1
|
Shen S, Werner T, Lukowski SW, Andersen S, Sun Y, Shim WJ, Mizikovsky D, Kobayashi S, Outhwaite J, Chiu HS, Chen X, Chapman G, Martin EMMA, Xia D, Pham D, Su Z, Kim D, Yang P, Tan MC, Sinniah E, Zhao Q, Negi S, Redd MA, Powell JE, Dunwoodie SL, Tam PPL, Bodén M, Ho JWK, Nguyen Q, Palpant NJ. Atlas of multilineage stem cell differentiation reveals TMEM88 as a developmental regulator of blood pressure. Nat Commun 2025; 16:1356. [PMID: 39904980 PMCID: PMC11794859 DOI: 10.1038/s41467-025-56533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Pluripotent stem cells provide a scalable approach to analyse molecular regulation of cell differentiation across developmental lineages. Here, we engineer barcoded induced pluripotent stem cells to generate an atlas of multilineage differentiation from pluripotency, encompassing an eight-day time course with modulation of WNT, BMP, and VEGF signalling pathways. Annotation of in vitro cell types with reference to in vivo development reveals diverse mesendoderm lineage cell types including lateral plate and paraxial mesoderm, neural crest, and primitive gut. Interrogation of temporal and signalling-specific gene expression in this atlas, evaluated against cell type-specific gene expression in human complex trait data highlights the WNT-inhibitor gene TMEM88 as a regulator of mesendodermal lineages influencing cardiovascular and anthropometric traits. Genetic TMEM88 loss of function models show impaired differentiation of endodermal and mesodermal derivatives in vitro and dysregulated arterial blood pressure in vivo. Together, this study provides an atlas of multilineage stem cell differentiation and analysis pipelines to dissect genetic determinants of mammalian developmental physiology.
Collapse
Affiliation(s)
- Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Tessa Werner
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Stacey Andersen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genome Innovation Hub, The University of Queensland, St Lucia, QLD, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sakurako Kobayashi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer Outhwaite
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ella M M A Martin
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Di Xia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genome Innovation Hub, The University of Queensland, St Lucia, QLD, Australia
| | - Duy Pham
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Daniel Kim
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
| | - Men Chee Tan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Queensland Facility for Advanced Genome Editing, The University of Queensland, St Lucia, QLD, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Qiongyi Zhao
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sumedha Negi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- University of New South Wales, Cellular Genomics Futures Institute, Sydney, NSW, Australia
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Poon F, Sambathkumar R, Korytnikov R, Aghazadeh Y, Oakie A, Misra PS, Sarangi F, Nostro MC. Tankyrase inhibition promotes endocrine commitment of hPSC-derived pancreatic progenitors. Nat Commun 2024; 15:8754. [PMID: 39384787 PMCID: PMC11464881 DOI: 10.1038/s41467-024-53068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) have the potential to differentiate into various cell types, including pancreatic insulin-producing β cells, which are crucial for developing therapies for diabetes. However, current methods for directing hPSC differentiation towards pancreatic β-like cells are often inefficient and produce cells that do not fully resemble the native counterparts. Here, we report that highly selective tankyrase inhibitors, such as WIKI4, significantly enhances pancreatic differentiation from hPSCs. Our results show that WIKI4 promotes the formation of pancreatic progenitors that give rise to islet-like cells with improved β-like cell frequencies and glucose responsiveness compared to our standard cultures. These findings not only advance our understanding of pancreatic development, but also provide a promising new tool for generating pancreatic cells for research and potential therapeutic applications.
Collapse
Affiliation(s)
- Frankie Poon
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Sana Biotechnology, 300 Technology Square, Cambridge, MA, 02139, USA
| | - Rangarajan Sambathkumar
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
- Allarta Life Science Inc., 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Roman Korytnikov
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yasaman Aghazadeh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
- Montreal Clinical Research Institute (IRCM), University of Montreal, Department of Medicine, Montreal, H2W 1R7, QC, Canada
| | - Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Paraish S Misra
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Farida Sarangi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Zhang R, Wu M, Xiang D, Zhu J, Zhang Q, Zhong H, Peng Y, Wang Z, Ma G, Li G, Liu F, Ye W, Shi R, Zhou X, Babarinde IA, Su H, Chen J, Zhang X, Qin D, Hutchins AP, Pei D, Li D. A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development. Cell Stem Cell 2024; 31:1298-1314.e8. [PMID: 39146934 DOI: 10.1016/j.stem.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/β-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/β-catenin signaling and cell type commitment in somatic development.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menghua Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Dan Xiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Hui Zhong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Fengping Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Weipeng Ye
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemeng Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| |
Collapse
|
4
|
Ortiz-Salazar MA, Camacho-Aguilar E, Warmflash A. Endogenous Nodal switches Wnt interpretation from posteriorization to germ layer differentiation in geometrically constrained human pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584912. [PMID: 38559061 PMCID: PMC10979992 DOI: 10.1101/2024.03.13.584912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The Wnt pathway is essential for inducing the primitive streak, the precursor of the mesendoderm, as well as setting anterior-posterior coordinates. How Wnt coordinates these diverse activities remains incompletely understood. Here, we show that in Wnt-treated human pluripotent cells, endogenous Nodal signaling is a crucial switch between posteriorizing and primitive streak-including activities. While treatment with Wnt posteriorizes cells in standard culture, in micropatterned colonies, higher levels of endogenously induced Nodal signaling combine with exogenous Wnt to drive endoderm differentiation. Inhibition of Nodal signaling restores dose-dependent posteriorization by Wnt. In the absence of Nodal inhibition, micropatterned colonies undergo spontaneous, elaborate morphogenesis concomitant with endoderm differentiation even in the absence of added extracellular matrix proteins like Matrigel. Our study shows how Wnt and Nodal combinatorially coordinate germ layer differentiation with AP patterning and establishes a system to study a natural self-organizing morphogenetic event in in vitro culture.
Collapse
Affiliation(s)
| | - Elena Camacho-Aguilar
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Present address: Department of Gene Regulation and Morphogenesis, Andalusian Center for Developmental Biology (CSIC-UPO-JA), Seville, Spain, 41013
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Department of Bioengineering, Rice University, Houston, TX, USA 77005
| |
Collapse
|
5
|
Şişli HB, Şenkal Turhan S, Bulut E, Şahin F, Doğan A. The Role of Aplnr Signaling in the Developmental Regulation of Mesenchymal Stem Cell Differentiation from Human Pluripotent Stem Cells. Adv Biol (Weinh) 2024; 8:e2300217. [PMID: 37840394 DOI: 10.1002/adbi.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Indexed: 10/17/2023]
Abstract
Stem cells are invaluable resources for personalized medicine. Mesenchymal stem cells (MSCs) have received great attention as therapeutic tools due to being a safe, ethical, and accessible option with immunomodulatory and controlled differentiation properties. Apelin receptor (Aplnr) signaling is reported to be involved in biological events, including gastrulation, mesoderm migration, proliferation of MSCs. However, the knowledge about the exact role and mechanism of Aplnr signaling during mesoderm and MSCs differentiation is still primitive. The current study aims to unveil the role of Aplnr signaling during mesoderm and MSC differentiation from pluripotent stem cells (PSCs) through peptide/small molecule activation, overexpression, knock down or CRISPR/Cas9 mediated knock out of the pathway components. Morphological changes, gene and protein expression analysis, including antibody array, LC/MS, mRNA/miRNA sequencing, reveal that Aplnr signaling promotes mesoderm commitment possibly via EGFR and TGF-beta signaling pathways and enhances migration of cells during mesoderm differentiation. Moreover, Aplnr signaling positively regulates MSCs differentiation from hPSCs and increases MSC characteristics and differentiation capacity by regulating pathways, such as EGFR, TGFβ, Wnt, PDGF, and FGF. Osteogenic, chondrogenic, adipogenic, and myogenic differentiations are significantly enhanced with Aplnr signaling activity. This study generates an important foundation to generate high potential MSCs from PSCs to be used in personalized cell therapy.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Ezgi Bulut
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Fikrettin Şahin
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| |
Collapse
|
6
|
Davenport KM, Ortega MS, Liu H, O’Neil EV, Kelleher AM, Warren WC, Spencer TE. Single-nuclei RNA sequencing (snRNA-seq) uncovers trophoblast cell types and lineages in the mature bovine placenta. Proc Natl Acad Sci U S A 2023; 120:e2221526120. [PMID: 36913592 PMCID: PMC10041116 DOI: 10.1073/pnas.2221526120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/15/2023] Open
Abstract
Ruminants have a semi-invasive placenta, which possess highly vascularized placentomes formed by maternal endometrial caruncles and fetal placental cotyledons and required for fetal development to term. The synepitheliochorial placenta of cattle contains at least two trophoblast cell populations, including uninucleate (UNC) and binucleate (BNC) cells that are most abundant in the cotyledonary chorion of the placentomes. The interplacentomal placenta is more epitheliochorial in nature with the chorion developing specialized areolae over the openings of uterine glands. Of note, the cell types in the placenta and cellular and molecular mechanisms governing trophoblast differentiation and function are little understood in ruminants. To fill this knowledge gap, the cotyledonary and intercotyledonary areas of the mature day 195 bovine placenta were analyzed by single nuclei analysis. Single-nuclei RNA-seq analysis found substantial differences in cell type composition and transcriptional profiles between the two distinct regions of the placenta. Based on clustering and cell marker gene expression, five different trophoblast cell types were identified in the chorion, including proliferating and differentiating UNC and two different types of BNC in the cotyledon. Cell trajectory analyses provided a framework for understanding the differentiation of trophoblast UNC into BNC. The upstream transcription factor binding analysis of differentially expressed genes identified a candidate set of regulator factors and genes regulating trophoblast differentiation. This foundational information is useful to discover essential biological pathways underpinning the development and function of the bovine placenta.
Collapse
Affiliation(s)
| | - M. Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Hongyu Liu
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | | | - Andrew M. Kelleher
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Wesley C. Warren
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Institute for Data Science and Informatics, University of Missouri, ColumbiaMO65211
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| |
Collapse
|
7
|
Regulatory role of apelin receptor signaling in migration and differentiation of mouse embryonic stem cell-derived mesoderm cells and mesenchymal stem/stromal cells. Hum Cell 2023; 36:612-630. [PMID: 36692671 DOI: 10.1007/s13577-023-00861-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Mesoderm-derived cells, including bone, muscle, and mesenchymal stem/stromal cells (MSCs), constitute various parts of vertebrate body. Cell therapy with mesoderm specification in vitro may be a promising treatment for diseases affecting organs of mesodermal origin. Repair and regeneration of damaged organs with in vitro generation of mesoderm-derived tissues and MSCs hold a great potential for regenerative therapy. Therefore, understanding the signaling pathways involving mesoderm and mesoderm-derived cellular differentiation is important. Previous findings indicated the importance of Apelin receptor (Aplnr) signaling, during embryonic development, in gastrulation, cell migration, and differentiation. Nevertheless, regulatory role of Aplnr pathway in differentiation of mesoderm and mesoderm-derived MSCs remains unclear. In the current study, we tried to elucidate the role of Aplnr signaling during mesoderm cell migration and differentiation from mouse embryonic stem cells (mESCs). By activating and suppressing Aplnr signaling pathway via peptide, small molecule, and genetic modifications including siRNA- and shRNA-mediated knockdown and CRISPR-Cas9-mediated knockout (KO), we revealed that Aplnr signaling not only induces migration of cells during germ layer formation but also enhances mesoderm differentiation through FGF/MAPK pathway. Antibody array and LC/MS protein profiling data demonstrated that Apelin-13 treatment enhanced cell cycle, EGFR, FGF, Wnt, and Integrin signaling pathway proteins. Furthermore, Aplelin-13 treatment improved MSC characteristics, with mesenchymal phenotype and high expression of MSC markers, and silencing Aplnr signaling components resulted in significantly reduced expression of MSC markers. Also, Aplnr signaling activity enhanced proliferation and survival of the cells during MSC derivation from mesoderm.
Collapse
|
8
|
An Efficient Method for the Differentiation of Human iPSC-Derived Endoderm toward Enterocytes and Hepatocytes. Cells 2021; 10:cells10040812. [PMID: 33917333 PMCID: PMC8067398 DOI: 10.3390/cells10040812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
The endoderm, differentiated from human induced pluripotent stem cells (iPSCs), can differentiate into the small intestine and liver, which are vital for drug absorption and metabolism. The development of human iPSC-derived enterocytes (HiEnts) and hepatocytes (HiHeps) has been reported. However, pharmacokinetic function-deficiency of these cells remains to be elucidated. Here, we aimed to develop an efficient differentiation method to induce endoderm formation from human iPSCs. Cells treated with activin A for 168 h expressed higher levels of endodermal genes than those treated for 72 h. Using activin A (days 0–7), CHIR99021 and PI−103 (days 0–2), and FGF2 (days 3–7), the hiPSC-derived endoderm (HiEnd) showed 97.97% CD−117 and CD−184 double-positive cells. Moreover, HiEnts derived from the human iPSC line Windy had similar or higher expression of small intestine-specific genes than adult human small intestine. Activities of the drug transporter P-glycoprotein and drug-metabolizing enzyme cytochrome P450 (CYP) 3A4/5 were confirmed. Additionally, Windy-derived HiHeps expressed higher levels of hepatocyte- and pharmacokinetics-related genes and proteins and showed higher CYP3A4/5 activity than those derived through the conventional differentiation method. Thus, using this novel method, the differentiated HiEnts and HiHeps with pharmacokinetic functions could be used for drug development.
Collapse
|
9
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
10
|
DKK1 is epigenetically downregulated by promoter methylation and inhibits bile acid-induced gastric intestinal metaplasia. Biochem Biophys Res Commun 2020; 523:780-786. [PMID: 31952791 DOI: 10.1016/j.bbrc.2019.12.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Dickkopf-related protein 1 (DKK1) is essential to gastric cancer as an inhibitor of Wnt signaling. Gastric intestinal metaplasia (GIM) is an important precancerous lesion of gastric cancer that can be activated by bile acid reflux and chronic inflammation. However, the exact mechanism of DKK1 in bile acid-induced GIM has not been completely elucidated. We aimed to explore the epigenetic alterations and biological functions of DKK1 in the development of GIM. In the present study, bile acid was found to induce the expression of intestinal markers in gastric epithelial cells, whereas DKK1 was downregulated in response to bile acid stimulation. The mRNA and protein expression levels of DKK1 were decreased in GIM tissues as evidenced by qRT-PCR and immunohistochemical staining. Surprisingly, the methylation of the DKK1 promoter increased in GIM tissues, and we discovered 28 differential methylation sites of the DKK1 promoter in GIM tissues. Bile acid was able to induce the partial methylation of the DKK1 promoter, while 5-aza could increase DKK1 expression as well as decrease intestinal markers expression in gastric epithelial cells. In conclusion, the promoter methylation and downregulation of DKK1 might play important roles in the development of GIM, especially bile acid-induced GIM.
Collapse
|
11
|
Dual Inhibition of BMP and WNT Signals Promotes Pancreatic Differentiation from Human Pluripotent Stem Cells. Stem Cells Int 2019; 2019:5026793. [PMID: 31885612 PMCID: PMC6914911 DOI: 10.1155/2019/5026793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
Pathological or functional loss of pancreatic beta cells is the cause of diabetes. Understanding how signaling pathways regulate pancreatic lineage and searching for combinations of signal modulators to promote pancreatic differentiation will definitely facilitate the robust generation of functional beta cells for curing hyperglycemia. In this study, we first tested the effect of several potent BMP inhibitors on pancreatic differentiation using human embryonic stem cells. Next, we examined the endodermal lineage bias upon potent BMP inhibitor treatment and further checked the crosstalk between signal pathways governing endodermal lineage determination. Furthermore, we improved current pancreatic differentiation system based on the signaling pathway study. Finally, we used human-induced pluripotent stem cells to validate our finding. We found BMP inhibitors indeed not only blocked hepatic lineage but also impeded intestinal lineage from human definitive endoderm unexpectedly. Signaling pathway analysis indicated potent BMP inhibitor resulted in the decrease of WNT signal activity and inhibition of WNT could contribute to the improved pancreatic differentiation. Herein, we combined the dual inhibition of BMP and WNT signaling and greatly enhanced human pancreatic progenitor differentiation as well as beta cell generation from both embryonic stem cells and induced pluripotent stem cells. Conclusively, our present work identified the crosstalk between the BMP and WNT signal pathways during human endoderm patterning and pancreas specification, and provided an improved in vitro pancreatic directed differentiation protocol from human pluripotent stem cells.
Collapse
|
12
|
Fan HB, Zhai ZY, Li XG, Gao CQ, Yan HC, Chen ZS, Wang XQ. CDX2 Stimulates the Proliferation of Porcine Intestinal Epithelial Cells by Activating the mTORC1 and Wnt/β-Catenin Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112447. [PMID: 29156556 PMCID: PMC5713414 DOI: 10.3390/ijms18112447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Caudal type homeobox 2 (CDX2) is expressed in intestinal epithelial cells and plays a role in gut development and homeostasis by regulating cell proliferation. However, whether CDX2 cooperates with the mammalian target of rapamycin complex 1 (mTORC1) and Wnt/β-catenin signaling pathways to stimulate cell proliferation remains unknown. The objective of this study was to investigate the effect of CDX2 on the proliferation of porcine jejunum epithelial cells (IPEC-J2) and the correlation between CDX2, the mTORC1 and Wnt/β-catenin signaling pathways. CDX2 overexpression and knockdown cell culture models were established to explore the regulation of CDX2 on both pathways. Pathway-specific antagonists were used to verify the effects. The results showed that CDX2 overexpression increased IPEC-J2 cell proliferation and activated both the mTORC1 and Wnt/β-catenin pathways, and that CDX2 knockdown decreased cell proliferation and inhibited both pathways. Furthermore, the mTORC1 and Wnt/β-catenin pathway-specific antagonist rapamycin and XAV939 (3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)]-4H -thiopyrano[4,3-d]pyrimidin-4-one) both suppressed the proliferation of IPEC-J2 cells overexpressing CDX2, and that the combination of rapamycin and XAV939 had an additive effect. Regardless of whether the cells were treated with rapamycin or XAV939 alone or in combination, both mTORC1 and Wnt/β-catenin pathways were down-regulated, accompanied by a decrease in CDX2 expression. Taken together, our data indicate that CDX2 stimulates porcine intestinal epithelial cell proliferation by activating the mTORC1 and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Hong-Bo Fan
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen-Ya Zhai
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Chun-Qi Gao
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Hui-Chao Yan
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Science, St. John's University, Queens, NY 11439, USA.
| | - Xiu-Qi Wang
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Prabhu VV, Lulla AR, Madhukar NS, Ralff MD, Zhao D, Kline CLB, Van den Heuvel APJ, Lev A, Garnett MJ, McDermott U, Benes CH, Batchelor TT, Chi AS, Elemento O, Allen JE, El-Deiry WS. Cancer stem cell-related gene expression as a potential biomarker of response for first-in-class imipridone ONC201 in solid tumors. PLoS One 2017; 12:e0180541. [PMID: 28767654 PMCID: PMC5540272 DOI: 10.1371/journal.pone.0180541] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/16/2017] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies.
Collapse
Affiliation(s)
- Varun V. Prabhu
- Oncoceutics, Inc., Philadelphia, Pennsylvania, United States of America
- * E-mail: (WSED); (VVP)
| | - Amriti R. Lulla
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Neel S. Madhukar
- Weill Cornell Medicine, New York, New York, United States of America
| | - Marie D. Ralff
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Dan Zhao
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | - Avital Lev
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | | | | | - Cyril H. Benes
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tracy T. Batchelor
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew S. Chi
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Olivier Elemento
- Weill Cornell Medicine, New York, New York, United States of America
| | - Joshua E. Allen
- Oncoceutics, Inc., Philadelphia, Pennsylvania, United States of America
| | - Wafik S. El-Deiry
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail: (WSED); (VVP)
| |
Collapse
|