of the RNA binding protein Human antigen R (HuR). Mice with an adipocyte-specific deletion of HuR (Adipo-HuR-/- ) were generated by crossing HuR floxed (HuRfl/fl ) mice with mice expressing adiponectin-driven cre-recombinase (Adipoq-cre). Our results show that Adipo-HuR-/- mice display a lean phenotype compared to wild-type littermate controls. HuR deletion results in a diet-independent reduction in percent body fat composition along with an increase in energy expenditure. Functionally, Adipo-HuR-/- mice show a significant impairment in acute adaptive thermogenesis (six hours at 4°C), but uncoupling protein 1 (UCP1) protein expression in brown adipose tissue (BAT) is unchanged compared to control. Pharmacological inhibition of HuR also results in a marked decline in core body temperature following acute cold challenge independent of UCP1 protein expression. Among the 588 HuR-dependent genes in BAT identified by RNA-seq analysis, gene ontology analysis shows a significant enrichment in mediators of calcium transport and signalling, almost all of which are decreased in Adipo-HuR-/- mice compared to control. In conclusion, adipocyte expression of HuR plays a central role in metabolic homoeostasis and mediates UCP1-independent thermogenesis in BAT, potentially through post-transcriptional control of intracellular calcium transport.Abbreviations: Adipo-HuR-/-: Adipocyte-specific HuR deletion mice; BAT: Brown adipose tissue; HuR: Human antigen R; UCP1: Uncoupling protein 1.
Collapse
Affiliation(s)
- Sarah R. Anthony
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Adrienne Guarnieri
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lindsey Lanzillotta
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anamarie Gozdiff
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lisa C. Green
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine O’Grady
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert N. Helsley
- Division of Pediatrics, Department of Gastroenterology, Hepatology, and Nutrition, University of Kentucky College of Medicine and Kentucky Children’s Hospital, Lexington, KY, USA
| | - A. Phillip Owens
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
22
|
Li J, Durose WW, Ito J, Kakita A, Iguchi Y, Katsuno M, Kunisawa K, Shimizu T, Ikenaka K. Exploring the factors underlying remyelination arrest by studying the post-transcriptional regulatory mechanisms of cystatin F gene. J Neurochem 2020; 157:2070-2090. [PMID: 32947653 DOI: 10.1111/jnc.15190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
Remyelination plays an important role in determining the fate of demyelinating disorders. However, it is arrested during chronic disease states. Cystatin F, a papain-like lysosomal cysteine proteinase inhibitor, is a crucial regulator of demyelination and remyelination. Using hemizygous proteolipid protein transgenic 4e (PLP4e/- ) mice, an animal model of chronic demyelination, we found that cystatin F mRNA expression was induced at 2.5 months of age and up-regulated in the early phase of demyelination, but significantly decreased in the chronic phase. We next investigated cystatin F regulatory factors as potential mechanisms of remyelination arrest in chronic demyelinating disorders. We used the CysF-STOP-tetO::Iba-mtTA mouse model, in which cystatin F gene expression is driven by the tetracycline operator. Interestingly, we found that forced cystatin F mRNA over-expression was eventually decreased. Our findings show that cystatin F expression is modulated post-transcriptionally. We next identified embryonic lethal, abnormal vision, drosophila like RNA-binding protein 1 (ELAVL-1), and miR29a as cystatin F mRNA stabilizing and destabilizing factors, respectively. These roles were confirmed in vitro in NIH3T3 cells. Using postmortem plaque samples from human multiple sclerosis patients, we also confirmed that ELAVL-1 expression was highly correlated with the previously reported expression pattern of cystatin F. These data indicate the important roles of ELAVL-1 and miR29a in regulating cystatin F expression. Furthermore, they provide new insights into potential therapeutic targets for demyelinating disorders.
Collapse
Affiliation(s)
- Jiayi Li
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wilaiwan Wisessmith Durose
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.,Department of Pediatrics, Hematology University of Minnesota, Minneapolis, MN, USA
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Division of Advanced Diagnostic System, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
23
|
Dong R, Chen P, Polireddy K, Wu X, Wang T, Ramesh R, Dixon DA, Xu L, Aubé J, Chen Q. An RNA-Binding Protein, Hu-antigen R, in Pancreatic Cancer Epithelial to Mesenchymal Transition, Metastasis, and Cancer Stem Cells. Mol Cancer Ther 2020; 19:2267-2277. [PMID: 32879054 DOI: 10.1158/1535-7163.mct-19-0822] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 04/17/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023]
Abstract
Pancreatic cancer has poor prognosis and treatment outcomes due to its highly metastatic nature and resistance to current treatments. The RNA-binding protein (RBP) Hu-antigen R (HuR) is a central player in posttranscriptional regulation of cancer-related gene expression, and contributes to tumorigenesis, tumor growth, metastasis, and drug resistance. HuR has been suggested to regulate pancreatic cancer epithelial-to-mesenchymal transition (EMT), but the mechanism was not well understood. Here, we further elucidated the role HuR plays in pancreatic cancer cell EMT, and developed a novel inhibitor specifically interrupting HuR-RNA binding. The data showed that HuR binds to the 3'-UTR of the mRNA of the transcription factor Snail, resulting in stabilization of Snail mRNA and enhanced Snail protein expression, thus promoted EMT, metastasis, and formation of stem-like cancer cells (CSC) in pancreatic cancer cells. siRNA silencing or CRISPR/Cas9 gene deletion of HuR inhibited pancreatic cancer cell EMT, migration, invasion, and inhibited CSCs. HuR knockout cells had dampened tumorigenicity in immunocompromised mice. A novel compound KH-3 interrupted HuR-RNA binding, and KH-3 inhibited pancreatic cancer cell viability, EMT, migration/invasion in vitro KH-3 showed HuR-dependent activity and inhibited HuR-positive tumor growth and metastasis in vivo.
Collapse
Affiliation(s)
- Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas
| | - Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaoqing Wu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Tao Wang
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas
| | - Remya Ramesh
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Dan A Dixon
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Jeffrey Aubé
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
24
|
Leigh T, Scalia RG, Autieri MV. Resolution of inflammation in immune and nonimmune cells by interleukin-19. Am J Physiol Cell Physiol 2020; 319:C457-C464. [PMID: 32667867 PMCID: PMC7509264 DOI: 10.1152/ajpcell.00247.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
The inflammatory response is a complex, tightly regulated process activated by tissue wounding, foreign body invasion, and sterile inflammation. Over the decades, great progress has been made to advance our understanding of this process. One often overlooked aspect of inflammation is its sequel: resolution. We know that dysregulated resolution often results in numerous chronic degenerative diseases such as arthritis, cancer, and asthma. However, identification of components and mechanisms of resolving pathways lags behind those of proinflammatory processes, yet represents overlooked therapeutic opportunities. One approach is identification of endogenous, negative compensatory mechanisms, which are activated in response to inflammation for the purpose of resolution of that inflammatory stimuli. This review will focus on literature that describes expression and function of interleukin-19, a proposed anti-inflammatory cytokine, in numerous inflammatory diseases. The literature concerning IL-19 is complex, context-dependent, and often contradictory. The expression and function of IL-19 in the inflammatory response are in no way settled. We will attempt to clarify the role that this interesting and understudied cytokine plays in resolution of inflammation and discuss its mechanisms of action in different cell types. We will present a hypothesis that endogenous IL-19 expression in response to inflammatory stimuli is a cellular compensatory mechanism to dampen inflammation. We further present studies suggesting that while endogenously expressed IL-19 may be a response to inflammation, pharmacological levels may be necessary to effectively resolve the inflammatory cascade.
Collapse
Affiliation(s)
- Tani Leigh
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Rosario G Scalia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Wu M, Tong CWS, Yan W, To KKW, Cho WCS. The RNA Binding Protein HuR: A Promising Drug Target for Anticancer Therapy. Curr Cancer Drug Targets 2020; 19:382-399. [PMID: 30381077 DOI: 10.2174/1568009618666181031145953] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
The stability of mRNA is one of the key factors governing the regulation of eukaryotic gene expression and function. Human antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. While HuR is normally localized within the nucleus, it has been shown that HuR binds mRNAs in the nucleus and then escorts the mRNAs to the cytoplasm where HuR protects them from degradation. It contains several RNA recognition motifs, which specifically bind to adenylate and uridylate-rich regions within the 3'-untranslated region of the target mRNA to mediate its effect. Many of the HuR target mRNAs encode proteins important for cell growth, tumorigenesis, angiogenesis, tumor inflammation, invasion and metastasis. HuR overexpression is known to correlate well with high-grade malignancy and poor prognosis in many tumor types. Thus, HuR has emerged as an attractive drug target for cancer therapy. Novel small molecule HuR inhibitors have been identified by high throughput screening and new formulations for targeted delivery of HuR siRNA to tumor cells have been developed with promising anticancer activity. This review summarizes the significant role of HuR in cancer development, progression, and poor treatment response. We will discuss the potential and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
26
|
GRK2-Dependent HuR Phosphorylation Regulates HIF1α Activation under Hypoxia or Adrenergic Stress. Cancers (Basel) 2020; 12:cancers12051216. [PMID: 32413989 PMCID: PMC7281538 DOI: 10.3390/cancers12051216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Adaptation to hypoxia is a common feature in solid tumors orchestrated by oxygen-dependent and independent upregulation of the hypoxia-inducible factor-1α (HIF-1α). We unveiled that G protein-coupled receptor kinase (GRK2), known to be overexpressed in certain tumors, fosters this hypoxic pathway via phosphorylation of the mRNA-binding protein HuR, a central HIF-1α modulator. GRK2-mediated HuR phosphorylation increases the total levels and cytoplasmic shuttling of HuR in response to hypoxia, and GRK2-phosphodefective HuR mutants show defective cytosolic accumulation and lower binding to HIF-1α mRNA in hypoxic Hela cells. Interestingly, enhanced GRK2 and HuR expression correlate in luminal breast cancer patients. GRK2 also promotes the HuR/HIF-1α axis and VEGF-C accumulation in normoxic MCF7 breast luminal cancer cells and is required for the induction of HuR/HIF1-α in response to adrenergic stress. Our results point to a relevant role of the GRK2/HuR/HIF-1α module in the adaptation of malignant cells to tumor microenvironment-related stresses.
Collapse
|
27
|
Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol 2020; 3:193. [PMID: 32332873 PMCID: PMC7181695 DOI: 10.1038/s42003-020-0933-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/07/2020] [Indexed: 01/02/2023] Open
Abstract
Patients diagnosed with metastatic breast cancer have a dismal 5-year survival rate of only 24%. The RNA-binding protein Hu antigen R (HuR) is upregulated in breast cancer, and elevated cytoplasmic HuR correlates with high-grade tumors and poor clinical outcome of breast cancer. HuR promotes tumorigenesis by regulating numerous proto-oncogenes, growth factors, and cytokines that support major tumor hallmarks including invasion and metastasis. Here, we report a HuR inhibitor KH-3, which potently suppresses breast cancer cell growth and invasion. Furthermore, KH-3 inhibits breast cancer experimental lung metastasis, improves mouse survival, and reduces orthotopic tumor growth. Mechanistically, we identify FOXQ1 as a direct target of HuR. KH-3 disrupts HuR–FOXQ1 mRNA interaction, leading to inhibition of breast cancer invasion. Our study suggests that inhibiting HuR is a promising therapeutic strategy for lethal metastatic breast cancer. Wu et al. identify an inhibitor to the RNA-binding protein HuR, KH-3, that disrupts the interaction between HuR and target RNAs and inhibits human cancer growth and metastasis in mouse xenograft assays. This study suggests the therapeutic potential of targeting HuR in breast cancer with HuR overexpression.
Collapse
|
28
|
Yang X, Sun X, Wu J, Ma J, Si P, Yin L, Zhang Y, Yan LJ, Zhang C. Regulation of the SIRT1 signaling pathway in NMDA-induced Excitotoxicity. Toxicol Lett 2020; 322:66-76. [PMID: 31945382 DOI: 10.1016/j.toxlet.2020.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/12/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Silent Information Regulator 1 (SIRT1), an NAD+-dependent deacetylase, contributes to the neuroprotective effect. However, intracellular signaling pathways that affect SIRT1 function remain unknown. It is well known that N-methyl-D-aspartate (NMDA) receptor activation induces calcium influx which then activates PKC, and SIRT1 is a mRNA target for HuR protein. We hypothesize that Ca2+-PKC-HuR-SIRT1 pathway modulates SIRT1 function. The present study is to investigate the potential pathway of SIRT1 in the SH-SY5Y cell line as an in vitro model of NMDA-induced neurotoxicity. The results showed that: (1) SIRT1 levels were downregulated in NMDA model; (2) NMDA induced an increase in serine phosphorylation of HuR, while inhibition of serine phosphorylation of HuR increased SIRT1 levels, promoting cell survival; (3) PKC inhibitor (Gö 6976) reversed NMDA insults and also suppressed serine phosphorylation of HuR; (4) 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular calcium chelator, fully reversed NMDA insults and also inhibited PKC activity evoked by NMDA. These results indicate that intracellular elevated Ca2+ activates PKC, which phosphorylates HuR and then promotes SIRT1 mRNA decay and subsequent neuronal death in NMDA model. Therefore, the study suggests that inhibition of Ca2+-PKC-HuR-SIRT1 pathway could be an effective strategy for preventing certain neurological diseases related to NMDA excitotoxicity.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China.
| | - Xuefei Sun
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China; The People's Hospital of Funing, Qinhuangdao 066300, Hebei Province, PR China
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jinteng Ma
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China
| | - Peipei Si
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China; Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050071, Hebei Province, PR China
| | - Litian Yin
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ce Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China
| |
Collapse
|
29
|
Torun A, Enayat S, Sheraj I, Tunçer S, Ülgen DH, Banerjee S. Butyrate mediated regulation of RNA binding proteins in the post-transcriptional regulation of inflammatory gene expression. Cell Signal 2019; 64:109410. [DOI: 10.1016/j.cellsig.2019.109410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
|
30
|
Salotti J, Johnson PF. Regulation of senescence and the SASP by the transcription factor C/EBPβ. Exp Gerontol 2019; 128:110752. [PMID: 31648009 DOI: 10.1016/j.exger.2019.110752] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Oncogene-induced senescence (OIS) serves as an important barrier to tumor progression in cells that have acquired activating mutations in RAS and other oncogenes. Senescent cells also produce a secretome known as the senescence-associated secretory phenotype (SASP) that includes pro-inflammatory cytokines and chemokines. SASP factors reinforce and propagate the senescence program and identify senescent cells to the immune system for clearance. The OIS program is executed by several transcriptional effectors that include p53, RB, NF-κB and C/EBPβ. In this review, we summarize the critical role of C/EBPβ in regulating OIS and the SASP. Post-translational modifications induced by oncogenic RAS signaling control C/EBPβ activity and dimerization, and these alterations switch C/EBPβ to a pro-senescence form during OIS. In addition, C/EBPβ is regulated by a unique 3'UTR-mediated mechanism that restrains its activity in tumor cells to facilitate senescence bypass and suppression of the SASP.
Collapse
Affiliation(s)
- Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
31
|
Lourou N, Gavriilidis M, Kontoyiannis DL. Lessons from studying the AU-rich elements in chronic inflammation and autoimmunity. J Autoimmun 2019; 104:102334. [PMID: 31604649 DOI: 10.1016/j.jaut.2019.102334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
AU-rich elements (AREs) comprise one of the most widely studied families of regulatory RNA structures met in RNAs engaged in complex immunological reactions. A multitude of genetic, molecular, holistic and functional studies have been utilized for the analyses of the AREs and their interactions to proteins that bind to them. Data stemming from these studies brought forth a world of RNA-related check-points against infection, chronic inflammation, tumor associated immunity, and autoimmunity; and the interest to capitalize the interactions of AREs for clinical management and therapy. They also provided lessons on the cellular capabilities of post-transcriptional control. Originally thought as transcript-restricted regulators of turnover and translation, ARE-binding proteins do in fact harbor great versatility and interactivity across nuclear and cytoplasmic compartments; and act as functional coordinators of immune-cellular programs. Harnessing these deterministic functions requires extensive knowledge of their synergies or antagonisms at a cell-specific level; but holds great promise since it can provide the efficacy of combinatorial therapies with single agents.
Collapse
Affiliation(s)
- Niki Lourou
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece
| | - Maxim Gavriilidis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece
| | - Dimitris L Kontoyiannis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece.
| |
Collapse
|
32
|
Wang H, Zhao X, Yun W, Chen LH, Li ST. Effect of Inhibiting p38 on HuR Involving in β-AChR Post-transcriptional Mechanisms in Denervated Skeletal Muscle. Cell Mol Neurobiol 2019; 39:1029-1037. [PMID: 31172341 DOI: 10.1007/s10571-019-00698-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Previous studies reported that RNA-binding protein human antigen R (HuR) mediates changes in the stability of AChR β-subunit mRNA after skeletal muscle denervation; also, p38 pathway regulated the stability of AChR β-subunit mRNA in C2C12 myotubes. However, the relationship between HuR and p38 in regulating the stability of AChR β-subunit mRNA have not been clarified. In this study, we wanted to examine the effect of inhibiting p38 on HuR in denervated skeletal muscle. Denervation model was built and 10% DMSO or SB203580 were administered respectively follow denervation. Tibialis muscles were collected in 10% DMSO-administered contralateral (undenervated) leg, 10% DMSO-administered denervated leg, SB203580-administered contralateral (undenervated) leg, and SB203580-administered denervated leg, respectively. P38 protein, β-AChR mRNA and protein, HuR protein, β-AChR mRNA stability, and HuR binding with AChR β-subunit mRNAs were measured. Results demonstrated that the administration of SB203580 can inhibit the increase of β-AChR protein expression and mRNA expression and stability, and RNA-binding protein human antigen R (HuR) expression, in cytoplasmic and nuclear fractions in skeletal muscle cells following denervation. Importantly, we observed that SB203580 also inhibited the increased level of binding activity between HuR and AChR β-subunit mRNAs following denervation. Collectively, these results suggested that inhibition of p38 can post-transcriptionally inhibit β-AChR upregulation via HuR in denervated skeletal muscle.
Collapse
Affiliation(s)
- Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Xiao Zhao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Wang Yun
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Lian-Hua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| |
Collapse
|
33
|
Pabis M, Popowicz GM, Stehle R, Fernández-Ramos D, Asami S, Warner L, García-Mauriño SM, Schlundt A, Martínez-Chantar ML, Díaz-Moreno I, Sattler M. HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs. Nucleic Acids Res 2019; 47:1011-1029. [PMID: 30418581 PMCID: PMC6344896 DOI: 10.1093/nar/gky1138] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/28/2018] [Indexed: 12/22/2022] Open
Abstract
HuR/ELAVL1 is an RNA-binding protein involved in differentiation and stress response that acts primarily by stabilizing messenger RNA (mRNA) targets. HuR comprises three RNA recognition motifs (RRMs) where the structure and RNA binding of RRM3 and of full-length HuR remain poorly understood. Here, we report crystal structures of RRM3 free and bound to cognate RNAs. Our structural, NMR and biochemical data show that RRM3 mediates canonical RNA interactions and reveal molecular details of a dimerization interface localized on the α-helical face of RRM3. NMR and SAXS analyses indicate that the three RRMs in full-length HuR are flexibly connected in the absence of RNA, while they adopt a more compact arrangement when bound to RNA. Based on these data and crystal structures of tandem RRM1,2-RNA and our RRM3-RNA complexes, we present a structural model of RNA recognition involving all three RRM domains of full-length HuR. Mutational analysis demonstrates that RRM3 dimerization and RNA binding is required for functional activity of full-length HuR in vitro and to regulate target mRNAs levels in human cells, thus providing a fine-tuning for HuR activity in vivo.
Collapse
Affiliation(s)
- Marta Pabis
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.,Max Planck Research Group hosted by the Malopolska Centre of Biotechnology of the Jagiellonian University, Krakow, Poland
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ralf Stehle
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Cooperativa en Biociencias. Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Sam Asami
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Lisa Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ)-Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Andreas Schlundt
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - María L Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Cooperativa en Biociencias. Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ)-Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
34
|
Bae JE, Park SJ, Hong Y, Jo DS, Lee H, Park NY, Kim JB, Park HJ, Bunch H, Chang JH, Lee EK, Cho DH. Loss of RNA binding protein, human antigen R enhances mitochondrial elongation by regulating Drp1 expression in SH-SY5Y cells. Biochem Biophys Res Commun 2019; 516:713-718. [DOI: 10.1016/j.bbrc.2019.06.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/10/2023]
|
35
|
Inhibition of Caspase-2 Translation by the mRNA Binding Protein HuR: A Novel Path of Therapy Resistance in Colon Carcinoma Cells? Cells 2019; 8:cells8080797. [PMID: 31366165 PMCID: PMC6721497 DOI: 10.3390/cells8080797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022] Open
Abstract
An increased expression and cytoplasmic abundance of the ubiquitous RNA binding protein human antigen R (HuR) is critically implicated in the dysregulated control of post- transcriptional gene expression during colorectal cancer development and is frequently associated with a high grade of malignancy and therapy resistance. Regardless of the fact that HuR elicits a broad cell survival program by increasing the stability of mRNAs coding for prominent anti-apoptotic factors, recent data suggest that HuR is critically involved in the regulation of translation, particularly, in the internal ribosome entry site (IRES) controlled translation of cell death regulatory proteins. Accordingly, data from human colon carcinoma cells revealed that HuR maintains constitutively reduced protein and activity levels of caspase-2 through negative interference with IRES-mediated translation. This review covers recent advances in the understanding of mechanisms underlying HuR's modulatory activity on IRES-triggered translation. With respect to the unique regulatory features of caspase-2 and its multiple roles (e.g., in DNA-damage-induced apoptosis, cell cycle regulation and maintenance of genomic stability), the pathophysiological consequences of negative caspase-2 regulation by HuR and its impact on therapy resistance of colorectal cancers will be discussed in detail. The negative HuR-caspase-2 axis may offer a novel target for tumor sensitizing therapies.
Collapse
|
36
|
Liu Y, Wei W, Wang Y, Wan C, Bai Y, Sun X, Ma J, Zheng F. TNF-α/calreticulin dual signaling induced NLRP3 inflammasome activation associated with HuR nucleocytoplasmic shuttling in rheumatoid arthritis. Inflamm Res 2019; 68:597-611. [PMID: 31119302 DOI: 10.1007/s00011-019-01244-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The present study was undertaken to validate whether TNF-α and calreticulin (CRT) serve as dual signaling to activate nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and HUVECs. The effect of human antigen R (HuR) in NLRP3 inflammasome activation was also explored in RA FLS. METHODS Immunofluorescence was used to determine the expression of NLRP3 and adaptor protein apoptosis associated speck-like protein containing a CARD (ASC) in RA synovial tissue and HuR location in RA FLS. Western blot and quantitative real-time PCR were employed to measure the priming effect of NLRP3 inflammasome in cells and HuR expression in synovial tissue. The concentrations of IL-1β and IL-18 were detected by enzyme linked immunosorbent assay. Immunohistochemistry was used to visualize the expression of HuR in synovial tissue. HuR knockdown in RA FLS was achieved by siRNA-mediated gene silencing. RESULTS Higher expression of NLRP3 and ASC in RA synovial tissue than those in osteoarthritis was detected. The staining of NLRP3, ASC and cleaved IL-1β were observed in FLS and vascular endothelial cells in RA synovium. Expression of NLRP3 and pro-IL-1β in RA FLS and HUVECs treated with TNF-α was increased. The pro-IL-18 expression was also enhanced in HUVECs, but not in RA FLS. TNF-α/CRT dual stimulation of cells gave rise to caspase-1 p20 expression and the secretion of IL-1β. The secreted IL-18 was also elevated in HUVECs but not in RA FLS. HuR expression was significantly elevated in RA synovial tissue. TNF-α initiated the nucleocytoplasmic shuttling of HuR in both FLS and HUVECs. The knockdown of HuR in FLS incubated with TNF-α led to reduced caspase-1 p20 protein expression and further resulted in decreased secretion of IL-1β in the presence of CRT. CONCLUSIONS TNF-α/CRT dual signaling induced NLRP3 inflammasome activation, which could be suppressed by HuR knockdown presumably due to the block of HuR translocating from nucleus to cytoplasma.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China
| | - Wei Wei
- Department of Rheumatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yang Wang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China
| | - Chunyou Wan
- Center of Joint Surgery, Tianjin Hospital, Tianjin, 300210, China
| | - Yingyu Bai
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China
| | - Xuguo Sun
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China
| | - Jun Ma
- Department of Health Statistics, College of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| | - Fang Zheng
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
37
|
Singatulina AS, Hamon L, Sukhanova MV, Desforges B, Joshi V, Bouhss A, Lavrik OI, Pastré D. PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA. Cell Rep 2019; 27:1809-1821.e5. [DOI: 10.1016/j.celrep.2019.04.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/21/2018] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
|
38
|
Mirisis AA, Carew TJ. The ELAV family of RNA-binding proteins in synaptic plasticity and long-term memory. Neurobiol Learn Mem 2019; 161:143-148. [PMID: 30998973 DOI: 10.1016/j.nlm.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 12/26/2022]
Abstract
The mechanisms of de novo gene expression and translation of specific gene transcripts have long been known to support long-lasting changes in synaptic plasticity and behavioral long-term memory. In recent years, it has become increasingly apparent that gene expression is heavily regulated not only on the level of transcription, but also through post-transcriptional gene regulation, which governs the subcellular localization, stability, and likelihood of translation of mRNAs. Specific families of RNA-binding proteins (RBPs) bind transcripts which contain AU-rich elements (AREs) within their 3' UTR and thereby govern their downstream fate. These post-transcriptional gene regulatory mechanisms are coordinated through the same cell signaling pathways that play critical roles in long-term memory formation. In this review, we discuss recent results that demonstrate the roles that these ARE-binding proteins play in LTM formation.
Collapse
Affiliation(s)
| | - Thomas J Carew
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
39
|
Hwang JS, Lee WJ, Hur J, Lee HG, Kim E, Lee GH, Choi MJ, Lim DS, Paek KS, Seo HG. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level. FASEB J 2019; 33:7707-7720. [PMID: 30897345 DOI: 10.1096/fj.201802643r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ has been implicated as a key player in the regulation of adiponectin levels via both transcriptional and posttranscriptional mechanisms. Herein, we show that PPAR-γ interacts with human antigen R (HuR) and that the PPAR-γ-HuR complex dissociates following activation of PPAR-γ by rosiglitazone, a specific ligand of PPAR-γ. This rosiglitazone-dependent dissociation of HuR from PPAR-γ leads to nucleocytoplasmic shuttling of HuR and its binding to the 3'-UTR of adiponectin mRNA. PPAR-γ with H321A and H447A double mutation (PPAR-γH321/447A), a mutant lacking ligand-binding activity, impaired HuR dissociation from the PPAR-γ-HuR complex, resulting in reduced nucleocytoplasmic shuttling, even in the presence of rosiglitazone. Consequently, rosiglitazone up-regulated adiponectin levels by modulating the stability of adiponectin mRNA, whereas these effects were abolished by HuR ablation or blocked in cells expressing the PPAR-γH321/447A mutant, indicating that the interaction of PPAR-γ and HuR is a critical event during adiponectin expression. Taken together, the findings demonstrate a novel mechanism for regulating adiponectin expression at the posttranscriptional level and suggest that ligand-mediated activation of PPAR-γ to interfere with interaction of HuR could offer a therapeutic strategy for inflammation-associated diseases that involve decreased adiponectin mRNA stability.-Hwang, J. S., Lee, W. J., Hur, J., Lee, H. G., Kim, E., Lee, G. H., Choi, M.-J., Lim, D.-S., Paek, K. S., Seo, H. G. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Jinwoo Hur
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Hyuk Gyoon Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Eunsu Kim
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Gyeong Hee Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Mi-Jung Choi
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Korea
| | | | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
40
|
Cardiovascular inflammation: RNA takes the lead. J Mol Cell Cardiol 2019; 129:247-256. [PMID: 30880251 DOI: 10.1016/j.yjmcc.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
Inflammation has recently gained tremendous attention as a key contributor in several chronic diseases. While physiological inflammation is essential to counter a wide variety of damaging stimuli and to improve wound healing, dysregulated inflammation such as in the myocardium and vasculature can promote cardiovascular diseases. Given the high severity, prevalence, and economic burden of these diseases, understanding the factors involved in the regulation of physiological inflammation is essential. Like other complex biological phenomena, RNA-based processes are emerging as major regulators of inflammatory responses. Among such processes are cis-regulatory elements in the mRNA of inflammatory genes, noncoding RNAs directing the production or localization of inflammatory cytokines/chemokines, or pathogenic RNA driving inflammatory responses. In this review, we describe several specific RNA-based molecular mechanisms by which physiological inflammation pertaining to cardiovascular diseases is regulated. These include the role of AU-rich element-containing mRNAs, long non-coding RNAs, microRNAs, and viral RNAs.
Collapse
|
41
|
Soni S, Anand P, Padwad YS. MAPKAPK2: the master regulator of RNA-binding proteins modulates transcript stability and tumor progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:121. [PMID: 30850014 PMCID: PMC6408796 DOI: 10.1186/s13046-019-1115-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
Abstract
The p38 mitogen-activated protein kinase (p38MAPK) pathway has been implicated in a variety of pathological conditions including inflammation and metastasis. Post-transcriptional regulation of genes harboring adenine/uridine-rich elements (AREs) in their 3'-untranslated region (3'-UTR) is controlled by MAPK-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of the p38MAPK. In response to diverse extracellular stimuli, MK2 influences crucial signaling events, regulates inflammatory cytokines, transcript stability and critical cellular processes. Expression of genes involved in these vital cellular cascades is controlled by subtle interactions in underlying molecular networks and post-transcriptional gene regulation that determines transcript fate in association with RNA-binding proteins (RBPs). Several RBPs associate with the 3'-UTRs of the target transcripts and regulate their expression via modulation of transcript stability. Although MK2 regulates important cellular phenomenon, yet its biological significance in tumor progression has not been well elucidated till date. In this review, we have highlighted in detail the importance of MK2 as the master regulator of RBPs and its role in the regulation of transcript stability, tumor progression, as well as the possibility of use of MK2 as a therapeutic target in tumor management.
Collapse
Affiliation(s)
- Sourabh Soni
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India.
| |
Collapse
|
42
|
Green LC, Anthony SR, Slone S, Lanzillotta L, Nieman ML, Wu X, Robbins N, Jones SM, Roy S, Owens AP, Aube J, Xu L, Lorenz JN, Blaxall BC, Rubinstein J, Benoit JB, Tranter M. Human antigen R as a therapeutic target in pathological cardiac hypertrophy. JCI Insight 2019; 4:121541. [PMID: 30668549 DOI: 10.1172/jci.insight.121541] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
RNA binding proteins represent an emerging class of proteins with a role in cardiac dysfunction. We show that activation of the RNA binding protein human antigen R (HuR) is increased in the failing human heart. To determine the functional role of HuR in pathological cardiac hypertrophy, we created an inducible cardiomyocyte-specific HuR-deletion mouse and showed that HuR deletion reduces left ventricular hypertrophy, dilation, and fibrosis while preserving cardiac function in a transverse aortic constriction (TAC) model of pressure overload-induced hypertrophy. Assessment of HuR-dependent changes in global gene expression suggests that the mechanistic basis for this protection occurs through a reduction in fibrotic signaling, specifically through a reduction in TGF-β (Tgfb) expression. Finally, pharmacological inhibition of HuR at a clinically relevant time point following the initial development of pathological hypertrophy after TAC also yielded a significant reduction in pathological progression, as marked by a reduction in hypertrophy, dilation, and fibrosis and preserved function. In summary, this study demonstrates a functional role for HuR in the progression of pressure overload-induced cardiac hypertrophy and establishes HuR inhibition as a viable therapeutic approach for pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Lisa C Green
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sarah R Anthony
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Samuel Slone
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lindsey Lanzillotta
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Nathan Robbins
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Shannon M Jones
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Sudeshna Roy
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - A Phillip Owens
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Jeffrey Aube
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Burns C Blaxall
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease and
| |
Collapse
|
43
|
Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, Wang X, Zhou H, Cao Y, Liu S, Yan Q, Tao Y, Zhang B. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 2019; 26:2329-2343. [PMID: 30787392 PMCID: PMC6889193 DOI: 10.1038/s41418-019-0304-y] [Citation(s) in RCA: 358] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
The regulatory loop between long noncoding RNAs (lncRNAs) and microRNAs has a dynamic role in transcriptional and translational regulation, and is involved in cancer. However, the regulatory circuitry between lncRNAs and microRNAs in tumorigenesis remains elusive. Here we demonstrate that a nuclear lncRNA LINC00336 is upregulated in lung cancer and functions as an oncogene by acting as a competing endogenous RNA (ceRNAs). LINC00336 bound RNA-binding protein ELAVL1 (ELAV-like RNA-binding protein 1) using nucleotides 1901–2107 of LINC00336 and the RRM interaction domain and key amino acids (aa) of ELAVL1 (aa 101–213), inhibiting ferroptosis. Moreover, ELAVL1 increased LINC00336 expression by stabilizing its posttranscriptional level, whereas LSH (lymphoid-specific helicase) increased ELAVL1 expression through the p53 signaling pathway, further supporting the hypothesis that LSH promotes LINC00336 expression. Interestingly, LINC00336 served as an endogenous sponge of microRNA 6852 (MIR6852) to regulate the expression of cystathionine-β-synthase (CBS), a surrogate marker of ferroptosis. Finally, we found that MIR6852 inhibited cell growth by promoting ferroptosis. These data show that the network of lncRNA and ceRNA has an important role in tumorigenesis and ferroptosis.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Lianlian Ouyang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Weiwei Lai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fenglei Yu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hu Zhou
- Shanghai Institute of Material Medica, Chinese Academy of Sciences (CAS), 555 Zu Chongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
44
|
Owens AP, Robbins N, Saum K, Jones SM, Kirschner A, Woo JG, McCoy C, Slone S, Rothenberg ME, Urbina EM, Tranter M, Rubinstein J. Tefillin use induces remote ischemic preconditioning pathways in healthy men. Am J Physiol Heart Circ Physiol 2018; 315:H1748-H1758. [PMID: 30216115 DOI: 10.1152/ajpheart.00347.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study assessed whether tefillin use (tight, nonocclusive, wrapping of the arm) elicits a remote ischemic preconditioning (RIPC)-like effect in subjects with both acute and chronic use. RIPC, created by short bursts of ischemia-reperfusion, has not been successfully taken to the bedside. Several large population studies have found that Orthodox Jewish men (who wear tefillin almost daily) have decreased cardiovascular mortality compared with non-Orthodox counterparts. We hypothesized that tefillin use is a relevant component in triggering a preconditioning effect. Jewish men ( n = 20) were enrolled; 9 men were daily tefillin users (conditioned) and 11 men were nonusers of tefillin as controls (naïve). Subjects were evaluated for adherence to traditional Jewish practice, had vital signs measured, blood drawn for analysis of circulating cytokines and monocyte function, and underwent brachial flow-mediated dilation to evaluate vascular reactivity at baseline (basal) and after 30 min of using tefillin (acute treatment). Under basal conditions, both groups had similar peak systolic velocity (SV), diameter, and flow volume, although the conditioned group had higher SV at 120 s postdeflation ( P = 0.05). Acute tefillin use augmented artery diameter and flow volume in both groups, with conditioned subjects experiencing higher SV than control subjects at 90 and 120 s postdeflation ( P = 0.03 and P = 0.02, respectively). Conditioned subjects had decreased inflammation, monocyte migration and adhesion, and endothelial activation compared with control subjects at baseline. Acute use of tefillin did not significantly alter monocyte function in either group. In this pilot study, acute tefillin use improves vascular function, whereas chronic tefillin use is associated with an anti-inflammatory RIPC-like phenotype. NEW & NOTEWORTHY We hypothesized that tefillin use among Orthodox Jewish men (who practice a nonocclusive leather banding of their nondominant arm) will induce a remote ischemic preconditioning phenotype. Chronic use of tefillin in Orthodox Jewish men was associated with increased systolic velocity and attenuated inflammation and monocyte chemotaxis and adhesion versus Jewish men who do not wear tefillin. Acute use of tefillin in both populations augmented brachial artery diameter and blood flow but not inflammatory profiles compared with baseline.
Collapse
Affiliation(s)
- A Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Nathan Robbins
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Keith Saum
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio.,Department of Biomedical Engineering, University of Cincinnati , Cincinnati, Ohio
| | - Shannon M Jones
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Akiva Kirschner
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Jessica G Woo
- Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio.,Division of Biostatistics and Epidemiology, University of Cincinnati , Cincinnati, Ohio
| | - Connie McCoy
- Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio.,Division of Cardiology, University of Cincinnati , Cincinnati, Ohio
| | - Samuel Slone
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Marc E Rothenberg
- Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio.,Division of Allergy and Immunology, University of Cincinnati , Cincinnati, Ohio
| | - Elaine M Urbina
- Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio.,Division of Cardiology, University of Cincinnati , Cincinnati, Ohio
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Jack Rubinstein
- Division of Cardiovascular Health and Disease, Department of Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
45
|
Lixa C, Mujo A, de Magalhães MTQ, Almeida FCL, Lima LMTR, Pinheiro AS. Oligomeric transition and dynamics of RNA binding by the HuR RRM1 domain in solution. JOURNAL OF BIOMOLECULAR NMR 2018; 72:179-192. [PMID: 30535889 DOI: 10.1007/s10858-018-0217-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Human antigen R (HuR) functions as a major post-transcriptional regulator of gene expression through its RNA-binding activity. HuR is composed by three RNA recognition motifs, namely RRM1, RRM2, and RRM3. The two N-terminal RRM domains are disposed in tandem and contribute mostly to HuR interaction with adenine and uracil-rich elements (ARE) in mRNA. Here, we used a combination of NMR and electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) to characterize the structure, dynamics, RNA recognition, and dimerization of HuR RRM1. Our solution structure reveals a canonical RRM fold containing a 19-residue, intrinsically disordered N-terminal extension, which is not involved in RNA binding. NMR titration results confirm the primary RNA-binding site to the two central β-strands, β1 and β3, for a cyclooxygenase 2 (Cox2) ARE I-derived, 7-nucleotide RNA ligand. We show by 15N relaxation that, in addition to the N- and C-termini, the β2-β3 loop undergoes fast backbone dynamics (ps-ns) both in the free and RNA-bound state, indicating that no structural ordering happens upon RNA interaction. ESI-IMS-MS reveals that HuR RRM1 dimerizes, however dimer population represents a minority. Dimerization occurs via the α-helical surface, which is oppositely orientated to the RNA-binding β-sheet. By using a DNA analog of the Cox2 ARE I, we show that DNA binding stabilizes HuR RRM1 monomer and shifts the monomer-dimer equilibrium toward the monomeric species. Altogether, our results deepen the current understanding of the mechanism of RNA recognition employed by HuR.
Collapse
Affiliation(s)
- Carolina Lixa
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Amanda Mujo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Mariana T Q de Magalhães
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fabio C L Almeida
- National Center for Nuclear Magnetic Resonance Jiri Jonas, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Luis Mauricio T R Lima
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| |
Collapse
|
46
|
Christodoulou-Vafeiadou E, Ioakeimidis F, Andreadou M, Giagkas G, Stamatakis G, Reczko M, Samiotaki M, Papanastasiou AD, Karakasiliotis I, Kontoyiannis DL. Divergent Innate and Epithelial Functions of the RNA-Binding Protein HuR in Intestinal Inflammation. Front Immunol 2018; 9:2732. [PMID: 30532756 PMCID: PMC6265365 DOI: 10.3389/fimmu.2018.02732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
HuR is an abundant RNA-binding protein acting as a post-transcriptional regulator of many RNAs including mRNAs encoding inflammatory mediators, cytokines, death signalers and cell cycle regulators. In the context of intestinal pathologies, elevated HuR is considered to enhance the stability and the translation of pro-tumorigenic mRNAs providing the rationale for its pharmacological targeting. However, HuR also possesses specific regulatory functions for innate immunity and cytokine mRNA control which can oppose intestinal inflammation and tumor promotion. Here, we aim to identify contexts of intestinal inflammation where the innate immune and the epithelial functions of HuR converge or diverge. To address this, we use a disease-oriented phenotypic approach using mice lacking HuR either in intestinal epithelia or myeloid-derived immune compartments. These mice were compared for their responses to (a) Chemically induced Colitis; (b) Colitis- associated Cancer (CAC); (c) T-cell mediated enterotoxicity; (d) Citrobacter rodentium-induced colitis; and (e) TNF-driven inflammatory bowel disease. Convergent functions of epithelial and myeloid HuR included their requirement for suppressing inflammation in chemically induced colitis and their redundancies in chronic TNF-driven IBD and microbiota control. In the other contexts however, their functions diversified. Epithelial HuR was required to protect the epithelial barrier from acute inflammatory or infectious degeneration but also to promote tumor growth. In contrast, myeloid HuR was required to suppress the beneficial inflammation for pathogen clearance and tumor suppression. This cellular dichotomy in HuR's functions was validated further in mice engineered to express ubiquitously higher levels of HuR which displayed diminished pathologic and beneficial inflammatory responses, resistance to epithelial damage yet a heightened susceptibility to CAC. Our study demonstrates that epithelial and myeloid HuR affect different cellular dynamics in the intestine that need to be carefully considered for its pharmacological exploitation and points toward potential windows for harnessing HuR functions in intestinal inflammation.
Collapse
Affiliation(s)
| | - Fotis Ioakeimidis
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Margarita Andreadou
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Giorgos Giagkas
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - George Stamatakis
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Martin Reczko
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Martina Samiotaki
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | | | - Ioannis Karakasiliotis
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Dimitris L Kontoyiannis
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
47
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
48
|
Salerno F, Guislain A, Freen-Van Heeren JJ, Nicolet BP, Young HA, Wolkers MC. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology 2018; 8:e1532762. [PMID: 30713785 DOI: 10.1080/2162402x.2018.1532762] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022] Open
Abstract
Protective T cell responses against tumors require the production of Interferon gamma (IFN-γ). However, tumor-infiltrating T cells (TILs) gradually lose their capacity to produce IFN-γ and therefore fail to clear malignant cells. Dissecting the underlying mechanisms that block cytokine production is thus key for improving T cell products. Here we show that although TILs express substantial levels of Ifng mRNA, post-transcriptional mechanisms impede the production of IFN-γ protein due to loss of mRNA stability. CD28 triggering, but not PD1 blocking antibodies, effectively restores the stability of Ifng mRNA. Intriguingly, TILs devoid of AU-rich elements within the 3'untranslated region maintain stabilized Ifng mRNA and produce more IFN-γ protein than wild-type TILs. This sustained IFN-γ production translates into effective suppression of tumor outgrowth, which is almost exclusively mediated by direct effects on the tumor cells. We therefore conclude that post-transcriptional mechanisms could be modulated to potentiate effective T cell therapies in cancer.
Collapse
Affiliation(s)
- Fiamma Salerno
- Department of Hematopoiesis, Sanquin Research/AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Aurelie Guislain
- Department of Hematopoiesis, Sanquin Research/AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Julian J Freen-Van Heeren
- Department of Hematopoiesis, Sanquin Research/AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Benoit P Nicolet
- Department of Hematopoiesis, Sanquin Research/AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, MD, USA
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research/AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ 2018; 26:1346-1364. [PMID: 30341421 DOI: 10.1038/s41418-018-0220-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/15/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Argonaute 2 (AGO2), the core component of microRNA (miRNA)-induced silencing complex, plays a compelling role in tumorigenesis and aggressiveness. However, the mechanisms regulating the functions of AGO2 in cancer still remain elusive. Herein, we indentify one intronic circular RNA (circRNA) generated from AGO2 gene (circAGO2) as a novel regulator of AGO2-miRNA complexes and cancer progression. CircAGO2 is up-regulated in gastric cancer, colon cancer, prostate cancer, and neuroblastoma, and is associated with poor prognosis of patients. CircAGO2 promotes the growth, invasion, and metastasis of cancer cells in vitro and in vivo. Mechanistic studies reveal that circAGO2 physically interacts with human antigen R (HuR) protein to facilitate its activation and enrichment on the 3'-untranslated region of target genes, resulting in reduction of AGO2 binding and repression of AGO2/miRNA-mediated gene silencing associated with cancer progression. Pre-clinically, administration of lentivirus-mediated short hairpin RNA targeting circAGO2 inhibits the expression of downstream target genes, and suppresses the tumorigenesis and aggressiveness of xenografts in nude mice. In addition, blocking the interaction between circAGO2 and HuR by cell-penetrating inhibitory peptide represses the tumorigenesis and aggressiveness of cancer cells. Taken together, these results indicate that oncogenic circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes.
Collapse
|
50
|
Herman AB, Vrakas CN, Ray M, Kelemen SE, Sweredoski MJ, Moradian A, Haines DS, Autieri MV. FXR1 Is an IL-19-Responsive RNA-Binding Protein that Destabilizes Pro-inflammatory Transcripts in Vascular Smooth Muscle Cells. Cell Rep 2018; 24:1176-1189. [PMID: 30067974 PMCID: PMC11004729 DOI: 10.1016/j.celrep.2018.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/18/2018] [Accepted: 07/01/2018] [Indexed: 12/22/2022] Open
Abstract
This work identifies the fragile-X-related protein (FXR1) as a reciprocal regulator of HuR target transcripts in vascular smooth muscle cells (VSMCs). FXR1 was identified as an HuR-interacting protein by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The HuR-FXR1 interaction is abrogated in RNase-treated extracts, indicating that their association is tethered by mRNAs. FXR1 expression is induced in diseased but not normal arteries. siRNA knockdown of FXR1 increases the abundance and stability of inflammatory mRNAs, while overexpression of FXR1 reduces their abundance and stability. Conditioned media from FXR1 siRNA-treated VSMCs enhance activation of naive VSMCs. RNA EMSA and RIP demonstrate that FXR1 interacts with an ARE and an element in the 3' UTR of TNFα. FXR1 expression is increased in VSMCs challenged with the anti-inflammatory cytokine IL-19, and FXR1 is required for IL-19 reduction of HuR. This suggests that FXR1 is an anti-inflammation responsive, HuR counter-regulatory protein that reduces abundance of pro-inflammatory transcripts.
Collapse
Affiliation(s)
- Allison B Herman
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Christine N Vrakas
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Sheri E Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dale S Haines
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|