1
|
Dhungana P, Wei X, Meuti ME, Sim C. Genome-wide identification of PAR domain protein 1 (PDP1) targets through ChIP-seq reveals the regulation of diapause-specific characteristics in Culex pipiens. INSECT MOLECULAR BIOLOGY 2024; 33:777-791. [PMID: 38989821 PMCID: PMC11537818 DOI: 10.1111/imb.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.
Collapse
Affiliation(s)
- Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Megan E. Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
2
|
Meur S, Mukherjee S, Roy S, Karati D. Role of PIM Kinase Inhibitor in the Treatment of Alzheimer's Disease. Mol Neurobiol 2024; 61:10941-10955. [PMID: 38816674 DOI: 10.1007/s12035-024-04257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aβ and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aβ42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aβ-mediated increase in mTOR activity, indicating that the accumulation of Aβ may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aβ-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
3
|
Shen Y, He Y, Pan Y, Liu L, Liu Y, Jia J. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury. Front Pharmacol 2024; 15:1415145. [PMID: 39161900 PMCID: PMC11330786 DOI: 10.3389/fphar.2024.1415145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a major cause of death among patients with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment methods and strategies to protect against ALI were discussed, which could provide an experimental basis for the clinical treatment of sepsis-induced ALI. Recent studies have found that an imbalance in autophagy, ferroptosis, and pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating these death mechanisms can improve lung injuries caused by LPS or CLP. This article summarized and reviewed the mechanisms and regulatory networks of autophagy, ferroptosis, and pyroptosis and their important roles in the process of LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above mechanisms and their effects, describes their dilemma and prospects, and provides new perspectives for the future treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Yao Shen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yingying He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Pan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Doi T, Takahashi S, Aoki D, Yonemori K, Hara H, Hasegawa K, Takehara K, Harano K, Yunokawa M, Nomura H, Shimoi T, Horie K, Ogasawara A, Okame S. A first-in-human phase I study of TAS-117, an allosteric AKT inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2024; 93:605-616. [PMID: 38411735 PMCID: PMC11129975 DOI: 10.1007/s00280-023-04631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE TAS-117 is a highly potent and selective, oral, allosteric pan-AKT inhibitor under development for advanced/metastatic solid tumors. The safety, clinical pharmacology, pharmacogenomics and efficacy were investigated. METHODS This phase I, open-label, non-randomized, dose-escalating, first-in-human study enrolled patients with advanced/metastatic solid tumors and comprised three phases (dose escalation phase [DEP], regimen modification phase [RMP], and safety assessment phase [SAP]). The SAP dose and regimen were determined in the DEP and RMP. Once-daily and intermittent dosing (4 days on/3 days off, 21-day cycles) were investigated. The primary endpoints were dose-limiting toxicities (DLTs) in Cycle 1 of the DEP and RMP and incidences of adverse events (AEs) and adverse drug reactions (ADRs) in the SAP. Secondary endpoints included pharmacokinetics, pharmacodynamics, pharmacogenomics, and antitumor activity. RESULTS Of 66 enrolled patients, 65 received TAS-117 (DEP, n = 12; RMP, n = 10; SAP, n = 43). No DLTs were reported with 24-mg/day intermittent dosing, which was selected as a recommended dose in SAP. In the SAP, 98.5% of patients experienced both AEs and ADRs (grade ≥ 3, 67.7% and 60.0%, respectively). In the dose range tested (8 to 32 mg/day), TAS-117 pharmacokinetics were dose proportional, and pharmacodynamic analysis showed a reduction of phosphorylated PRAS40, a direct substrate of AKT. Four patients in the SAP had confirmed partial response. CONCLUSION Oral doses of TAS-117 once daily up to 16 mg/day and intermittent dosing of 24 mg/day were well tolerated. TAS-117 pharmacokinetics were dose proportional at the doses evaluated. Antitumor activity may occur through AKT inhibition. TRIAL REGISTRATION jRCT2080222728 (January 29, 2015).
Collapse
Affiliation(s)
- Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Japan.
| | - Shunji Takahashi
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Aoki
- Keio University School of Medicine, Tokyo, Japan
- Akasaka Sannou Medical Center, Tokyo, Japan
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | | | | | - Kosei Hasegawa
- Saitama Medical University International Medical Center, Hidaka, Japan
| | | | | | - Mayu Yunokawa
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Nomura
- Keio University School of Medicine, Tokyo, Japan
- Fujita Health University, Toyoake, Japan
| | | | - Koji Horie
- Saitama Cancer Center, Kita-Adachi, Japan
| | - Aiko Ogasawara
- Saitama Medical University International Medical Center, Hidaka, Japan
| | | |
Collapse
|
5
|
Lotfy M, Khattab A, Shata M, Alhasbani A, Khalaf A, Alsaeedi S, Thaker M, Said H, Tumi H, Alzahmi H, Alblooshi O, Hamdan M, Hussein A, Kundu B, Adeghate EA. Melatonin increases AKT and SOD gene and protein expressions in diabetic rats. Heliyon 2024; 10:e28639. [PMID: 38586324 PMCID: PMC10998142 DOI: 10.1016/j.heliyon.2024.e28639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease marked by hyperglycemia due to insulin deficiency or insulin resistance leading to many chronic complications. It is thus important to manage diabetes effectively in order to prevent and or delay these complications. Melatonin is produced by the pineal gland and regulates the wake-sleep circadian rhythm. Existing evidence suggests that melatonin may be effective in the management of DM. However, the evidence on the mechanism of the beneficial effect melatonin as a treatment for DM is limited. In this study, we investigated the effect of melatonin treatment on blood glucose, insulin (INS), AKT and superoxide dismutase (SOD) gene levels in diabetic rats. Non-diabetic and diabetic rats were treated orally for 4 weeks with either 25 mg or 50 mg/kg body weight of melatonin. At the end of the study, pancreatic and liver tissues morphology, glucose homeostasis, serum insulin and SOD levels, hepatic gene and protein expression of SOD as protecting antioxidant enzyme and AKT as central element involved in PI3K/AKT insulin signaling pathway were estimated. Melatonin treated diabetic rats showed reduced hyperglycemia, and increased serum insulin and SOD levels. In addition, melatonin induced an increased gene and protein expression of SOD and AKT. In conclusion, melatonin may play a role in treating diabetic rats via stimulation of insulin secretion, insulin signaling and reduction in oxidative stress.
Collapse
Affiliation(s)
- Mohamed Lotfy
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aalaa Khattab
- Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, Egypt
| | - Mohammed Shata
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Alhasbani
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdallah Khalaf
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Alsaeedi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mahdi Thaker
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hazza Said
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Harun Tumi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hassan Alzahmi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Omar Alblooshi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamad Hamdan
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amjad Hussein
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Biduth Kundu
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ernest A. Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Wu Y, Huang T, Wei Q, Yan X, Chen L, Ma Z, Luo L, Cao J, Chen H, Wei X, Tan H, Chen F, Tong G, Li L, Tang Z, Luo Y. Combined effects of copper and cadmium exposure on ovarian function and structure in Nile Tilapia (Oreochromis niloticus). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:266-280. [PMID: 38436777 DOI: 10.1007/s10646-024-02744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
With the rapid development of industrialization and urbanization, the issue of copper (Cu) and cadmium (Cd) pollution in aquatic ecosystems has become increasingly severe, posing threats to the ovarian tissue and reproductive capacity of aquatic organisms. However, the combined effects of Cu and Cd on the ovarian development of fish and other aquatic species remain unclear. In this study, female Nile tilapia (Oreochromis niloticus) were individually or co-exposed to Cu and/or Cd in water. Ovarian and serum samples were collected at 15, 30, 60, 90, and 120 days, and the bioaccumulation, ovarian development, and hormone secretion were analyzed. Results showed that both single and combined exposure significantly reduced the gonadosomatic index and serum hormone levels, upregulated estrogen receptor (er) and progesterone receptor (pr) gene transcription levels, and markedly affected ovarian metabolite levels. Combined exposure led to more adverse effects than single exposure. The data demonstrate that the Cu and Cd exposure can impair ovarian function and structure, with more pronounced adverse effects under Cu and Cd co-exposure. The Cu and Cd affect the metabolic pathways of nucleotides and amino acids, leading to ovarian damage. This study highlights the importance of considering combined toxicant exposure in aquatic toxicology research and provides insights into the potential mechanisms underlying heavy metal-induced reproductive toxicity in fish.
Collapse
Affiliation(s)
- Yijie Wu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
- College of Aquaculture and life sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Qiyu Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Xin Yan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Liting Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Zhirui Ma
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Liming Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
- College of Aquaculture and life sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Honglian Tan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Fuyan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Liping Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Zhanyang Tang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China.
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China.
| |
Collapse
|
7
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
8
|
Malik A, Sharif A, Zubair HM, Akhtar B, Mobashar A. In Vitro, In Silico, and In Vivo Studies of Cardamine hirsuta Linn as a Potential Antidiabetic Agent in a Rat Model. ACS OMEGA 2023; 8:22623-22636. [PMID: 37396280 PMCID: PMC10308569 DOI: 10.1021/acsomega.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
Diabetes mellitus (T2DM) is a multifaceted metabolic disorder with no definite treatment. In silico characterization can help to explain the interaction between molecules and predict 3D structures. The aim of the present study was to evaluate the hypoglycemic activities of the hydro-methanolic extract of Cardamine hirsuta in a rat model. In vitro antioxidant and α-amylase inhibitory assays were evaluated in the present study. Phyto-constituents were quantified using RP-UHPLC-MS analysis. Molecular docking of compounds into the binding site of different molecular targets, i.e., tumor necrosis factor (TNF-α), glycogen synthase kinase 3 β (GSK-3β), and AKT, was carried out. Acute toxicity model, in vivo antidiabetic effect, and the influence on biochemical and oxidative stress parameters were also investigated. T2DM was induced in adult male rats by streptozotocin using a high-fat diet model. Three different doses (125, 250, and 500 mg/kg BW) were orally gavaged for 30 days. Mulberrofuran-M and quercetin3-(6″caffeoylsophoroside) have demonstrated remarkable binding affinity toward TNF-α and GSK-3β, respectively. 2,2-Diphenyl-1-picrylhydrazyl and α-amylase inhibition assay exhibited IC50 values of 75.96 and 73.66 μg/mL, respectively. In vivo findings exhibited that 500 mg/kg body weight (BW) dose of the extract significantly decreased the blood glucose level, improved biochemical parameters as well as oxidative stress by reduction of lipid peroxidation, and increased high-density lipoproteins. Moreover, activities of glutathione-s-transferase, reduced glutathione, superoxide dismutase were enhanced, and cellular architecture in the histopathological examination was restored in treatment groups. The present study affirmed the antidiabetic activities of mulberrofuran-M and quercetin3-(6″caffeoylsophoroside) present in the hydro-methanolic extract of C. hirsuta, possibly due to the reduction in oxidative stress and α-amylase inhibition.
Collapse
Affiliation(s)
- Aqna Malik
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, Lahore 54000, Pakistan
| | - Ali Sharif
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, Lahore 54000, Pakistan
| | - Hafiz Muhammad Zubair
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, Lahore 54000, Pakistan
| | - Bushra Akhtar
- Department
of Pharmacy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aisha Mobashar
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, Lahore 54000, Pakistan
| |
Collapse
|
9
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
10
|
Sane S, Srinivasan R, Potts RA, Eikanger M, Zagirova D, Freeling J, Reihe CA, Antony RM, Gupta BK, Lynch D, Bleeker J, Turaihi H, Pillatzki A, Zhou W, Luo X, Linnebacher M, Agany D, Zohim EG, Humphrey LE, Black AR, Rezvani K. UBXN2A suppresses the Rictor-mTORC2 signaling pathway, an established tumorigenic pathway in human colorectal cancer. Oncogene 2023; 42:1763-1776. [PMID: 37037900 DOI: 10.1038/s41388-023-02686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
The mTORC2 pathway plays a critical role in promoting tumor progression in human colorectal cancer (CRC). The regulatory mechanisms for this signaling pathway are only partially understood. We previously identified UBXN2A as a novel tumor suppressor protein in CRCs and hypothesized that UBXN2A suppresses the mTORC2 pathway, thereby inhibiting CRC growth and metastasis. We first used murine models to show that haploinsufficiency of UBXN2A significantly increases colon tumorigenesis. Induction of UBXN2A reduces AKT phosphorylation downstream of the mTORC2 pathway, which is essential for a plethora of cellular processes, including cell migration. Meanwhile, mTORC1 activities remain unchanged in the presence of UBXN2A. Mechanistic studies revealed that UBXN2A targets Rictor protein, a key component of the mTORC2 complex, for 26S proteasomal degradation. A set of genetic, pharmacological, and rescue experiments showed that UBXN2A regulates cell proliferation, apoptosis, migration, and colon cancer stem cells (CSCs) in CRC. CRC patients with a high level of UBXN2A have significantly better survival, and high-grade CRC tissues exhibit decreased UBXN2A protein expression. A high level of UBXN2A in patient-derived xenografts and tumor organoids decreases Rictor protein and suppresses the mTORC2 pathway. These findings provide new insights into the functions of an ubiquitin-like protein by inhibiting a dominant oncogenic pathway in CRC.
Collapse
Affiliation(s)
- Sanam Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Rekha Srinivasan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Rashaun A Potts
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Morgan Eikanger
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Diana Zagirova
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Jessica Freeling
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Casey A Reihe
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Ryan M Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Brij K Gupta
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Douglas Lynch
- Laboratory Medicine and Pathology, Sanford School of Medicine, Sioux Falls, SD, USA
| | | | | | - Angela Pillatzki
- Veterinary and Biomedical Sciences Department, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA
| | - Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Diing Agany
- Biomedical Engineering Department, GEAR Center, Sioux Falls, SD, USA
| | | | - Lisa E Humphrey
- Tissue Sciences, Eppley Institute for Cancer Research, The University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Tissue Sciences, Eppley Institute for Cancer Research, The University of Nebraska Medical Center, Omaha, NE, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA.
| |
Collapse
|
11
|
Huang Z, Chen J, Wang C, Xiao M, Zhu Y, Li N, Huang Z, Liu B, Huang Y. Antidiabetic potential of Chlorella pyrenoidosa functional formulations in streptozocin-induced type 2 diabetic mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
12
|
Gao J, Yao M, Chang D, Liu J. mTOR (Mammalian Target of Rapamycin): Hitting the Bull's Eye for Enhancing Neurogenesis After Cerebral Ischemia? Stroke 2023; 54:279-285. [PMID: 36321454 DOI: 10.1161/strokeaha.122.040376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke remains a leading cause of morbidity and disability around the world. The sequelae of serious neurological damage are irreversible due to body's own limited repair capacity. However, endogenous neurogenesis induced by cerebral ischemia plays a critical role in the repair and regeneration of impaired neural cells after ischemic brain injury. mTOR (mammalian target of rapamycin) kinase has been suggested to regulate neural stem cells ability to self-renew and differentiate into proliferative daughter cells, thus leading to improved cell growth, proliferation, and survival. In this review, we summarized the current evidence to support that mTOR signaling pathways may enhance neurogenesis, angiogenesis, and synaptic plasticity following cerebral ischemia, which could highlight the potential of mTOR to be a viable therapeutic target for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Jiale Gao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, China (J.G., M.Y., J.L.)
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, China (J.G., M.Y., J.L.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, Australia (D.C.)
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, China (J.G., M.Y., J.L.)
| |
Collapse
|
13
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
14
|
Wang S, Zhang T, Li J, Zhang J, Swallah MS, Gao J, Piao C, Lyu B, Yu H. Oat β-glucan and L-arabinose synergistically ameliorate glucose uptake in insulin-resistant HepG2 cells and exert anti-diabetic activity via activation of the PI3K/AKT pathway in db/db mice. Food Funct 2022; 13:10158-10170. [PMID: 36106930 DOI: 10.1039/d2fo00889k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oat β-glucan (OBG) and L-arabinose (LA) have exhibited positive effects on diabetes and its complications. However, it is unclear whether OBG and LA have a synergistic effect. We investigated the effect of variable compositions (OBG : LA = 1 : 1, 1 : 2, 1 : 4,1 : 6, 1 : 8, 1 : 10, 2 : 1, 4 : 1, 6 : 1, 8 : 1, 10 : 1) on glucose uptake in IR-HepG2 cells induced by dexamethasone (DEX) to find out the optimal composition showing synergistic effects. Furthermore, this study evaluated the anti-diabetic activity of the optimal composition in db/db mice. In vitro, the OBG : LA = 1 : 1 group showed the strongest synergistic effects among the varied compositions, outperforming OBG and LA alone. In vivo, there were more beneficial effects in the OBG : LA = 1 : 1 group compared with the OBG and LA single-dosing groups. OBG : LA = 1 : 1 supplementation markedly decreased the levels of fasting blood glucose (FBG) and insulin (INS) in serum, improved glucose tolerance and insulin sensitivity, lowered blood lipid levels, and reduced liver lipid accumulation. Moreover, the western blot results indicated that the OBG : LA = 1 : 1 group up-regulated the protein expression of glucose transporter-4 (GLUT4), phosphatidylinositol 3-kinase (PI3K), and phospho-protein kinase B (p-AKT), while down-regulating the protein expression of phospho-phosphorylated insulin receptor substrate-1 (p-IRS1) to enhance insulin transduction in liver tissues. These findings suggest that OBG : LA = 1 : 1 synergistically ameliorated glucose metabolism disorders and alleviated insulin resistance by promoting the PI3K/AKT pathway in the liver.
Collapse
Affiliation(s)
- Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China. .,Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, 130118, China
| | - Tian Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China.
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China. .,Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, 130118, China
| | - Jiarui Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China. .,Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, 130118, China
| | - Mohammed Sharif Swallah
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Junpeng Gao
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China. .,Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China. .,Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China. .,Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, 130118, China
| |
Collapse
|
15
|
Kosillo P, Ahmed KM, Aisenberg EE, Karalis V, Roberts BM, Cragg SJ, Bateup HS. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. eLife 2022; 11:e75398. [PMID: 35881440 PMCID: PMC9328766 DOI: 10.7554/elife.75398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties, and whether they have similar or distinct functions is unknown. Here, we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. Disruption of both mTOR complexes leads to pronounced deficits in dopamine release demonstrating the importance of balanced mTORC1 and mTORC2 signaling for dopaminergic function.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Kamran M Ahmed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bradley M Roberts
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Stephanie J Cragg
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg Biohub, San FranciscoSan FranciscoUnited States
| |
Collapse
|
16
|
Lin TY, Chang PJ, Lo CY, Lo YL, Yu CT, Lin SM, Kuo CHS, Lin HC. Interaction Between CD34 + Fibrocytes and Airway Smooth Muscle Promotes IL-8 Production and Akt/PRAS40/mTOR Signaling in Asthma. Front Med (Lausanne) 2022; 9:823994. [PMID: 35547213 PMCID: PMC9081978 DOI: 10.3389/fmed.2022.823994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background The circulating progenitor cells of fibroblasts (fibrocytes) have been shown to infiltrate the airway smooth muscle compartment of asthma patients; however, the pathological significance of this discovery has yet to be elucidated. This study established a co-culture model of airway smooth muscle cells (ASMCs) and fibrocytes from asthmatic or normal subjects to evaluate innate cytokine production, corticosteroid responses, and signaling in ASMCs. Methods CD34+ fibrocytes were purified from peripheral blood of asthmatic (Global Initiative for Asthma treatment step 4–5) and normal subjects and cultured for 5∼7 days. In a transwell plate, ASMCs were co-cultured with fibrocytes at a ratio of 2:1, ASMCs were cultured alone (control condition), and fibrocytes were cultured alone for 48 h. Measurements were obtained of interleukin-8 (IL-8), IL-6, IL-17, thymic stromal lymphopoietin, and IL-33 levels in the supernatant and IL-33 levels in the cell lysate of the co-culture. Screening for intracellular signaling in the ASMCs after stimulation was performed using condition medium from the patients’ co-culture (PtCM) or IL-8. mRNA and western blot analysis were used to analyze AKT/mTOR signaling in ASMCs stimulated via treatment with PtCM or IL-8. Results Compared with ASMCs cultured alone, IL-8 levels in the supernatant and IL-33 levels in the ASMCs lysate were significantly higher in samples co-cultured from asthmatics, but not in those co-cultured from normal subjects. Corticosteroid-induced suppression of IL-8 production was less pronounced in ASMCs co-cultured with fibrocytes from asthma patients than in ASMCs co-cultured from normal subjects. ASMCs stimulated using PtCM and IL-8 presented elevating activated AKT substrate PRAS40. Treatment with IL-8 and PtCM increased mRNA expression of mTOR and P70S6 kinases in ASMCs. Treatment with IL-8 and PtCM also significantly increased phosphorylation of AKT and mTOR subtract S6 ribosomal protein in ASMCs. Conclusion The interaction between ASMCs and fibrocytes from asthmatic patients was shown to increase IL-8 and IL-33 production and promote AKT/mTOR signaling in ASMCs. IL-8 production in the co-culture from asthmatic patients was less affected by corticosteroid than was that in the co-culture from normal subjects. Our results elucidate the novel role of fibrocytes and ASMCs in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Teng Yu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-His Scott Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
17
|
Hong X, Mao L, Xu L, Hu Q, Jia R. Prostate-specific membrane antigen modulates the progression of prostate cancer by regulating the synthesis of arginine and proline and the expression of androgen receptors and Fos proto-oncogenes. Bioengineered 2022; 13:995-1012. [PMID: 34974814 PMCID: PMC8805960 DOI: 10.1080/21655979.2021.2016086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The expression of prostate-specific membrane antigen (PSMA) is strikingly upregulated during oncogenesis and prostate cancer (PCa) progression, but the functions of this antigen in PCa remain unclear. Here, we constructed PSMA-knockdown LNCaP and 22rv1 cell lines and performed metabonomic and transcriptomic analyses to determine the effects of PSMA on PCa metabolism and transcription. The metabolism of arginine and proline was detected using specific kits. The mRNA and protein expression levels of the identified differentially expressed genes were quantified by RT-qPCR and Western blotting. The proliferation of each cell line was evaluated through CCK-8, EdU and colony formation assays. The migration and invasion abilities of each cell line were detected using wound healing and transwell assays, respectively. PSMA knockdown led to metabolic disorder and abnormal transcription in PCa and resulted in inhibition of the proliferation and metastasis of PCa cells in vitro and in vivo. The depletion of PSMA also promoted the biosynthesis of arginine and proline, inhibited the expression of AR and PSA, and induced the expression of c-Fos and FosB. PSMA plays an important role in the metabolism, proliferation and metastasis of human PCa and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Xi Hong
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Hu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Zhou Q, Tang S, Zhang X, Chen L. Targeting PRAS40: a novel therapeutic strategy for human diseases. J Drug Target 2021; 29:703-715. [PMID: 33504218 DOI: 10.1080/1061186x.2021.1882470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proline-rich Akt substrate of 40 kD (PRAS40) is not only the substrate of protein kinase B (PKB/Akt), but also the binding protein of 14-3-3 protein. PRAS40 is expressed in a variety of tissues in vivo and has multiple phosphorylation sites, which its activity is closely related to phosphorylation. Studies have shown that PRAS40 is involved in regulating cell growth, cell apoptosis, oxidative stress, autophagy and angiogenesis, as well as various of signalling pathways such as mammalian target of mammalian target rapamycin (mTOR), protein kinase B (PKB/Akt), nuclear factor kappa-B(NF-κB), proto-oncogene serine/threonine-protein kinase PIM-1(PIM1) and pyruvate kinase M2 (PKM2). The interactive roles between PRAS40 and these signal proteins were analysed by bioinformatics in this paper. Moreover, it is of great necessity for analyse the important roles of PRAS40 in some human diseases including cardiovascular disease, ischaemia-reperfusion injury, neurodegenerative disease, cancer, diabetes and other metabolic diseases. Finally, the effects of miRNA on the regulation of PRAS40 function and the occurrence and development of PRAS40-related diseases are also discussed. Overall, PRAS40 is expected to be a drug target and provide a new treatment strategy for human diseases.
Collapse
Affiliation(s)
- Qun Zhou
- Hunan Province Key Laboratory for Antibody- Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody- Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xianhui Zhang
- Orthopedics Department, Dongkou People's Hospital, Dongkou, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target, New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
19
|
LianXia Formula Granule Attenuates Cardiac Sympathetic Remodeling in Rats with Myocardial Infarction via the NGF/TrKA/PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5536406. [PMID: 34221073 PMCID: PMC8213506 DOI: 10.1155/2021/5536406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 01/24/2023]
Abstract
Sympathetic remodeling may cause severe arrhythmia after myocardial infarction (MI). Thus, targeting this process may be an effective strategy for clinical prevention of arrhythmias. LianXia Formula Granule (LXFG) can effectively improve the symptoms of patients with arrhythmia after MI, and modern pharmacological studies have shown that Coptidis Rhizoma and Rhizoma Pinelliae Preparata, the components of LXFG, have antiarrhythmia effects. Here, we investigated whether LXFG can mitigate sympathetic remodeling and suppress arrhythmia and then elucidated its underlying mechanism of action in rats after MI. Sprague-Dawley (SD) rats that had undergone a myocardial infarction model were randomly divided into 6 groups, namely, sham, model, metoprolol, and LXFG groups, with high, medium, and low dosages. We exposed the animals to 30 days of treatment and then evaluated incidence of arrhythmia and arrhythmia scores in vivo using programmed electrical stimulation. Moreover, we determined plasma catecholamines contents via enzyme-linked immunosorbent assay and detected expression of tyrosine hydroxylase (TH) at infarcted border zones via western blot, real-time PCR, and immunohistochemical analyses to assess sympathetic remodeling. Finally, we measured key molecules involved in the NGF/TrKA/PI3K/AKT pathways via western blot and real-time PCR. Compared with the model group, treatment with high dose of LXFG suppressed arrhythmia incidence and arrhythmia scores. In addition, all the LXFG groups significantly decreased protein and mRNA levels of TH, improved the average optical density of TH-positive nerve fibers, and reduced the levels of plasma catecholamines relative to the model group. Meanwhile, expression analysis revealed that key molecules in the NGF/TrKA/PI3K/AKT pathways were downregulated in the LXFG group when compared with model group. Overall, these findings indicate that LXFG suppresses arrhythmia and attenuates sympathetic remodeling in rats after MI. The mechanism is probably regulated by suppression of the NGF/TrKA/PI3K/AKT signaling pathway.
Collapse
|
20
|
Norouzi M, Norouzi S, Ruggiero A, Khan MS, Myers S, Kavanagh K, Vemuri R. Type-2 Diabetes as a Risk Factor for Severe COVID-19 Infection. Microorganisms 2021; 9:1211. [PMID: 34205044 PMCID: PMC8229474 DOI: 10.3390/microorganisms9061211] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The current outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), termed coronavirus disease 2019 (COVID-19), has generated a notable challenge for diabetic patients. Overall, people with diabetes have a higher risk of developing different infectious diseases and demonstrate increased mortality. Type 2 diabetes mellitus (T2DM) is a significant risk factor for COVID-19 progression and its severity, poor prognosis, and increased mortality. How diabetes contributes to COVID-19 severity is unclear; however, it may be correlated with the effects of hyperglycemia on systemic inflammatory responses and immune system dysfunction. Using the envelope spike glycoprotein SARS-CoV-2, COVID-19 binds to angiotensin-converting enzyme 2 (ACE2) receptors, a key protein expressed in metabolic organs and tissues such as pancreatic islets. Therefore, it has been suggested that diabetic patients are more susceptible to severe SARS-CoV-2 infections, as glucose metabolism impairments complicate the pathophysiology of COVID-19 disease in these patients. In this review, we provide insight into the COVID-19 disease complications relevant to diabetes and try to focus on the present data and growing concepts surrounding SARS-CoV-2 infections in T2DM patients.
Collapse
Affiliation(s)
- Mahnaz Norouzi
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 61355, Iran;
| | - Shaghayegh Norouzi
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC 3083, Australia
| | - Alistaire Ruggiero
- Department of Pathology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; (A.R.); (K.K.)
| | - Mohammad S. Khan
- Center for Precision Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Stephen Myers
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; (A.R.); (K.K.)
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; (A.R.); (K.K.)
| |
Collapse
|
21
|
Álvarez-Mercado AI, Rojano-Alfonso C, Micó-Carnero M, Caballeria-Casals A, Peralta C, Casillas-Ramírez A. New Insights Into the Role of Autophagy in Liver Surgery in the Setting of Metabolic Syndrome and Related Diseases. Front Cell Dev Biol 2021; 9:670273. [PMID: 34141709 PMCID: PMC8204012 DOI: 10.3389/fcell.2021.670273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 01/18/2023] Open
Abstract
Visceral obesity is an important component of metabolic syndrome, a cluster of diseases that also includes diabetes and insulin resistance. A combination of these metabolic disorders damages liver function, which manifests as non-alcoholic fatty liver disease (NAFLD). NAFLD is a common cause of abnormal liver function, and numerous studies have established the enormously deleterious role of hepatic steatosis in ischemia-reperfusion (I/R) injury that inevitably occurs in both liver resection and transplantation. Thus, steatotic livers exhibit a higher frequency of post-surgical complications after hepatectomy, and using liver grafts from donors with NAFLD is associated with an increased risk of post-surgical morbidity and mortality in the recipient. Diabetes, another MetS-related metabolic disorder, also worsens hepatic I/R injury, and similar to NAFLD, diabetes is associated with a poor prognosis after liver surgery. Due to the large increase in the prevalence of MetS, NAFLD, and diabetes, their association is frequent in the population and therefore, in patients requiring liver resection and in potential liver graft donors. This scenario requires advancement in therapies to improve postoperative results in patients suffering from metabolic diseases and undergoing liver surgery; and in this sense, the bases for designing therapeutic strategies are in-depth knowledge about the molecular signaling pathways underlying the effects of MetS-related diseases and I/R injury on liver tissue. A common denominator in all these diseases is autophagy. In fact, in the context of obesity, autophagy is profoundly diminished in hepatocytes and alters mitochondrial functions in the liver. In insulin resistance conditions, there is a suppression of autophagy in the liver, which is associated with the accumulation of lipids, being this is a risk factor for NAFLD. Also, oxidative stress occurring in hepatic I/R injury promotes autophagy. The present review aims to shed some light on the role of autophagy in livers undergoing surgery and also suffering from metabolic diseases, which may lead to the discovery of effective therapeutic targets that could be translated from laboratory to clinical practice, to improve postoperative results of liver surgeries when performed in the presence of one or more metabolic diseases.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Granada, Spain.,Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Granada, Spain.,Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Carlos Rojano-Alfonso
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Micó-Carnero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria "Bicentenario 2010", Ciudad Victoria, Mexico.,Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Mexico
| |
Collapse
|
22
|
White JP. Amino Acid Trafficking and Skeletal Muscle Protein Synthesis: A Case of Supply and Demand. Front Cell Dev Biol 2021; 9:656604. [PMID: 34136478 PMCID: PMC8201612 DOI: 10.3389/fcell.2021.656604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle protein synthesis is a highly complex process, influenced by nutritional status, mechanical stimuli, repair programs, hormones, and growth factors. The molecular aspects of protein synthesis are centered around the mTORC1 complex. However, the intricacies of mTORC1 regulation, both up and downstream, have expanded overtime. Moreover, the plastic nature of skeletal muscle makes it a unique tissue, having to coordinate between temporal changes in myofiber metabolism and hypertrophy/atrophy stimuli within a tissue with considerable protein content. Skeletal muscle manages the push and pull between anabolic and catabolic pathways through key regulatory proteins to promote energy production in times of nutrient deprivation or activate anabolic pathways in times of nutrient availability and anabolic stimuli. Branched-chain amino acids (BCAAs) can be used for both energy production and signaling to induce protein synthesis. The metabolism of BCAAs occur in tandem with energetic and anabolic processes, converging at several points along their respective pathways. The fate of intramuscular BCAAs adds another layer of regulation, which has consequences to promote or inhibit muscle fiber protein anabolism. This review will outline the general mechanisms of muscle protein synthesis and describe how metabolic pathways can regulate this process. Lastly, we will discuss how BCAA availability and demand coordinate with synthesis mechanisms and identify key factors involved in intramuscular BCAA trafficking.
Collapse
Affiliation(s)
- James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
23
|
Soni P, Ghufran MS, Olakkaran S, Puttaswamygowda GH, Duddukuri GR, Kanade SR. Epigenetic alterations induced by aflatoxin B 1: An in vitro and in vivo approach with emphasis on enhancer of zeste homologue-2/p21 axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143175. [PMID: 33131875 DOI: 10.1016/j.scitotenv.2020.143175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
The potent environmental toxicant aflatoxin B1 (AFB1), is a group I carcinogen reported to induce the expression of many cancer associated proteins. Epigenetic alterations such as DNA methylation and histone modifications play vital role in AFB1-mediated carcinogenesis. These epigenetic modifications may result in the recruitment of specific proteins and transcription factors to the promoter region and regulate gene expression. Here we show that AFB1, at lower concentrations (100 and 1000 nM) induced proliferation in L-132 and HaCaT cells with activation of the Akt pathway, which ultimately steered abnormal proliferation and transmission of survival signals. We demonstrated a significant reduction in the expression of p21 with a remarkable increase in the expression of cyclin D1 that correlated with increased methylation of CpG dinucleotides in p21 proximal promoter, while cyclin D1 promoter remained unmethylated. The chromatin immunoprecipitation results revealed the enrichment of DNMT3a and H3K27me3 repressive marks on the p21 proximal promoter where EZH2 mediated H3K27me3 mark enhanced the binding of DNMT3a at the promoter and further contributed to the transcriptional inactivation. The overall study provided the novel information on the impact of AFB1 on p21 inactivation via EZH2 and promoter methylation which is known to be a vital process in proliferation. Furthermore, AFB1 induced the expression of EZH2 analogue protein E(z), cyclin D1 analogue cyclin D and decreased the expression of p21 analogue Dacapo in Drosophila melanogaster. Interestingly, the aggressiveness in their expression upon re-exposure in successive generations suggested first hand perspectives on multigenerational epigenetic memory.
Collapse
Affiliation(s)
- Priyanka Soni
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | - Md Sajid Ghufran
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | - Shilpa Olakkaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | | | - Govinda Rao Duddukuri
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | - Santosh R Kanade
- Department of Plant Science, School of Life Science, University of Hyderabad, Prof. C. R. Rao Road Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
24
|
Kaur H, Moreau R. mTORC1 silencing during intestinal epithelial Caco-2 cell differentiation is mediated by the activation of the AMPK/TSC2 pathway. Biochem Biophys Res Commun 2021; 545:183-188. [PMID: 33561653 DOI: 10.1016/j.bbrc.2021.01.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling is the prototypical pathway regulating protein synthesis and cell proliferation. The level of mTORC1 activity is high in intestinal stem cells located at the base of the crypts and thought to gradually decrease as transit-amplifying cells migrate out of the crypts and differentiate into enterocytes, goblet cells or enteroendocrine cells along the epithelium. The unknown mechanism responsible for the silencing of intestinal epithelium mTORC1 during cell differentiation was investigated in Caco-2 cells, which spontaneously differentiate into enterocytes in standard growth medium. The results show that TSC2, an upstream negative regulator of mTORC1 was central to mTORC1 silencing in differentiated Caco-2 cells. AMPK-mediated activation of TSC2 (Ser1387) and repression of Raptor (Ser792), an essential component of mTORC1, were stimulated in differentiated Caco-2 cells. ERK1/2-mediated repression of TSC2 (Ser664) seen in undifferentiated Caco-2 cells was lifted in differentiated cells. IRS-1-mediated activation of AKT (Thr308) phosphorylation was stimulated in differentiated Caco-2 cells and may be involved in cross-pathway repression of ERK1/2. Additionally, PRAS40 (Thr246) phosphorylation was decreased in differentiated Caco-2 cells compared to undifferentiated cells allowing dephosphorylated PRAS40 to displace Raptor thereby repressing mTORC1 kinase activity.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
25
|
Abstract
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling New York, New York, NY, USA
| |
Collapse
|
26
|
Vatseba TS, Sokolova LK, Pushkarev VM. Activation of the PI3K/AKT/MTOR/P70S6K1 signaling cascade in peripheral blood mononuclear cells in patients with type 2 diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.06.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Sainani SR, Pansare PA, Rode K, Bhalchim V, Doke R, Desai S. Emendation of autophagic dysfuction in neurological disorders: a potential therapeutic target. Int J Neurosci 2020; 132:466-482. [PMID: 32924706 DOI: 10.1080/00207454.2020.1822356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neurological disorders have been continuously contributing to the global disease burden and affect millions of people worldwide. Researchers strive hard to extract out the ultimate cure and serve for the betterment of the society, and yet the treatments available provide only symptomatic relief. Aging and abnormal mutations seem to be the major culprits responsible for neurotoxicity and neuronal death. One of the major causes of these neurological disorders that has been paid utmost attention recently, is Autophagic Dysfunction. AIM The aim of the study was to understand the autophagic process, its impairment in neurological disorders and targeting the impairments as a therapeutic option for the said disorders. METHODS For the purpose of review, we carried out an extensive literature study to excerpt the series of steps involved in autophagy and to understand the mechanism of autophagic impairment occurring in a range of neurodegenerative and neuropsychiatric disorders like Parkinson, Alzheimer, Depression, Schizophrenia, Autism etc. The review also involved the exploration of certain molecules that can help in triggering the compromised autophagic members. RESULTS We found that, a number of genes, proteins, receptors and transcription factors interplay to bring about autophagy and plethora of neurological disorders are associated with the diminished expression of one or more autophagic member leading to inhibition of autophagy. CONCLUSION Autophagy is a significant process for the removal of misfolded, abnormal, damaged protein aggregates and nonfunctional cell organelles in order to suppress neurodegeneration. Therefore, triggering autophagy could serve as an important therapeutic target to treat neurological disorders.
Collapse
Affiliation(s)
- Shivani R Sainani
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Prajakta A Pansare
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Ketki Rode
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vrushali Bhalchim
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Rohit Doke
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Shivani Desai
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
28
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
29
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
30
|
Maiese K. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment. Curr Neurovasc Res 2020; 17:332-337. [PMID: 32334502 PMCID: PMC7541431 DOI: 10.2174/1567202617666200425205122] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple viral pathogens can pose a significant health risk to individuals. As a recent example, the β-coronavirus family virion, SARS-CoV-2, has quickly evolved as a pandemic leading to coronavirus disease 2019 (COVID-19) and has been declared by the World Health Organization as a Public Health Emergency of International Concern. To date, no definitive treatment or vaccine application exists for COVID-19. Although new investigations seek to repurpose existing antiviral treatments for COVID-19, innovative treatment strategies not normally considered to have antiviral capabilities may be critical to address this global concern. One such avenue that may prove to be exceedingly fruitful and offer exciting potential as new antiviral therapy involves the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), and AMP activated protein kinase (AMPK). Recent work has shown that mTOR pathways in conjunction with AMPK may offer valuable targets to control cell injury, oxidative stress, mitochondrial dysfunction, and the onset of hyperinflammation, a significant disability associated with COVID-19. Furthermore, pathways that can activate mTOR may be necessary for anti-hepatitis C activity, reduction of influenza A virus replication, and vital for type-1 interferon responses with influenza vaccination. Yet, important considerations for the development of safe and effective antiviral therapy with mTOR pathways exist. Under some conditions, mTOR can act as a double edge sword and participate in virion replication and virion release from cells. Future work with mTOR as a potential antiviral target is highly warranted and with a greater understanding of this novel pathway, new treatments against several viral pathogens may successfully emerge.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY10022, USA
| |
Collapse
|
31
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
32
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
33
|
You I, Erickson EC, Donovan KA, Eleuteri NA, Fischer ES, Gray NS, Toker A. Discovery of an AKT Degrader with Prolonged Inhibition of Downstream Signaling. Cell Chem Biol 2019; 27:66-73.e7. [PMID: 31859249 DOI: 10.1016/j.chembiol.2019.11.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022]
Abstract
The PI3K/AKT signaling cascade is one of the most commonly dysregulated pathways in cancer, with over half of tumors exhibiting aberrant AKT activation. Although potent small-molecule AKT inhibitors have entered clinical trials, robust and durable therapeutic responses have not been observed. As an alternative strategy to target AKT, we report the development of INY-03-041, a pan-AKT degrader consisting of the ATP-competitive AKT inhibitor GDC-0068 conjugated to lenalidomide, a recruiter of the E3 ubiquitin ligase substrate adaptor Cereblon (CRBN). INY-03-041 induced potent degradation of all three AKT isoforms and displayed enhanced anti-proliferative effects relative to GDC-0068. Notably, INY-03-041 promoted sustained AKT degradation and inhibition of downstream signaling effects for up to 96 h, even after compound washout. Our findings suggest that AKT degradation may confer prolonged pharmacological effects compared with inhibition, and highlight the potential advantages of AKT-targeted degradation.
Collapse
Affiliation(s)
- Inchul You
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Emily C Erickson
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas A Eleuteri
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| | - Alex Toker
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Li W, Chu J, Fan T, Zhang W, Yao M, Ning Z, Wang M, Sun J, Zhao X, Wen A. Design and synthesis of novel 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4-thiadiazol- 2-yl)urea derivatives with potent anti-CML activity throughout PI3K/AKT signaling pathway. Bioorg Med Chem Lett 2019; 29:1831-1835. [DOI: 10.1016/j.bmcl.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/20/2019] [Accepted: 05/05/2019] [Indexed: 02/08/2023]
|
35
|
Ben-Shachar M, Rozenberg K, Skalka N, Wollman A, Michlin M, Rosenzweig T. Activation of Insulin Signaling in Adipocytes and Myotubes by Sarcopoterium Spinosum Extract. Nutrients 2019; 11:nu11061396. [PMID: 31234331 PMCID: PMC6628217 DOI: 10.3390/nu11061396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022] Open
Abstract
Sarcopoterium spinosum (S. spinosum) is a medicinal plant, traditionally used as an antidiabetic remedy. Previous studies demonstrated its beneficial properties in the treatment of insulin resistance. The aim of this study was to further clarify the effect of S. spinosum extract (SSE) on insulin signaling. Phosphoproteomic analysis, performed in 3T3-L1 adipocytes treated with SSE, revealed the activation of insulin receptor pathways. SSE increased Glut4-facilitated glucose uptake in adipocytes, with an additive effect between SSE and insulin. While the maximal effect of insulin on glucose uptake was found at days 15–16 of differentiation, SSE-induced glucose uptake was found at an earlier stage of differentiation. Inhibition of PI3K and Akt blocked SSE-dependent glucose uptake. Western blot analysis, performed on 3T3-L1 adipocytes and L6 myotubes, showed that in contrast to insulin action, Akt was only marginally phosphorylated by SSE. Furthermore, GSK3β and PRAS40 phosphorylation as well as glucose uptake were increased by the extract. SSE also induced the phosphorylation of ERK similar to insulin. In conclusion, SSE activates insulin signaling, although the upstream event mediating its effects should be further clarified. Identifying the active molecules in SSE may lead to the development of new agents for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Michaella Ben-Shachar
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Konstantin Rozenberg
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Nir Skalka
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Ayala Wollman
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Michal Michlin
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Tovit Rosenzweig
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
36
|
Ragon BK, Odenike O, Baer MR, Stock W, Borthakur G, Patel K, Han L, Chen H, Ma H, Joseph L, Zhao Y, Baggerly K, Konopleva M, Jain N. Oral MEK 1/2 Inhibitor Trametinib in Combination With AKT Inhibitor GSK2141795 in Patients With Acute Myeloid Leukemia With RAS Mutations: A Phase II Study. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:431-440.e13. [PMID: 31056348 DOI: 10.1016/j.clml.2019.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/25/2019] [Accepted: 03/17/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND With proven single-agent activity and favorable toxicity profile of MEK-1/2 inhibition in advanced leukemia, investigation into combination strategies to overcome proposed resistance pathways is warranted. Resistance to MEK inhibition is secondary to upstream hyperactivation of RAS/RAF or activation of the PI3K/PTEN/AKT/mTOR pathway. This phase II multi-institution Cancer Therapy Evaluation Program-sponsored study was conducted to determine efficacy and safety of the combination of the ATP-competitive pan-AKT inhibitor GSK2141795, targeting the PI3K/AKT pathway, and the MEK inhibitor trametinib in RAS-mutated relapsed/refractory acute myeloid leukemia (AML). PATIENTS AND METHODS The primary objective was to determine the proportion of patients achieving a complete remission. Secondary objectives included assessment of toxicity profile and biologic effects of this combination. Twenty-three patients with RAS-mutated AML received the combination. Two dose levels were explored (dose level 1: 2 mg trametinib, 25 mg GSK2141795 and dose level 2: 1.5 mg trametinib, 50 mg GSK2141795). RESULTS Dose level 1 was identified as the recommended phase II dose. No complete remissions were identified in either cohort. Minor responses were recognized in 5 (22%) patients. The most common drug-related toxicities included rash and diarrhea, with dose-limiting toxicities of mucositis and colitis. Longitudinal correlative assessment of the modulation of MEK and AKT pathways using reverse phase protein array and phospho-flow analysis revealed significant and near significant down-modulation of pERK and pS6, respectively. Combined MEK and AKT inhibition had no clinical activity in patients with RAS-mutated AML. CONCLUSION Further investigation is required to explore the discrepancy between the activity of this combination on leukemia cells and the lack of clinical efficacy.
Collapse
Affiliation(s)
- Brittany Knick Ragon
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Olatoyosi Odenike
- Department of Medicine, University of Chicago Medical Center, Chicago, IL
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Wendy Stock
- Department of Medicine, University of Chicago Medical Center, Chicago, IL
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Keyur Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lina Han
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Helen Chen
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Helen Ma
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Loren Joseph
- Division of Clinical Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
37
|
Beyens M, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Resistance to targeted treatment of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2019; 26:R109-R130. [PMID: 32022503 DOI: 10.1530/erc-18-0420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) is part of the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mTOR signaling. The PI3K/Akt/mTOR pathway has a pivotal role in the oncogenesis of neuroendocrine tumors (NETs). In addition, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) drive angiogenesis in NETs and therefore contributes to neuroendocrine tumor development. Hence, mTOR and angiogenesis inhibitors have been developed. Everolimus, a first-generation mTOR inhibitor, has shown significant survival benefit in advanced gastroenteropancreatic NETs. Sunitinib, a pan-tyrosine kinase inhibitor that targets the VEGF receptor, has proven to increase progression-free survival in advanced pancreatic NETs. Nevertheless, primary and acquired resistance to rapalogs and sunitinib has limited the clinical benefit for NET patients. Despite the identification of multiple molecular mechanisms of resistance, no predictive biomarker has made it to the clinic. This review is focused on the mTOR signaling and angiogenesis in NET, the molecular mechanisms of primary and acquired resistance to everolimus and sunitinib and how to overcome this resistance by alternative drug compounds.
Collapse
Affiliation(s)
- Matthias Beyens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Timon Vandamme
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marc Peeters
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
38
|
Subbannayya T, Leal-Rojas P, Zhavoronkov A, Ozerov IV, Korzinkin M, Babu N, Radhakrishnan A, Chavan S, Raja R, Pinto SM, Patil AH, Barbhuiya MA, Kumar P, Guerrero-Preston R, Navani S, Tiwari PK, Kumar RV, Prasad TSK, Roa JC, Pandey A, Sidransky D, Gowda H, Izumchenko E, Chatterjee A. PIM1 kinase promotes gallbladder cancer cell proliferation via inhibition of proline-rich Akt substrate of 40 kDa (PRAS40). J Cell Commun Signal 2019; 13:163-177. [PMID: 30666556 DOI: 10.1007/s12079-018-00503-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Gallbladder cancer (GBC) is a rare malignancy, associated with poor disease prognosis with a 5-year survival of only 20%. This has been attributed to late presentation of the disease, lack of early diagnostic markers and limited efficacy of therapeutic interventions. Elucidation of molecular events in GBC can contribute to better management of the disease by aiding in the identification of therapeutic targets. To identify aberrantly activated signaling events in GBC, tandem mass tag-based quantitative phosphoproteomic analysis of five GBC cell lines was carried out. Proline-rich Akt substrate 40 kDa (PRAS40) was one of the proteins found to be hyperphosphorylated in all the invasive GBC cell lines. Tissue microarray-based immunohistochemical labeling of phospho-PRAS40 (T246) revealed moderate to strong staining in 77% of the primary gallbladder adenocarcinoma cases. Regulation of PRAS40 activity by inhibiting its upstream kinase PIM1 resulted in a significant decrease in cell proliferation, colony forming and invasive ability of GBC cells. Our results support the role of PRAS40 phosphorylation in GBC cell survival and aggressiveness. This study also elucidates phospho-PRAS40 as a clinical marker in GBC and the role of PIM1 as a therapeutic target in GBC.
Collapse
Affiliation(s)
- Tejaswini Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Pamela Leal-Rojas
- Center of Excellence in Translational Medicine (CEMT) &Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alex Zhavoronkov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, 21218, USA
| | - Ivan V Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, 21218, USA
| | - Mikhail Korzinkin
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, 21218, USA
| | - Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aneesha Radhakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Arun H Patil
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| | - Mustafa A Barbhuiya
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Rafael Guerrero-Preston
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M05C, Baltimore, MD, 21231, USA
| | | | - Pramod K Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, 474011, India.,School of Studies in Zoology, Jiwaji University, Gwalior, 474011, India
| | - Rekha Vijay Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, 560029, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India
| | - Juan Carlos Roa
- Department of Pathology, Millenium Institute on Immunology and Immunotherapy (IMII), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - David Sidransky
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M05C, Baltimore, MD, 21231, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Evgeny Izumchenko
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M05C, Baltimore, MD, 21231, USA.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India. .,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
39
|
Dunn J, Ferluga S, Sharma V, Futschik M, Hilton DA, Adams CL, Lasonder E, Hanemann CO. Proteomic analysis discovers the differential expression of novel proteins and phosphoproteins in meningioma including NEK9, HK2 and SET and deregulation of RNA metabolism. EBioMedicine 2018; 40:77-91. [PMID: 30594554 PMCID: PMC6412084 DOI: 10.1016/j.ebiom.2018.12.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
Background Meningioma is the most frequent primary intracranial tumour. Surgical resection remains the main therapeutic option as pharmacological intervention is hampered by poor knowledge of their proteomic signature. There is an urgent need to identify new therapeutic targets and biomarkers of meningioma. Methods We performed proteomic profiling of grade I, II and III frozen meningioma specimens and three normal healthy human meninges using LC-MS/MS to analyse global proteins, enriched phosphoproteins and phosphopeptides. Differential expression and functional annotation of proteins was completed using Perseus, IPA® and DAVID. We validated differential expression of proteins and phosphoproteins by Western blot on a meningioma validation set and by immunohistochemistry. Findings We quantified 3888 proteins and 3074 phosphoproteins across all meningioma grades and normal meninges. Bioinformatics analysis revealed commonly upregulated proteins and phosphoproteins to be enriched in Gene Ontology terms associated with RNA metabolism. Validation studies confirmed significant overexpression of proteins such as EGFR and CKAP4 across all grades, as well as the aberrant activation of the downstream PI3K/AKT pathway, which seems differential between grades. Further, we validated upregulation of the total and activated phosphorylated form of the NIMA-related kinase, NEK9, involved in mitotic progression. Novel proteins identified and validated in meningioma included the nuclear proto-oncogene SET, the splicing factor SF2/ASF and the higher-grade specific protein, HK2, involved in cellular metabolism. Interpretation Overall, we generated a proteomic thesaurus of meningiomas for the identification of potential biomarkers and therapeutic targets. Fund This study was supported by Brain Tumour Research.
Collapse
Affiliation(s)
- Jemma Dunn
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Sara Ferluga
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Vikram Sharma
- School of Biomedical Science, Faculty of Medicine and Dentistry, University of Plymouth, Derriford Research Facility, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Matthias Futschik
- School of Biomedical Science, Faculty of Medicine and Dentistry, University of Plymouth, Derriford Research Facility, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - David A Hilton
- Cellular and Anatomical Pathology, Plymouth Hospitals NHS Trust, Derriford Road, Plymouth PL6 8DH, UK
| | - Claire L Adams
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Edwin Lasonder
- School of Biomedical Science, Faculty of Medicine and Dentistry, University of Plymouth, Derriford Research Facility, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK.
| |
Collapse
|
40
|
Cellular signaling and gene expression profiles evoked by a bivalent macrocyclic peptide that serves as an artificial MET receptor agonist. Sci Rep 2018; 8:16492. [PMID: 30405161 PMCID: PMC6220203 DOI: 10.1038/s41598-018-34835-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/26/2018] [Indexed: 11/11/2022] Open
Abstract
Non-native ligands for growth factor receptors that are generated by chemical synthesis are applicable to therapeutics. However, non-native ligands often regulate cellular signaling and biological responses in a different manner than native ligands. Generation of surrogate ligands comparable to native ligands is a challenging need. Here we investigated changes in signal transduction and gene expression evoked by a bivalent macrocyclic peptide (aMD5-PEG11) capable of high-affinity binding to the MET/hepatocyte growth factor (HGF) receptor. Binding of aMD5-PEG11 to the MET extracellular region was abolished by deletion of the IPT3−IPT4 domain, indicating the involvement of IPT3−IPT4 in the binding of aMD5-PEG11 to the MET receptor. aMD5-PEG11 induced dimerization and activation of the MET receptor and promoted cell migration that was comparable to induction of these activities by HGF. Signal activation profiles indicated that aMD5-PEG11 induced phosphorylation of intracellular signaling molecules, with a similar intensity and time dependency as HGF. In 3-D culture, aMD5-PEG11 as well as HGF induced epithelial tubulogenesis and up-regulated the same sets of functionally classified genes involved in multicellular organism development. Thus, a non-native surrogate ligand that consisted of a bivalent macrocyclic peptide can serve as an artificial MET receptor agonist that functionally substitutes for the native ligand, HGF.
Collapse
|
41
|
Soluble Factors from Human Olfactory Neural Stem/Progenitor Cells Influence the Fate Decisions of Hippocampal Neural Precursor Cells. Mol Neurobiol 2018; 55:8014-8037. [PMID: 29498005 DOI: 10.1007/s12035-018-0906-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/11/2018] [Indexed: 01/09/2023]
Abstract
Neurogenesis plays a significant role during adulthood, and the observation that neural stem cells reside in the central nervous system and the olfactory epithelium has attracted attention due to their importance in neuronal regeneration. In addition, soluble factors (SFs) release by neural stem cells may modulate the neurogenic process. Thus, in this study, we identified the SFs released by olfactory human neural stem/progenitor cells (hNS/PCs-OE). These cells express Ki67, nestin, and βIII-tubulin, indicating their neural lineage. The hNS/PCs-OE also express PSD95 and tau proteins during proliferation, but increased levels are observed after differentiation. Thus, we evaluated the effects of SFs from hNS/PCs-OE on the viability, proliferation, and differentiation potential of adult murine hippocampal neural precursor cells (AHPCs). SFs from hNS/PCs-OE maintain cells in the precursor and proliferative stages and mainly promote the astrocytic differentiation of AHPCs. These effects involved the activation, as measured by phosphorylation, of several proteins (Erk1/2; Akt/PRAS40/GSK3β and JAK/STAT) involved in key events of the neurogenic process. Moreover, according to the results from the antibody-based microarray approach, among the soluble factors, hNS/PCs-OE produce interleukin-6 (IL-6) and neurotrophin 4 (NT4). However, residual epidermal growth factor (EGF) was also detected. These proteins partially reproduced the effects of SFs from hNS/PCs-OE on AHPCs, and the mechanism underlying these effects is mediated by Src proteins, which have been implicated in EGF-induced transactivation of TrkB receptor. The results of the present study suggest the potential use of SFs from hNS/PCs-OE in controlling the differentiation potential of AHPCs. Thus, the potential clinical relevance of hNS/PCs-OE is worth pursuing.
Collapse
|
42
|
Cai Y, Wang Y, Zhi F, Xing QC, Chen YZ. The Effect of Sanggua Drink Extract on Insulin Resistance through the PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:9407945. [PMID: 29670663 PMCID: PMC5836421 DOI: 10.1155/2018/9407945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Treating type 2 diabetes mellitus (T2DM) using thiazolidinediones and biguanides can present several challenges for patients. Sanggua Drink (SGD) is a commonly used agent in traditional Chinese medicine, and it consists of Folium Mori, Fructus Momordicae Charantiae, Radix Puerariae Lobatae, and Rhizoma Dioscorea. The hypoglycemic effects and mechanisms of SGD extracts on insulin resistance in diabetic rats were investigated. SGD (1.24 g/kg orally) was verified in T2DM rats induced by a high-fat diet and streptozotocin. The results showed that SGD treatment was observed to reduce fasting blood glucose, water and food intake, total cholesterol triglycerides, and LDL, OGTT, FINS, HOMA-IR, GHb, and MDA and increase hepatic glycogen, HDL, SOD, CAT, and GSH-Px in diabetic rats. Simultaneously, SGD treatment by T2DM showed significantly ameliorated pathological changes and reduced inflammation in the pancreas. Treatment was also observed to increase gene and protein expressions of InsR, IRS-2, PI3K, AKT, and Glut4 in the livers of diabetic treated rats. These results suggest that SGD extracts have hypoglycemic properties and may alleviate insulin resistance in T2DM rats through the PI3K/AKT pathway. Therefore, SGD appears to be a promising insulin sensitizer.
Collapse
Affiliation(s)
- Yu Cai
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Institute of Engineering Technology of Chinese Traditional Medicine and Health Food of Hubei Province, Wuhan 430065, China
| | - Ying Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Institute of Engineering Technology of Chinese Traditional Medicine and Health Food of Hubei Province, Wuhan 430065, China
| | - Fei Zhi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Institute of Engineering Technology of Chinese Traditional Medicine and Health Food of Hubei Province, Wuhan 430065, China
| | - Qi-Chang Xing
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Institute of Engineering Technology of Chinese Traditional Medicine and Health Food of Hubei Province, Wuhan 430065, China
| | - Yun-Zhong Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Institute of Engineering Technology of Chinese Traditional Medicine and Health Food of Hubei Province, Wuhan 430065, China
| |
Collapse
|
43
|
Cuyàs E, Fernández-Arroyo S, Alarcón T, Lupu R, Joven J, Menendez JA. Germline BRCA1 mutation reprograms breast epithelial cell metabolism towards mitochondrial-dependent biosynthesis: evidence for metformin-based "starvation" strategies in BRCA1 carriers. Oncotarget 2018; 7:52974-52992. [PMID: 27259235 PMCID: PMC5288162 DOI: 10.18632/oncotarget.9732] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
We hypothesized that women inheriting one germline mutation of the BRCA1 gene (“one-hit”) undergo cell-type-specific metabolic reprogramming that supports the high biosynthetic requirements of breast epithelial cells to progress to a fully malignant phenotype. Targeted metabolomic analysis was performed in isogenic pairs of nontumorigenic human breast epithelial cells in which the knock-in of 185delAG mutation in a single BRCA1 allele leads to genomic instability. Mutant BRCA1 one-hit epithelial cells displayed constitutively enhanced activation of biosynthetic nodes within mitochondria. This metabolic rewiring involved the increased incorporation of glutamine- and glucose-dependent carbon into tricarboxylic acid (TCA) cycle metabolite pools to ultimately generate elevated levels of acetyl-CoA and malonyl-CoA, the major building blocks for lipid biosynthesis. The significant increase of branched-chain amino acids (BCAAs) including the anabolic trigger leucine, which can not only promote protein translation via mTOR but also feed into the TCA cycle via succinyl-CoA, further underscored the anabolic reprogramming of BRCA1 haploinsufficient cells. The anti-diabetic biguanide metformin “reversed” the metabolomic signature and anabolic phenotype of BRCA1 one-hit cells by shutting down mitochondria-driven generation of precursors for lipogenic pathways and reducing the BCAA pool for protein synthesis and TCA fueling. Metformin-induced restriction of mitochondrial biosynthetic capacity was sufficient to impair the tumor-initiating capacity of BRCA1 one-hit cells in mammosphere assays. Metabolic rewiring of the breast epithelium towards increased anabolism might constitute an unanticipated and inherited form of metabolic reprogramming linked to increased risk of oncogenesis in women bearing pathogenic germline BRCA1 mutations. The ability of metformin to constrain the production of mitochondrial-dependent biosynthetic intermediates might open a new avenue for “starvation” chemopreventive strategies in BRCA1 carriers.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Reus, Spain
| | - Tomás Alarcón
- Institució Catalana d'Estudis i Recerca Avançats (ICREA), Barcelona, Spain.,Computational and Mathematical Biology Research Group, Centre de Recerca Matemàtic (CRM), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - Ruth Lupu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Reus, Spain
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| |
Collapse
|
44
|
Hiney JK, Srivastava VK, Vaden Anderson DN, Hartzoge NL, Dees WL. Regulation of Kisspeptin Synthesis and Release in the Preoptic/Anterior Hypothalamic Region of Prepubertal Female Rats: Actions of IGF-1 and Alcohol. Alcohol Clin Exp Res 2017; 42:61-68. [PMID: 29072778 DOI: 10.1111/acer.13539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/18/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Alcohol (ALC) causes suppressed secretion of prepubertal luteinizing hormone-releasing hormone (LHRH). Insulin-like growth factor-1 (IGF-1) and kisspeptin (Kp) are major regulators of LHRH and are critical for puberty. IGF-1 may be an upstream mediator of Kp in the preoptic area and rostral hypothalamic area (POA/RHA) of the rat brain, a region containing both Kp and LHRH neurons. We investigated the ability of IGF-1 to stimulate prepubertal Kp synthesis and release in POA/RHA, and the potential inhibitory effects of ALC. METHODS Immature female rats were administered either ALC (3 g/kg) or water via gastric gavage at 0730 hours. At 0900 hours, both groups were subdivided where half received either saline or IGF-1 into the brain third ventricle. A second dose of ALC (2 g/kg) or water was administered at 1130 hours. Rats were killed 6 hours after injection and POA/RHA region collected. RESULTS IGF-1 stimulated Kp, an action blocked by ALC. Upstream to Kp, IGF-1 receptor (IGF-1R) activation, as demonstrated by the increase in insulin receptor substrate 1, resulted in activation of Akt, tuberous sclerosis 2, ras homologue enriched in brain, and mammalian target of rapamycin (mTOR). ALC blocked the central action of IGF-1 to induce their respective phosphorylation. IGF-1 specificity and ALC specificity for the Akt-activated mTOR pathway were demonstrated by the absence of effects on PRAS40. Furthermore, IGF-1 stimulated Kp release from POA/RHA incubated in vitro. CONCLUSIONS IGF-1 stimulates prepubertal Kp synthesis and release following activation of a mTOR signaling pathway, and ALC blocks this pathway at the level of IGF-1R.
Collapse
Affiliation(s)
- Jill K Hiney
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Vinod K Srivastava
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Danielle N Vaden Anderson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Nicole L Hartzoge
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - William L Dees
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
45
|
Aveic S, Corallo D, Porcù E, Pantile M, Boso D, Zanon C, Viola G, Sidarovich V, Mariotto E, Quattrone A, Basso G, Tonini GP. TP-0903 inhibits neuroblastoma cell growth and enhances the sensitivity to conventional chemotherapy. Eur J Pharmacol 2017; 818:435-448. [PMID: 29154838 DOI: 10.1016/j.ejphar.2017.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022]
Abstract
Neuroblastoma (NB) is an embryonal tumor with low cure rate for patients classified as high-risk. This class of NB tumors shows a very complex genomic background and requires aggressive treatment strategies. In this work we evaluated the efficacy of the novel multi-kinase inhibitor TP-0903 in impairing NB cells' growth, proliferation and motility. In vitro studies were performed using cell lines with different molecular background, and in vivo studies were done using the zebrafish experimental model. Our results confirmed a strong cytotoxicity of TP-0903 already at the sub-micro molar concentrations. The observed cytotoxicity of TP-0903 was irreversible and the resulting apoptosis was caspase dependent. In addition, TP-0903 impaired colony formation and neurosphere creation. Depending on the molecular background of the selected NB cell lines, TP-0903 influenced either their capacity to migrate, to complete their cell cycle or both. Likewise, TP-0903 reduced NB cells intravasation in vitro and in vivo. Importantly, TP-0903 showed remarkable pharmacological efficacy not only as a mono-treatment, but also in combination with conventional chemotherapy drugs (ATRA, cisplatin, and VP16) in different types of NB cells. In conclusion, the multi-kinase activity of TP-0903 allowed the impairment of several biological processes required for expansion of NB cells, making them more vulnerable to the conventional chemotherapeutics. Altogether, our results support the eligibility of TP-0903 for further (pre)clinical assessments in NB.
Collapse
Affiliation(s)
- Sanja Aveic
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy.
| | - Diana Corallo
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Elena Porcù
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | - Marcella Pantile
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Daniele Boso
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | - Carlo Zanon
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Giampietro Viola
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | | | - Elena Mariotto
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | | | - Giuseppe Basso
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | - Gian Paolo Tonini
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| |
Collapse
|
46
|
Ato S, Makanae Y, Kido K, Fujita S. Contraction mode itself does not determine the level of mTORC1 activity in rat skeletal muscle. Physiol Rep 2017; 4:4/19/e12976. [PMID: 27688433 PMCID: PMC5064134 DOI: 10.14814/phy2.12976] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/19/2016] [Indexed: 11/24/2022] Open
Abstract
Resistance training with eccentric contraction has been shown to augment muscle hypertrophy more than other contraction modes do (i.e., concentric and isometric contraction). However, the molecular mechanisms involved remain unclear. The purpose of this study was to investigate the effect of muscle contraction mode on mammalian target of rapamycin complex 1 (mTORC1) signaling using a standardized force‐time integral (load (weight) × contraction time). Male Sprague–Dawley rats were randomly assigned to three groups: eccentric contraction, concentric contraction, and isometric contraction. The right gastrocnemius muscle was exercised via percutaneous electrical stimulation‐induced maximal contraction. In experiment 1, different modes of muscle contraction were exerted using the same number of reps in all groups, while in experiment 2, muscle contractions were exerted using a standardized force‐time integral. Muscle samples were obtained immediately and 3 h after exercise. Phosphorylation of molecules associated with mTORC1 activity was assessed using western blot analysis. In experiment 1, the force‐time integral was significantly different among contraction modes with a higher force‐time integral for eccentric contraction compared to that for other contraction modes (P < 0.05). In addition, the force‐time integral was higher for concentric contraction compared to that for isometric contraction (P < 0.05). Similarly, p70S6K phosphorylation level was higher for eccentric contraction than for other modes of contraction (P < 0.05), and concentric contraction was higher than isometric contraction (P < 0.05) 3 h after exercise. In experiment 2, under the same force‐time integral, p70S6K (Thr389) and 4E‐BP1 phosphorylation levels were similar among contraction modes 3 h after exercise. Our results suggest that mTORC1 activity is not determined by differences in muscle contraction mode itself. Instead, mTORC1 activity is determined by differences in the force‐time integral during muscle contraction.
Collapse
Affiliation(s)
- Satoru Ato
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Yuhei Makanae
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Kohei Kido
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
47
|
Elyasiyan U, Nudel A, Skalka N, Rozenberg K, Drori E, Oppenheimer R, Kerem Z, Rosenzweig T. Anti-diabetic activity of aerial parts of Sarcopoterium spinosum. Altern Ther Health Med 2017; 17:356. [PMID: 28683738 PMCID: PMC5501114 DOI: 10.1186/s12906-017-1860-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/26/2017] [Indexed: 01/18/2023]
Abstract
Background Sarcopoterium spinosum (S. spinosum) is used by Bedouin medicinal practitioners for the treatment of diabetes. While the anti-diabetic activity of S. spinosum root extract was validated in previous studies, the activity of aerial parts of the same plants has not been elucidated yet. The aim of this study was to clarify the glucose lowering properties of the aerial parts of the shrub. Methods Anti-diabetic properties were evaluated by measuring the activity of carbohydrate digesting enzymes, glucose uptake into 3 T3-L1 adipocytes, and insulin secretion. Insulin signaling cascade was followed in L6 myotubes using Western blot and PathScan analysis. Results Activity of α-amylase and α-glucosidase was inhibited by extracts of all S. spinosum organs. Basal and glucose-induced insulin secretion was measured in Min6 cells and found to be enhanced as well. Glucose uptake was induced by all S. spinosum extracts, with roots found to be the most effective and fruits the least. The effect of S. spinosum on Akt phosphorylation was minor compared to insulin effect. However, GSK3β and PRAS40, which are downstream elements of the insulin cascade, were found to be highly phosphorylated by S. spinosum extracts. Inhibition of PI3K and Akt, but not AMPK and ERK, abrogated the induction of glucose uptake by the aerial parts of the shrub. Conclusion The aerial organs of S. spinosum have anti-diabetic properties and may be used as a basis for the development of dietary supplements or to identify new agents for the treatment of type 2 diabetes.
Collapse
|
48
|
Rhoads RP, Baumgard LH, El-Kadi SW, Zhao LD. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Roles for insulin-supported skeletal muscle growth. J Anim Sci 2017; 94:1791-802. [PMID: 27285676 DOI: 10.2527/jas.2015-0110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Basic principles governing skeletal muscle growth and development, from a cellular point of view, have been realized for several decades. Skeletal muscle is marked by the capacity for rapid hypertrophy and increases in protein content. Ultimately, skeletal muscle growth is controlled by 2 basic means: 1) myonuclear accumulation stemming from satellite cell (myoblast) proliferation and 2) the balance of protein synthesis and degradation. Each process underlies the rapid changes in lean tissue accretion evident during fetal and neonatal growth and is particularly sensitive to nutritional manipulation. Although multiple signals converge to alter skeletal muscle mass, postprandial changes in the anabolic hormone insulin link feed intake with enhanced rates of protein synthesis in the neonate. Indeed, a consequence of insulin-deficient states such as malnutrition is reduced myoblast activity and a net loss of body protein. A well-characterized mechanism mediating the anabolic effect of insulin involves the phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling pathway. Activation of mTOR leads to translation initiation control via the phosphorylation of downstream targets. Modulation of this pathway by insulin, as well as by other hormones and nutrients, accounts for enhanced protein synthesis leading to efficient lean tissue accretion and rapid skeletal muscle gain in the growing animal. Dysfunctional insulin activity during fetal and neonatal stages likely alters growth through cellular and protein synthetic capacities.
Collapse
|
49
|
Obermann J, Priglinger CS, Merl-Pham J, Geerlof A, Priglinger S, Götz M, Hauck SM. Proteome-wide Identification of Glycosylation-dependent Interactors of Galectin-1 and Galectin-3 on Mesenchymal Retinal Pigment Epithelial (RPE) Cells. Mol Cell Proteomics 2017; 16:1528-1546. [PMID: 28576849 DOI: 10.1074/mcp.m116.066381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/04/2017] [Indexed: 11/06/2022] Open
Abstract
Identification of interactors is a major goal in cell biology. Not only protein-protein but also protein-carbohydrate interactions are of high relevance for signal transduction in biological systems. Here, we aim to identify novel interacting binding partners for the β-galactoside-binding proteins galectin-1 (Gal-1) and galectin-3 (Gal-3) relevant in the context of the eye disease proliferative vitreoretinopathy (PVR). PVR is one of the most common failures after retinal detachment surgeries and is characterized by the migration, adhesion, and epithelial-to-mesenchymal transition of retinal pigment epithelial cells (RPE) and the subsequent formation of sub- and epiretinal fibrocellular membranes. Gal-1 and Gal-3 bind in a dose- and carbohydrate-dependent manner to mesenchymal RPE cells and inhibit cellular processes like attachment and spreading. Yet knowledge about glycan-dependent interactors of Gal-1 and Gal-3 on RPE cells is very limited, although this is a prerequisite for unraveling the influence of galectins on distinct cellular processes in RPE cells. We identify here 131 Gal-3 and 15 Gal-1 interactors by galectin pulldown experiments combined with quantitative proteomics. They mainly play a role in multiple binding processes and are mostly membrane proteins. We focused on two novel identified interactors of Gal-1 and Gal-3 in the context of PVR: the low-density lipoprotein receptor LRP1 and the platelet-derived growth factor receptor β PDGFRB. Addition of exogenous Gal-1 and Gal-3 induced cross-linking with LRP1/PDGFRB and integrin-β1 (ITGB1) on the cell surface of human RPE cells and induced ERK/MAPK and Akt signaling. Treatment with kifunensine, an inhibitor of complex-type N-glycosylation, weakened the binding of Gal-1 and Gal-3 to these interactors and prevented lattice formation. In conclusion, the identified specific glycoprotein ligands shed light into the highly specific binding of galectins to dedifferentiated RPE cells and the resulting prevention of PVR-associated cellular events.
Collapse
Affiliation(s)
- Jara Obermann
- From the ‡Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg
| | | | - Juliane Merl-Pham
- From the ‡Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg
| | - Arie Geerlof
- ¶Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg
| | | | - Magdalena Götz
- ‖Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg.,**Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, 82152 Munich, Germany
| | - Stefanie M Hauck
- From the ‡Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg;
| |
Collapse
|
50
|
Iyengar BR, Pillai B, Venkatesh KV, Gadgil CJ. Systematic comparison of the response properties of protein and RNA mediated gene regulatory motifs. MOLECULAR BIOSYSTEMS 2017; 13:1235-1245. [PMID: 28485414 DOI: 10.1039/c6mb00808a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a framework enabling the dissection of the effects of motif structure (feedback or feedforward), the nature of the controller (RNA or protein), and the regulation mode (transcriptional, post-transcriptional or translational) on the response to a step change in the input. We have used a common model framework for gene expression where both motif structures have an activating input and repressing regulator, with the same set of parameters, to enable a comparison of the responses. We studied the global sensitivity of the system properties, such as steady-state gain, overshoot, peak time, and peak duration, to parameters. We find that, in all motifs, overshoot correlated negatively whereas peak duration varied concavely with peak time. Differences in the other system properties were found to be mainly dependent on the nature of the controller rather than the motif structure. Protein mediated motifs showed a higher degree of adaptation i.e. a tendency to return to baseline levels; in particular, feedforward motifs exhibited perfect adaptation. RNA mediated motifs had a mild regulatory effect; they also exhibited a lower peaking tendency and mean overshoot. Protein mediated feedforward motifs showed higher overshoot and lower peak time compared to the corresponding feedback motifs.
Collapse
|