1
|
Li T, Li Q, Liu S, Cao J, Mei J, Gong J, Chen J, Wang X, Zhang R, Li X, Wang Q, Zhang H, Wang B, Cao H, Yang H, Fung SY. Targeted V-type peptide-decorated nanoparticles prevent colitis by inhibiting endosomal TLR signaling and modulating intestinal macrophage polarization. Biomaterials 2025; 314:122843. [PMID: 39321686 DOI: 10.1016/j.biomaterials.2024.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Inflammatory bowel disease (IBD) has become a serious and challenging health problem globally without curative medical treatments. Mounting evidence suggests that intestinal macrophages and their phenotypes are key players in the pathogenesis of IBD. Modulating the phenotypes and functions of intestinal macrophages through targeted interventions could be a promising approach to manage detrimental gut inflammation in IBD. In this study, we rationally design and fabricate a novel class of V-type peptide-decorated nanoparticles, VP-NP, with potent anti-inflammatory activity. Such a design allows two functional motifs FFD in a single peptide molecule to enhance the bioactivity of the nanoparticles. As expected, VP-NP exhibits a strong inhibitory activity on endosomal Toll-like receptor (TLR) signaling. Surprisingly, VP-NP can inhibit M1 polarization while facilitating M2 polarization in mouse bone marrow-derived macrophages through regulating the key transcription factors NF-κB, STAT1 and PPAR-γ. Mechanistically, VP-NP is internalized by macrophages in the endosomes, where it blocks endosomal acidification to inhibit endosomal TLR signaling; the transcriptomic analysis reveals that VP-NP potently down-regulates many genes in TLR, NF-κB, JAK-STAT, and cytokine/chemokine signaling pathways associated with inflammatory responses. In a colitis mouse model, the intraperitoneally administered VP-NP effectively alleviates the disease activities by decreasing colon inflammation and injuries, pro-inflammatory cytokine production, and myeloid cell infiltration in the gut. Furthermore, VP-NP primarily targets intestinal macrophages and alters their phenotypes from inflammatory M1-type toward the anti-inflammatory M2-type. This study provides a new nanotherapeutic strategy to specifically regulate macrophage activation and phenotypes through a dual mechanism to control gut inflammation, which may augment current clinical treatments for IBD.
Collapse
Affiliation(s)
- Tongxuan Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Qianqian Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Sixia Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Jiazhu Cao
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Jian Mei
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Jiameng Gong
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Jiugeng Chen
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Xiaomeng Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Qian Wang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Hefan Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hong Yang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China.
| | - Shan-Yu Fung
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Zhao Y, Zhao S, Liu S, Ye W, Chen WD. Kupffer cells, the limelight in the liver regeneration. Int Immunopharmacol 2025; 146:113808. [PMID: 39673997 DOI: 10.1016/j.intimp.2024.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Kupffer cells are pivotal in initiating hepatocyte proliferation and establishing connections between different cell types during liver regeneration following partial hepatectomy. As resident macrophages within the liver, Kupffer cells collaborate with hepatocytes and non-parenchymal cells to release various inflammatory mediators that promote hepatocyte proliferation through induction signals like STAT3 phosphorylation. Additionally, the regeneration and replenishment of Kupffer cells themselves are integral components of liver regeneration. The supplementation of the Kupffer cell pool primarily occurs through two pathways: one involves local proliferation of Kupffer cells in their original location, while the other entails infiltration of circulating monocytes into the liver, followed by acquiring Kupffer cell phenotypes under the combined influence of multiple inducing factors. Extensive research has focused on intercellular crosstalk among various types of liver cells during liver regeneration, highlighting the crucial role played by Kupffer cells. This article aims to introduce Kupffer cells and their involvement in liver regeneration, as well as discuss the steady-state balance of Kupffer cell pools during this process.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shiwei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Huang Z, Wang L, Li W, Liao N, Heng J, Qin Y, Li L, Bian Z, Cao W, Xia L, Zhang R. The role of lncRNA NEAT1 in acute graft-versus-host disease: Regulation of macrophage polarization and inflammatory cytokine secretion via JNK/NLRP3 pathway. Int Immunopharmacol 2025; 146:113857. [PMID: 39721453 DOI: 10.1016/j.intimp.2024.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) is a complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). The role of macrophages as proficient antigen-presenting cells in aGVHD is a prominent area of investigation in contemporary research. The association between long noncoding RNA nuclear enriched abundant transcript 1 (lncRNA NEAT1) and the macrophage function is of significant interest. However, the role of lncRNA NEAT1 in aGVHD needs to be further explored. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from patients with or without aGVHD (non-aGVHD) after allo-HSCT. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were transduced with NEAT1 lentiviral vector or transfected with NEAT1 small interfering RNA to change the expression level of lncRNA NEAT1. Finally, an aGVHD mouse model was established to evaluate the role of JNK inhibitor or NLRP3 inhibitor in aGVHD. RESULTS Compared with non-aGVHD patients, lncRNA NEAT1 was significantly up-regulated in the PBMCs of aGVHD patients. ROC and AUC analysis confirmed that the expression of lncRNA NEAT1 was correlated with the occurrence of aGVHD. The overexpression of lncRNA NEAT1 in RAW264.7 could significantly promote the proliferation, migration, and differentiation into M1 macrophages. Knockdown of lncRNA NEAT1 could significantly decrease the proportion of M1 macrophages, regulate pro-inflammatory cytokines secretion, and affect the JNK/NLRP3 pathway in lipopolysaccharides (LPS)-induced BMDMs. Correspondingly, JNK and NLRP3 inhibitors reduced LPS-induced pro-inflammatory responses in macrophages. Furthermore, JNK and NLRP3 inhibitors regulated macrophage polarization and improved symptoms in aGVHD mice. CONCLUSIONS The aforementioned data suggest that lncRNA NEAT1 potentially plays a significant role in macrophage polarization and the secretion of inflammatory cytokines through its modulation of the JNK/NLRP3 pathway. Consequently, this study establishes a foundation for the development of novel therapeutic approaches targeting aGVHD.
Collapse
Affiliation(s)
- Zhenli Huang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ni Liao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Heng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Qin
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Tan RZ, Bai QX, Jia LH, Wang YB, Li T, Lin JY, Liu J, Su HW, Kantawong F, Wang L. Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation. Biomed Pharmacother 2025; 183:117842. [PMID: 39809127 DOI: 10.1016/j.biopha.2025.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair. Moreover, therapeutic studies targeting these epigenetic interaction mechanisms have found that the application of histone deacetylase inhibitors, histone methyltransferase inhibitors, various nanomaterials, and locked nucleic acids against non-coding RNA have positive effects on the treatment of multiple kidney diseases. This review summarizes the latest research advancements in these epigenetic regulatory mechanisms and therapies, providing a theoretical foundation for further elucidating the pathogenesis of kidney diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long-Hao Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yi-Bing Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hong-Wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Song J, Li X, Abuduwaili K, Sun Y, Li J, Chen D, Chen Z, Li Z, Huang B. Dipyridamole Attenuates Experimental Periodontitis by Regulating M1 Macrophage Polarization via PKA/PKG Pathways. J Periodontal Res 2025. [PMID: 39799459 DOI: 10.1111/jre.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
AIM Periodontitis is a chronic inflammatory disease initiated by dysbiosis of the local microbial community. As a non-specific phosphodiesterase inhibitor, dipyridamole features anti-oxidant and anti-inflammatory properties. This study aimed to investigate the effects of dipyridamole in an experimental rat model of periodontitis. METHODS Thirty rats were divided randomly into three groups (n = 10): non-ligature group (NL), ligature-induced periodontitis group (L), and ligature-induced periodontitis with dipyridamole administered group (L + D). All rats were euthanized on Day 14. Alveolar bone resorption was analyzed by microcomputed tomography. The mRNA levels of Il1b, Il6, tumor necrosis factor alpha (Tnfa), and inducible nitric oxide synthase (iNos) in gingival tissue were assessed by real-time quantitative polymerase chain reaction (qRT-PCR). Inflammation level, osteoclasts, and macrophages infiltration were analyzed histologically. RAW264.7 macrophages were stimulated with Porphyromonas gingivalis lipopolysaccharide (P.g. LPS) to induce M1 polarization. Different concentration of dipyridamole (0/2/10 μM) was added simultaneously. To explore the role of PKA/PKG pathways, RAW 264.7 macrophages were pretreated with 10 μM H-89 (PKA inhibitor) or 1 μM KT-5823 (PKG inhibitor), respectively. Expression of pro-inflammatory cytokines and M1 markers were detected by qRT-PCR, ELISA, and flow cytometry. RESULTS Dipyridamole administration reduced alveolar bone loss, protein levels of inflammatory cytokines, and osteoclastogenesis in rats with experimental periodontitis. It also showed a tendency to decrease mRNA levels of Il1b, Il6, and Tnfa but without significant differences in gingival tissues. Moreover, the infiltration of macrophage and M1 macrophage polarization in gingival tissue of periodontitis rats were inhibited by dipyridamole administration. In addition, dipyridamole could downregulate the gene expression of Il1b and Tnfa, as well as the protein level of TNF-α, CD86, and iNOS in RAW264.7 treated with P.g. LPS. When PKA/PKG pathways were blocked, the suppression of TNF-α, CD86, and iNOS was reversed significantly. CONCLUSION Dipyridamole alleviated experimental periodontitis in rat models by regulating M1 polarization via activation of PKA/PKG pathways and emerges as a hopeful remedy for periodontitis.
Collapse
Affiliation(s)
- Jiaying Song
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xingyi Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Kailibinuer Abuduwaili
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Sun
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jiangbo Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Danying Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Baoxin Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Zhang R, Zuo Y, Li S. Mycoplasma pneumoniae MPN606 induces inflammation by activating MAPK and NF-κB signaling pathways. Microb Pathog 2025:107288. [PMID: 39805346 DOI: 10.1016/j.micpath.2025.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/09/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Mycoplasma pneumoniae (M. pneumoniae) is one of the major pathogens causing community-acquired pneumonia (CAP), and its pathogenic mechanism is not fully understood. Inflammatory response is the most basic and common pathological phenomenon of CAP, but the specific mechanism needs further investigation. In this study, the inflammatory action of M. pneumoniae MPN606 protein was confirmed and its molecular mechanism was tentatively investigated. Compared with the control group treated with PBS, stimulation of RAW264.7 cells with rMPN606 can promote the release of NO, increase the expression level of TNF-α and IL⁃6 cytokines, and up-regulate the mRNA transcription levels of iNOS, IL-6 and TNF-α in RAW264.7 cells. In addition, rMPN606 also significantly induced the expression of iNOS protein in RAW264.7 cells, resulting in increased phosphorylation levels of p65, p38 and ERK proteins. The results of cellular immunofluorescence showed that NF-κB was transferred from cytoplasm to nucleus of RAW264.7 cells after stimulation with rMPN606, and nuclear translocation of NF-κB was significantly enhanced. These results indicate that Mycoplasma pneumoniae MPN606 induces M1-type activation of macrophages and secretes pro-inflammatory factors by activating NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Ru Zhang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China
| | - Yingying Zuo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China
| | - Shuihong Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
7
|
Pan T, Li M, Guo J, Zhao D, Liu X, Huang H, Wang N, Yu S, Guan J, Liu M, Zhang S, Wang C, Yang G. Bacillus safensis from Sauerkraut Alleviates Acute Lung Injury Induced by Methicillin-Resistant Staphylococcus aureus through the Regulation of M2 Macrophage Polarization via Its Metabolite Esculin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:409-424. [PMID: 39723899 DOI: 10.1021/acs.jafc.4c05508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Sauerkraut contains various fermentative microorganisms that produce active metabolites, enhancing immunity and resistance to infections. However, its effects on methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) remain unclear. Using RAW264.7 cells and a mouse model, we demonstrated that Bacillus safensis SK14 (BS SK14), an understudied fermentative bacterium, has an immunomodulatory effect on MRSA-induced ALI. BS SK14 significantly reduced the inflammatory responses. Supplementation with live BS SK14 or its culture supernatant increased survival rates, reduced lung damage, and attenuated inflammation in ALI model mice. LC-MS/MS analysis identified esculin as the key metabolite responsible for these effects. BS SK14 produces esculin via the gut-lung axis, inhibiting the TLR2-MyD88-NF-κB pathway, reducing Keap1 levels, and activating the Nrf2-ARE pathway. This decreased MRSA-induced M1 polarization and increased M2 polarization, enhancing antioxidant and anti-inflammatory activities in mice. Collectively, these results reveal that BS SK14 and its metabolite esculin exert therapeutic effects on MRSA-induced ALI through a multifactorial strategy.
Collapse
Affiliation(s)
- Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Minghan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Jialin Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Dongyu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Xin Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Shuyuan Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Jiayao Guan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Mingxiao Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Shumin Zhang
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| |
Collapse
|
8
|
Xiao D, Zhu H, Xiao X. Knockdown of HM13 Inhibits Metastasis, Proliferation, and M2 Macrophage Polarization of Non-small Cell Lung Cancer Cells by Suppressing the JAK2/STAT3 Signaling Pathway. Appl Biochem Biotechnol 2025; 197:570-586. [PMID: 39207680 DOI: 10.1007/s12010-024-05054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
An upregulated histocompatibility minor 13 (HM13) has been studied in various tumors, yet the exact mechanism of HM13 in non-small cell lung cancer (NSCLC) is unclear. In view of same, the present study investigates crucial role and action mechanism of HM13 in human NSCLC. HM13 expression was higher in NSCLC tissue and cells through the Western blotting technique along with qRT-PCR. As per data from The Cancer Genome Atlas (TCGA), NSCLC patients having high HM13 expression show lower overall survival. 5-ethynyl-2-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and transwell tests were assessed for NSCLC cell growth, and invasion, and we found that silencing of HM13 inhibited the NSCLC cell proliferation, invasion. Additionally, to investigate the effects of HM13 on THP-1 macrophage polarization, a co-culture model of NSCLC and THP-1 macrophages were used. The CD206 + macrophages were examined using flow cytometry. As the markers of M2 macrophage, the mRNA levels of IL-10 and TGF-β of THP-1 cells were also detected by qRT-PCR. Knockdown of HM13 could inhibit the M2 polarization. Further experiments demonstrated that downregulated HM13 could inhibit the JAK2/STAT3 signaling pathway. RO8191 (activator of JAK/STAT3 pathway) influenced the invasion, proliferation, and expression of JAK2/STAT3 signaling pathway and Epithelial-mesenchymal transition (EMT) markers induced by HM13 silencing. HM13 knockdown also inhibited the tumor growth in vivo by xenograft nude mouse model. By inhibiting JAK2/STAT3 signaling pathway, HM13 knockdown inhibited the NSCLC cell proliferation, metastasis tumor growth, and tumor-associated macrophage M2 polarization. In NSCLC, HM13 could be a therapeutic target to treat the NSCLC.
Collapse
Affiliation(s)
- Dashu Xiao
- Department of Pathology, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
| | - Hongbin Zhu
- Department of Respiratory Medicine, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
| | - Xin Xiao
- Department of Oncology, Chaohu Hospital of Anhui Medical University, No. 64 Chaohu North Road, Juchao District, Chaohu, 238000, Anhui, China.
| |
Collapse
|
9
|
Yang S, Zheng Y, Pu Z, Nian H, Li J. The multiple roles of macrophages in peritoneal adhesion. Immunol Cell Biol 2025; 103:31-44. [PMID: 39471989 DOI: 10.1111/imcb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 12/03/2024]
Abstract
Peritoneal adhesion (PA) refers to the abnormal adhesion of the peritoneum either with the peritoneum itself or with tissues and organs that is caused by abdominopelvic surgery, abdominal infection or peritoneal inflammation. PA is associated with various clinical complications, such as abdominal pain and distension, intestinal obstruction, gastrointestinal disorders and female infertility, and adversely affects the quality of life of patients. Macrophages are essential for PA formation and can undergo polarization into classically activated macrophages (M1) and alternatively activated macrophages (M2), which are influenced by the peritoneal microenvironment. By releasing proinflammatory cytokines and reactive oxygen species, M1 macrophages promote peritoneal inflammatory reactions and the resultant formation of adhesion. In contrast, M2 macrophages secrete anti-inflammatory cytokines and growth factors to inhibit PA formation and to promote repair and healing of peritoneal tissues, and thereby play a significant anti-inflammatory role. This review comprehensively explores the function and mechanism of macrophages and their subtypes in PA formation to gain insight into the prevention and treatment of PA based on the modulation of macrophages.
Collapse
Affiliation(s)
- Shangwei Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanhe Zheng
- Digestive Department, The First People's Hospital of Lanzhou New Area, Lanzhou, China
| | - Zhenjun Pu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Hongyu Nian
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Junliang Li
- Gansu University of Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
10
|
Zhao Y, Jiang Y, Wang F, Sun L, Ding M, Zhang L, Wu B, Zhang X. High glucose promotes macrophage switching to the M1 phenotype via the downregulation of STAT-3 mediated autophagy. PLoS One 2024; 19:e0314974. [PMID: 39739966 DOI: 10.1371/journal.pone.0314974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
AIM Imbalanced M1/M2 macrophage phenotype activation is a key point in diabetic kidney disease (DKD). Macrophages mainly exhibit the M1 phenotype, which contributes to inflammation and fibrosis in DKD. Studies have indicated that autophagy plays an important role in M1/M2 activation. However, the mechanism by which autophagy regulates the macrophage M1/M2 phenotype in DKD is unknown. Thus, the aim of the present study was to explore whether high glucose-induced macrophages switch to the M1 phenotype via the downregulation of STAT-3-mediated autophagy. METHODS DKD model rats were established in vivo via the intraperitoneal injection of streptozocin (STZ). The rats were sacrificed at 18 weeks for histological and molecular analysis. RAW264.7 cells were cultured in vitro with 30 mM glucose in the presence or absence of a STAT-3 activator (colivelin) and an autophagy activator (rapamycin). Moreover, M1 and M2 macrophage activation models were established as a control group. Immunofluorescence and Western blot analyses were used to detect the expression of autophagy-related proteins (LC3 and Beclin-1), M1 markers (iNOS and CD11c) and M2 markers (MR and CD206). RESULTS In DKD, macrophages exhibit an M1 phenotype. Under high-glucose conditions, RAW264.7 macrophages switched to the M1 phenotype. Autophagy was downregulated in high glucose-induced M1 macrophages. Both the STAT-3 activator and the autophagy activator promoted the transition of glucose-induced M1 macrophages to M2 macrophages. Moreover, STAT-3 activation increased the expression of autophagy markers (LC3 and Beclin-1). However, the autophagy activator had no effect on STAT-3 phosphorylation. CONCLUSION High glucose promotes macrophage switching to the M1 phenotype via the downregulation of STAT-3-mediated autophagy.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| | - Yuteng Jiang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| | - Fengmei Wang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| | - Li Sun
- Department of Nephrology, Xuyi People's Hospital, Huaian, China
| | - Mengyuan Ding
- Department of Nephrology, Xuyi People's Hospital, Huaian, China
| | - Liyuan Zhang
- Department of Nephrology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Beibei Wu
- Institute of Nephrology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| |
Collapse
|
11
|
Fan X, Lin J, Liu H, Deng Q, Zheng Y, Wang X, Yang L. The role of macrophage-derived exosomes in noncancer liver diseases: From intercellular crosstalk to clinical potential. Int Immunopharmacol 2024; 143:113437. [PMID: 39454408 DOI: 10.1016/j.intimp.2024.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chronic liver disease has a substantial global prevalence and mortality rate. Macrophages, pivotal cells in innate immunity, exhibit remarkable heterogeneity and plasticity and play a considerable role in maintaining organ homeostasis, modulating inflammatory responses, and influencing disease progression in the liver. Exosomes, which can serve as conduits for intercellular communication, biomarkers, and therapeutic targets for a spectrum of diseases, have recently garnered increasing attention recently. Given that the liver is the organ with the highest macrophage content, a thorough understanding of the influence of macrophage-derived exosomes (MDEs) on noncancer liver disease pathogenesis and their potential therapeutic applications is paramount. Interactions among MDEs, hepatocytes, hepatic stellate cells (HSCs), and other nonparenchymal cells constitute a complex network regulates liver immune homeostasis. In this review, we summarize the latest progress in the current understanding of MDE heterogeneity and cellular crosstalk in noncancer liver diseases, as well as their potential clinical applications. Additionally, challenges and future directions are underscored.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Lin
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Honglan Liu
- Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Wang Y, Zhang Y, Ma M, Zhuang X, Lu Y, Miao L, Lu X, Cui Y, Cui W. Mechanisms underlying the involvement of peritoneal macrophages in the pathogenesis and novel therapeutic strategies for dialysis-induced peritoneal fibrosis. Front Immunol 2024; 15:1507265. [PMID: 39749340 PMCID: PMC11693514 DOI: 10.3389/fimmu.2024.1507265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality. The causes and mechanisms underlying peritoneal fibrosis in patients undergoing peritoneal dialysis remain unknown, with no definitive treatment available. However, abnormal activation of the immune system appears to be involved in altering the structure of the peritoneum and promoting fibrotic changes. Macrophage infiltration and polarization are key contributors to pathological injury within the peritoneum, showing a strong correlation with the epithelial-to-mesenchymal transition of mesothelial cells and driving the process of fibrosis. This article discusses the role and mechanisms underlying macrophage activation-induced peritoneal fibrosis resulting from PD by analyzing relevant literature from the past decade and provides an overview of recent therapeutic approaches targeting macrophages to treat this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yingchun Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| |
Collapse
|
13
|
Hu R, Liu Z, Hou H, Li J, Yang M, Feng P, Wang X, Xu D. Identification of key necroptosis-related genes and immune landscape in patients with immunoglobulin A nephropathy. BMC Nephrol 2024; 25:459. [PMID: 39696012 DOI: 10.1186/s12882-024-03885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is a major cause of chronic kidney disease (CKD) and kidney failure. Necroptosis is a novel type of programmed cell death that has been proved to be associated with the pathogenesis of infectious disease, cardiovascular disease, neurological disorders and so on. However, the role of necroptosis in IgAN remains unclear. METHODS In this study, we explored the role of necroptosis-related genes in the pathogenesis of IgAN using a comprehensive bioinformatics method. Microarray datasets GSE93798 and GSE115857 were downloaded from Gene Expression Omnibus (GEO). "limma" package of R software was employed to identify necroptosis-related differentially expressed genes (NRDEGs) between IgAN and healthy controls. GO and KEGG functional enrichment analysis was performed by Clusterprofiler. Least absolute shrinkage and selection operator (LASSO) regression analysis identified hub NRDEGs. We further established a diagnostic model consisting of 7 diagnostic hub NRDEGs and validated the efficacy by an external dataset. The expression of hub genes was confirmed in sc-RNA dataset GSE171314. Immune infiltration, gene set enrichment analysis and transcription factor binding motifs enrichment analysis were conducted to further uncover their roles. RESULTS 1076 differentially expressed genes were identified between healthy individuals and IgAN patients from RNA-seq dataset GSE9379. Then we cross-linked them with necroptosis-related genes to obtain 9 NRDEGs. LASSO regression analysis screened out 7 hub genes (JUN, CD274, SERTAD1, NFKBIA, H19, UCHL1 and EZH2) of IgAN. We further conducted functional enrichment analysis and constructed the diagnostic model based on dataset GSE93798. GSE115857 was used as the independent validation cohort and indicated a great predictive efficacy. Immune infiltration, gene set enrichment analysis and transcription factor binding motifs enrichment analysis revealed their potential function. Finally, we screened out four drugs that were predicted to have therapeutic value of IgAN. CONCLUSIONS In summary, we identified 7 hub necroptosis-associated genes, which can be used as potential genetic biomarkers for IgAN prediction and treatment. Four drugs were predicted as the potential therapeutic solutions. Collectively, we provided insights into the necroptosis-related mechanisms and treatment of IgAN at the transcriptome level.
Collapse
Affiliation(s)
- Ruikun Hu
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Ziyu Liu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huihui Hou
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jingyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ming Yang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Panfeng Feng
- Department of Pharmacy, The First People's Hospital of Nantong city, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xiaorong Wang
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Dechao Xu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
14
|
Zhao B, Li M, Zhang H, Wang J, Zhao W, Yang Y, Usman M, Loor JJ, Xu C. M1 polarization of hepatic macrophages in cows with subclinical ketosis is an important cause of liver injury. J Dairy Sci 2024:S0022-0302(24)01341-9. [PMID: 39647630 DOI: 10.3168/jds.2024-25500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
Subclinical ketosis (SCK) is highly prevalent and easily overlooked, with insidious and slow progression of hepatic injury, often characterized by an imbalance in immune homeostasis. In nonruminants, macrophage polarization plays an important regulatory role in hepatic lipid accumulation, fibrosis and inflammatory processes. Thus, we aimed to investigate the status of hepatic macrophage polarization in SCK cows and to corroborate its association with liver injury and inflammation. Twelve Holstein dairy cows (parity, 2-4) were selected, and liver biopsy and blood were collected on the second week postpartum (10-14 d days in milk). On the basis of serum BHBA concentrations., selected cows were categorized into healthy (n = 6; BHBA <1.0 mM) and SCK (n = 6; 1.2 mM ≤ BHBA < 3.0 mM) groups. Serum biochemical parameters were measured using an automatic biochemical analyzer, which indicated higher serum levels of BHBA and NEFA and an upregulation of liver injury indicators (AST, ALT, TP, GLB) in SCK cows compared with healthy cows. ELISA assays revealed that SCK cows displayed systemic low-grade inflammation, as demonstrated by increased serum levels of HP, SAA, TGF-β, IFN-γ, and IL-1β. Liver biopsies revealed pathological histological alterations, hepatic inflammation, and macrophage polarization status. Oil red staining indicated steatosis, while Sirius red staining demonstrated mild extracellular matrix deposition in the liver of SCK cows. The expression of inflammatory response-related proteins (TLR4, p-NFκB, p-I-κB, NLRP3, and Caspase-1) was elevated in the liver of SCK cows, with the increased mean fluorescence intensity of NFκB further confirming the activation of the inflammatory pathway. Furthermore, the levels of pro-inflammatory factors, TNF-α and IFN-γ, were elevated in the tissue homogenate. Macrophage phenotypic changes in SCK cows were further explored based on the results of liver injury and inflammation. Compared with healthy cows, the protein and mRNA abundance of the macrophage marker CD68 in the liver of SCK cows was higher, along with an increased mean fluorescence intensity of CD68. SCK cows also exhibited reduced mRNA expression of the Kupffer cell marker CLEC4F and elevated chemokine levels (CXCL1 and CCL2). As evidenced by greater protein and mRNA abundance of macrophage M1 polarization markers (iNOS, IL-1β, CD86, IL-6, IL-12b, and CCL3), higher fluorescence intensity of iNOS and CD86, and an increased number of CD68+/CD86+-positive cells observed via immunofluorescence, the macrophage polarization phenotype in the liver of SCK cows was predominantly M1. In contrast, the protein and mRNA abundances of M2 polarization markers (CD206, IL-10, and Arg1) were lower in SCK cows, accompanied by a reduced fluorescence intensity of CD206 and a lower number of CD68+/CD206+-positive cells. Overall, the present study revealed that the number of macrophages in liver is enhanced during subclinical ketosis and is dominated by pro-inflammatory macrophages (M1 macrophages). This could partly explain the increased risk of steatosis, fibrosis, and inflammatory response processes in these cows.
Collapse
Affiliation(s)
- Bichen Zhao
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Ming Li
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Huijing Zhang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jingyi Wang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Wanli Zhao
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yue Yang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Muhammad Usman
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Juan J Loor
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
15
|
Guo Y, Wang P, Hu B, Wang L, Zhang Y, Wang J. Kongensin A targeting PI3K attenuates inflammation-induced osteoarthritis by modulating macrophage polarization and alleviating inflammatory signaling. Int Immunopharmacol 2024; 142:112948. [PMID: 39217884 DOI: 10.1016/j.intimp.2024.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The inflammatory microenvironment, polarization of macrophages towards the M1 phenotype, and consequent matrix degradation and senescence of chondrocytes are primary contributors to the degeneration of knee joint cartilage, further exacerbating the progression of osteoarthritis (OA). Kongensin A (KA) is a recently identified natural plant extract exhibiting anti-necrotic apoptosis and anti-inflammatory properties, but the potential efficacy in alleviating OA remains uncertain. The current research lucubrated the effect of KA on the inflammatory microenvironment and macrophage polarization, as well as its regulatory function in extracellular matrix (ECM) metabolism and chondrocyte senescence. Our findings demonstrated that KA can suppress inflammatory signaling, maintain homeostasis between ECM anabolism and catabolism, and suppress chondrocytes senescence. Further investigation elucidated that the mechanism involves the suppression of the PI3K/AKT/NF-κB axis in chondrocytes under inflammatory conditions. Moreover, KA impeded M1 polarization of macrophages via inhibiting PI3K/AKT/NF-κB axis. Subsequently, we treated chondrocytes with macrophages-derived conditioned medium (CM) and revealed that KA can promote ECM anabolism and alleviate chondrocytes senescence by reprogramming macrophage polarization. Consistent with in vitro experiments, in vivo administration of KA demonstrated alleviated cartilage degeneration and delayed progression of OA. Collectively, through obstructing the PI3K/AKT/NF-κB axis, KA can reprogram macrophage polarization, promote matrix metabolism equilibrium, and alleviate chondrocytes senescence, thereby attenuating the pathology of OA. In conclusion, KA may emerge as a promising therapy for OA.
Collapse
Affiliation(s)
- Yuhui Guo
- Department of Orthopaedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Peng Wang
- Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Wang
- Department of Orthopaedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| | - Yingze Zhang
- Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Juan Wang
- Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| |
Collapse
|
16
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
17
|
Yang J, Xiao L, Zhang L, Luo G, Ma Y, Wang X, Zhang Y. Platelets: A Potential Factor that Offers Strategies for Promoting Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:631-643. [PMID: 38482796 DOI: 10.1089/ten.teb.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bone defects represent a prevalent category of clinical injuries, causing significant pain and escalating health care burdens. Effectively addressing bone defects is thus of paramount importance. Platelets, formed from megakaryocyte lysis, have emerged as pivotal players in bone tissue repair, inflammatory responses, and angiogenesis. Their intracellular storage of various growth factors, cytokines, and membrane protein receptors contributes to these crucial functions. This article provides a comprehensive overview of platelets' roles in hematoma structure, inflammatory responses, and angiogenesis throughout the process of fracture healing. Beyond their application in conjunction with artificial bone substitute materials for treating bone defects, we propose the potential future use of anticoagulants such as heparin in combination with these materials to regulate platelet number and function, thereby promoting bone healing. Ultimately, we contemplate whether manipulating platelet function to modulate bone healing could offer innovative ideas and directions for the clinical treatment of bone defects. Impact statement Given that 5-10% of fracture patients with delayed bone healing or even bone nonunion, this review explores the potential role of platelets in bone healing (directly/indirectly) and proposes ideas and directions for the future as to whether it is possible to promote bone healing and improve fracture healing rates by modulating platelets.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Lijia Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Guochen Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Fan JH, Li XM. Mesangial cell-derived CircRNAs in chronic glomerulonephritis: RNA sequencing and bioinformatics analysis. Ren Fail 2024; 46:2371059. [PMID: 38946402 PMCID: PMC467094 DOI: 10.1080/0886022x.2024.2371059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to play critical roles in the initiation and progression of chronic glomerulonephritis (CGN), while their role from mesangial cells in contributing to the pathogenesis of CGN is rarely understood. Our study aims to explore the potential functions of mesangial cell-derived circRNAs using RNA sequencing (RNA-seq) and bioinformatics analysis. METHODS Mouse mesangial cells (MMCs) were stimulated by lipopolysaccharide (LPS) to establish an in vitro model of CGN. Pro-inflammatory cytokines and cell cycle stages were detected by Enzyme-linked immunosorbent assay (ELISA) and Flow Cytometry experiment, respectively. Subsequently, differentially expressed circRNAs (DE-circRNAs) were identified by RNA-seq. GEO microarrays were used to identify differentially expressed mRNAs (DE-mRNAs) between CGN and healthy populations. Weighted co-expression network analysis (WGCNA) was utilized to explore clinically significant modules of CGN. CircRNA-associated CeRNA networks were constructed by bioinformatics analysis. The hub mRNAs from CeRNA network were identified using LASSO algorithms. Furthermore, utilizing protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG), and GSEA analyses to explore the potential biological function of target genes from CeRNA network. In addition, we investigated the relationships between immune cells and hub mRNAs from CeRNA network using CIBERSORT. RESULTS The expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α was drastically increased in LPS-induced MMCs. The number of cells decreased significantly in the G1 phase but increased significantly in the S/G2 phase. A total of 6 DE-mRNAs were determined by RNA-seq, including 4 up-regulated circRNAs and 2 down-regulated circRNAs. WGCNA analysis identified 1747 DE-mRNAs of the turquoise module from CGN people in the GEO database. Then, the CeRNA networks, including 6 circRNAs, 38 miRNAs, and 80 mRNAs, were successfully constructed. The results of GO and KEGG analyses revealed that the target mRNAs were mainly enriched in immune, infection, and inflammation-related pathways. Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. Moreover, according to an evaluation of immune infiltration, hub mRNAs have statistical correlations with neutrophils, plasma cells, monocytes, and follicular helper T cells. CONCLUSIONS Our findings provide fundamental and novel insights for further investigations into the role of mesangial cell-derived circRNAs in CGN pathogenesis.
Collapse
Affiliation(s)
- Ji Hui Fan
- Department of Nephrology, Huaibei People’s Hospital, Huaibei, China
| | - Xiao Min Li
- Department of Nephrology, Huaibei People’s Hospital, Huaibei, China
- Department of Traditional Chinese Medicine, Huaibei People’s Hospital, Huaibei, China
| |
Collapse
|
19
|
Kuźnicki J, Janicka N, Białynicka-Birula B, Kuźnicki W, Chorążyczewska H, Deszcz I, Kulbacka J. How to Use Macrophages Against Cancer. Cells 2024; 13:1948. [PMID: 39682696 DOI: 10.3390/cells13231948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous studies have demonstrated the significant influence of immune cells on cancer development and treatment. This study specifically examines tumor-associated macrophages (TAMs), detailing their characteristics and roles in tumorigenesis and analyzing the impact of the ratio of TAM subtypes on patient survival and prognosis. It is established that TAMs interact with immunotherapy, radiotherapy, and chemotherapy, thereby influencing the efficacy of these treatments. Emerging therapies are explored, such as the use of nanoparticles (NPs) for drug delivery to target TAMs and modify the tumor microenvironment (TME). Additionally, novel anticancer strategies like the use of chimeric antigen receptor macrophages (CAR-Ms) show promising results. Investigations into the training of macrophages using magnetic fields, plasma stimulation, and electroporation are also discussed. Finally, this study presents prospects for the combination of TAM-based therapies for enhanced cancer treatment outcomes.
Collapse
Affiliation(s)
- Jacek Kuźnicki
- Students Scientific Group No.148, Faculty of Medicine, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Janicka
- Students Scientific Group No.148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Barbara Białynicka-Birula
- Students Scientific Group No.148, Faculty of Medicine, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Wojciech Kuźnicki
- Department of External Beam Radiotherapy, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Pabianicka 62, 93-513 Łódź, Poland
| | - Hanna Chorążyczewska
- Students Scientific Group No.148, Faculty of Medicine, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
20
|
Malheiro LFL, Oliveira CA, Portela FS, Mercês ÉAB, Benedictis LMD, Benedictis JMD, Andrade END, Magalhães ACM, Melo FFD, Oliveira PDS, Soares TDJ, Amaral LSDB. High-intensity interval training alleviates liver inflammation by regulating the TLR4/NF-κB signaling pathway and M1/M2 macrophage balance in female rats with cisplatin hepatotoxicity. Biochem Biophys Res Commun 2024; 733:150712. [PMID: 39317112 DOI: 10.1016/j.bbrc.2024.150712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Cisplatin (CDDP) is an antineoplastic drug whose adverse effects include hepatotoxicity. The inflammatory process is crucial in the progression of liver injuries. Exercise is known for its anti-inflammatory effects, but the influence of different training modalities on hepatoprotection is still unclear. This study aims to compare the impacts between preconditioning with high-intensity interval training (HIIT) and traditional continuous training of low (LT) and moderate (MT) intensities on inflammatory markers in Wistar female rats with CDDP-induced hepatotoxicity. Thirty-five rats were divided into five groups: control and sedentary (C + Sed), treated with CDDP and sedentary (CDDP + Sed), treated with CDDP and subjected to LT (CDDP + LT), treated with CDDP and subjected to MT (CDDP + MT), and treated with CDDP and subjected to HIIT (CDDP + HIIT). The training protocols consisted of treadmill running for 8 weeks before CDDP treatment. The rats were euthanized 7 days after the treatment. Liver samples were collected to evaluate the expression of various inflammatory markers and types of macrophages. Our results indicated that HIIT was the only protocol to prevent the increase in all analyzed pro-inflammatory cytokines and reduce the number of ED-1-positive cells, attenuating the TLR4/NF-κB signaling pathway in the liver. Additionally, HIIT increased the anti-inflammatory cytokine IL-10 and regulated M1/M2 macrophage polarization. Thus, this study suggests that preconditioning with HIIT is more effective in promoting hepatoprotective effects than LT and MT, regulating inflammatory markers through modulation of the TLR4/NF-κB signaling pathway and M2 macrophage polarization in the hepatic tissue of female rats treated with CDDP.
Collapse
Affiliation(s)
- Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Fernanda Santos Portela
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Érika Azenatte Barros Mercês
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Laís Mafra de Benedictis
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Júlia Mafra de Benedictis
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Patrícia da Silva Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia, 45029-094, Brazil
| | | |
Collapse
|
21
|
Liu Y, Wei X, Yang T, Wang X, Li T, Sun M, Jiao K, Jia W, Yang Y, Yan Y, Wang S, Wang C, Liu L, Dai Z, Jiang Z, Jiang X, Li C, Liu G, Cheng Z, Luo Y. Hyaluronic acid methacrylate/Pluronic F127 hydrogel enhanced with spermidine-modified mesoporous polydopamine nanoparticles for efficient synergistic periodontitis treatment. Int J Biol Macromol 2024; 281:136085. [PMID: 39353520 DOI: 10.1016/j.ijbiomac.2024.136085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Bacterial infection, reactive oxygen species (ROS) accumulation, and persistent inflammation pose significant challenges in the treatment of periodontitis. However, the current single-modal strategy makes achieving the best treatment effect difficult. Herein, we developed a double-network hydrogel composed of Pluronic F127 (PF-127) and hyaluronic acid methacrylate (HAMA) loaded with spermidine-modified mesoporous polydopamine nanoparticles (M@S NPs). The PF-127/HAMA/M@S (PH/M@S) hydrogel was injectable and exhibited thermosensitivity and photocrosslinking capabilities, which enable it to adapt to the irregular shape of periodontal pockets. In vitro, the PH/M@S displayed multiple therapeutic effects, such as photothermal antibacterial activity, a high ROS scavenging capacity, and anti-inflammatory effects, which are beneficial for the multimodal treatment of periodontitis. The underlying anti-inflammatory mechanism of this hydrogel involves suppression of the extracellular regulated protein kinase 1/2 and nuclear factor kappa-B signalling pathways. Furthermore, in lipopolysaccharide-stimulated macrophage conditioned media, the PH/M@S effectively restored the osteogenic differentiation potential. In a rat model of periodontitis, the PH/M@S effectively reduced the bacterial load, relieved local inflammation and inhibited alveolar bone resorption. Collectively, these findings highlight the versatile functions of the PH/M@S, including photothermal antibacterial activity, ROS scavenging, and anti-inflammatory effects, indicating that this hydrogel is a promising multifunctional filling material for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yun Liu
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China
| | - Xue Wei
- Ultrasound Diagnostic Center (Doctor of excellence program), The First Hospital of Jilin University, Changchun 130021, China
| | - Tao Yang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xi Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Ting Li
- Department of Gastroenterology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Maolei Sun
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Stomatology, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Kun Jiao
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China
| | - Wenyuan Jia
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yuheng Yang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yongzheng Yan
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Shaoru Wang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chang Wang
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China
| | - Liping Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhihui Dai
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhen Jiang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xuanzuo Jiang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Chiyu Li
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Guomin Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Zhiqiang Cheng
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; College of Resources and Environment, Jilin Agriculture University, Changchun 130118, China
| | - Yungang Luo
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China.
| |
Collapse
|
22
|
Yan Y, Li J, He Y, Ji P, Xu J, Li Y. Potential pro-tumour cytokine in oral squamous cellular carcinoma: IL37. J Cell Mol Med 2024; 28:e70167. [PMID: 39500733 PMCID: PMC11537803 DOI: 10.1111/jcmm.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 10/01/2024] [Accepted: 10/13/2024] [Indexed: 11/09/2024] Open
Abstract
Inflammation and immunosuppression are important features of tumours, including oral squamous cellular carcinoma (OSCC). Interleukin 37 (IL37), a cytokine known for the ability to suppress inflammation and immunity, shows two seemingly contradictory functions in tumours. This study aims to investigate the mechanism that regulates IL37 and its role in OSCC progression. Herein, IL37, CD86 and CD206 in OSCC specimens were determined. Hypoxia, MCC950 and siRNA-Gasdermin D (GSDMD) were utilised to investigate the mechanism of IL37 production and release. Animal experiments were established to examine the role of IL37 in OSCC growth in vivo. We found the levels of IL37 are elevated in OSCC tissues compared with normal oral mucosa. In cell experiments, hypoxia was proved to be a vital facilitator in IL37 expression and release. Mechanically, hypoxia promoted IL37 expression through the activation of NACHT-LRR-PYD-containing protein 3 (NLRP3) inflammasome, and promoted IL37 release via GSDMD. Furthermore, IL37 levels in OSCC specimens are positively correlated with the number of M2 macrophages, but negatively with M1. Further studies revealed IL37 facilitated OSCC progression via promoting macrophage polarization from M1 to M2 and enhancing tumour cell proliferation. Thus, IL37 could be a promising target for OSCC treatment in the future.
Collapse
Affiliation(s)
- Ying Yan
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jun Li
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yungang He
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jie Xu
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yong Li
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
23
|
Tian G, Yin H, Zheng J, Yu R, Ding Z, Yan Z, Tang Y, Wu J, Ning C, Yuan X, Liao C, Sui X, Zhao Z, Liu S, Guo W, Guo Q. Promotion of osteochondral repair through immune microenvironment regulation and activation of endogenous chondrogenesis via the release of apoptotic vesicles from donor MSCs. Bioact Mater 2024; 41:455-470. [PMID: 39188379 PMCID: PMC11347043 DOI: 10.1016/j.bioactmat.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Utilizing transplanted human umbilical cord mesenchymal stem cells (HUMSCs) for cartilage defects yielded advanced tissue regeneration, but the underlying mechanism remain elucidated. Early after HUMSCs delivery to the defects, we observed substantial apoptosis. The released apoptotic vesicles (apoVs) of HUMSCs promoted cartilage regeneration by alleviating the chondro-immune microenvironment. ApoVs triggered M2 polarization in macrophages while simultaneously facilitating the chondrogenic differentiation of endogenous MSCs. Mechanistically, in macrophages, miR-100-5p delivered by apoVs activated the MAPK/ERK signaling pathway to promote M2 polarization. In MSCs, let-7i-5p delivered by apoVs promoted chondrogenic differentiation by targeting the eEF2K/p38 MAPK axis. Consequently, a cell-free cartilage regeneration strategy using apoVs combined with a decellularized cartilage extracellular matrix (DCM) scaffold effectively promoted the regeneration of osteochondral defects. Overall, new mechanisms of cartilage regeneration by transplanted MSCs were unconcealed in this study. Moreover, we provided a novel experimental basis for cell-free tissue engineering-based cartilage regeneration utilizing apoVs.
Collapse
Affiliation(s)
- Guangzhao Tian
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Han Yin
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhengang Ding
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zineng Yan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jiang Wu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chao Ning
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xun Yuan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiang Sui
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhe Zhao
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shuyun Liu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510080, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| |
Collapse
|
24
|
Wang X, Kong X, Chen Z, Li H, Tao Z, Zhang Q, Yu H. Transcriptome analysis reveals the mechanism of black rockfish (Sebastes schlegelii) macrophages respond to Edwardsiella piscicida infection in vivo. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109999. [PMID: 39486559 DOI: 10.1016/j.fsi.2024.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Sebastes schlegelii is an economically significant marine fish that faces serious threats from various pathogens. Edwardsiella piscicida is a pathogenic bacterium that primarily affects fish, including S. schlegelii, leading to severe disease. Although numerous reports have documented the transcriptome sequencing of various fish tissues in response to E. piscicida infection, studies focusing on specific cells remain scarce. In this study, S. schlegelii were infected by intraperitoneal injection of E. piscicida. Severe external clinical signs were observed in E. piscicida-infected S. schlegelii and pathological examination demonstrated structural damage of the head kidney following treatment with E. piscicida. Furthermore, macrophages were isolated from the head kidneys of both the control and E. piscicida-infected groups for RNA sequencing (RNA-seq). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs were closely associated with immune response and oxidative stress. Additionally, Weighted Gene Co-expression Network Analysis (WGCNA) was performed based on the data from this study and RNA-seq files of macrophages infected with E. piscicida in vitro, revealing that immune responses, oxidative stress, and mitochondrial damage were involved in the macrophage response to E. piscicida infection both in vivo and in vitro. This study provides a reference for understanding the mechanisms by which teleost immune cells respond to pathogen invasion and enhances our comprehension of teleost innate immunity.
Collapse
Affiliation(s)
- Xuangang Wang
- Laboratary of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, 572000, Sanya, Hainan, China
| | - Xiangfu Kong
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhentao Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Hengshun Li
- Laboratary of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, 572000, Sanya, Hainan, China
| | - Ze Tao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Quanqi Zhang
- Laboratary of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, 572000, Sanya, Hainan, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| |
Collapse
|
25
|
Ghebremedhin A, Athavale D, Zhang Y, Yao X, Balch C, Song S. Tumor-Associated Macrophages as Major Immunosuppressive Cells in the Tumor Microenvironment. Cancers (Basel) 2024; 16:3410. [PMID: 39410029 PMCID: PMC11475569 DOI: 10.3390/cancers16193410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Within the tumor microenvironment, myeloid cells constitute a dynamic immune population characterized by a heterogeneous phenotype and diverse functional activities. In this review, we consider recent literature shedding light on the increasingly complex biology of M2-like immunosuppressive tumor-associated macrophages (TAMs), including their contribution to tumor cell invasion and metastasis, stromal remodeling (fibrosis and matrix degradation), and immune suppressive functions, in the tumor microenvironment (TME). This review also delves into the intricate signaling mechanisms underlying the polarization of diverse macrophage phenotypes, and their plasticity. We also review the development of promising therapeutic approaches to target these populations in cancers. The expanding knowledge of distinct subsets of immunosuppressive TAMs, and their contributions to tumorigenesis and metastasis, has sparked significant interest among researchers regarding the therapeutic potential of TAM depletion or phenotypic modulation.
Collapse
Affiliation(s)
| | - Dipti Athavale
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
| | - Yanting Zhang
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Xiaodan Yao
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
| | - Curt Balch
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Shumei Song
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
- MD Anderson Cancer Center at Cooper, Cooper University Hospital, 2 Cooper Plaza, Camden, NJ 08103, USA
- Departments of Surgery, Cooper University Hospital, 1 Cooper Plaza, Camden, NJ 08103, USA
| |
Collapse
|
26
|
Searles SC, Chen W, Yee JD, Lee P, Lee CK, Caron C, Neto F, Matei I, Lyden D, Bui JD. MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity. J Extracell Vesicles 2024; 13:e12515. [PMID: 39330930 PMCID: PMC11428867 DOI: 10.1002/jev2.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/01/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication in many physiologic processes and can modulate immune responses in individuals with cancer. Most studies of EVs in cancer have focused on their tumour promoting properties. Whether and how EVs might mediate tumour regression besides carrying antigens has not been well characterized. Using a mouse model of highly immunogenic regressor versus poorly immunogenic progressor tumour cells, we have characterized the role of EVs in activating macrophages and promoting tumour rejection. We found that the signalling molecule MAP2K1 (MEK1) is enriched in EVs secreted by regressor relative to progressor cells. Progressor EVs engineered to have levels of MEK1 similar to regressor EVs could inhibit tumour growth by indirectly promoting adaptive immunity in both syngeneic and 3rd party tumours. This effect required MEK1 activity and could occur by activating macrophages to promote adaptive immune responses against the tumour via the cytokine interferon-gamma. Our results suggest that MEK inhibition may be deleterious to cancer treatment, since MEK1 plays an important cell-extrinsic, tumour-suppressive role within EVs. Moreover, the delivery of MEK1 to tumour-associated macrophages, either by EVs, nanoparticles, or some other means, could be a useful strategy to treat cancer via the activation of anti-tumour immunity.
Collapse
Affiliation(s)
| | - Wei‐Shan Chen
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Jarrod D. Yee
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Preston Lee
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Calvin K. Lee
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Christine Caron
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Felippe Neto
- Department of Cell and Developmental BiologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Irina Matei
- Department of Cell and Developmental BiologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - David Lyden
- Department of Cell and Developmental BiologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Jack D. Bui
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
27
|
Xu HP, Zhan F, Wang H, Lin J, Niu H. Down-regulation of RTEL1 Improves M1/M2 Macrophage Polarization by Promoting SFRP2 in Fibroblasts-derived Exosomes to Alleviate COPD. Cell Biochem Biophys 2024; 82:2129-2139. [PMID: 38805113 DOI: 10.1007/s12013-024-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease worldwide. Macrophage polarization plays a substantial role in the pathogenesis of COPD. This study is aimed to explore the regulatory mechanism of regulator of telomere elongation 1 (RTEL1) in COPD. COPD model mouse was conducted by cigarette smoke (CS). The pathological features of lung in mice were observed by histological staining. After extracting exosomes, macrophages were co-cultured with fibroblasts-derived exosomes. Then, the effects of RTEL1 and exosomal secreted frizzled-related protein 2 (SFRP2) on macrophage proliferation, inflammation, apoptosis, and M1, M2 macrophage polarization (iNOS and CD206) were evaluated by cell counting kit-8, EdU assay, enzyme-linked immuno sorbent assay, and western blotting, respectively. CS-induced COPD model mouse was successfully constructed. Through in vitro experiments, knockdown of RTEL1 inhibited macrophage proliferation, inflammation (MMP9, IL-1β and TNF-α), and promoted apoptosis (Bax, cleaved-caspase3, Bcl-2) in CS extract-induced lung fibroblasts. Meanwhile, RTEL1 knockdown promoted M1 and suppressed M2 macrophage polarization in COPD. Additionally, silencing SFRP2 in fibroblasts-derived exosomes reversed the effects of RTEL1 knockdown on proliferation, inflammation, apoptosis, and M1, M2 macrophage polarization. Collectively, down-regulation of RTEL1 improved M1/M2 macrophage polarization by promoting SFRP2 in fibroblasts-derived exosomes to alleviate CS-induced COPD.
Collapse
Affiliation(s)
- He-Ping Xu
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| | - Feng Zhan
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Hong Wang
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Jie Lin
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Huan Niu
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| |
Collapse
|
28
|
Zhao Q, Li B, Zhang X, Zhao H, Xue W, Yuan Z, Xu S, Duan G. M2 macrophage-derived lncRNA NORAD in EVs promotes NSCLC progression via miR-520g-3p/SMIM22/GALE axis. NPJ Precis Oncol 2024; 8:185. [PMID: 39215037 PMCID: PMC11364787 DOI: 10.1038/s41698-024-00675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes the majority of lung cancer cases, accounting for over 80%. RNAs in EVs play a pivotal role in various biological and pathological processes mediated by extracellular vesicle (EV). Long non-coding RNAs (lncRNAs) are widely associated with cancer-related functions, including cell proliferation, migration, invasion, and drug resistance. Tumor-associated macrophages are recognized as pivotal contributors to tumorigenesis. Given these insights, this study aims to uncover the impact of lncRNA NORAD in EVs derived from M2 macrophages in NSCLC cell lines and xenograft mouse models of NSCLC. EVs were meticulously isolated and verified based on their morphology and specific biomarkers. The interaction between lncRNA NORAD and SMIM22 was investigated using immunoprecipitation. The influence of SMIM22/GALE or lncRNA NORAD in EVs on glycolysis was assessed in NSCLC cell lines. Additionally, we evaluated the effects of M2 macrophage-derived lncRNA NORAD in EVs on cell proliferation and apoptosis through colony formation and flow cytometry assays. Furthermore, the impact of M2 macrophage-derived lncRNA NORAD in EVs on tumor growth was confirmed using xenograft tumor animal models. The results underscored the potential role of M2 macrophage-derived lncRNA NORAD in EVs in NSCLC. SMIM22/GALE promoted glycolysis and the proliferation of NSCLC cells. Furthermore, lncRNA NORAD in EVs targeted SMIM22 and miR-520g-3p in NSCLC cells. Notably, lncRNA NORAD in EVs promoted the proliferation of NSCLC cells and facilitated NSCLC tumor growth through the miR-520g-3p axis. In conclusion, M2 macrophage-derived lncRNA NORAD in EVs promotes NSCLC progression through the miR-520g-3p/SMIM22/GALE axis.
Collapse
Affiliation(s)
- Qingtao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Bin Li
- Hebei Bio-High Technology Development Co.Ltd, Shijiazhuang, Hebei Province, China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Huanfen Zhao
- Department of Pathology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Wenfei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Zheng Yuan
- Department of Nursing, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Guochen Duan
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
29
|
Wen QE, Li L, Feng RQ, Li DH, Qiao C, Xu XS, Zhang YJ. Recent Advances in Immunotherapy for Breast Cancer: A Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:497-516. [PMID: 39220564 PMCID: PMC11365501 DOI: 10.2147/bctt.s482504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is one of the most common malignant tumors in women in the world, and its incidence is increasing year by year, which seriously threatens the physical and mental health of women. Triple negative breast cancer (TNBC) is a special molecular type of breast cancer in which estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 are negative. Compared with other molecular types of breast cancer, triple-negative breast cancer (TNBC) has high aggressiveness and metastasis, high recurrence rate, lack of effective therapeutic targets, and usually poor clinical treatment effect. Chemotherapy was the main therapeutic means used in the past. With the advent of the immune era, immunotherapy has made a lot of progress in the treatment of triple-negative breast cancer (TNBC), bringing new therapeutic hope for the treatment of triple-negative breast cancer. This review combines the results of cutting-edge medical research, mainly summarizes the research progress of immunotherapy, and summarizes the main treatment methods of triple-negative breast cancer (TNBC) immunotherapy, including immune checkpoint inhibitors, tumor vaccines, adoptive immunotherapy and the application of traditional Chinese and western medicine. It provides a new idea for the treatment of triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Qian-Er Wen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Liang Li
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Rui-Qi Feng
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - De-Hui Li
- Oncology Department II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Chang Qiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Xiao-Song Xu
- Scientific research Center, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Yan-Jing Zhang
- Oncology Department II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Shijiazhuang, Hebei Province, People’s Republic of China
| |
Collapse
|
30
|
Liu Y, Cao F, Shi M, Deng Z, Guo K, Fan T, Meng Y, Bu M, Ma Z. Investigation of the mechanism of baicalein in the treatment of periodontitis based on network pharmacology, molecular docking and experimental validation. BMC Oral Health 2024; 24:987. [PMID: 39180042 PMCID: PMC11344467 DOI: 10.1186/s12903-024-04740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
PURPOSE To verify the effect and mechanism of baicalein in the treatment of periodontitis through network pharmacology, molecular docking and in vitro experiments. METHODS Firstly, multiple databases were used to predict targets of baicalein and periodontitis. And the screened key target genes of baicalein for treating periodontitis were subjected to GO and KEGG analysis; then these targets were analyzed by molecular docking techniques. In vitro experiments including CCK-8, RT-qPCR, ELISA and Immunofluorescence were conducted to validate the efficacy of baicalein in treating periodontitis. RESULTS Seventeen key targets were screened from the databases, GO and KEGG analysis of these targets revealed that baicalein may exert therapeutic effects through regulating TNF, PI3K-Akt, HIF-1 and other signaling pathways. Molecular docking analysis showed that baicalein has good binding potential to several targets. In vitro cellular assays showed that baicalein inhibited the expression of TNF-α, MMP-9, IL-6 and MCP1 in P.g-LPS-induced macrophages at both the mRNA and protein level. And the immunofluorescence intensity of iNOS, a marker of M1 type macrophages, which mainly secretes inflammatory factors, was significantly reduced. CONCLUSION Baicalein has the characteristics and advantages of "multicomponent, multitarget, and multipathway" in the treatment of periodontitis. In vitro cellular assays further confirmed the inhibitory effect of baicalein on the secretion of inflammatory factors of macrophages in periodontitis models, providing a theoretical basis for further study of the material basis and molecular mechanism of baicalein in the treatment of periodontal diseases.
Collapse
Affiliation(s)
- Yue Liu
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Fengdi Cao
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Mingyue Shi
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Zhuohang Deng
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Kaili Guo
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Tiantian Fan
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yuhan Meng
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Mingyang Bu
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Zhe Ma
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
31
|
Dou R, Liu R, Su P, Yu X, Xu Y. The GJB3 correlates with the prognosis, immune cell infiltration, and therapeutic responses in lung adenocarcinoma. Open Med (Wars) 2024; 19:20240974. [PMID: 39135979 PMCID: PMC11317640 DOI: 10.1515/med-2024-0974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/26/2024] [Accepted: 05/01/2024] [Indexed: 08/15/2024] Open
Abstract
Gap junction protein beta 3 (GJB3) has been reported as a tumor suppressor in most tumors. However, its role in lung adenocarcinoma (LUAD) remains unknown. The purpose of this study is to explore the role of GJB3 in the prognosis and tumor microenvironment of LUAD patients. The data used in this study were acquired from The Cancer Genome Atlas, Gene Expression Omnibus, and imvigor210 cohorts. We found that GJB3 expression was increased in LUAD patients and correlated with LUAD stages. LUAD patients with high GJB3 expression exhibited a worse prognosis. A total of 164 pathways were significantly activated in the GJB3 high group. GJB3 expression was positively associated with nine transcription factors and might be negatively regulated by hsa-miR-6511b-5p. Finally, we found that immune cell infiltration and immune checkpoint expression were different between the GJB3 high and GJB3 low groups. In summary. GJB3 demonstrated high expression levels in LUAD patients, and those with elevated GJB3 expression displayed unfavorable prognoses. Additionally, there was a correlation between GJB3 and immune cell infiltration, as well as immune checkpoint expression in LUAD patients.
Collapse
Affiliation(s)
- Ruigang Dou
- Department of Thoracic Surgery, The First Affiliated Hospital of Xingtai Medical College,
Xingtai054000, Hebei, P. R. China
| | - Rongfeng Liu
- Department of Oncology, Fourth Hospital of Hebei Medical University,
Shijiazhuang050011, Hebei, P. R. China
| | - Peng Su
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University,
Shijiazhuang050011, Hebei, P. R. China
| | - Xiaohui Yu
- Department of Computer Science and Technology, Tangshan Normal University,
Tangshan050011, Hebei, P. R. China
| | - Yanzhao Xu
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang050011, Hebei, P. R. China
| |
Collapse
|
32
|
Gong X, He S, Cai P. Roles of TRIM21/Ro52 in connective tissue disease-associated interstitial lung diseases. Front Immunol 2024; 15:1435525. [PMID: 39165359 PMCID: PMC11333224 DOI: 10.3389/fimmu.2024.1435525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Multiple factors contribute to the development of connective tissue diseases (CTD), often alongside a range of interstitial lung diseases (ILD), including Sjögren's syndrome-associated ILD, systemic sclerosis-associated ILD, systemic lupus erythematosus-associated ILD, idiopathic inflammatory myositis-associated ILD. TRIM21(or Ro52), an E3 ubiquitin ligase, plays a vital role in managing innate and adaptive immunity, and maintaining cellular homeostasis, and is a focal target for autoantibodies in various rheumatic autoimmune diseases. However, the effectiveness of anti-TRIM21 antibodies in diagnosing CTD remains a matter of debate because of their non-specific nature. Recent studies indicate that TRIM21 and its autoantibody are involved in the pathogenesis of CTD-ILD and play an important role in diagnosis and prognosis. In this review, we focus on the contribution of TRIM21 in the pathogenesis of CTD-ILD, as well as the potential diagnostic value of its autoantibodies in different types of CTD-ILD for disease progression and potential as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Gryziak M, Kraj L, Stec R. The role of tumor-associated macrophages in hepatocellular carcinoma-from bench to bedside: A review. J Gastroenterol Hepatol 2024; 39:1489-1499. [PMID: 38651642 DOI: 10.1111/jgh.16564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Hepatocellular carcinoma is one of the most common cancers worldwide. Despite progress in treatment, recurrence after radical treatment is common, and the prognosis remains poor for patients with advanced disease. Therefore, there is a need to identify prognostic and predictive factors for the response to therapy or more intensive surveillance or treatment. Because the tumor microenvironment plays a crucial role in the development of cancer and metastasis, it is a crucial need to understand processes that are involved in carcinogenesis. Within the microenvironment, several immune cells with different roles are present. One of the most important of these is tumor-associated macrophages. These cells may exert either antitumor or protumor roles. Several studies have suggested that tumor-associated macrophages can be used as prognostic markers. Furthermore, they may be involved in resistance to immunotherapy or systemic treatment. As they play an important role in cancer development, tumor-associated macrophages are also a good target for therapy. In this review, we briefly summarize recent progress on knowledge regarding the basic molecular characteristics, impact on prognosis and potential clinical implications of tumor-associated macrophages in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Maciej Gryziak
- Department of Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, Warsaw, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, Jastrzebiec, Poland
| | - Rafał Stec
- Department of Oncology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
34
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
35
|
Su W, Yin Y, Zhao J, Hu R, Zhang H, Hu J, Ren R, Zhang Y, Wang A, Lyu Z, Mu Y, Cheng Y. Exosomes derived from umbilical cord-derived mesenchymal stem cells exposed to diabetic microenvironment enhance M2 macrophage polarization and protect against diabetic nephropathy. FASEB J 2024; 38:e23798. [PMID: 38989582 DOI: 10.1096/fj.202400359r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
The role of mesenchymal-stem-cell-derived exosomes (MSCs-Exo) in the regulation of macrophage polarization has been recognized in several diseases. There is emerging evidence that MSCs-Exo partially prevent the progression of diabetic nephropathy (DN). This study aimed to investigate whether exosomes secreted by MSCs pre-treated with a diabetic environment (Exo-pre) have a more pronounced protective effect against DN by regulating the balance of macrophages. Exo-pre and Exo-Con were isolated from the culture medium of UC-MSCs pre-treated with a diabetic mimic environment and natural UC-MSCs, respectively. Exo-pre and Exo-Con were injected into the tail veins of db/db mice three times a week for 6 weeks. Serum creatinine and serum urea nitrogen levels, the urinary protein/creatinine ratio, and histological staining were used to determine renal function and morphology. Macrophage phenotypes were analyzed by immunofluorescence, western blotting, and quantitative reverse transcription polymerase chain reaction. In vitro, lipopolysaccharide-induced M1 macrophages were incubated separately with Exo-Con and Exo-pre. We performed microRNA (miRNA) sequencing to identify candidate miRNAs and predict their target genes. An miRNA inhibitor was used to confirm the role of miRNAs in macrophage modulation. Exo-pre were more potent than Exo-Con at alleviating DN. Exo-pre administration significantly reduced the number of M1 macrophages and increased the number of M2 macrophages in the kidney compared to Exo-Con administration. Parallel outcomes were observed in the co-culture experiments. Moreover, miR-486-5p was distinctly expressed in Exo-Con and Exo-pre groups, and it played an important role in macrophage polarization by targeting PIK3R1 through the PI3K/Akt pathway. Reducing miR-486-5p levels in Exo-pre abolished macrophage polarization modulation. Exo-pre administration exhibited a superior effect on DN by remodeling the macrophage balance by shuttling miR-486-5p, which targets PIK3R1.
Collapse
Affiliation(s)
- Wanlu Su
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yaqi Yin
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jian Zhao
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ruofan Hu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Haixia Zhang
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jia Hu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rui Ren
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yue Zhang
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Anning Wang
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yiming Mu
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yu Cheng
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
36
|
Fei X, Li N, Xu X, Zhu Y. Macrophage biology in the pathogenesis of Helicobacter pylori infection. Crit Rev Microbiol 2024:1-18. [PMID: 39086061 DOI: 10.1080/1040841x.2024.2366944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Infection with H. pylori induces chronic gastric inflammation, progressing to peptic ulcer and stomach adenocarcinoma. Macrophages function as innate immune cells and play a vital role in host immune defense against bacterial infection. However, the distinctive mechanism by which H. pylori evades phagocytosis allows it to colonize the stomach and further aggravate gastric preneoplastic pathology. H. pylori exacerbates gastric inflammation by promoting oxidative stress, resisting macrophage phagocytosis, and inducing M1 macrophage polarization. M2 macrophages facilitate the proliferation, invasion, and migration of gastric cancer cells. Various molecular mechanisms governing macrophage function in the pathogenesis of H. pylori infection have been identified. In this review, we summarize recent findings of macrophage interactions with H. pylori infection, with an emphasis on the regulatory mechanisms that determine the clinical outcome of bacterial infection.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
Li Y, Chen Y, Wang D, Wu L, Li T, An N, Yang H. Elucidating the multifaceted role of MGAT1 in hepatocellular carcinoma: integrative single-cell and spatial transcriptomics reveal novel therapeutic insights. Front Immunol 2024; 15:1442722. [PMID: 39081317 PMCID: PMC11286416 DOI: 10.3389/fimmu.2024.1442722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Background Glycosyltransferase-associated genes play a crucial role in hepatocellular carcinoma (HCC) pathogenesis. This study investigates their impact on the tumor microenvironment and molecular mechanisms, offering insights into innovative immunotherapeutic strategies for HCC. Methods We utilized cutting-edge single-cell and spatial transcriptomics to examine HCC heterogeneity. Four single-cell scoring techniques were employed to evaluate glycosyltransferase genes. Spatial transcriptomic findings were validated, and bulk RNA-seq analysis was conducted to identify prognostic glycosyltransferase-related genes and potential immunotherapeutic targets. MGAT1's role was further explored through various functional assays. Results Our analysis revealed diverse cell subpopulations in HCC with distinct glycosyltransferase gene activities, particularly in macrophages. Key glycosyltransferase genes specific to macrophages were identified. Temporal analysis illustrated macrophage evolution during tumor progression, while spatial transcriptomics highlighted reduced expression of these genes in core tumor macrophages. Integrating scRNA-seq, bulk RNA-seq, and spatial transcriptomics, MGAT1 emerged as a promising therapeutic target, showing significant potential in HCC immunotherapy. Conclusion This comprehensive study delves into glycosyltransferase-associated genes in HCC, elucidating their critical roles in cellular dynamics and immune cell interactions. Our findings open new avenues for immunotherapeutic interventions and personalized HCC management, pushing the boundaries of HCC immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuan Chen
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqiong Wang
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Ling Wu
- Tumor Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Na An
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Haikun Yang
- The Gastroenterology Department, Shanxi Provincial People Hospital, Taiyuan, China
| |
Collapse
|
38
|
Shen S, Hu M, Peng Y, Zheng Y, Zhang R. Research Progress in pathogenesis of connective tissue disease-associated interstitial lung disease from the perspective of pulmonary cells. Autoimmun Rev 2024; 23:103600. [PMID: 39151642 DOI: 10.1016/j.autrev.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The lungs are a principal factor in the increased morbidity and mortality observed in patients with Connective Tissue Disease (CTD), frequently presenting as CTD-associated Interstitial Lung Disease (ILD). Currently, there is a lack of comprehensive descriptions of the pulmonary cells implicated in the development of CTD-ILD. This review leverages the Human Lung Cell Atlas (HLCA) and spatial multi-omics atlases to discuss the advancements in research on the pathogenesis of CTD-ILD from a pulmonary cell perspective. This facilitates a more precise localization of disease sites and a more systematic consideration of disease progression, supporting further mechanistic studies and targeted therapies.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ming Hu
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Peng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Zheng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Rong Zhang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
39
|
Peng M, Zhao C, Lu F, Zhang X, Wang X, He L, Chen B. Role of Nedd4L in Macrophage Pro-Inflammatory Polarization Induced by Influenza A Virus and Lipopolysaccharide Stimulation. Microorganisms 2024; 12:1291. [PMID: 39065060 PMCID: PMC11279021 DOI: 10.3390/microorganisms12071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza A virus (IAV) infection often leads to influenza-associated fatalities, frequently compounded by subsequent bacterial infections, particularly Gram-negative bacterial co-infections. Lipopolysaccharide (LPS), a primary virulence factor in Gram-negative bacteria, plays a crucial role in influenza-bacterial co-infections. However, the precise pathogenic mechanisms underlying the synergistic effects of viral-bacterial co-infections remain elusive, posing significant challenges for disease management. In our study, we administered a combination of IAV and LPS to mice and examined associated parameters, including the lung function, lung index, wet/dry ratio, serum inflammatory cytokines, Nedd4L expression in lung tissue, and mRNA levels of inflammatory cytokines. Co-infection with IAV and LPS exacerbated lung tissue inflammation and amplified M1 macrophage expression in lung tissue. Additionally, we stimulated macrophages with IAV and LPS in vitro, assessing the inflammatory cytokine content in the cell supernatant and cytokine mRNA expression within the cells. This combined stimulation intensified the inflammatory response in macrophages and upregulated Nedd4L protein and mRNA expression. Subsequently, we used siRNA to knockdown Nedd4L in macrophages, revealing that suppression of Nedd4L expression alleviated the inflammatory response triggered by concurrent IAV and LPS stimulation. Collectively, these results highlight the pivotal role of Nedd4L in mediating the exacerbated inflammatory responses observed in IAV and LPS co-infections.
Collapse
Affiliation(s)
- Meihong Peng
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (M.P.); (L.H.); (B.C.)
| | - Cheng Zhao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (C.Z.); (X.Z.); (X.W.)
| | - Fangguo Lu
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (M.P.); (L.H.); (B.C.)
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (C.Z.); (X.Z.); (X.W.)
| | - Xianggang Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (C.Z.); (X.Z.); (X.W.)
| | - Xiaoqi Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (C.Z.); (X.Z.); (X.W.)
| | - Li He
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (M.P.); (L.H.); (B.C.)
| | - Bei Chen
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (M.P.); (L.H.); (B.C.)
| |
Collapse
|
40
|
Li R, Feng J, Li L, Luo G, Shi Y, Shen S, Yuan X, Wu J, Yan B, Yang L. Recombinant fibroblast growth factor 4 ameliorates axonal regeneration and functional recovery in acute spinal cord injury through altering microglia/macrophage phenotype. Int Immunopharmacol 2024; 134:112188. [PMID: 38728880 DOI: 10.1016/j.intimp.2024.112188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3β and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3β signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.
Collapse
Affiliation(s)
- Rui Li
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Juerong Feng
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Liuxun Li
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Guotian Luo
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yongpeng Shi
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shichao Shen
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xinrong Yuan
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jianlong Wu
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Bin Yan
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Lei Yang
- Orthopaedics/Department of Spine Surgery, Department of Pharmacy and Department of Gastroenterology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
41
|
Wang X, Zhou J, Li X, Liu C, Liu L, Cui H. The Role of Macrophages in Lung Fibrosis and the Signaling Pathway. Cell Biochem Biophys 2024; 82:479-488. [PMID: 38536578 DOI: 10.1007/s12013-024-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 08/25/2024]
Abstract
Lung fibrosis is a dysregulated repair process caused by excessive deposition of extracellular matrix that can severely affect respiratory function. Macrophages are a group of immune cells that have multiple functions and can perform a variety of roles. Lung fibrosis develops with the involvement of pro-inflammatory and pro-fibrotic factors secreted by macrophages. The balance between M1 and M2 macrophages has been proposed to play a role in determining the trend and severity of lung fibrosis. New avenues and concepts for preventing and treating lung fibrosis have emerged in recent years through research on mitochondria, Gab proteins, and exosomes. The main topic of this essay is the impact that mitochondria, Gab proteins, and exosomes have on macrophage polarization. In addition, the potential of these factors as targets to enhance lung fibrosis is also explored. We have also collated the functions and mechanisms of signaling pathways associated with the regulation of macrophage polarization such as Notch, TGF-β/Smad, JAK-STAT and cGAS-STING. The goal of this article is to explain the potential benefits of focusing on macrophage polarization as a way to relieve lung fibrosis. We aspire to provide valuable insights that could lead to enhancements in the treatment of this condition.
Collapse
Affiliation(s)
- Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, 133002, Jilin, China.
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China.
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China.
| |
Collapse
|
42
|
Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev 2024; 25:e13724. [PMID: 38408757 DOI: 10.1111/obr.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/04/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.
Collapse
Affiliation(s)
- Shujie Xu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Sun Y, Jin L, Qin Y, Ouyang Z, Zhong J, Zeng Y. Harnessing Mitochondrial Stress for Health and Disease: Opportunities and Challenges. BIOLOGY 2024; 13:394. [PMID: 38927274 PMCID: PMC11200414 DOI: 10.3390/biology13060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Mitochondria, essential organelles orchestrating cellular metabolism, have emerged as central players in various disease pathologies. Recent research has shed light on mitohormesis, a concept proposing an adaptive response of mitochondria to minor disturbances in homeostasis, offering novel therapeutic avenues for mitochondria-related diseases. This comprehensive review explores the concept of mitohormesis, elucidating its induction mechanisms and occurrence. Intracellular molecules like reactive oxygen species (ROS), calcium, mitochondrial unfolded proteins (UPRmt), and integrated stress response (ISR), along with external factors such as hydrogen sulfide (H2S), physical stimuli, and exercise, play pivotal roles in regulating mitohormesis. Based on the available evidence, we elucidate how mitohormesis maintains mitochondrial homeostasis through mechanisms like mitochondrial quality control and mitophagy. Furthermore, the regulatory role of mitohormesis in mitochondria-related diseases is discussed. By envisioning future applications, this review underscores the significance of mitohormesis as a potential therapeutic target, paving the way for innovative interventions in disease management.
Collapse
Affiliation(s)
| | | | | | | | | | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.S.); (L.J.); (Y.Q.); (Z.O.); (J.Z.)
| |
Collapse
|
44
|
Acevedo-Villavicencio LN, López-Luna CE, Castillo-Cruz J, Gutiérrez-Rojas RA, Paredes-González IS, Villafaña S, Huang F, Vargas-De-León C, Romero-Nava R, Aguayo-Cerón KA. Modulator Effect of AT1 Receptor Knockdown on THP-1 Macrophage Proinflammatory Activity. BIOLOGY 2024; 13:382. [PMID: 38927262 PMCID: PMC11200961 DOI: 10.3390/biology13060382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Currently, it is known that angiotensin II (AngII) induces inflammation, and an AT1R blockade has anti-inflammatory effects. The use of an AT1 receptor antagonist promotes the inhibition of the secretion of multiple proinflammatory cytokines in macrophages, as well as a decrease in the concentration of reactive oxygen species. The aim of this study was to determine the effect of AT1 receptor gene silencing on the modulation of cytokines (e.g., IL-1β, TNF-α, and IL-10) in THP-1 macrophages and the relation to the gene expression of NF-κB. MATERIALS AND METHODS We evaluated the gene expression of PPAR-γ in THP-1 macrophages using PMA (60 ng/mL). For the silencing, cells were incubated with the siRNA for 72 h and telmisartan (10 µM) was added to the medium for 24 h. After that, cells were incubated during 1 and 24 h, respectively, with Ang II (1 µM). The gene expression levels of AT1R, NF-κB, and cytokines (IL-1β, TNF-α, and IL-10) were measured by RT-qPCR. RESULTS We observed that silencing of the AT1 receptor causes a decrease in the expression of mRNA of proinflammatory cytokines (IL-1β and TNF-α), NF-κB, and PPAR-γ. CONCLUSIONS We conclude that AT1R gene silencing is an alternative to modulating the production of proinflammatory cytokines such as TNF-α and IL-1β via NF-κB in macrophages and having high blood pressure decrease.
Collapse
Affiliation(s)
- Lourdes Nallely Acevedo-Villavicencio
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México 11340, Mexico; (L.N.A.-V.); (C.E.L.-L.); (J.C.-C.); (S.V.); (C.V.-D.-L.)
| | - Carlos Enrique López-Luna
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México 11340, Mexico; (L.N.A.-V.); (C.E.L.-L.); (J.C.-C.); (S.V.); (C.V.-D.-L.)
| | - Juan Castillo-Cruz
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México 11340, Mexico; (L.N.A.-V.); (C.E.L.-L.); (J.C.-C.); (S.V.); (C.V.-D.-L.)
| | | | - Iris Selene Paredes-González
- Instituto de Investigaciones Biomédicas, Departamento de Inmunología, Universidad Autónoma de México, Ciudad de México 70228, Mexico;
| | - Santiago Villafaña
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México 11340, Mexico; (L.N.A.-V.); (C.E.L.-L.); (J.C.-C.); (S.V.); (C.V.-D.-L.)
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
| | - Cruz Vargas-De-León
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México 11340, Mexico; (L.N.A.-V.); (C.E.L.-L.); (J.C.-C.); (S.V.); (C.V.-D.-L.)
- División de Investigación, Hospital Juárez de Mexico, Mexico City 07760, Mexico
| | - Rodrigo Romero-Nava
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México 11340, Mexico; (L.N.A.-V.); (C.E.L.-L.); (J.C.-C.); (S.V.); (C.V.-D.-L.)
| | - Karla Aidee Aguayo-Cerón
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México 11340, Mexico; (L.N.A.-V.); (C.E.L.-L.); (J.C.-C.); (S.V.); (C.V.-D.-L.)
| |
Collapse
|
45
|
Gao L, Zuo XL, Dong LL, Zhou SF, Wang ZJ, Duan YS, Chen MY, Zhu QX, Zhang JX. Hepatocyte mitochondrial DNA mediates macrophage immune response in liver injury induced by trichloroethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116317. [PMID: 38615641 DOI: 10.1016/j.ecoenv.2024.116317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.
Collapse
Affiliation(s)
- Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xu-Lei Zuo
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Luo-Lun Dong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Si-Fan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Jian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Sheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mu-Yue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qi-Xing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| | - Jia-Xiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
46
|
Geisert RD, Bazer FW, Lucas CG, Pfeiffer CA, Meyer AE, Sullivan R, Johns DN, Sponchiado M, Prather RS. Maternal recognition of pregnancy in the pig: A servomechanism involving sex steroids, cytokines and prostaglandins. Anim Reprod Sci 2024; 264:107452. [PMID: 38522133 DOI: 10.1016/j.anireprosci.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Riley Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
47
|
Li L, Yu Y, Sun X, Wang X, Yang X, Yu Q, Kang K, Wu Y, Yi Q. Pro-endothelialization of nitinol alloy cardiovascular stents enhanced by the programmed assembly of exosomes and endothelial affinity peptide. J Mater Chem B 2024; 12:4184-4196. [PMID: 38592788 DOI: 10.1039/d4tb00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Stent implantation is one of the most effective methods for the treatment of atherosclerosis. Nitinol stent is a type of stent with good biocompatibility and relatively mature development; however, it cannot effectively achieve long-term anticoagulation and early endothelialization. In this study, nitinol surfaces with the programmed assembly of heparin, exosomes from endothelial cells, and endothelial affinity peptide (REDV) were fabricated through layer-by-layer assembly technology and click-chemistry, and then exosomes/REDV-modified nitinol interface (ACC-Exo-REDV) was prepared. ACC-Exo-REDV could promote the rapid proliferation and adhesion of endothelial cells and achieve anticoagulant function in the blood. Besides, ACC-Exo-REDV had excellent anti-inflammatory properties and played a positive role in the transformation of macrophage from the pro-inflammatory to anti-inflammatory phenotype. Ex vivo and in vivo experiments demonstrated the effectiveness of ACC-Exo-REDV in preventing thrombosis and hyperplasia formation. Hence, the programmed assembly of exosome interface could contribute to endothelialization and have potential application on the cardiovascular surface modification to prevent stent thrombosis and restenosis.
Collapse
Affiliation(s)
- Linsen Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Yue Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiaoqing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Xingyou Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiayan Yang
- Chengdu NewMed Biotechnology Co., Ltd, Chengdu 611139, P. R. China
| | - Qifeng Yu
- Chengdu NewMed Biotechnology Co., Ltd, Chengdu 611139, P. R. China
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
- Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, Sichuan Province, 610065, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
48
|
Jin D, Qian L, Chen J, Yu Z, Dong J. Prognostic impact of CD68+ tumor-associated macrophages in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2024; 103:e37834. [PMID: 38640338 PMCID: PMC11029977 DOI: 10.1097/md.0000000000037834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Evidence from clinical research suggests that the tumor-associated macrophages (TAMs) were associated with prognosis in hepatocellular carcinoma (HCC). The aim of the present meta-analysis was to conduct a qualitative analysis to explore the prognostic value of CD68 + TAMs in HCC. METHODS This study conducted a systematic search in Pubmed, Embase, the Cochrane Library and China National Knowledge Internet from inception of the databases to November 2023. The hazard ratio (HR) and 95% confidence interval (CI) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the included trials. The Newcastle-Ottawa Scale was used to evaluate the risk of prejudice. RESULTS We analyzed 4362 HCC patients. The present research indicated that the expression levels Of CD68 + TAMs were significantly associated with overall survival (OS) (HR = 1.55, 95% CI: 1.30-1.84) and disease-free survival (DFS) (HR = 1.44, 95% CI: 1.17-1.78). Subgroup analysis based on cutoff values showed that the "Median" subgroup showed a pooled HR of 1.66 with a 95% CI ranging from 1.32 to 2.08, which was slightly higher than the "Others" subgroup that exhibited a pooled HR of 1.40 and a 95% CI of 1.07 to 1.84. The "PT" subgroup had the highest pooled HR of 1.68 (95% CI: 1.19-2.37), indicating a worse OS compared to the "IT" (pooled HR: 1.50, 95% CI: 1.13-2.01) and "Mix" (pooled HR: 1.52, 95% CI: 1.03-2.26) subgroups. Moreover, in the sample size-based analysis, studies with more than 100 samples (>100) exhibited a higher pooled HR of 1.57 (95% CI: 1.28 to 1.93) compared to studies with fewer than 100 samples (<100), which had a pooled HR of 1.45 (95% CI: 1.00-2.10). CONCLUSIONS The analysis suggests that CD68 + TAMs were significantly associated with unfavorable OS and DFS in HCC patients, and may be served as a promising prognostic biomarker in HCC. However, more large-scale trials are needed to study the clinical value of TAMs in HCC.
Collapse
Affiliation(s)
- Danwen Jin
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Liyong Qian
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Jiayao Chen
- Department of Laboratory, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Ze Yu
- Laboratory of Cell Biology and Molecular Biology, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Jinliang Dong
- Department of Hepatobiliary Surgery, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| |
Collapse
|
49
|
Rumpel N, Riechert G, Schumann J. miRNA-Mediated Fine Regulation of TLR-Induced M1 Polarization. Cells 2024; 13:701. [PMID: 38667316 PMCID: PMC11049089 DOI: 10.3390/cells13080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Macrophage polarization to the M1 spectrum is induced by bacterial cell wall components through stimulation of Toll-like family (TLR) receptors. By orchestrating the expression of relevant mediators of the TLR cascade, as well as associated pathways and feedback loops, macrophage polarization is coordinated to ensure an appropriate immune response. This is central to the successful control of pathogens and the maintenance of health. Macrophage polarization is known to be modulated at both the transcriptional and post-transcriptional levels. In recent years, the miRNA-based post-transcriptional regulation of M1 polarization has received increasing attention from the scientific community. Comparative studies have shown that TLR stimulation alters the miRNA profile of macrophages and that macrophages from the M1 or the M2 spectrum differ in terms of miRNAs expressed. Simultaneously, miRNAs are considered critical post-transcriptional regulators of macrophage polarization. In particular, miRNAs are thought to play a regulatory role in the switch between the early proinflammatory response and the resolution phase. In this review, we will discuss the current state of knowledge on the complex interaction of transcriptional and post-transcriptional regulatory mechanisms that ultimately determine the functionality of macrophages.
Collapse
Affiliation(s)
| | | | - Julia Schumann
- University Clinic and Outpatient Clinic for Anesthesiology and Operative Intensive Care, University Medicine Halle (Saale), Franzosenweg 1a, 06112 Halle (Saale), Germany
| |
Collapse
|
50
|
Kim SW, Kim CW, Moon YA, Kim HS. Reprogramming of tumor-associated macrophages by metabolites generated from tumor microenvironment. Anim Cells Syst (Seoul) 2024; 28:123-136. [PMID: 38577621 PMCID: PMC10993762 DOI: 10.1080/19768354.2024.2336249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024] Open
Abstract
The tumor microenvironment comprises both tumor and non-tumor stromal cells, including tumor-associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts. TAMs, major components of non-tumor stromal cells, play a crucial role in creating an immunosuppressive environment by releasing cytokines, chemokines, growth factors, and immune checkpoint proteins that inhibit T cell activity. During tumors develop, cancer cells release various mediators, including chemokines and metabolites, that recruit monocytes to infiltrate tumor tissues and subsequently induce an M2-like phenotype and tumor-promoting properties. Metabolites are often overlooked as metabolic waste or detoxification products but may contribute to TAM polarization. Furthermore, macrophages display a high degree of plasticity among immune cells in the tumor microenvironment, enabling them to either inhibit or facilitate cancer progression. Therefore, TAM-targeting has emerged as a promising strategy in tumor immunotherapy. This review provides an overview of multiple representative metabolites involved in TAM phenotypes, focusing on their role in pro-tumoral polarization of M2.
Collapse
Affiliation(s)
- Seung Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Chan Woo Kim
- Cancer Immunotherapy Evaluation Team, Non-Clinical Evaluation Center, Osong Medical Innovation Foundation (KBIO Health), Cheongju, Republic of Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|