1
|
Calabrese C, Miserocchi G, De Vita A, Spadazzi C, Cocchi C, Vanni S, Gabellone S, Martinelli G, Ranallo N, Bongiovanni A, Liverani C. Lipids and adipocytes involvement in tumor progression with a focus on obesity and diet. Obes Rev 2024; 25:e13833. [PMID: 39289899 DOI: 10.1111/obr.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The adipose tissue is a complex organ that can play endocrine, metabolic, and immune regulatory roles in cancer. In particular, adipocytes provide metabolic substrates for cancer cell proliferation and produce signaling molecules that can stimulate cell adhesion, migration, invasion, angiogenesis, and inflammation. Cancer cells, in turn, can reprogram adipocytes towards a more inflammatory state, resulting in a vicious cycle that fuels tumor growth and evolution. These mechanisms are enhanced in obesity, which is associated with the risk of developing certain tumors. Diet, an exogenous source of lipids with pro- or anti-inflammatory functions, has also been connected to cancer risk. This review analyzes how adipocytes and lipids are involved in tumor development and progression, focusing on the relationship between obesity and cancer. In addition, we discuss how diets with varying lipid intakes can affect the disease outcomes. Finally, we introduce novel metabolism-targeted treatments and adipocyte-based therapies in oncology.
Collapse
Affiliation(s)
- Chiara Calabrese
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sofia Gabellone
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nicoletta Ranallo
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
2
|
Müller GA, Müller TD. A "poly-matter network" conception of biological inheritance. Genetica 2024; 152:211-230. [PMID: 39425866 PMCID: PMC11541361 DOI: 10.1007/s10709-024-00216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Here we intend to shift the "DNA- and information-centric" conception of biological inheritance, with the accompanying exclusion of any non-DNA matter, to a "poly-matter network" framework which, in addition to DNA, considers the action of other cellular membranous constituents. These cellular structures, in particular organelles and plasma membranes, express "landscapes" of specific topologies at their surfaces, which may become altered in response to certain environmental factors. These so-called "membranous environmental landscapes" (MELs), which replicate by self-organization / autopoiesis rather than self-assembly, are transferred from donor to acceptor cells by various - vesicular and non-vesicular - mechanisms and exert novel features in the acceptor cells. The "DNA-centric" conception may be certainly explanatorily sufficient for the transfer of heritable phenotype variation to acceptor cells following the copying of DNA in donor cells and thereby for the phenomenon of biological inheritance of traits. However, it is not causally sufficient. With the observation of phenotype variation, as initially manifested during bacterial transformation, the impact of environmental factors, such as nutrition and stress, in the differential regulation of gene expression has been widely accepted and resulted in intense efforts to resolve the underlying epigenetic mechanisms. However, these are explained under a conceptual frame where the DNA (and associated proteins) are the only matter of inheritance. In contrast, it is our argumentation that inheritance can only be adequately understood as the transfer of DNA in concert with non-DNA matter in a "poly-matter network" conception. The adequate inclusion of the transfer of non-DNA matter is still a desideratum of future genetic research, which may pave the way for the experimental elucidation not only of how DNA and membrane matter act in concert to enable the inheritance of innate traits, but also whether they interact for that of acquired biological traits. Moreover, the "poly-matter network" conception may open new perspectives for an understanding of the pathogenesis of "common complex" diseases.
Collapse
Affiliation(s)
- Günter A Müller
- Institute of Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Oberschleissheim, Germany.
- Biology and Technology Studies Institute Munich (BITSIM), Lappenweg 16, 80939, Munich, Germany.
- Media, Culture and Society, Department of Media Studies, Faculty of Arts and Humanities, University Paderborn, Warburger Str. 100, 33098, Paderborn, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Oberschleissheim, Germany
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
3
|
Hou Y, Tang Y, Cai S. Advances in the study of microparticles in diabetic retinopathy. Postgrad Med J 2024; 100:626-634. [PMID: 38572927 DOI: 10.1093/postmj/qgae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Diabetic retinopathy (DR) is one of the common diabetic microangiopathies, which severely impairs vision in diabetic population. The underlying mechanisms regarding the development of DR are not fully understood, and there is a lack of biomarkers to guide clinical, assessment of disease progression. Recently researchers have found that microparticles (MP) and its bioactive molecules are involved in the development of DR. MP is widely distributed in the circulation and can exert autocrine and paracrine benefits in intercellular signalling, provide a catalytic platform for the thrombospondin complex to promote coagulation, and promote the accumulation of reactive oxygen species to cause endothelial damage. MP interacts with advanced glycosylation end products (AGE) and AGE receptor (RAGE) to activate inflammatory pathways. MP carries a variety of miRNAs that regulate the vascular endothelial growth factor generation pathway. MP has also been applied to the exploration of mesenchymal stromal cell replacement therapy to treat DR. In a word, MP provides new ideas for the study of DR. MP has emerged as a marker to assess the progression of DR. As a potential therapeutic target, MP also has considerable research value.
Collapse
Affiliation(s)
- Yifeng Hou
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yun Tang
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Shanjun Cai
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi 563003, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
4
|
Sigdel S, Udoh G, Albalawy R, Wang J. Perivascular Adipose Tissue and Perivascular Adipose Tissue-Derived Extracellular Vesicles: New Insights in Vascular Disease. Cells 2024; 13:1309. [PMID: 39195199 DOI: 10.3390/cells13161309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a special deposit of fat tissue surrounding the vasculature. Previous studies suggest that PVAT modulates the vasculature function in physiological conditions and is implicated in the pathogenesis of vascular diseases. Understanding how PVAT influences vasculature function and vascular disease progression is important. Extracellular vesicles (EVs) are novel mediators of intercellular communication. EVs encapsulate molecular cargo such as proteins, lipids, and nucleic acids. EVs can influence cellular functions by transferring the carried bioactive molecules. Emerging evidence indicates that PVAT-derived EVs play an important role in vascular functions under health and disease conditions. This review will focus on the roles of PVAT and PVAT-EVs in obesity, diabetic, and metabolic syndrome-related vascular diseases, offering novel insights into therapeutic targets for vascular diseases.
Collapse
Affiliation(s)
- Smara Sigdel
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Gideon Udoh
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Rakan Albalawy
- Department of Internal Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jinju Wang
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
5
|
Mondal S, Rathor R, Singh SN, Suryakumar G. miRNA and leptin signaling in metabolic diseases and at extreme environments. Pharmacol Res Perspect 2024; 12:e1248. [PMID: 39017237 PMCID: PMC11253706 DOI: 10.1002/prp2.1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/27/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The burden of growing concern about the dysregulation of metabolic processes arises due to complex interplay between environment and nutrition that has great impact on genetics and epigenetics of an individual. Thereby, any abnormality at the level of food intake regulating hormones may contribute to the development of metabolic diseases in any age group due to malnutrition, overweight, changing lifestyle, and exposure to extreme environments such as heat stress (HS), cold stress, or high altitude (HA). Hormones such as leptin, adiponectin, ghrelin, and cholecystokinin regulate appetite and satiety to maintain energy homeostasis. Leptin, an adipokine and a pleiotropic hormone, play major role in regulating the food intake, energy gain and energy expenditure. Using in silico approach, we have identified the major genes (LEP, LEPR, JAK2, STAT3, NPY, POMC, IRS1, SOCS3) that play crucial role in leptin signaling pathway. Further, eight miRNAs (hsa-miR-204-5p, hsa-miR-211-5p, hsa-miR-30, hsa-miR-3163, hsa-miR-33a-3p, hsa-miR-548, hsa-miR-561-3p, hsa-miR-7856-5p) from TargetScan 8.0 database were screened out that commonly target these genes. The role of these miRNAs should be explored as they might play vital role in regulating the appetite, energy metabolism, metabolic diseases (obesity, type 2 diabetes, cardiovascular diseases, inflammation), and to combat extreme environments. The miRNAs regulating leptin signaling and appetite may be useful for developing novel therapeutics for metabolic diseases.
Collapse
Affiliation(s)
- Samrita Mondal
- Defence Institute of Physiology and Allied SciencesDelhiIndia
| | - Richa Rathor
- Defence Institute of Physiology and Allied SciencesDelhiIndia
| | - Som Nath Singh
- Defence Institute of Physiology and Allied SciencesDelhiIndia
| | | |
Collapse
|
6
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F, Yuan LQ. Adipose exosomal noncoding RNAs: Roles and mechanisms in metabolic diseases. Obes Rev 2024; 25:e13740. [PMID: 38571458 DOI: 10.1111/obr.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Exosomes are extracellular vesicles, measuring 40-160 nm in diameter, that are released by many cell types and tissues, including adipose tissue. Exosomes are critical mediators of intercellular communication and their contents are complex and diverse. In recent years, accumulating evidence has proved that multiple adipose tissue-derived exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in the pathogenesis of diverse metabolic diseases, such as obesity. In this narrative review, we focus on the adipose tissue-derived exosomal ncRNAs, especially exosomal miRNAs, and their dysregulation in multiple types of metabolic diseases. A deeper understanding of the role of adipose tissue-derived exosomal ncRNAs may help provide new diagnostic and treatment methods for metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Jun Lin
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Xu Y, Huang L, Zhuang Y, Huang H. Modulation of adipose tissue metabolism by exosomes in obesity. Am J Physiol Endocrinol Metab 2024; 326:E709-E722. [PMID: 38416071 DOI: 10.1152/ajpendo.00155.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
Obesity and its related metabolic complications represent a significant global health challenge. Central to this is the dysregulation of glucolipid metabolism, with a predominant focus on glucose metabolic dysfunction in the current research, whereas adipose metabolism impairment garners less attention. Exosomes (EXs), small extracellular vesicles (EVs) secreted by various cells, have emerged as important mediators of intercellular communication and have the potential to be biomarkers, targets, and therapeutic tools for diverse diseases. In particular, EXs have been found to play a role in adipose metabolism by transporting cargoes such as noncoding RNAs (ncRNA), proteins, and other factors. This review article summarizes the current understanding of the role of EXs in mediating adipose metabolism disorders in obesity. It highlights their roles in adipogenesis (encompassing adipogenic differentiation and lipid synthesis), lipid catabolism, lipid transport, and white adipose browning. The insights provided by this review offer new avenues for developing exosome-based therapies to treat obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Yajing Xu
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Linghong Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Yong Zhuang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Huibin Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| |
Collapse
|
8
|
Wang L, Li F, Wang L, Wu B, Du M, Xing H, Pan S. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviate Rheumatoid Arthritis Symptoms via Shuttling Proteins. J Proteome Res 2024; 23:1298-1312. [PMID: 38500415 DOI: 10.1021/acs.jproteome.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Our prior investigations have evidenced that bone marrow mesenchymal stem cell (BMSC) therapy can significantly improve the outcomes of rheumatoid arthritis (RA). This study aims to conduct a comprehensive analysis of the proteomics between BMSCs and BMSCs-Exos, and to further elucidate the potential therapeutic effect of BMSCs-Exos on RA, so as to establish a theoretical framework for the prevention and therapy of BMSCs-Exos on RA. The 4D label-free LC-MS/MS technique was used for comparative proteomic analysis of BMSCs and BMSCs-Exos. Collagen-induced arthritis (CIA) rat model was used to investigate the therapeutic effect of BMSCs-Exos on RA. Our results showed that some homology and differences were observed between BMSCs and BMSCs-Exos proteins, among which proteins highly enriched in BMSCs-Exos were related to extracellular matrix and extracellular adhesion. BMSCs-Exos can be taken up by chondrocytes, promoting cell proliferation and migration. In vivo results revealed that BMSCs-Exos significantly improved the clinical symptoms of RA, showing a certain repair effect on the injury of articular cartilage. In short, our study revealed, for the first time, that BMSCs-Exos possess remarkable efficacy in alleviating RA symptoms, probably through shuttling proteins related to cell adhesion and tissue repair ability in CIA rats, suggesting that BMSCs-Exos carrying expressed proteins may become a useful biomaterial for RA treatment.
Collapse
Affiliation(s)
- Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liting Wang
- Department of Rehabilitation, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Bingxing Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman ,Washington 99163, United States
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
9
|
Li J, Fang J, Jiang X, Zhang Y, Vidal-Puig A, Zhang CY. RNAkines are secreted messengers shaping health and disease. Trends Endocrinol Metab 2024; 35:201-218. [PMID: 38160178 DOI: 10.1016/j.tem.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Extracellular noncoding RNAs (ncRNAs) have crucial roles in intercellular communications. The process of ncRNA secretion is highly regulated, with specific ncRNA profiles produced under different physiological and pathological circumstances. These ncRNAs are transported primarily via extracellular vesicles (EVs) from their origin cells to target cells, utilising both endocrine and paracrine pathways. The intercellular impacts of extracellular ncRNAs are essential for maintaining homeostasis and the pathogenesis of various diseases. Given the unique aspects of extracellular ncRNAs, here we propose the term 'RNAkine' to describe these recently identified secreted factors. We explore their roles as intercellular modulators, particularly in their ability to regulate metabolism and influence tumorigenesis, highlighting their definition and importance as a distinct class of secreted factors.
Collapse
Affiliation(s)
- Jing Li
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Jingwen Fang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yujing Zhang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China; Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, PR China; Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China.
| |
Collapse
|
10
|
Cunha E Rocha K, Ying W, Olefsky JM. Exosome-Mediated Impact on Systemic Metabolism. Annu Rev Physiol 2024; 86:225-253. [PMID: 38345906 DOI: 10.1146/annurev-physiol-042222-024535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Exosomes are small extracellular vesicles that carry lipids, proteins, and microRNAs (miRNAs). They are released by all cell types and can be found not only in circulation but in many biological fluids. Exosomes are essential for interorgan communication because they can transfer their contents from donor to recipient cells, modulating cellular functions. The miRNA content of exosomes is responsible for most of their biological effects, and changes in exosomal miRNA levels can contribute to the progression or regression of metabolic diseases. As exosomal miRNAs are selectively sorted and packaged into exosomes, they can be useful as biomarkers for diagnosing diseases. The field of exosomes and metabolism is expanding rapidly, and researchers are consistently making new discoveries in this area. As a result, exosomes have great potential for a next-generation drug delivery platform for metabolic diseases.
Collapse
Affiliation(s)
- Karina Cunha E Rocha
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA;
| | - Wei Ying
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA;
| | - Jerrold M Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
11
|
Qi C, Shi H, Fan M, Chen W, Yao H, Jiang C, Meng L, Pang S, Lin R. Microvesicles from bone marrow-derived mesenchymal stem cells promote Helicobacter pylori-associated gastric cancer progression by transferring thrombospondin-2. Cell Commun Signal 2023; 21:274. [PMID: 37798762 PMCID: PMC10552243 DOI: 10.1186/s12964-023-01127-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/09/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Our previous study found that bone marrow-derived mesenchymal stem cells (BMSCs) promote Helicobacter pylori (H pylori)-associated gastric cancer (GC) progression by secreting thrombospondin-2 (THBS2). Extracellular vesicles (EVs) are important carriers for intercellular communication, and EVs secreted by BMSCs have been shown to be closely related to tumor development. The aim of this study was to investigate whether BMSC-derived microvesicles (MVs, a main type of EV) play a role in H. pylori-associated GC by transferring THBS2. METHODS BMSCs and THBS2-deficient BMSCs were treated with or without the supernatant of H. pylori for 12 h at a multiplicity of infection of 50, and their EVs were collected. Then, the effects of BMSC-derived MVs and THBS2-deficient BMSC-derived MVs on the GC cell line MGC-803 were assessed by in vitro proliferation, migration, and invasion assays. In addition, a subcutaneous xenograft tumor model, a nude mouse intraperitoneal metastasis model, and a tail vein injection metastasis model were constructed to evaluate the effects of BMSC-derived MVs and THBS2-deficient BMSC-derived MVs on GC development and metastasis in vivo. RESULTS BMSC-derived MVs could be readily internalized by MGC-803 cells. BMSC-derived MVs after H. pylori treatment significantly promoted their proliferation, migration and invasion in vitro (all P < 0.05) and promoted tumor development and metastasis in a subcutaneous xenograft tumor model, a nude mouse intraperitoneal metastasis model, and a tail vein injection metastasis model in vivo (all P < 0.05). The protein expression of THBS2 was significantly upregulated after H. pylori treatment in BMSC-derived MVs (P < 0.05). Depletion of the THBS2 gene reduces the tumor-promoting ability of BMSC-MVs in an H. pylori infection microenvironment both in vitro and in vivo. CONCLUSION Overall, these findings indicate that MVs derived from BMSCs can promote H. pylori-associated GC development and metastasis by delivering the THBS2 protein. Video Abstract.
Collapse
Affiliation(s)
- Cuihua Qi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
- Department of Gastroenterology, The First Affiliated Hospital of Shihezi University, Shihezi, 832002 China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Weigang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shihezi University, Shihezi, 832002 China
| | - Hailing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Lingjun Meng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| |
Collapse
|
12
|
Hegde M, Kumar A, Girisa S, Alqahtani MS, Abbas M, Goel A, Hui KM, Sethi G, Kunnumakkara AB. Exosomal noncoding RNA-mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73:114-134. [PMID: 37419767 DOI: 10.1016/j.cytogfr.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The hallmark of chronic inflammatory diseases is immune evasion. Successful immune evasion involves numerous mechanisms to suppress both adaptive and innate immune responses. Either direct contact between cells or paracrine signaling triggers these responses. Exosomes are critical drivers of these interactions and exhibit both immunogenic and immune evasion properties during the development and progression of various chronic inflammatory diseases. Exosomes carry diverse molecular cargo, including lipids, proteins, and RNAs that are crucial for immunomodulation. Moreover, recent studies have revealed that exosomes and their cargo-loaded molecules are extensively involved in lipid remodeling and metabolism during immune surveillance and disease. Many studies have also shown the involvement of lipids in controlling immune cell activities and their crucial upstream functions in regulating inflammasome activation, suggesting that any perturbation in lipid metabolism results in abnormal immune responses. Strikingly, the expanded immunometabolic reprogramming capacities of exosomes and their contents provided insights into the novel mechanisms behind the prophylaxis of inflammatory diseases. By summarizing the tremendous therapeutic potential of exosomes, this review emphasizes the role of exosome-derived noncoding RNAs in regulating immune responses through the modulation of lipid metabolism and their promising therapeutic applications.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department College of Engineering Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Akul Goel
- California Institute of Technology (CalTech), Pasadena, CA, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
13
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
14
|
Pan Y, Li Y, Dong W, Jiang B, Yu Y, Chen Y. Role of nano-hydrogels coated exosomes in bone tissue repair. Front Bioeng Biotechnol 2023; 11:1167012. [PMID: 37229488 PMCID: PMC10204869 DOI: 10.3389/fbioe.2023.1167012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
With the development of nanotechnology, nanomaterials are widely applied in different areas. Some nanomaterials are designed to be biocompatible and can be used in the medical field, playing an important role in disease treatment. Exosomes are nanoscale vesicles with a diameter of 30-200 nm. Studies have shown that exosomes have the effect of angiogenesis, tissue (skin, tendon, cartilage, et al.) repair and reconstruction. Nano-hydrogels are hydrogels with a diameter of 200 nm or less and can be used as the carrier to transport the exosomes into the body. Some orthopedic diseases, such as bone defects and bone infections, are difficult to handle. The emergence of nano-hydrogels coated exosomes may provide a new idea to solve these problems, improving the prognosis of patients. This review summarizes the function of nano-hydrogels coated exosomes in bone tissue repair, intending to illustrate the potential use and application of nano-hydrogels coated exosomes in bone disease.
Collapse
Affiliation(s)
- Yuqi Pan
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yige Li
- Department of Rehabilitation, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Dong
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowei Jiang
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Yu
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunsu Chen
- Department of Joint Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Bilinska A, Pszczola M, Stachowiak M, Stachecka J, Garbacz F, Aksoy MO, Szczerbal I. Droplet Digital PCR Quantification of Selected Intracellular and Extracellular microRNAs Reveals Changes in Their Expression Pattern during Porcine In Vitro Adipogenesis. Genes (Basel) 2023; 14:genes14030683. [PMID: 36980955 PMCID: PMC10047974 DOI: 10.3390/genes14030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Extracellular miRNAs have attracted considerable interest because of their role in intercellular communication, as well as because of their potential use as diagnostic and prognostic biomarkers for many diseases. It has been shown that miRNAs secreted by adipose tissue can contribute to the pathophysiology of obesity. Detailed knowledge of the expression of intracellular and extracellular microRNAs in adipocytes is thus urgently required. The system of in vitro differentiation of mesenchymal stem cells (MSCs) into adipocytes offers a good model for such an analysis. The aim of this study was to quantify eight intracellular and extracellular miRNAs (miR-21a, miR-26b, miR-30a, miR-92a, miR-146a, miR-148a, miR-199, and miR-383a) during porcine in vitro adipogenesis using droplet digital PCR (ddPCR), a highly sensitive method. It was found that only some miRNAs associated with the inflammatory process (miR-21a, miR-92a) were highly expressed in differentiated adipocytes and were also secreted by cells. All miRNAs associated with adipocyte differentiation were highly abundant in both the studied cells and in the cell culture medium. Those miRNAs showed a characteristic expression profile with upregulation during differentiation.
Collapse
|
16
|
Role of Adipose Tissue microRNAs in the Onset of Metabolic Diseases and Implications in the Context of the DOHaD. Cells 2022; 11:cells11233711. [PMID: 36496971 PMCID: PMC9739499 DOI: 10.3390/cells11233711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The worldwide epidemic of obesity is associated with numerous comorbid conditions, including metabolic diseases such as insulin resistance and diabetes, in particular. The situation is likely to worsen, as the increase in obesity rates among children will probably lead to an earlier onset and more severe course for metabolic diseases. The origin of this earlier development of obesity may lie in both behavior (changes in nutrition, physical activity, etc.) and in children's history, as it appears to be at least partly programmed by the fetal/neonatal environment. The concept of the developmental origin of health and diseases (DOHaD), involving both organogenesis and epigenetic mechanisms, encompasses such programming. Epigenetic mechanisms include the action of microRNAs, which seem to play an important role in adipocyte functions. Interestingly, microRNAs seem to play a particular role in propagating local insulin resistance to other key organs, thereby inducing global insulin resistance and type 2 diabetes. This propagation involves the active secretion of exosomes containing microRNAs by adipocytes and adipose tissue-resident macrophages, as well as long-distance communication targeting the muscles and liver, for example. Circulating microRNAs may also be useful as biomarkers for the identification of populations at risk of subsequently developing obesity and metabolic diseases.
Collapse
|
17
|
Omics approach to reveal the effects of obesity on the protein profiles of the exosomes derived from different adipose depots. Cell Mol Life Sci 2022; 79:570. [DOI: 10.1007/s00018-022-04597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
|
18
|
Feng S, Lou K, Luo C, Zou J, Zou X, Zhang G. Obesity-Related Cross-Talk between Prostate Cancer and Peripheral Fat: Potential Role of Exosomes. Cancers (Basel) 2022; 14:5077. [PMID: 36291860 PMCID: PMC9600017 DOI: 10.3390/cancers14205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms of obesity-induced cancer progression have been extensively explored because of the significant increase in obesity and obesity-related diseases worldwide. Studies have shown that obesity is associated with certain features of prostate cancer. In particular, bioactive factors released from periprostatic adipose tissues mediate the bidirectional communication between periprostatic adipose tissue and prostate cancer. Moreover, recent studies have shown that extracellular vesicles have a role in the relationship between tumor peripheral adipose tissue and cancer progression. Therefore, it is necessary to investigate the feedback mechanisms between prostate cancer and periglandular adipose and the role of exosomes as mediators of signal exchange to understand obesity as a risk factor for prostate cancer. This review summarizes the two-way communication between prostate cancer and periglandular adipose and discusses the potential role of exosomes as a cross-talk and the prospect of using adipose tissue as a means to obtain exosomes in vitro. Therefore, this review may provide new directions for the treatment of obesity to suppress prostate cancer.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Cong Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| |
Collapse
|
19
|
miR-133a-A Potential Target for Improving Cardiac Mitochondrial Health and Regeneration After Injury. J Cardiovasc Pharmacol 2022; 80:187-193. [PMID: 35500168 DOI: 10.1097/fjc.0000000000001279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The various roles of muscle secretory factors and myokines have been well studied, but in recent decades, the role of myocyte-specific microRNAs (myomiRs) has gained momentum. These myomiRs are known to play regulatory roles in muscle health in general, both skeletal muscle and cardiac muscle. In this review, we have focused on the significance of a myomiR termed miR-133a in cardiovascular health. The available literature supports the claim that miR-133a could be helpful in the healing process of muscle tissue after injury. The protective function could be due to its regulatory effect on muscle or stem cell mitochondrial function. In this review, we have shed light on the protective mechanisms offered by miR-133a. Most of the beneficial effects are due to the presence of miR-133a in circulation or tissue-specific expression. We have also reviewed the potential mechanisms by which miR-133a could interact with cell surface receptors and also transcriptional mechanisms by which they offer cardioprotection and regeneration. Understanding these mechanisms will help in finding an ideal strategy to repair cardiac tissue after injury.
Collapse
|
20
|
Delgadillo-Velázquez J, Mendivil-Alvarado H, Coronado-Alvarado CD, Astiazaran-Garcia H. Extracellular Vesicles from Adipose Tissue Could Promote Metabolic Adaptation through PI3K/Akt/mTOR. Cells 2022; 11:cells11111831. [PMID: 35681526 PMCID: PMC9180692 DOI: 10.3390/cells11111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by cells under physiological and pathological conditions, such as metabolic diseases. In this context, EVs are considered potential key mediators in the physiopathology of obesity. It has been reported that EVs derived from adipose tissue (ADEVs) contribute to the development of a local inflammatory response that leads to adipose tissue dysfunction. In addition, it has been proposed that EVs are associated with the onset and progression of several obesity-related metabolic diseases such as insulin resistance. In particular, characterizing the molecular fingerprint of obesity-related ADEVs can provide a bigger picture that better reflects metabolic adaptation though PI3K/Akt/mTOR. Hence, in this review we describe the possible crosstalk communication of ADEVs with metabolically active organs and the intracellular response in the insulin signaling pathway.
Collapse
Affiliation(s)
- Jaime Delgadillo-Velázquez
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Herminia Mendivil-Alvarado
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Carlos Daniel Coronado-Alvarado
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Humberto Astiazaran-Garcia
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico
- Correspondence: ; Tel.: +52-662-1029-701
| |
Collapse
|
21
|
Tackling the effects of extracellular vesicles in fibrosis. Eur J Cell Biol 2022; 101:151221. [PMID: 35405464 DOI: 10.1016/j.ejcb.2022.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.
Collapse
|
22
|
Brasil Brandao B, Lino M, Kahn CR. Extracellular miRNAs as mediators of obesity-associated disease. J Physiol 2022; 600:1155-1169. [PMID: 34392542 PMCID: PMC8845532 DOI: 10.1113/jp280910] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular miRNAs are found in a variety of body fluids and mediate intercellular and interorgan communication, thus regulating gene expression and cellular metabolism. These miRNAs are secreted either in small vesicles/exosomes (sEV) or bound to proteins such as Argonaute and high-density lipoprotein. Both exosomal and protein-bound circulating miRNAs are altered in obesity. Although all tissues can contribute to changes in circulating miRNAs, adipose tissue itself is an important source of these miRNAs, especially those in sEVs. These are derived from both adipocytes and macrophages and participate in crosstalk between these cells, as well as peripheral tissues, including liver, skeletal muscle and pancreas, whose function may be impaired in obesity. Changes in levels of circulating miRNAs have also been linked to the beneficial effects induced by weight loss interventions, including diet, exercise and bariatric surgery, further indicating a role for these miRNAs as mediators of disease pathogenesis. Here, we review the role of circulating miRNAs in the pathophysiology of obesity and explore their potential use as biomarkers and in therapy of obesity-associated metabolic syndrome.
Collapse
Affiliation(s)
- Bruna Brasil Brandao
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Marsel Lino
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
23
|
Abstract
An extensive literature base combined with advances in sequencing technologies demonstrate microRNA levels correlate with various metabolic diseases. Mechanistic studies also establish microRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. This review highlights research progress on the roles and regulation of microRNAs in the peripheral tissues that confer insulin sensitivity. We discuss sequencing technologies used to comprehensively define the target spectrum of microRNAs in metabolic disease that complement studies reporting physiologic roles for microRNAs in the regulation of glucose and lipid metabolism in animal models. We also discuss the emerging roles of exosomal microRNAs as endocrine signals to regulate lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Crewe C, Scherer PE. Intercellular and interorgan crosstalk through adipocyte extracellular vesicles. Rev Endocr Metab Disord 2022; 23:61-69. [PMID: 33447986 DOI: 10.1007/s11154-020-09625-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Functional adipose tissue is essential for homeostatic maintenance of systemic metabolism. As such, adipose tissue dysfunction, like that seen in the obese state, directly contributes to system-wide pathological metabolism, leading to the development of type 2 diabetes and other obesity-associated comorbidities. In addition to the storage function of adipocytes, they also secrete numerous factors that robustly regulate metabolism-related pathways throughout the body. Many of these factors, in addition to other signaling proteins, RNA species and lipids, are found in extracellular vesicles (EVs) released from adipocytes. EVs are vesicles with a lipid bilayer, known to carry signaling proteins and lipids, mRNAs and miRNAs. Because of this diverse cargo, EVs can have robust and pleotropic signaling effects depending on the receiving target cells. We are only now starting to understand how adipocyte EVs can modulate metabolism within adipose tissue and beyond. Here, we highlight the current literature that demonstrates EV-mediated crosstalk between adipocytes and other tissues or distal cells. We become increasingly aware of the importance of these adipocyte-derived EV signals that establish a so far underappreciated endocrine system. Adipocyte EVs offer a new avenue for pharmacological manipulation of metabolism to treat obesity-related disease.
Collapse
Affiliation(s)
- Clair Crewe
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Internal Medicine and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Thakur A, Parra DC, Motallebnejad P, Brocchi M, Chen HJ. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioact Mater 2021; 10:281-294. [PMID: 34901546 PMCID: PMC8636666 DOI: 10.1016/j.bioactmat.2021.08.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a deadly disease that is globally and consistently one of the leading causes of mortality every year. Despite the availability of chemotherapy, radiotherapy, immunotherapy, and surgery, a cure for cancer has not been attained. Recently, exosomes have gained significant attention due to the therapeutic potential of their various components including proteins, lipids, nucleic acids, miRNAs, and lncRNAs. Exosomes constitute a set of tiny extracellular vesicles with an approximate diameter of 30-100 nm. They are released from different cells and are present in biofluids including blood, cerebrospinal fluid (CSF), and urine. They perform crucial multifaceted functions in the malignant progression of cancer via autocrine, paracrine, and endocrine communications. The ability of exosomes to carry different cargoes including drug and molecular information to recipient cells make them a novel tool for cancer therapeutics. In this review, we discuss the major components of exosomes and their role in cancer progression. We also review important literature about the potential role of exosomes as vaccines and delivery carriers in the context of cancer therapeutics.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| | - Diana Carolina Parra
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Pedram Motallebnejad
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| |
Collapse
|
26
|
Hong P, Yu M, Tian W. Diverse RNAs in adipose-derived extracellular vesicles and their therapeutic potential. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:665-677. [PMID: 34703651 PMCID: PMC8516999 DOI: 10.1016/j.omtn.2021.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue, which is considered an energy storage and active endocrine organ, produces and secretes a large amount of adipokines to regulate distant targets through blood circulation, especially extracellular vesicles (EVs). As cell-derived, membranous nanoparticles, EVs have recently garnered great attention as novel mediators in establishing intercellular communications as well as in accelerating interorgan crosstalk. Studies have revealed that the RNAs, including coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs) are key bioactive cargoes of EV functions in various pathophysiological processes, such as cell differentiation, metabolic homeostasis, immune signal transduction, and cancer. Moreover, certain EV-contained RNAs have gradually been recognized as novel biomarkers, prognostic indicators, or even therapeutic nanodrugs of diseases. Therefore, in this review, we comprehensively summarize different classes of RNAs presented in adipose-derived EVs and discuss their therapeutic potential according to the latest research progress to provide valuable knowledge in this area.
Collapse
Affiliation(s)
- Pengyu Hong
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Kwan HY, Chen M, Xu K, Chen B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol Life Sci 2021; 78:7275-7288. [PMID: 34677643 PMCID: PMC8531905 DOI: 10.1007/s00018-021-03973-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
Recently, the emerging roles of adipocyte-derived extracellular vesicles (EVs) linking obesity and its comorbidities have been recognized. In obese subjects, adipocytes are having hypertrophic growth and are under stressed. The dysfunction adipocytes dysregulate the assembly of the biological components in the EVs including exosomes. This article critically reviews the current findings on the impact of obesity on the exosomal cargo contents that induce the pathophysiological changes. Besides, this review also summarizes the understanding on how obesity affects the biogenesis of adipocyte-derived exosomes and the exosome secretion. Furthermore, the differences of the exosomal contents in different adipose depots, and the impact of obesity on the exosomes that are derived from the stromal vascular fraction such as the adipose tissue macrophages and adipocyte-derived stem cells will also be discussed. The current development and potential application of exosome-based therapy will be summarized. This review provides crucial information for the design of novel exosome-based therapy for the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Minting Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Keyang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Baisen Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| |
Collapse
|
28
|
Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab 2021; 33:1744-1762. [PMID: 34496230 PMCID: PMC8428804 DOI: 10.1016/j.cmet.2021.08.006] [Citation(s) in RCA: 319] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are nanoparticles secreted by all cell types and are a large component of the broader class of nanoparticles termed extracellular vesicles (EVs). Once secreted, exosomes gain access to the interstitial space and ultimately the circulation, where they exert local paracrine or distal systemic effects. Because of this, exosomes are important components of an intercellular and intraorgan communication system capable of carrying biologic signals from one cell type or tissue to another. The exosomal cargo consists of proteins, lipids, miRNAs, and other RNA species, and many of the biologic effects of exosomes have been attributed to miRNAs. Exosomal miRNAs have also been used as disease biomarkers. The field of exosome biology and metabolism is rapidly expanding, with new discoveries and reports appearing on a regular basis, and it is possible that potential therapeutic approaches for the use of exosomes or miRNAs in metabolic diseases will be initiated in the near future.
Collapse
Affiliation(s)
- Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Felipe Castellani Gomes Reis
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Wei Ying
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
29
|
Ruiz GP, Camara H, Fazolini NPB, Mori MA. Extracellular miRNAs in redox signaling: Health, disease and potential therapies. Free Radic Biol Med 2021; 173:170-187. [PMID: 33965563 DOI: 10.1016/j.freeradbiomed.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Extracellular microRNAs (miRNAs) have emerged as important mediators of cell-to-cell communication and intertissue crosstalk. MiRNAs are produced by virtually all types of eukaryotic cells and can be selectively packaged and released to the extracellular medium, where they may reach distal cells to regulate gene expression cell non-autonomously. By doing so, miRNAs participate in integrative physiology. Oxidative stress affects miRNA expression, while miRNAs control redox signaling. Disruption in miRNA expression, processing or release to the extracellular compartment are associated with aging and a number of chronic diseases, such as obesity, type 2 diabetes, neurodegenerative diseases and cancer, all of them being conditions related to oxidative stress. Here we discuss the interplay between redox balance and miRNA function and secretion as a determinant of health and disease states, reviewing the findings that support this notion and highlighting novel and yet understudied venues of research in the field.
Collapse
Affiliation(s)
- Gabriel Palermo Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Henrique Camara
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Narayana P B Fazolini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
30
|
Connolly KD, Rees DA, James PE. Role of adipocyte-derived extracellular vesicles in vascular inflammation. Free Radic Biol Med 2021; 172:58-64. [PMID: 34052345 DOI: 10.1016/j.freeradbiomed.2021.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are nanometre-sized vesicles released from most cells, including adipocytes. Relatively little is known about adipocyte-derived EVs (ADEVs) in comparison to other EV subtypes, though interest in ADEVs as potential paracrine and endocrine communicators of adipose tissue in obesity is building. Current evidence indicates that ADEVs contribute to the development of adipose tissue dysfunction; a key feature of obese adipose tissue that it is associated with obesity-related comorbidities including cardiovascular disease (CVD). This review summarises our current knowledge of ADEVs in the development of adipose tissue dysfunction and the potential of ADEVs to disrupt redox signalling and exert vascular effects that may exacerbate CVD in obesity.
Collapse
Affiliation(s)
- Katherine D Connolly
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, United Kingdom
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Philip E James
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, United Kingdom.
| |
Collapse
|
31
|
Nie JY, Zhu YZ, Wang JW, Hu X, Wang ZH, Wu S, Yi YY. Preparing Adipogenic Hydrogel with Neo-Mechanical Isolated Adipose-Derived Extracellular Vesicles for Adipose Tissue Engineering. Plast Reconstr Surg 2021; 148:212e-222e. [PMID: 34153018 DOI: 10.1097/prs.0000000000008186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Subcutaneous transplantation of decellularized adipose tissue was capable of recellularization during soft tissue repair. However, further improvements are required to promote angiogenesis and adipogenesis. Here, the authors proposed a neo-mechanical protocol to isolate adipose tissue-derived extracellular vesicles (ATEVs) through lipoaspirate as a mediator for both angiogenesis and adipogenesis, and prepared ATEV-rich decellularized adipose tissue hydrogel for adipose tissue engineering. METHODS Adipose liquid extract and lipid-devoid adipose tissue were extracted through homogenization and repeated freeze and thaw cycles. ATEVs were isolated from adipose liquid extract by ultracentrifugation. Decellularized adipose tissue hydrogel was prepared by optimized decellularization of lipid-devoid adipose tissue. The optimum dose of ATEVs for angiogenesis and adipogenesis was estimated by co-culturing with vascular endothelial cells and 3T3-L1 cells, then mixed with the hydrogel. ATEV-enriched hydrogel was injected subcutaneously into the back of severe combined immunodeficiency mice, and then subjected to supplementary injection of ATEVs on postoperative day 14. ATEV-free decellularized adipose tissue hydrogel was injected as control. The newly formed tissue samples were harvested at postoperative weeks 2, 4, and 8 and subjected to volume measurement, hematoxylin and eosin staining, and immunofluorescence (CD31 and perilipin) staining. RESULTS The optimum dose of ATEVs for promoting angiogenesis and adipogenesis was 50 μg/ml. The newly formed tissue mediated by ATEV-enriched hydrogel had increased volume well as improved angiogenesis and adipogenesis at postoperative week 4 and 8. CONCLUSION ATEV-enriched adipogenic hydrogel promotes enhanced angiogenesis and adipogenesis and could serve as a promising biomaterial for adipose tissue engineering.
Collapse
Affiliation(s)
- Jia-Ying Nie
- From the Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University
| | - Yuan-Zheng Zhu
- From the Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University
| | - Jiang-Wen Wang
- From the Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University
| | - Xuan Hu
- From the Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University
| | - Zhao-Hui Wang
- From the Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University
| | - Shu Wu
- From the Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University
| | - Yang-Yan Yi
- From the Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
32
|
Macedo-da-Silva J, Santiago VF, Rosa-Fernandes L, Marinho CRF, Palmisano G. Protein glycosylation in extracellular vesicles: Structural characterization and biological functions. Mol Immunol 2021; 135:226-246. [PMID: 33933815 DOI: 10.1016/j.molimm.2021.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles involved in intercellular communication, delivery of biomolecules from donor to recipient cells, cellular disposal and homeostasis, potential biomarkers and drug carriers. The content of EVs includes DNA, lipids, metabolites, proteins, and microRNA, which have been studied in various diseases, such as cancer, diabetes, pregnancy, neurodegenerative, and cardiovascular disorders. EVs are enriched in glycoconjugates and exhibit specific glycosignatures. Protein glycosylation is a co- and post-translational modification (PTM) that plays an important role in the expression and function of exosomal proteins. N- and O-linked protein glycosylation has been mapped in exosomal proteins. The purpose of this review is to highlight the importance of glycosylation in EVs proteins. Initially, we describe the main PTMs in EVs with a focus on glycosylation. Then, we explore glycan-binding proteins describing the main findings of studies that investigated the glycosylation of EVs in cancer, pregnancy, infectious diseases, diabetes, mental disorders, and animal fluids. We have highlighted studies that have developed innovative methods for studying the content of EVs. In addition, we present works related to lipid glycosylation. We explored the content of studies deposited in public databases, such as Exocarta and Vesiclepedia. Finally, we discuss analytical methods for structural characterization of glycoconjugates and present an overview of the critical points of the study of glycosylation EVs, as well as perspectives in this field.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Verônica F Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
33
|
Gómez-Serrano M, Ponath V, Preußer C, Pogge von Strandmann E. Beyond the Extracellular Vesicles: Technical Hurdles, Achieved Goals and Current Challenges When Working on Adipose Cells. Int J Mol Sci 2021; 22:ijms22073362. [PMID: 33805982 PMCID: PMC8036456 DOI: 10.3390/ijms22073362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue and its crosstalk with other organs plays an essential role in the metabolic homeostasis of the entire body. Alteration of this communication (i.e., due to obesity) is related to the development of several comorbidities including type 2 diabetes, cardiovascular diseases, or cancer. Within the adipose depot, adipocytes are the main cell type and thus the main source of secreted molecules, which exert modulating effects not only at a local but also at a systemic level. Extracellular vesicles (EVs) have recently emerged as important mediators in cell–cell communication and account for part of the cellular secretome. In recent years, there has been a growing body of research on adipocyte-derived extracellular vesicles (Ad-EVs). However, there is still a lack of standardized methodological approaches, especially regarding primary adipocytes. In this review, we will provide an outline of crucial aspects when working on adipose-derived material, with a special focus on primary adipocytes. In parallel, we will point out current methodological challenges in the EV field and how they impact the transcriptomic, proteomic and functional evaluations of Ad-EVs.
Collapse
|
34
|
Interaction of Full-Length Glycosylphosphatidylinositol-Anchored Proteins with Serum Proteins and Their Translocation to Cells In Vitro Depend on the (Pre-)Diabetic State in Rats and Humans. Biomedicines 2021; 9:biomedicines9030277. [PMID: 33802150 PMCID: PMC8000876 DOI: 10.3390/biomedicines9030277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), which are anchored at the surface of mammalian cultured and tissue cells through a carboxy-terminal GPI glycolipid, are susceptible to release into incubation medium and (rat and human) blood, respectively, in response to metabolic stress and ageing. Those GPI-APs with the complete GPI still attached form micelle-like complexes together with (lyso)phospholipids and cholesterol and are prone to degradation by serum GPI-specific phospholipase D (GPLD1), as well as translocation to the surface of acceptor cells in vitro. In this study, the interaction of GPI-APs with GPLD1 or other serum proteins derived from metabolically deranged rat and humans and their translocation were measured by microfluidic chip- and surface acoustic wave-based sensing of micelle-like complexes reconstituted with model GPI-APs. The effect of GPI-AP translocation on the integrity of the acceptor cell surface was studied as lactate dehydrogenase release. For both rats and humans, the dependence of serum GPLD1 activity on the hyperglycemic/hyperinsulinemic state was found to be primarily based on upregulation of the interaction of GPLD1 with micelle-like GPI-AP complexes, rather than on its amount. In addition to GPLD1, other serum proteins were found to interact with the GPI phosphoinositolglycan of full-length GPI-APs. Upon incubation of rat adipocytes with full-length GPI-APs, their translocation from the micelle-like complexes (and also with lower efficacy from reconstituted high-density lipoproteins and liposomes) to acceptor cells was observed, accompanied by upregulation of their lysis. Both GPI-AP translocation and adipocyte lysis became reduced in the presence of serum proteins, including (inhibited) GPLD1. The reduction was higher with serum from hyperglycemic/hyperinsulinemic rats and diabetic humans compared to healthy ones. These findings suggest that the deleterious effects of full-length GPI-APs following spontaneous release into the circulation of metabolically deranged rats and humans are counterbalanced by upregulated interaction of their GPI anchor with GPLD1 and other serum proteins. Thereby, translocation of GPI-APs to blood and tissue cells and their lysis are prevented. The identification of GPI-APs and serum proteins interacting within micelle-like complexes may facilitate the prediction and stratification of diseases that are associated with impaired cell-surface anchorage of GPI-APs, such as obesity and diabetes.
Collapse
|
35
|
Le Lay S, Rome S, Loyer X, Nieto L. Adipocyte-derived extracellular vesicles in health and diseases: Nano-packages with vast biological properties. FASEB Bioadv 2021; 3:407-419. [PMID: 34124596 PMCID: PMC8171308 DOI: 10.1096/fba.2020-00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
As the largest human energy reservoir, adipocytes drive an intense dialog with other cells/organs throughout the body to regulate the size of adipose tissue and to communicate with other metabolic tissues and the brain to regulate energy supply. Adipokines have long been described as mediators of this crosstalk, participating in obesity‐associated complications. Recently, adipocyte‐derived extracellular vesicles (Ad‐EVs) have emerged as new key actors in this communication due to their powerful capacity to convey complex messages between cells. Ad‐EVs convey specific subpopulations of RNA, proteins, and lipids from their parental cells, and can transfer these cargoes into various recipient cells, modulating their metabolism and cell cycle. In healthy individuals, Ad‐EVs actively participate in adipose tissue remodeling to compensate energy supply variations by exchanging information between adipocytes or stroma‐vascular cells, including immune cells. Besides this, recent evidence points out that Ad‐EV secretion and composition from dysfunctional adipocytes are strongly impacted within adipose tissue where they modulate local intercellular communication, contributing to inflammation, fibrosis, abnormal angiogenesis, and at distance with other cells/tissues intrinsically linked to fat (muscle, hepatocytes and even cancer cells). Additionally, some data even suggests that Ad‐EVs might have a systemic action. In this review, we will describe the particular properties of Ad‐EVs and their involvement in health and diseases, with a particular focus on metabolic and cardiovascular diseases as well as cancer.
Collapse
Affiliation(s)
- Soazig Le Lay
- Université de Nantes CNRS INSERM, l'institut du thorax Nantes France.,Université Angers SFR ICAT Angers France
| | - Sophie Rome
- CarMeN Laboratory U1060/INSERM INRA/1397 Lyon-Sud Hospital Pierre Benite France.,Institute of Functional Genomic of Lyon (IGFL) ENS CNRS UMR 5242 University of Lyon Lyon France
| | | | - Laurence Nieto
- Institut de Pharmacologie et de Biologie Structurale (IPBS) Université de Toulouse CNRS UPS Toulouse France
| |
Collapse
|
36
|
Rome S, Blandin A, Le Lay S. Adipocyte-Derived Extracellular Vesicles: State of the Art. Int J Mol Sci 2021; 22:ijms22041788. [PMID: 33670146 PMCID: PMC7916840 DOI: 10.3390/ijms22041788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
White adipose tissue (WAT) is involved in long-term energy storage and represents 10–15% of total body weight in healthy humans. WAT secretes many peptides (adipokines), hormones and steroids involved in its homeostatic role, especially in carbohydrate–lipid metabolism regulation. Recently, adipocyte-derived extracellular vesicles (AdEVs) have been highlighted as important actors of intercellular communication that participate in metabolic responses to control energy flux and immune response. In this review, we focus on the role of AdEVs in the cross-talks between the different cellular types composing WAT with regard to their contribution to WAT homeostasis and metabolic complications development. We also discuss the AdEV cargoes (proteins, lipids, RNAs) which may explain AdEV’s biological effects and demonstrate that, in terms of proteins, AdEV has a very specific signature. Finally, we list and suggest potential therapeutic strategies to modulate AdEV release and composition in order to reduce their deleterious effects during the development of metabolic complications associated with obesity.
Collapse
Affiliation(s)
- Sophie Rome
- CarMeN Laboratory, INSERM/1060- INRAE/1397, University of Lyon, Lyon-Sud Faculty of Medicine, 69310 Pierre Benite, France
- Institute of Functional Genomic of Lyon (IGFL), ENS, CNRS UMR 5242, University of Lyon, 69364 Lyon, France
- Correspondence: (S.R.); (S.L.L.)
| | - Alexia Blandin
- Université de Nantes, CNRS, INSERM, L’Institut du Thorax, F-44000 Nantes, France;
- Univ Angers, SFR ICAT, F-49000 Angers, France
| | - Soazig Le Lay
- Université de Nantes, CNRS, INSERM, L’Institut du Thorax, F-44000 Nantes, France;
- Univ Angers, SFR ICAT, F-49000 Angers, France
- Correspondence: (S.R.); (S.L.L.)
| |
Collapse
|
37
|
Zhao G, Ge Y, Zhang C, Zhang L, Xu J, Qi L, Li W. Progress of Mesenchymal Stem Cell-Derived Exosomes in Tissue Repair. Curr Pharm Des 2020; 26:2022-2037. [PMID: 32310043 DOI: 10.2174/1381612826666200420144805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are a kind of adult stem cells with self-replication and multidirectional differentiation, which can differentiate into tissue-specific cells under physiological conditions, maintaining tissue self-renewal and physiological functions. They play a role in the pathological condition by lateral differentiation into tissue-specific cells, replacing damaged tissue cells by playing the role of a regenerative medicine , or repairing damaged tissues through angiogenesis, thereby, regulating immune responses, inflammatory responses, and inhibiting apoptosis. It has become an important seed cell for tissue repair and organ reconstruction, and cell therapy based on MSCs has been widely used clinically. The study found that the probability of stem cells migrating to the damaged area after transplantation or differentiating into damaged cells is very low, so the researchers believe the leading role of stem cell transplantation for tissue repair is paracrine secretion, secreting growth factors, cytokines or other components. Exosomes are biologically active small vesicles secreted by MSCs. Recent studies have shown that they can transfer functional proteins, RNA, microRNAs, and lncRNAs between cells, and greatly reduce the immune response. Under the premise of promoting proliferation and inhibition of apoptosis, they play a repair role in tissue damage, which is caused by a variety of diseases. In this paper, the biological characteristics of exosomes (MSCs-exosomes) derived from mesenchymal stem cells, intercellular transport mechanisms, and their research progress in the field of stem cell therapy are reviewed.
Collapse
Affiliation(s)
- Guifang Zhao
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China
| | - Yiwen Ge
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Chenyingnan Zhang
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Leyi Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Junjie Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Ling Qi
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China.,School of Basic Medical Sciences, Department of Pathophysiology, Jilin Medical University, Jilin 132013, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
38
|
Zhai M, Zhu Y, Yang M, Mao C. Human Mesenchymal Stem Cell Derived Exosomes Enhance Cell-Free Bone Regeneration by Altering Their miRNAs Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001334. [PMID: 33042751 PMCID: PMC7539212 DOI: 10.1002/advs.202001334] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Indexed: 01/05/2023]
Abstract
Implantation of stem cells for tissue regeneration faces significant challenges such as immune rejection and teratoma formation. Cell-free tissue regeneration thus has a potential to avoid these problems. Stem cell derived exosomes do not cause immune rejection or generate malignant tumors. Here, exosomes that can induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) are identified and used to decorate 3D-printed titanium alloy scaffolds to achieve cell-free bone regeneration. Specifically, the exosomes secreted by hMSCs osteogenically pre-differentiated for different times are used to induce the osteogenesis of hMSCs. It is discovered that pre-differentiation for 10 and 15 days leads to the production of osteogenic exosomes. The purified exosomes are then loaded into the scaffolds. It is found that the cell-free exosome-coated scaffolds regenerate bone tissue as efficiently as hMSC-seeded exosome-free scaffolds within 12 weeks. RNA-sequencing suggests that the osteogenic exosomes induce the osteogenic differentiation by using their cargos, including upregulated osteogenic miRNAs (Hsa-miR-146a-5p, Hsa-miR-503-5p, Hsa-miR-483-3p, and Hsa-miR-129-5p) or downregulated anti-osteogenic miRNAs (Hsa-miR-32-5p, Hsa-miR-133a-3p, and Hsa-miR-204-5p), to activate the PI3K/Akt and MAPK signaling pathways. Consequently, identification of osteogenic exosomes secreted by pre-differentiated stem cells and the use of them to replace stem cells represent a novel cell-free bone regeneration strategy.
Collapse
Affiliation(s)
- Mengmeng Zhai
- Department of Chemistry and BiochemistryStephenson Life Sciences Research CenterUniversity of OklahomaNormanOK73019USA
| | - Ye Zhu
- Department of Chemistry and BiochemistryStephenson Life Sciences Research CenterUniversity of OklahomaNormanOK73019USA
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Chuanbin Mao
- Department of Chemistry and BiochemistryStephenson Life Sciences Research CenterUniversity of OklahomaNormanOK73019USA
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
39
|
Kim Y, Kim OK. Potential Roles of Adipocyte Extracellular Vesicle-Derived miRNAs in Obesity-Mediated Insulin Resistance. Adv Nutr 2020; 12:566-574. [PMID: 32879940 PMCID: PMC8009749 DOI: 10.1093/advances/nmaa105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, extracellular microRNAs (miRNAs) from adipose tissue have been shown to be involved in the development of insulin resistance. Here, we summarize several mechanisms explaining the pathogenesis of obesity-induced insulin resistance and associated changes in the expression of obesity-associated extracellular miRNAs. We discuss how miRNAs, particularly miR-27a, miR-34a, miR-141-3p, miR-155, miR210, and miR-222, in extracellular vesicles secreted from the adipose tissue can affect the insulin signaling pathway in metabolic tissue. Understanding the role of these miRNAs will further support the development of therapeutics for obesity and metabolic disorders such as type 2 diabetes.
Collapse
Affiliation(s)
- Yujeong Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | | |
Collapse
|
40
|
Wang W, Zhu N, Yan T, Shi YN, Chen J, Zhang CJ, Xie XJ, Liao DF, Qin L. The crosstalk: exosomes and lipid metabolism. Cell Commun Signal 2020; 18:119. [PMID: 32746850 PMCID: PMC7398059 DOI: 10.1186/s12964-020-00581-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Exosomes have been considered as novel and potent vehicles of intercellular communication, instead of "cell dust". Exosomes are consistent with anucleate cells, and organelles with lipid bilayer consisting of the proteins and abundant lipid, enhancing their "rigidity" and "flexibility". Neighboring cells or distant cells are capable of exchanging genetic or metabolic information via exosomes binding to recipient cell and releasing bioactive molecules, such as lipids, proteins, and nucleic acids. Of note, exosomes exert the remarkable effects on lipid metabolism, including the synthesis, transportation and degradation of the lipid. The disorder of lipid metabolism mediated by exosomes leads to the occurrence and progression of diseases, such as atherosclerosis, cancer, non-alcoholic fatty liver disease (NAFLD), obesity and Alzheimer's diseases and so on. More importantly, lipid metabolism can also affect the production and secretion of exosomes, as well as interactions with the recipient cells. Therefore, exosomes may be applied as effective targets for diagnosis and treatment of diseases. Video abstract.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tao Yan
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-Ning Shi
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Neurosurgery in Changsha, 921 hospital, joint service support force of People's Liberation Army, Changsha, China
| | - Chan-Juan Zhang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xue-Jiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Li Qin
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
41
|
Müller GA, Ussar S, Tschöp MH, Müller TD. Age-dependent membrane release and degradation of full-length glycosylphosphatidylinositol-anchored proteins in rats. Mech Ageing Dev 2020; 190:111307. [PMID: 32628941 DOI: 10.1016/j.mad.2020.111307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 01/28/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are associated with the surface of eucaryotic cells only through a covalently coupled carboxy-terminal GPI glycolipid structure which is anchored at the outer leaflet of plasma membranes. This mode of membrane association may be responsible for the recent observations that full-length GPI-APs harbouring the complete GPI anchor are (i) released from isolated rat adipocytes in vitro and (ii) expressed in rat and human serum. The upregulation of the adipocyte release in response to increased cell size and blood glucose/insulin levels of the donor rats and downregulation of the expression in serum of insulin resistant and diabetic rats have been reconciled with enhanced degradation of the full-length GPI-APs released into micelle-like complexes together with (lyso) phospholipids and cholesterol by serum GPI-specific phospholipase D (GPI-PLD). Here by using a sensitive and reliable sensing method for full-length GPI-APs, which relies on surface acoustic waves propagating over microfluidic chips, the upregulation of (i) the release of the full-length GPI-APs CD73, alkaline phosphatase and CD55 from isolated adipocyte plasma membranes monitored in a "lab-on-the-chip" configuration, (ii) their release from isolated rat adipocytes into the incubation medium and (iii) the lipolytic cleavage of their GPI anchors in serum was demonstrated to increase with age (3-16 weeks) and body weight (87-477 g) of (healthy) donor rats. In contrast, the amount of full-length GPI-APs in rat serum, as determined by chip-based sensing, turned out to decline with age/body weight. These correlations suggest that age-/weight-induced alterations (in certain biophysical/biochemical characteristics) of plasma membranes are responsible for the release of full-length GPI-APs which becomes counteracted by elevated GPI-PLD activity in serum. Thus, sensitive and specific measurement of these GPI-AP-relevant parameters may be useful for monitoring of age-related cell surface changes, in general, and diseases, in particular.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Department Biology I, Genetics, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany.
| | - Siegfried Ussar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
42
|
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2020; 129:3990-4000. [PMID: 31573548 DOI: 10.1172/jci129187] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.
Collapse
Affiliation(s)
- C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
43
|
Müller GA. Membrane insertion and intercellular transfer of glycosylphosphatidylinositol-anchored proteins: potential therapeutic applications. Arch Physiol Biochem 2020; 126:139-156. [PMID: 30445857 DOI: 10.1080/13813455.2018.1498904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anchorage of a subset of cell surface proteins in eukaryotic cells is mediated by a glycosylphosphatidylinositol (GPI) moiety covalently attached to the carboxy-terminus of the protein moiety. Experimental evidence for the potential of GPI-anchored proteins (GPI-AP) of being released from cells into the extracellular environment has been accumulating, which involves either the loss or retention of the GPI anchor. Release of GPI-AP from donor cells may occur spontaneously or in response to endogenous or environmental signals. The experimental evidence for direct insertion of exogenous GPI-AP equipped with the complete anchor structure into the outer plasma membrane bilayer leaflets of acceptor cells is reviewed as well as the potential underlying molecular mechanisms. Furthermore, promiscuous transfer of certain GPI-AP between plasma membranes of different cells in vivo under certain (patho)physiological conditions has been reported. Engineering of target cell surfaces using chimeric GPI-AP with complete GPI anchor may be useful for therapeutic applications.
Collapse
Affiliation(s)
- Günter A Müller
- Helmholtz Diabetes Center (HDC) at the Helmholtz Center München, Institute for Diabetes and Obesity, Oberschleissheim, Germany
- Department Biology I, Genetics, Ludwig-Maximilians-University München, Planegg-Martinsried, Germany
| |
Collapse
|
44
|
Müller GA, Tschöp MH, Müller TD. Upregulated phospholipase D activity toward glycosylphosphatidylinositol-anchored proteins in micelle-like serum complexes in metabolically deranged rats and humans. Am J Physiol Endocrinol Metab 2020; 318:E462-E479. [PMID: 31961708 DOI: 10.1152/ajpendo.00504.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-AP) with the complete glycolipid anchor attached have previously been shown to be released from the outer plasma membrane leaflet of rat adipocytes in positive correlation to cell size and blood glucose/insulin levels of the donor rats. Furthermore, they are present in rat and human serum, however, at amounts that are lower in insulin-resistant/obese rats compared with normal ones. These findings prompted further evaluation of the potential of full-length GPI-AP for the prediction and stratification of metabolically deranged states. A comparison of the signatures of horizontal surface acoustic waves that were generated by full-length GPI-AP in the course of their specific capture by and subsequent dissociation from a chip-based sensor between those from rat serum and those reconstituted into lipidic structures strongly argues for expression of full-length GPI-AP in serum in micelle-like complexes in concert with phospholipids, lysophospholipids, and cholesterol. Both the reconstituted and the rat serum complexes were highly sensitive toward mechanical forces, such as vibration. Furthermore, full-length GPI-AP reconstituted into micelle-like complexes represented efficient substrates for cleavage by serum glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD). These findings raised the possibility that the upregulated release of full-length GPI-AP into micelle-like serum complexes from metabolically deranged cells is compensated by elevated GPI-PLD activity. In fact, serum GPI-PLD activity toward full-length GPI-AP in micelle-like complexes, but not in detergent micelles, was positively correlated to early states of insulin resistance and obesity in genetic and diet-induced rat models as well as to the body weight in humans. Moreover, the differences in the degradation of GPI-AP in micelle-like complexes were found to rely in part on the interaction of serum GPI-PLD with an activating serum factor. These data suggest that serum GPI-PLD activity measured with GPI-AP in micelle-like complexes is indicative of enhanced release of full-length GPI-AP from relevant tissues into the circulation as a consequence of early metabolic derangement in rats and humans.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department Biology I, Genetics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
45
|
Isolation and characterization of microvesicles from mesenchymal stem cells. Methods 2019; 177:50-57. [PMID: 31669353 DOI: 10.1016/j.ymeth.2019.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem or stromal cells are currently under clinical investigation for multiple diseases. While their mechanism of action is still not fully elucidated, vesicles secreted by MSCs are believed to recapitulate their therapeutic potentials to some extent. Microvesicles (MVs), also called as microparticles or ectosome, are among secreted vesicles that could transfer cytoplasmic cargo, including RNA and proteins, from emitting (source) cells to recipient cells. Given the importance of MVs, we here attempted to establish a method to isolate and characterize MVs secreted from unmodified human bone marrow derived MSCs (referred to as native MSCs, and their microvesicles as Native-MVs) and IFNγ stimulated MSCs (referred to as IFNγ-MSCs, and their microvesicles as IFNγ-MVs). We first describe an ultracentrifugation technique to isolate MVs from the conditioned cell culture media of MSCs. Next, we describe characterization and quality control steps to analyze the protein and RNA content of MVs. Finally, we examined the potential of MVs to exert immunomodulatory effects through induction of regulatory T cells (Tregs). Secretory vesicles from MSCs are promising alternatives for cell therapy with applications in drug delivery, regenerative medicine, and immunotherapy.
Collapse
|
46
|
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019; 30:656-673. [PMID: 31447320 PMCID: PMC6774861 DOI: 10.1016/j.cmet.2019.07.011] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/25/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.
Collapse
Affiliation(s)
- Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bruna B Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Flow field-flow fractionation: Recent applications for lipidomic and proteomic analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Müller GA, Herling AW, Stemmer K, Lechner A, Tschöp MH. Chip-based sensing for release of unprocessed cell surface proteins in vitro and in serum and its (patho)physiological relevance. Am J Physiol Endocrinol Metab 2019; 317:E212-E233. [PMID: 31039006 DOI: 10.1152/ajpendo.00079.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To study the possibility that certain components of eukaryotic plasma membranes are released under certain (patho)physiological conditions, a chip-based sensor was developed for the detection of cell surface proteins, which are anchored at the outer leaflet of eukaryotic plasma membranes by a covalently attached glycolipid, exclusively, and might be prone to spontaneous or regulated release on the basis of their amphiphilic character. For this, unprocessed, full-length glycosylphosphatidylinositol-anchored proteins (GPI-AP), together with associated phospholipids, were specifically captured and detected by a chip- and microfluidic channel-based sensor, leading to changes in phase and amplitude of surface acoustic waves (SAW) propagating over the chip surface. Unprocessed GPI-AP in complex with lipids were found to be released from rat adipocyte plasma membranes immobilized on the chip, which was dependent on the flow rate and composition of the buffer stream. The complexes were identified in the incubation medium of primary rat adipocytes, in correlation to the cell size, and in rat as well as human serum. With rats, the measured changes in SAW phase shift, reflecting specific mass/size or amount of the unprocessed GPI-AP in complex with lipids, and SAW amplitude, reflecting their viscoelasticity, enabled the differentiation between the lean and obese (high-fat diet) state, and the normal (Wistar) and hyperinsulinemic (Zucker fatty) as well as hyperinsulinemic hyperglycemic (Zucker diabetic fatty) state. Thus chip-based sensing for complexes of unprocessed GPI-AP and lipids reveals the inherently labile anchorage of GPI-AP at plasma membranes and their susceptibility for release in response to (intrinsic/extrinsic) cues of metabolic relevance and may, therefore, be useful for monitoring of (pre-)diabetic disease states.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas W Herling
- Sanofi Deutschland GmbH, Diabetes Research Division , Frankfurt am Main , Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas Lechner
- Diabetes Research Group, Medizinische Klinik IV, Medical Center, Ludwig-Maximilians-Universität München (Klinikum der Universität München) , München , Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Oberschleissheim/Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München , München , Germany
- German Center for Diabetes Research, Oberschleissheim/Neuherberg, Germany
| |
Collapse
|
49
|
Lian X, Matthaeus C, Kaßmann M, Daumke O, Gollasch M. Pathophysiological Role of Caveolae in Hypertension. Front Med (Lausanne) 2019; 6:153. [PMID: 31355199 PMCID: PMC6635557 DOI: 10.3389/fmed.2019.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022] Open
Abstract
Caveolae, flask-shaped cholesterol-, and glycosphingolipid-rich membrane microdomains, contain caveolin 1, 2, 3 and several structural proteins, in particular Cavin 1-4, EHD2, pacsin2, and dynamin 2. Caveolae participate in several physiological processes like lipid uptake, mechanosensitivity, or signaling events and are involved in pathophysiological changes in the cardiovascular system. They serve as a specific membrane platform for a diverse set of signaling molecules like endothelial nitric oxide synthase (eNOS), and further maintain vascular homeostasis. Lack of caveolins causes the complete loss of caveolae; induces vascular disorders, endothelial dysfunction, and impaired myogenic tone; and alters numerous cellular processes, which all contribute to an increased risk for hypertension. This brief review describes our current knowledge on caveolae in vasculature, with special focus on their pathophysiological role in hypertension.
Collapse
Affiliation(s)
- Xiaoming Lian
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Claudia Matthaeus
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mario Kaßmann
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Medical Clinic for Nephrology and Internal Intensive Care, Berlin, Germany
| |
Collapse
|
50
|
Comparative and functional analysis of plasma membrane-derived extracellular vesicles from obese vs. nonobese women. Clin Nutr 2019; 39:1067-1076. [PMID: 31036413 DOI: 10.1016/j.clnu.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Membrane-derived extracellular vesicles (EVs) are released to the circulation by cells found in adipose tissue, transferring microRNAs (miRNAs) that may mediate the adaptive response of recipient cells. This study investigated plasma EVs from obese vs. nonobese women and their functional impact in adipocytes. METHODS Plasma EVs were isolated by differential centrifugation. Concentration and size were examined by nanoparticle tracking analysis (NanoSight). RNA was purified from plasma and plasma EVs of 45 women (47 ± 12 years, 58% of obesity) and profiles of mature miRNAs were assessed. Functional analyses were performed in human adipocytes. FINDINGS Smaller plasma EVs were found in obese when compared to nonobese women. Positive associations were identified between circulating EVs numbers and parameters of impaired glucose tolerance. Almost 40% of plasma cell-free miRNAs were also found in isolated plasma EVs, defined as Ct values < 37 in ≥75% of samples. BMI together with parameters of insulin resistance were major contributors to EVs-contained miRNA patterns. Treatments of cultured human adipocytes with EVs from obese women led to a significant reduction of genes involved in lipid biosynthesis, while increasing the expression of IRS1 (12.3%, p = 0.002). INTERPRETATION Size, concentration and the miRNA cargo of plasma EVs are associated with obesity and parameters of insulin resistance. Plasma EVs may mediate intercellular communication relevant to metabolism in adipocytes.
Collapse
|